1
|
Shree M, Vaishnav J, Gurudayal, Ampapathi RS. In-silico assessment of novel peptidomimetics inhibitor targeting STAT3 and STAT4 N-terminal domain dimerization: A comprehensive study using molecular docking, molecular dynamics simulation, and binding free energy analysis. Biochem Biophys Res Commun 2024; 733:150584. [PMID: 39208642 DOI: 10.1016/j.bbrc.2024.150584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Dysregulation in Janus kinase-Signal Transducer and Activation of Transcription (JAK-STAT) pathway is closely linked to various cancer types. The N-terminal domain (NTD) of STAT proteins, upon dimerization, assumes a multifaceted role with remarkable adaptability in mediating interactions between proteins. Consequently, the strategic targeting of the N-terminal domain of STATs has emerged as a promising tactic for disrupting dimerization and impeding the translocation of STAT proteins. In this study, we have deployed an integrated in-silico methodology to rationally design Peptidomimetic foldamers as inhibitors of the N-terminal domains of STAT3 and STAT4, with the objective of disrupting protein dimerization. Consequently, we have judiciously designed a series of peptidomimetics that encompass β3-amino acids, bearing side chains that mimic the residues within interface II of the dimeric structures of the NTDs. Employing molecular docking techniques; we have assessed the binding affinity of these designed peptidomimetics toward both the NTDs. Furthermore, we have conducted an evaluation of the stability and conformational alterations within the docked complexes over an extensive Molecular Dynamics, subsequently computing the binding free energy utilizing MM/PBSA calculations. Our findings unequivocally demonstrate that the peptidomimetic foldamers we have devised (Peptide-A, Peptide-B, and Peptide-C) exhibit a propensity to bind to and impede the dimerization process of the NTDs of both STAT3 and STAT4. These outcomes serve to underscore the potential of these meticulously designed peptidomimetics as potential candidates meriting further exploration in the realm of cancer prevention and management.
Collapse
Affiliation(s)
- Megha Shree
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Jayanti Vaishnav
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Gurudayal
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Ravi Sankar Ampapathi
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Moyer AP, Ramelot TA, Curti M, Eastman MA, Kang A, Bera AK, Tejero R, Salveson PJ, Curutchet C, Romero E, Montelione GT, Baker D. Enumerative Discovery of Noncanonical Polypeptide Secondary Structures. J Am Chem Soc 2024; 146:25501-25512. [PMID: 39231524 PMCID: PMC11421003 DOI: 10.1021/jacs.4c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Energetically favorable local interactions can overcome the entropic cost of chain ordering and cause otherwise flexible polymers to adopt regularly repeating backbone conformations. A prominent example is the α helix present in many protein structures, which is stabilized by i, i + 4 hydrogen bonds between backbone peptide units. With the increased chemical diversity offered by unnatural amino acids and backbones, it has been possible to identify regularly repeating structures not present in proteins, but to date, there has been no systematic approach for identifying new polymers likely to have such structures despite their considerable potential for molecular engineering. Here we describe a systematic approach to search through dipeptide combinations of 130 chemically diverse amino acids to identify those predicted to populate unique low-energy states. We characterize ten newly identified dipeptide repeating structures using circular dichroism spectroscopy and comparison with calculated spectra. NMR and X-ray crystallographic structures of two of these dipeptide-repeat polymers are similar to the computational models. Our approach is readily generalizable to identify low-energy repeating structures for a wide variety of polymers, and our ordered dipeptide repeats provide new building blocks for molecular engineering.
Collapse
Affiliation(s)
- Adam P Moyer
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle 98195, Washington, United States
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, New York, United States
| | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Margaret A Eastman
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 07478, United States
| | - Alex Kang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle 98195, Washington, United States
| | - Asim K Bera
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle 98195, Washington, United States
| | - Roberto Tejero
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, New York, United States
| | - Patrick J Salveson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle 98195, Washington, United States
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, Barcelona 08028, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Martí i Franqués 1, Barcelona 08028, Spain
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, New York, United States
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle 98195, Washington, United States
| |
Collapse
|
3
|
Sukumar G, Rahul, Nayani K, Mainkar PS, Prashanth J, Sridhar B, Sarma AVS, Bharatam J, Chandrasekhar S. 6-Strand to Stable 10/12 Helix Conformational Switch by Incorporating Flexible β-hGly in the Homooligomers of Camphor Derived β-Amino Acid: NMR and X-Ray Crystallographic Evidence. Angew Chem Int Ed Engl 2024; 63:e202403321. [PMID: 38482551 DOI: 10.1002/anie.202403321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 04/07/2024]
Abstract
Rational design of unnatural amino acid building blocks capable of stabilizing predictable secondary structures similar to protein fragments is pivotal for foldamer chemistry/catalysis. Here, we introduce novel β-amino acid building blocks: [1S,2R,4R]exoCDA and [1S,2S,4R]endoCDA, derived from the abundantly available R(+)-camphor, which is traditionally known for its medicinal value. Further, we demonstrate that the homooligomers of exoCDA adopt 6-strand conformation, which switches to a robust 10/12-helix simply by inserting flexible β-hGly spacer at alternate positions (1 : 1 β-hGly/exoCDA heterooligomers), as evident by DFT-calculations, solution-state NMR spectroscopy and X-ray crystallography. To the best of our knowledge, this is the first example of crystalline-state structure of left-handed 10/12-mixed helix, that is free from the conventional approach of employing β-amino acids of either alternate chirality or alternate β2/β3 substitutions, to access the 10/12-helix. The results also show that the homooligomers of heterochiral exoCDA don't adopt helical fold, instead exhibit banana-shaped strands, whereas the homodimers of the other diastereomer endoCDA, nucleate 8-membered turns. Furthermore, the homo-exoCDA and hetero-[β-hGly-exoCDA] oligomers are found to exhibit self-association properties with distinct morphological features. Overall, the results offer new possibilties of constructing discrete stable secondary and tertiary structures based on CDAs, which can accommodate flexible residues with desired side-chain substitutions.
Collapse
Affiliation(s)
- Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh, 533296, India
| | - Rahul
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jupally Prashanth
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akella V S Sarma
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadeesh Bharatam
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Ochoa R, Fox T. Assessing the fast prediction of peptide conformers and the impact of non-natural modifications. J Mol Graph Model 2023; 125:108608. [PMID: 37659134 DOI: 10.1016/j.jmgm.2023.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
We present an assessment of different approaches to predict peptide structures using modeling tools. Several small molecule, protein, and peptide-focused methodologies were used for the fast prediction of conformers for peptides shorter than 30 amino acids. We assessed the effect of including restraints based on annotated or predicted secondary structure motifs. A number of peptides in bound conformations and in solution were collected to compare the tools. In addition, we studied the impact of changing single amino acids to non-natural residues using molecular dynamics simulations. Deep learning methods such as AlphaFold2, or the combination of physics-based approaches with secondary structure information, produce the most accurate results for natural sequences. In the case of peptides with non-natural modifications, modeling the peptide containing natural amino acids first and then modifying and simulating the peptide using benchmarked force fields is a recommended pipeline. The results can guide the modeling of oligopeptides for drug discovery projects.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany.
| | - Thomas Fox
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach/Riss, Germany
| |
Collapse
|
5
|
Reza D, Balo R, Otero JM, Fletcher AM, García-Fandino R, Sánchez-Pedregal VM, Davies SG, Estévez RJ, Estévez JC. β-Peptides incorporating polyhydroxylated cyclohexane β-amino acid: synthesis and conformational study. Org Biomol Chem 2023; 21:8535-8547. [PMID: 37840474 DOI: 10.1039/d3ob00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
We describe the synthesis of trihydroxylated cyclohexane β-amino acids from (-)-shikimic acid, in their cis and trans configuration, and the incorporation of the trans isomer into a trans-2-aminocyclohexanecarboxylic acid peptide chain. Subsequently, the hydroxyl groups were partially or totally deprotected. The structural study of the new peptides by FTIR, CD, solution NMR and DFT calculations revealed that they all fold into a 14-helix secondary structure, similarly to the homooligomer of trans-2-aminocyclohexanecarboxylic acid. This means that the high degree of substitution of the cyclohexane ring of the new residue is compatible with the adoption of a stable helical secondary structure and opens opportunities for the design of more elaborate peptidic foldamers with oriented polar substituents at selected positions of the cycloalkane residues.
Collapse
Affiliation(s)
- David Reza
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| | - Rosalino Balo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - José M Otero
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| | - Ai M Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Rebeca García-Fandino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Víctor M Sánchez-Pedregal
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Stephen G Davies
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ramón J Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Juan C Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica. Universidade de Santiago de Compostela, c/Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Cronin SA, Connon SJ. The kinetic resolution of oxazinones by alcoholysis: access to orthogonally protected β-amino acids. Org Biomol Chem 2021; 19:7348-7352. [PMID: 34387643 DOI: 10.1039/d1ob01306h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic, alcoholytic kinetic resolution of oxazinones is reported. A novel, stereochemically dense cinchona alkaloid-based catalyst can facilitate the highly enantiodiscriminatory (S up to 101) ring-opening of oxazinones equipped with electrophilic aryl units to generate orthogonally protected β-amino acids for the first time.
Collapse
Affiliation(s)
- Sarah A Cronin
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | | |
Collapse
|
7
|
Abdildinova A, Kurth MJ, Gong Y. Solid‐Phase Synthesis of Peptidomimetics with Peptide Backbone Modifications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| | - Mark J. Kurth
- Department of Chemistry University of California Davis CA 95616 USA
| | - Young‐Dae Gong
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| |
Collapse
|
8
|
Li Z, Cai B, Yang W, Chen CL. Hierarchical Nanomaterials Assembled from Peptoids and Other Sequence-Defined Synthetic Polymers. Chem Rev 2021; 121:14031-14087. [PMID: 34342989 DOI: 10.1021/acs.chemrev.1c00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In nature, the self-assembly of sequence-specific biopolymers into hierarchical structures plays an essential role in the construction of functional biomaterials. To develop synthetic materials that can mimic and surpass the function of these natural counterparts, various sequence-defined bio- and biomimetic polymers have been developed and exploited as building blocks for hierarchical self-assembly. This review summarizes the recent advances in the molecular self-assembly of hierarchical nanomaterials based on peptoids (or poly-N-substituted glycines) and other sequence-defined synthetic polymers. Modern techniques to monitor the assembly mechanisms and characterize the physicochemical properties of these self-assembly systems are highlighted. In addition, discussions about their potential applications in biomedical sciences and renewable energy are also included. This review aims to highlight essential features of sequence-defined synthetic polymers (e.g., high stability and protein-like high-information content) and how these unique features enable the construction of robust biomimetic functional materials with high programmability and predictability, with an emphasis on peptoids and their self-assembled nanomaterials.
Collapse
Affiliation(s)
- Zhiliang Li
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,School of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, China
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Zhao J, Jin B. Solvent polarity dependent excited state hydrogen bond effects and intramolecular double proton transfer mechanism for 2-hydroxyphenyl-substituted benzo[1,2-d:4,5-d']bisimidazole system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119394. [PMID: 33422870 DOI: 10.1016/j.saa.2020.119394] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In this work, we probe into the photo-induced excited state hydrogen bonding interactions and excited state proton transfer (ESPT) behaviors for a representative benzo[1,2-d:4,5-d']bisimidazole derivative (i.e., 2-hydroxyphenyl-substituted benzo[1,2-d:4,5-d']bisimidazole (HPBB)) compound. In view of aprotic solvents with different polarities, cyclohexane (CYH), dichloromethane (DCM) and acetonitrile (MeCN) solvents are considered. Analyzing hydrogen-bond geometrical parameters, infrared (IR) vibrational spectra, Mayer bond order and predicting hydrogen bonding energy (E(HB)), we verify dual hydrogen bonds of HPBB are strengthened in S1 state. Particularly, in nonpolar solvent, the enhanced excited state hydrogen bonds become more obvious. The intriguing charge redistribution and frontier molecular orbitals (MOs) reveal hydrogen bonding acceptance ability of acceptor moieties becomes stronger, which plays a crucial role in capturing hydroxyl proton via photoexcitation. To check and explore ESIPT mechanism, we present the solvent polarity dependent asynchronous excited state intramolecular double proton transfer (ESIDPT) mechanism. That is, nonpolar solvent promotes excited state intramolecular single proton transfer (ESISPT) process for HPBB, while polar solvent contributes to ESIDPT behavior with the primary single proton-transfer product in S1 state. This work not only makes a rational attribution to experimental phenomena, but also clarifies detailed excited state behaviors for HPBB and presents regulating ESIPT mechanism via solvent polarity.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, PR China
| | - Bing Jin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266235, PR China.
| |
Collapse
|
10
|
Blodgett KN, Jang G, Kim S, Kim MK, Choi SH, Zwier TS. Coexistence of Left- and Right-Handed 12/10-Mixed Helices in Cyclically Constrained β-Peptides and Directed Formation of Single-Handed Helices upon Site-Specific Methylation. J Phys Chem A 2020; 124:5856-5870. [PMID: 32497433 DOI: 10.1021/acs.jpca.0c03545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The inherent conformational preferences of the neutral β-peptide foldamer series, Ac-(ACHC)n-NHBn, n = 2-4, are studied in the gas phase using conformation-specific IR-UV double resonance methods. The cyclically constrained chiral β-amino acid cis-2-aminocyclohexane carboxylic acid (ACHC) is designed to bring both right- and left-handed helices into close energetic proximity. Comparison of the infrared spectra in the NH stretch and amide I/II regions with the predictions of DFT calculations lead to the unambiguous assignment of four out of the six observed conformations of the molecules in this series, while corroborating computational and spectral evidence, affords tentative assignments of the remaining two conformers for which IR data were not recorded. The observed structures fall into one of two conformational families: a right-handed 12/10-mixed helix or its "cap-disrupted" left-handed helical analogue, which coexist with significant populations. Site-specific and stereospecific methylation on the cyclohexane backbone at the dipeptide (n = 2) level is also tested as a means to sterically lock in a predetermined cyclohexane chair conformation. These substitutions are proven to be a means of selectively driving formation of one helical screw sense or the other. Calculated relative energies and free energies of all possible structures for the molecules provide strong supporting evidence that the rigid nature of the ACHC residue confers unusual stability to the 12/10-mixed helix conformation, regardless of local environment, temperature, or C-terminal capping unit. The simultaneous presence of both handed helices offers unique opportunities for future studies of their interconversion.
Collapse
Affiliation(s)
- Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Geunhyuk Jang
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Sojung Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Min Kyung Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Soo Hyuk Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
11
|
Xu L, Zhang Q, Zhang T, Yang D. Theoretical insights into elaborating and regulating excited state dynamics for the novel 6-cyano-2-(2′-hydroxyphenyl)imidazo[1,2a]pyridine system in polar and nonpolar solvents. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1662958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Lei Xu
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
| | - Qiaoli Zhang
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
| | - Tianjie Zhang
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
| | - Dapeng Yang
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| |
Collapse
|
12
|
Zou S, Zhang T, Wang S, Huang H. Iron‐Catalyzed Aminomethyloxygenative Cyclization of Hydroxy‐α‐diazoesters with
N,O
‐Aminals. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Suchen Zou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
| | - Tianze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
| | - Siyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
13
|
Eitzinger A, Brière JF, Cahard D, Waser M. Enantioselective catalytic synthesis of α-aryl-α-SCF 3-β 2,2-amino acids. Org Biomol Chem 2020; 18:405-408. [PMID: 31915785 PMCID: PMC6989214 DOI: 10.1039/c9ob02666e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We herein report a novel entry towards chiral α-SCF3-β2,2-amino acids by carrying out the ammonium salt-catalyzed α-trifluoromethylthiolation of isoxazolidin-5-ones. This approach allowed for high enantioselectivities and high yields and the obtained heterocycles proved to be versatile platforms to access other targets of potential interest.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria
| | | | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Univ, UNIROUEN, INSA Rouen, 76000 Rouen, France
| | - Mario Waser
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria
| |
Collapse
|
14
|
Eitzinger A, Winter M, Schörgenhumer J, Waser M. Quaternary β 2,2-amino acid derivatives by asymmetric addition of isoxazolidin-5-ones to para-quinone methides. Chem Commun (Camb) 2019; 56:579-582. [PMID: 31830176 DOI: 10.1039/c9cc09239k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly enantioselective (>99.5% ee) synthesis of a new class of densely functionalized β2,2-amino acid derivatives by reacting isoxazolidin-5-ones with para-quinone methides in the presence of chiral ammonium salt phase-transfer catalysts was developed. The reaction proceeds with exceptionally low catalyst loadings down to 20 ppm on gram scale and the utilization of the primary addition products towards further manipulations was demonstrated for selected examples.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria. mario.waser@jku
| | - Michael Winter
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria. mario.waser@jku
| | - Johannes Schörgenhumer
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria. mario.waser@jku
| | - Mario Waser
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria. mario.waser@jku
| |
Collapse
|
15
|
Wang S, Otani Y, Zhai L, Su A, Nara M, Kawahata M, Yamaguchi K, Sada A, Ohki R, Ohwada T. Overall Shape Constraint of Alternating α/β-Hybrid Peptides Containing Bicyclic β-Proline. Org Lett 2019; 21:7813-7817. [PMID: 31518151 DOI: 10.1021/acs.orglett.9b02799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our NMR, IR/Raman, CD spectroscopic, and X-ray crystallographic studies, as well as accelerated molecular dynamics simulations, showed that alternating hybrid α/β-peptides containing a bicyclic β-proline surrogate form unique extended curved folds, regardless of the peptide length and solvent environment. It is suggested that extended β/PPII structures are preferred in the insulating α-alanine moieties between the rigid bicyclic β-proline structures. These hybrid peptides inhibit p53-MDM2 and p53-MDMX protein-protein interactions.
Collapse
Affiliation(s)
- Siyuan Wang
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,Research Foundation Itsuu Laboratory , C1232 Kanagawa Science Park R&D Building, 3-2-1 Sakado, Takatsu-ku , Kawasaki , Kanagawa 213-0012 , Japan
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Luhan Zhai
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Aoze Su
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Masayuki Nara
- Department of Chemistry, College of Liberal Arts and Sciences , Tokyo Medical and Dental University , 2-8-30 Kohnodai , Ichikawa , Chiba 272-0827 , Japan
| | - Masatoshi Kawahata
- Department of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Kentaro Yamaguchi
- Department of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Akane Sada
- Laboratory of Fundamental Oncology , National Cancer Center Research Institute , Tsukiji 5-1-1 , Chuo-ku , Tokyo 104-0045 , Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology , National Cancer Center Research Institute , Tsukiji 5-1-1 , Chuo-ku , Tokyo 104-0045 , Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
16
|
Li J, Wang J, Zhang M, Song P, Li X. Effects of isomerization and concentration on the surface plasmon induced intermolecular hydrogen bonds enhancement of fluorobromobenzaldehydes. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Schnitzer T, Wennemers H. Effect of
β
3
‐Amino Acids on the Performance of the Peptidic Catalyst H‐
d
Pro‐Pro‐Glu‐NH
2. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tobias Schnitzer
- ETH ZurichLaboratorium für Organische Chemie, D-CHAB Vladimir-Prelog-Weg 3 CH-8093 Zurich Switzerland
| | - Helma Wennemers
- ETH ZurichLaboratorium für Organische Chemie, D-CHAB Vladimir-Prelog-Weg 3 CH-8093 Zurich Switzerland
| |
Collapse
|
18
|
Bucci R, Contini A, Clerici F, Beccalli EM, Formaggio F, Maffucci I, Pellegrino S, Gelmi ML. Fluoro-Aryl Substituted α,β 2,3-Peptides in the Development of Foldameric Antiparallel β-Sheets: A Conformational Study. Front Chem 2019; 7:192. [PMID: 31001518 PMCID: PMC6454073 DOI: 10.3389/fchem.2019.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
α,β2,3-Disteroisomeric foldamers of general formula Boc(S-Ala-β-2R,3R-Fpg)nOMe or Boc(S-Ala-β-2S,3S-Fpg)nOMe were prepared from both enantiomers of syn H-2-(2-F-Phe)-h-PheGly-OH (named β-Fpg) and S-alanine. Our peptides show two appealing features for biomedical applications: the presence of fluorine, attractive for non-covalent interactions, and aryl groups, crucial for π-stacking. A conformational study was performed, using IR, NMR and computational studies of diastereoisomeric tetra- and hexapeptides containing the β2,3-amino acid in the R,R- and S,S-stereochemistry, respectively. We found that the stability of peptide conformation is dependent on the stereochemistry of the β-amino acid. Combining S-Ala with β-2R,3R-Fpg, a stable extended β-strand conformation was obtained. Furthermore, β-2R,3R-Fpg containing hexapeptide self-assembles to form antiparallel β-sheet structure stabilized by intermolecular H-bonds and π,π-interactions. These features make peptides containing the β2,3-fluoro amino acid very appealing for the development of bioactive proteolytically stable foldameric β-sheets as modulators of protein-protein interaction (PPI).
Collapse
Affiliation(s)
- Raffaella Bucci
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Egle Maria Beccalli
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | | | - Irene Maffucci
- CNRS UMR 7025, Génie Enzymatique et Cellulaire, Centre de Recherche de Royallieu, Compiègne, France
- Génie Enzymatique et Cellulaire, Centre de Recherche de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| |
Collapse
|
19
|
Wang Y, Yang G, Jia M, Song X, Zhang Q, Yang D. Insights into the excited state dynamical process for 3-hydroxy-2-(5-(5-(5-(3-hydroxy-4-oxo-4H-chromen-2-yl)thiophen-2-yl)thiophen-2-yl)thiophen-2-yl)-4H-chromen-4-one. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yusheng Wang
- College of Physics and Electronics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Guang Yang
- Basic Teaching Department; Jiaozuo University; Jiaozuo China
| | - Min Jia
- College of Physics and Electronics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Xiaoyan Song
- College of Physics and Electronics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Qiaoli Zhang
- College of Physics and Electronics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Dapeng Yang
- College of Physics and Electronics; North China University of Water Resources and Electric Power; Zhengzhou China
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
20
|
Simon M, Milbeo P, Liu H, André C, Wenger E, Martinez J, Amblard M, Aubert E, Legrand B, Calmès M. 12/10‐Helix in Mixed β‐Peptides Alternating Bicyclic and Acyclic β‐Amino Acids: Probing the Relationship between Bicyclic Side Chain and Helix Stability. Chemistry 2018; 24:18795-18800. [DOI: 10.1002/chem.201804404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Matthieu Simon
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| | - Pierre Milbeo
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| | - Hongtao Liu
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| | - Christophe André
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| | - Emmanuel Wenger
- CRM2UMR 7063 CNRS Université de Lorraine Boulevard des Aiguilletes 54506 Vandoeuvre-lès-Nancy Cedex France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| | - Emmanuel Aubert
- CRM2UMR 7063 CNRS Université de Lorraine Boulevard des Aiguilletes 54506 Vandoeuvre-lès-Nancy Cedex France
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| | - Monique Calmès
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247CNRS-Université Montpellier-ENSCM 34093 Montpellier cedex 5 France
| |
Collapse
|
21
|
Christofferson AJ, Al-Garawi ZS, Todorova N, Turner J, Del Borgo MP, Serpell LC, Aguilar MI, Yarovsky I. Identifying the Coiled-Coil Triple Helix Structure of β-Peptide Nanofibers at Atomic Resolution. ACS NANO 2018; 12:9101-9109. [PMID: 30157375 DOI: 10.1021/acsnano.8b03131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peptide self-assembly represents a powerful bottom-up approach to the fabrication of nanomaterials. β3-Peptides are non-natural peptides composed entirely of β-amino acids, which have an extra methylene in the backbone, and we reported fibers derived from the self-assembly of β3-peptides that adopt 14-helical structures. β3-Peptide assemblies represent a class of stable nanomaterials that can be used to generate bio- and magneto-responsive materials with proteolytic stability. However, the three-dimensional structure of many of these materials remains unknown. To develop structure-based criteria for the design of β3-peptide-based biomaterials with tailored function, we investigated the structure of a tri-β3-peptide nanoassembly by molecular dynamics simulations and X-ray fiber diffraction analysis. Diffraction data was collected from aligned fibrils formed by Ac-β3[LIA] in water and used to inform and validate the model structure. Models with 3-fold radial symmetry resulted in stable fibers with a triple-helical coiled-coil motif and measurable helical pitch and periodicity. The fiber models revealed a hydrophobic core and twist along the fiber axis arising from a maximization of contacts between hydrophobic groups of adjacent tripeptides on the solvent-exposed fiber surface. These atomic structures of macroscale fibers derived from β3-peptide-based materials provide valuable insight into the effects of the geometric placement of the side chains and the influence of solvent on the core fiber structure which is perpetuated in the superstructure morphology.
Collapse
Affiliation(s)
| | - Zahraa S Al-Garawi
- School of Life Sciences , University of Sussex , Falmer , East Sussex BN1 9QG , U.K
- Chemistry Department , Mustansiriyah University , Baghdad Iraq
| | - Nevena Todorova
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Jack Turner
- School of Life Sciences , University of Sussex , Falmer , East Sussex BN1 9QG , U.K
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Melbourne , Victoria 3800 , Australia
| | - Louise C Serpell
- School of Life Sciences , University of Sussex , Falmer , East Sussex BN1 9QG , U.K
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Melbourne , Victoria 3800 , Australia
| | - Irene Yarovsky
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| |
Collapse
|
22
|
Ma YZ, Yang YF, Shi W, Song YZ, Li YQ. The order of multiple excited state proton transfer in ternary complex of norharmane and acetic acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:30-35. [PMID: 29777931 DOI: 10.1016/j.saa.2018.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Dolores Reyman et al. found the norharmane (9H-pyrido [3,4-b] indole) (NHM) and two acetic acid molecules can form the ternary complex (NHM-2A) in component solvent of dichloromethane and acetic acid via the hydrogen bond chain (J. Lumin. 2014, 148, 64). But the specific reaction details during this process were rarely reported. In this study, we will give an insight into the reasons which promote the occurrence of this reaction as well as its reaction order. The hydrogen bond enhancing behavior in first excited state (S1) is verified through the analysis of geometric configurations, infrared spectra, frontier molecular orbitals and potential energy curves. The absorption and fluorescence spectra we calculated are well coincident with the experimental results. Meanwhile, it is obvious that the hydrogen bond intensity is gradually enhanced from N1H2⋯O3, O4H5⋯O6 to O7H8⋯N9 by analyzing the reduced density gradient (RDG) isosurface. The hydrogen bond strengthening mechanism has been confirmed in which the hydrogen bond interaction acts as driving force for excited state proton transfer (ESPT) reaction. In order to provide a reliable description of the reaction energy profiles, we compare the barrier differences obtained by m062x and B3LYP methods. We might safely draw the conclusion that the multiple ESPT is a gradual process initiated by the proton transfer of O7H8⋯N9. And we further proof the ESPT process can be completed via the NHM-2A → NHM-2AS → NHM-2AD → NHM-2AT in S1 state. Theoretical research of NHM-2A has been carried out by density functional theory (DFT) and time-dependent density functional theory (TDDFT). It is worth noting that we predicted that the fluorescence at 400 nm observed in experiment is more likely to be emitted by NHM-2AS in S1 state.
Collapse
Affiliation(s)
- Yan-Zhen Ma
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Yun-Fan Yang
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Wei Shi
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Yu-Zhi Song
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yong-Qing Li
- Department of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
23
|
Gao H, Yang G, Jia M, Song X, Zhang Q, Yang D. A detailed theoretical study on the excited-state hydrogen-bonding dynamics and the proton transfer mechanism for a novel white-light fluorophore. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haiyan Gao
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Guang Yang
- Basic Teaching Department; Jiaozuo University; Jiaozuo China
| | - Min Jia
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Xiaoyan Song
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Qiaoli Zhang
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Dapeng Yang
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
24
|
Wang Y, Yang G, Zhang Q, Song X, Yang D. Theoretical explorations about the excited state behaviors for two novel high efficient ESIPT compounds. Struct Chem 2018. [DOI: 10.1007/s11224-018-1165-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Wang Y, Yang G, Jia M, Song X, Yang D. Theoretical insights into the excited state intramolecular proton transfer mechanism for a novel 4-methoxy-3-hydroxyflavone system. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yusheng Wang
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Guang Yang
- Basic Teaching Department; Jiaozuo University; Jiaozuo China
| | - Min Jia
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Xiaoyan Song
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Dapeng Yang
- School of Mathematics and Statics; North China University of Water Resources and Electric Power; Zhengzhou China
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
26
|
Goel R, Garg C, Gautam HK, Sharma AK, Kumar P, Gupta A. Fabrication of cationic nanostructures from short self-assembling amphiphilic mixed α/β-pentapeptide: Potential candidates for drug delivery, gene delivery, and antimicrobial applications. Int J Biol Macromol 2018; 111:880-893. [PMID: 29355630 DOI: 10.1016/j.ijbiomac.2018.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
The present article describes designing and fabrication of nanostructures from a mixed α/β-pentapeptide, Lys-βAla-βAla-Lys-βAla, which majorly contains non-natural β-alanine residues in the backbone with two α-lysine residues at 1- and 4-positions. The amphiphilic pentapeptide showed the ability to self-assemble into cationic nanovesicles in an aqueous solution. The average size of peptide nanostructures was found to be ~270 nm with a very high cationic charge of ~+40 mV. TEM micrographs revealed the average size of the same nanostructures ~80 nm bearing vesicular morphology. CD and FTIR spectroscopic studies on self-assembled pentapeptide hinted at random coil conformation which was also correlated with conformational search program using Hyper Chem 8.0. The pentapeptide nanostructures were then tested for encapsulation of hydrophobic model drug moieties, L-Dopa, and curcumin. Transfection efficiency of the generated cationic nanostructures was evaluated on HEK293 cells and compared the results with those obtained in the presence of chloroquine. The cytotoxicity assay performed using MTT depicted ~75-80% cell viability. The obtained nanostructures also gave positive results against both Gram-negative and Gram-positive bacterial strains. Altogether the results advocate the promising potential of the pentapeptide foldamer, H-Lys-βAla-βAla-Lys-βAla-OEt, for drug and gene delivery applications along with the antimicrobial activity.
Collapse
Affiliation(s)
- Rahul Goel
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India
| | - Charu Garg
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India; Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Hemant Kumar Gautam
- Microbial Technology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Alka Gupta
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India.
| |
Collapse
|
27
|
Yu J, Noda H, Shibasaki M. Quaternary β
2,2
‐Amino Acids: Catalytic Asymmetric Synthesis and Incorporation into Peptides by Fmoc‐Based Solid‐Phase Peptide Synthesis. Angew Chem Int Ed Engl 2017; 57:818-822. [DOI: 10.1002/anie.201711143] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jin‐Sheng Yu
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| |
Collapse
|
28
|
Yu J, Noda H, Shibasaki M. Quaternary β
2,2
‐Amino Acids: Catalytic Asymmetric Synthesis and Incorporation into Peptides by Fmoc‐Based Solid‐Phase Peptide Synthesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin‐Sheng Yu
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| |
Collapse
|
29
|
Misra R, Raja KMP, Hofmann HJ, Gopi HN. Modulating the Structural Properties of α,γ-Hybrid Peptides by α-Amino Acid Residues: Uniform 12-Helix Versus "Mixed" 12/10-Helix. Chemistry 2017; 23:16644-16652. [PMID: 28922503 DOI: 10.1002/chem.201703871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/06/2023]
Abstract
The most important natural α- and 310 -helices are stabilized by unidirectional intramolecular hydrogen bonds along the helical cylinder. In contrast, we report here on 12/10-helical conformations with alternately changing hydrogen-bond directionality in sequences of α,γ-hybrid peptides P1-P5 [P1: Boc-Ala-Aic-Ala-Aic-COOH; P2: Boc-Leu-Aic-Leu-Aic-OEt; P3: Boc-Leu-Aic-Leu-Aic-Leu-Aic-Aib-OMe; P4: Boc-Ala-Aic-Ala-Aic-Ala-Aic-Ala-OMe; P5: Boc-Leu-Aic-Leu-Aic-Leu-Aic-Leu-Aic-Aib-OMe; Aic=4-aminoisocaproic acid, Aib=2-aminoisobutyric acid] composed of natural α-amino acids and the achiral γ4,4 -dimethyl substituted γ-amino acid Aic in solution and in single crystals. The helical conformations are stabilized by alternating i→i+3 and i→i-1 intramolecular hydrogen bonds. The experimental data are supported by ab initio MO calculations. Surprisingly, replacing the natural α-amino acids of the sequence by the achiral dialkyl amino acid Ac6 c [P6: Boc-Ac6 c-Aic-Ac6 c-Aic-Ac6 c-Aic-Ac6 c-Aic-Ac6 c-CONHMe; Ac6 c = 1-aminocyclohexane-1-carboxylic acid] led to a 12-helix with unidirectional hydrogen bonds showing an entirely different backbone conformation. The results presented here emphasize the influence of the structure of the α-amino acid residues in dictating the helix types in α,γ-hybrid peptide foldamers and demonstrate the consequences for folding of small structural variations in the monomers.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | - K Muruga Poopathi Raja
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, India
| | - Hans-Jörg Hofmann
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| |
Collapse
|
30
|
Seoudi RS, Mechler A. Design Principles of Peptide Based Self-Assembled Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:51-94. [DOI: 10.1007/978-3-319-66095-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Cai K, Zheng X, Du F. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:150-157. [PMID: 28448953 DOI: 10.1016/j.saa.2017.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China.
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
32
|
Misra R, Saseendran A, George G, Veeresh K, Raja KMP, Raghothama S, Hofmann HJ, Gopi HN. Structural Dimorphism of Achiral α,γ-Hybrid Peptide Foldamers: Coexistence of 12- and 15/17-Helices. Chemistry 2017; 23:3764-3772. [DOI: 10.1002/chem.201605753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Rajkumar Misra
- Department of Chemistry; Indian Institution of Science Education and Research; Dr. Homi Bhabha Road Pune 411021 India
| | - Abhijith Saseendran
- Department of Chemistry; Indian Institution of Science Education and Research; Dr. Homi Bhabha Road Pune 411021 India
| | - Gijo George
- NMR Research Center; Indian Institute of Science; Bangalore 560012 India
| | - Kuruva Veeresh
- Department of Chemistry; Indian Institution of Science Education and Research; Dr. Homi Bhabha Road Pune 411021 India
| | - K. Muruga Poopathi Raja
- Department of Physical Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625 021 India
| | | | - Hans-Jörg Hofmann
- Institute of Biochemistry; Faculty of Biosciences, Pharmacy and Psychology; Talstraße 33 04103 Leipzig Germany
| | - Hosahudya N. Gopi
- Department of Chemistry; Indian Institution of Science Education and Research; Dr. Homi Bhabha Road Pune 411021 India
| |
Collapse
|
33
|
Thodupunuri P, Katukuri S, Ramakrishna KVS, Sharma GVM, Kunwar AC, Sarma AVS, Hofmann HJ. Solvent-Directed Switch of a Left-Handed 10/12-Helix into a Right-Handed 12/10-Helix in Mixed β-Peptides. J Org Chem 2017; 82:2018-2031. [DOI: 10.1021/acs.joc.6b02856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Prashanth Thodupunuri
- Organic
and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Sirisha Katukuri
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Kallaganti V. S. Ramakrishna
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Gangavaram V. M. Sharma
- Organic
and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ajit C. Kunwar
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Akella V. S. Sarma
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Hans-Jörg Hofmann
- Institute
of Biochemistry, Faculty of Biosciences, University of Leipzig, Brüderstrasse 34, D-04103 Leipzig, Germany
| |
Collapse
|
34
|
Yang J, Li AY. Theoretical study of hydrogen bonding excited states of fluorenone with formaldehyde. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2016.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Shin S, Lee M, Guzei IA, Kang YK, Choi SH. 12/10-Helical β-Peptide with Dynamic Folding Propensity: Coexistence of Right- and Left-Handed Helices in an Enantiomeric Foldamer. J Am Chem Soc 2016; 138:13390-13395. [DOI: 10.1021/jacs.6b08235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seonho Shin
- Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Mihye Lee
- Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Ilia A. Guzei
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Young Kee Kang
- Department
of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Soo Hyuk Choi
- Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
36
|
Pahlke DM, Diederichsen U. Synthesis and characterization of β-peptide helices as transmembrane domains in lipid model membranes. J Pept Sci 2016; 22:636-641. [PMID: 27578420 DOI: 10.1002/psc.2912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 11/07/2022]
Abstract
Aggregation, orientation and dynamics of transmembrane helices are of relevance for protein function and transmembrane signaling. To explore the interactions of transmembrane helices and the interdependence of peptide structure and lipid composition of the membranes, β-peptides were explored as model transmembrane domains. Various hydrophobic β-peptide sequences were synthesized by solid phase peptide synthesis. Conformational analyses of β-peptide helices were performed in organic solvents (methanol and 2,2,2-trifluoroethanol) and in large unilamellar liposomes (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine) indicating 12- and 14-helix conformations, depending on β3 -amino acid sequences. The intrinsic tryptophan fluorescence of β3 -homotryptophan units inserted in the center or near the end of the sequence was used to verify the membrane insertion of the β-peptides. A characteristic blue shift with peripheral β3 -homotryptophan compared with β-peptides with central tryptophan served as indication for a transmembrane orientation of the β-peptides within the lipid bilayer. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Denis M Pahlke
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| |
Collapse
|
37
|
Cai K, Du F, Zheng X, Liu J, Zheng R, Zhao J, Wang J. General Applicable Frequency Map for the Amide-I Mode in β-Peptides. J Phys Chem B 2016; 120:1069-79. [PMID: 26824578 DOI: 10.1021/acs.jpcb.5b11643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, a general applicable amide-I vibrational frequency map (GA map) for β-peptides in a number of common solvents was constructed, based on a peptide derivative, N-ethylpropionamide (NEPA). The map utilizes force fields at the ab initio computational level to accurately describe molecular structure and solute-solvent interactions, and also force fields at the molecular mechanics level to take into account long-range solute-solvent interactions. The results indicate that the GA map works reasonably for mapping the vibrational frequencies of the amide-I local-modes for β-peptides, holding promises for understanding the complicated infrared spectra of the amide-I mode in β-polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Jia Liu
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Renhui Zheng
- Beijing National Laboratory for Molecular Sciences, Structural Chemistry of Unstable and Stable Species Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
38
|
Sharma GVM, Anjaiah G, Kanakaraju M, Sudhakar B, Chatterjee D, Kunwar AC. Synthesis of a new β-amino acid with a 3-deoxy-L-ara furnaoside side chain: the influence of the side chain on the conformation of α/β-peptides. Org Biomol Chem 2016; 14:503-515. [PMID: 26489370 DOI: 10.1039/c5ob01753j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The important role of side chains in the stabilization of helical folds in peptidic foldamers containing C-linked carbo-β-amino acids (β-Caa), an interesting class of β-amino acids, with carbohydrate side chains has been extensively elaborated. As a pragmatic approach to alleviate the interference of substituents in the side chains on the folding propensities of the peptides, they are often modified or removed. The present study reports the synthesis of a new β-Caa with a 3-deoxy-L-ara furanoside side chain, [(R)-β-Caa(da)], from D-glucose, and its use in the synthesis of α/β-peptides in 1 : 1 alternation with D-Ala. The synthesis of peptides using (R)-β-Caa(da), was facile unlike those from (R)-β-Caa(a) having the L-ara furanoside side chain. The detailed NMR, molecular dynamics (MD) and CD studies on the new α/β-peptides showed the presence of robust left-handed 11/9-mixed helices. The study demonstrates that the new (R)-β-Caa(da), behaves differently compared to the other two related monomers, (R)-β-Caa(x) with the D-xylo furanoside side chain and (R)-β-Caa(a).
Collapse
Affiliation(s)
- Gangavaram V M Sharma
- Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| | | | | | | | | | | |
Collapse
|
39
|
Wang J, Yang F, Zhao J. Selectively Probing the Structures and Dynamics of β-Peptide Aggregates Using the Amide-A Vibrational Marker. J Phys Chem B 2015; 119:15451-9. [PMID: 26601794 DOI: 10.1021/acs.jpcb.5b10249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-H stretching vibration in a β-peptide model compound, N-ethylpropionamide (NEPA), was characterized by one-dimensional infrared (1D IR) and two-dimensional (2D) IR experiments and ab initio anharmonic frequency computations. A narrowband pump-broadband probe 2D IR method was applied to selectively probe a subensemble of the N-H stretching vibrations from a mixture of different NEPA molecular aggregates that were formed via an intermolecular hydrogen bond. Vibrational lifetime and anharmonicity were found to be sensitive to the aggregation ensembles. In particular, diagonal anharmonicities were observed experimentally and confirmed computationally to be smaller for NEPA trimer than for dimer, which was explained by the presence of non-negligible off-diagonal anharmonicities in coupled N-H stretching modes.
Collapse
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
40
|
Wang J, Yang F, Shi J, Zhao J. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy. J Chem Phys 2015; 143:185102. [PMID: 26567687 DOI: 10.1063/1.4935579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this work, the structural dynamics of N-ethylpropionamide (NEPA), a model molecule of β-peptides, in four typical solvents (DMSO, CH3CN, CHCl3, and CCl4), were examined using the N-H stretching vibration (or the amide-A mode) as a structural probe. Steady-state and transient infrared spectroscopic methods in combination with quantum chemical computations and molecular dynamics simulations were used. It was found that in these solvents, NEPA exists in different aggregation forms, including monomer, dimer, and oligomers. Hydrogen-bonding interaction and local-solvent environment both affect the amide-A absorption profile and its vibrational relaxation dynamics and also affect the structural dynamics of NEPA. In particular, a correlation between the red-shifted frequency for the NEPA monomer from nonpolar to polar solvent and the vibrational excitation relaxation rate of the N-H stretching mode was observed.
Collapse
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jipei Shi
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
41
|
Affiliation(s)
- Juan Zhao
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
42
|
Gopalan R, Del Borgo M, Mechler A, Perlmutter P, Aguilar MI. Geometrically Precise Building Blocks: the Self-Assembly of β-Peptides. ACTA ACUST UNITED AC 2015; 22:1417-1423. [DOI: 10.1016/j.chembiol.2015.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/23/2022]
|
43
|
Uribe L, Jaschonek S, Gauss J, Diezemann G. Mechanical unfolding pathway of a model β-peptide foldamer. J Chem Phys 2015; 142:204901. [DOI: 10.1063/1.4921371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
44
|
Synthesis and secondary conformations of homochiral β-oligopeptides containing aryl side chains. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4423-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Sharma GV, Venkateshwarlu G, Katukuri S, Ramakrishna KV, Sarma AV. Design and synthesis of novel oxetane β3-amino acids and α, β-peptides. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Abstract
The vibrational properties of the amide-I modes of β-peptides in five helical conformations (8-helix, 10-helix, 12-helix, 14-helix, and 10/12-helix) from tetramer to heptamer were examined by ab initio calculations. The normal modes have been first decoupled into local modes, whose transition energies are found to be intrinsically sensitive to peptide structure and intramolecular hydrogen bonding interactions. By further removing the intramolecular hydrogen bonding interactions, pure local modes are obtained, whose transition energies still exhibit some conformational dependence in 8-helix and 10/12 hybrid helix, but not much in homogeneous 10-, 12-, and 14-helical conformations. This suggests that a set of nearly degenerated pure local-mode transitions can be specified when excitonic modeling the amide-I vibration in latter cases. The work provides important benchmark measurements for understanding the complexity of the amide-I absorption spectra of β-polypeptides.
Collapse
Affiliation(s)
- Juan Zhao
- Beijing National Laboratory for Molecular Sciences; Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | | |
Collapse
|
47
|
Núñez-Villanueva D, Bonache MÁ, Lozano L, Infantes L, Elguero J, Alkorta I, García-López MT, González-Muñiz R, Martín-Martínez M. Experimental and theoretical studies on the rearrangement of 2-oxoazepane α,α-amino acids into 2'-oxopiperidine β(2,3,3) -amino acids: an example of intramolecular catalysis. Chemistry 2015; 21:2489-500. [PMID: 25522111 DOI: 10.1002/chem.201405640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/07/2022]
Abstract
Enantiopure β-amino acids represent interesting scaffolds for peptidomimetics, foldamers and bioactive compounds. However, the synthesis of highly substituted analogues is still a major challenge. Herein, we describe the spontaneous rearrangement of 4-carboxy-2-oxoazepane α,α-amino acids to lead to 2'-oxopiperidine-containing β(2,3,3) -amino acids, upon basic or acid hydrolysis of the 2-oxoazepane α,α-amino acid ester. Under acidic conditions, a totally stereoselective synthetic route has been developed. The reordering process involved the spontaneous breakdown of an amide bond, which typically requires strong conditions, and the formation of a new bond leading to the six-membered heterocycle. A quantum mechanical study was carried out to obtain insight into the remarkable ease of this rearrangement, which occurs at room temperature, either in solution or upon storage of the 4-carboxylic acid substituted 2-oxoazepane derivatives. This theoretical study suggests that the rearrangement process occurs through a concerted mechanism, in which the energy of the transition states can be lowered by the participation of a catalytic water molecule. Interestingly, it also suggested a role for the carboxylic acid at position 4 of the 2-oxoazepane ring, which facilitates this rearrangement, participating directly in the intramolecular catalysis.
Collapse
|
48
|
Goel R, Gopal S, Gupta A. Self-assembly of β-alanine homotetramer: formation of nanovesicles for drug delivery. J Mater Chem B 2015; 3:5849-5857. [DOI: 10.1039/c5tb00652j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present paper describes the fabrication of nanovesicles using the stirring induced self-assembly of a β-alanine homotetramer (H2N–βAla–βAla–βAla–βAla–CONH2) in an aqueous medium.
Collapse
Affiliation(s)
- Rahul Goel
- Department of Chemistry
- Dyal Singh College
- University of Delhi
- New Delhi 110003
- India
| | - Swarita Gopal
- Department of Chemistry
- Dyal Singh College
- University of Delhi
- New Delhi 110003
- India
| | - Alka Gupta
- Department of Chemistry
- Dyal Singh College
- University of Delhi
- New Delhi 110003
- India
| |
Collapse
|
49
|
Hassoun A, Grison CM, Guillot R, Boddaert T, Aitken DJ. Conformational preferences in the β-peptide oligomers of cis-2-amino-1-fluorocyclobutane-1-carboxylic acid. NEW J CHEM 2015. [DOI: 10.1039/c4nj01929f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
These oligomers adopt a regular zig-zag strand-like secondary structure which does not rely on intra-residue 6-ring hydrogen bonds for stability.
Collapse
Affiliation(s)
- Ammar Hassoun
- CP3A Organic Synthesis Group
- ICMMO (UMR CNRS 8182)
- Université Paris Sud
- 91405 Orsay Cedex
- France
| | - Claire M. Grison
- CP3A Organic Synthesis Group
- ICMMO (UMR CNRS 8182)
- Université Paris Sud
- 91405 Orsay Cedex
- France
| | - Régis Guillot
- Services Communs
- ICMMO (UMR CNRS 8182)
- Université Paris Sud
- 91405 Orsay Cedex
- France
| | - Thomas Boddaert
- CP3A Organic Synthesis Group
- ICMMO (UMR CNRS 8182)
- Université Paris Sud
- 91405 Orsay Cedex
- France
| | - David J. Aitken
- CP3A Organic Synthesis Group
- ICMMO (UMR CNRS 8182)
- Université Paris Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
50
|
Sharma GVM, Yadav TA, Marumudi K, Thodupunuri P, Reddy PP, Kunwar AC. Three-Residue Turn in β-Peptides Nucleated by a 12/10 Helix. Chem Asian J 2014; 9:3153-62. [DOI: 10.1002/asia.201402465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 01/07/2023]
|