1
|
Pluta D, Kuper H, Graf RT, Wesemann C, Rusch P, Becker JA, Bigall NC. Optical properties of NIR photoluminescent PbS nanocrystal-based three-dimensional networks. NANOSCALE ADVANCES 2023; 5:5005-5014. [PMID: 37705785 PMCID: PMC10496766 DOI: 10.1039/d3na00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
The assembly of nanocrystals (NCs) into three-dimensional network structures is a recently established strategy to produce macroscopic materials with nanoscopic properties. These networks can be formed by the controlled destabilization of NC colloids and subsequent supercritical drying to obtain NC-based aerogels. Even though this strategy has been used for many different semiconductor NCs, the emission of NC-based aerogels is limited to the ultraviolet and visible and no near-infrared (NIR) emitting NC-based aerogels have been investigated in literature until now. In the present work we have optimized a gelation route of NIR emitting PbS and PbS/CdS quantum dots (QDs) by means of a recently established gel formation method using trivalent ions to induce the network formation. Thereby, depending on the surface ligands and QDs used the resulting network structure is different. We propose, that the ligand affinity to the nanocrystal surface plays an essential role during network formation, which is supported by theoretical calculations. The optical properties were investigated with a focus on their steady-state and time resolved photoluminescence (PL). Unlike in PbS/CdS aerogels, the absorption of PbS aerogels and their PL shift strongly. For all aerogels the PL lifetimes are reduced in comparison to those of the building blocks with this reduction being especially pronounced in the PbS aerogels.
Collapse
Affiliation(s)
- Denis Pluta
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering, Leibniz University Hannover Schneiderberg 39 30167 Hannover Germany
| | - Henning Kuper
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
| | - Rebecca T Graf
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering, Leibniz University Hannover Schneiderberg 39 30167 Hannover Germany
| | - Christoph Wesemann
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
| | - Pascal Rusch
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering, Leibniz University Hannover Schneiderberg 39 30167 Hannover Germany
| | - Joerg August Becker
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering, Leibniz University Hannover Schneiderberg 39 30167 Hannover Germany
| |
Collapse
|
2
|
Dalui A, Ariga K, Acharya S. Colloidal semiconductor nanocrystals: from bottom-up nanoarchitectonics to energy harvesting applications. Chem Commun (Camb) 2023; 59:10835-10865. [PMID: 37608724 DOI: 10.1039/d3cc02605a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) have been extensively investigated owing to their unique properties induced by the quantum confinement effect. The advent of colloidal synthesis routes led to the design of stable colloidal NCs with uniform size, shape, and composition. Metal oxides, phosphides, and chalcogenides (ZnE, CdE, PbE, where E = S, Se, or Te) are few of the most important monocomponent semiconductor NCs, which show excellent optoelectronic properties. The ability to build quantum confined heterostructures comprising two or more semiconductor NCs offer greater customization and tunability of properties compared to their monocomponent counterparts. More recently, the halide perovskite NCs showed exceptional optoelectronic properties for energy generation and harvesting applications. Numerous applications including photovoltaic, photodetectors, light emitting devices, catalysis, photochemical devices, and solar driven fuel cells have demonstrated using these NCs in the recent past. Overall, semiconductor NCs prepared via the colloidal synthesis route offer immense potential to become an alternative to the presently available device applications. This feature article will explore the progress of NCs syntheses with outstanding potential to control the shape and spatial dimensionality required for photovoltaic, light emitting diode, and photocatalytic applications. We also attempt to address the challenges associated with achieving high efficiency devices with the NCs and possible solutions including interface engineering, packing control, encapsulation chemistry, and device architecture engineering.
Collapse
Affiliation(s)
- Amit Dalui
- Department of Chemistry, Jogamaya Devi College, Kolkata-700026, India
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Chiba 277-8561, Japan
- International Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Somobrata Acharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
3
|
Sarwar AR, Iqbal FM, Jamil MA, Abbas K. Nanocrystals of Mangiferin Using Design Expert: Preparation, Characterization, and Pharmacokinetic Evaluation. Molecules 2023; 28:5918. [PMID: 37570887 PMCID: PMC10420877 DOI: 10.3390/molecules28155918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Making nanoscale drug carriers could boost the bioavailability of medications that are slightly water soluble. One of the most promising approaches for enhancing the chemical stability and bioavailability of a variety of therapeutic medicines is liquid nanocrystal technology. This study aimed to prepare nanocrystals of mangiferin for sustained drug delivery and enhance the pharmacokinetic profile of the drug. The fractional factorial design (FFD) was used via a selection of independent and dependent variables. The selected factors were the concentration of mangiferin (A), hydroxypropyl methyl cellulose (HPMC) (B), pluronic acid (C), tween 80 (D), and the ratio of antisolvent to solvent (E). The selected responses were the particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The nanocrystals were further evaluated for mangiferin release, release kinetics, Fourier transforms infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), particle size, zeta potential, and scanning electron microscopy (SEM). The stability studies of developed nanocrystals were performed for 6 months and pharmacokinetics on albino rabbits. The value of entrapment efficiencies ranged from 23.98% to 86.23%. The percentage release of mangiferin varied from 62.45 to 99.02%. FTIR and DSC studies showed the stability of mangiferin in the nanocrystals. The particle size of the optimized formulation was almost 100 nm and -12 mV the value of the zeta potential. The results of stability studies showed that the nanocrystals of mangiferin were stable for a period of six months. The peak plasma concentration of mangiferin from nanocrystals and suspension of mangiferin were 412 and 367 ng/mL, respectively. The value of AUC0-t of nanocrystals and suspension of mangiferin was 23,567.45 ± 10.876 and 18,976.12 ± 9.765 µg×h/mL, respectively, indicating that the nanocrystals of mangiferin showed greater availability of mangiferin compared to the suspension of the formulation. The developed nanocrystals showed a good release pattern of mangiferin, better stability studies, and enhanced the pharmacokinetics of the drug.
Collapse
Affiliation(s)
- Abdur Rehman Sarwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.R.S.); (M.A.J.)
| | - Furqan Muhammad Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.R.S.); (M.A.J.)
| | - Muhammad Anjum Jamil
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.R.S.); (M.A.J.)
| | - Khizar Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
4
|
Sreenan B, Lee B, Wan L, Zeng R, Zhao J, Zhu X. Review of Mn-Doped Semiconductor Nanocrystals for Time-Resolved Luminescence Biosensing/Imaging. ACS APPLIED NANO MATERIALS 2022; 5:17413-17435. [PMID: 36874078 PMCID: PMC9980291 DOI: 10.1021/acsanm.2c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) have been developed for decades and are widely applied in biosensing/imaging. However, their biosensing/imaging applications are mainly based on luminescence-intensity measurement, which suffers from autofluorescence in complex biological samples and thus limits the biosensing/imaging sensitivities. It is expected for these NCs to be further developed to gain luminescence features that can overcome sample autofluorescence. On the other hand, time-resolved luminescence measurement utilizing long-lived-luminescence probes is an efficient technique to eliminate short-lived autofluorescence of samples while recording time-resolved luminescence of the probes for signal measurement after pulsed excitation from a light source. Despite time-resolved measurement being very sensitive, the optical limitations of many of the current long-lived-luminescence probes cause time-resolved measurement to be generally performed in laboratories with bulky and costly instruments. In order to apply highly sensitive time-resolved measurement for in-field or point-of-care (POC) testing, it is essential to develop probes possessing high brightness, low-energy (visible-light) excitation, and long lifetimes of up to milliseconds. Such desired optical features can significantly simplify the design criteria of time-resolved measurement instruments and facilitate the development of low-cost, compact, sensitive instruments for in-field or POC testing. Mn-doped NCs have recently been in rapid development and provide a strategy to solve the challenges faced by both colloidal semiconductor NCs and time-resolved luminescence measurement. In this review, we outline the major achievements in the development of Mn-doped binary and multinary NCs, with emphasis on their synthesis approaches and luminescence mechanisms. Specifically, we demonstrate how researchers approached these obstacles to achieve the aforementioned desired optical properties on the basis of the progressive understanding of Mn emission mechanisms. Afterward, we review representative applications of Mn-doped NCs in time-resolved luminescence biosensing/imaging and present the potential of Mn-doped NCs in advancing time-resolved luminescence biosensing/imaging for in-field or POC testing.
Collapse
Affiliation(s)
- Benjamin Sreenan
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Bryan Lee
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Li Wan
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| |
Collapse
|
5
|
Fang F, Liu H, Wen Z, Liu C, Xu B, Zhang Z, Wang K, Ertugrul M, Lei W, Sun XW. Enhancing the stability of environmental resistance of alloyed CdZnSeS@ZnS quantum dots by doping Ti ions into shell layer. NANOTECHNOLOGY 2022; 33:505602. [PMID: 36108531 DOI: 10.1088/1361-6528/ac923c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Colloidal quantum dots (QDs) are promising luminescent materials for display and lighting, but their stability has long been an issue. Here, we designed a passivation strategy of doping Ti ions into the shell of alloyed CdZnSeS@ZnS QDs. The results showed that Ti ions were successfully doped into the ZnS shell and the stability of QDs was improved. In the aging test, the Ti ions doped QDs maintained 51.4% of the initial performance after 90 h of aging, while the pristine QDs decreased to less than 25% of the initial value. In addition, we discuss the reasons why Ti ions doping improves the stability of QDs. Ti ions are found to form Ti-S bonds in the ZnS shell, which has high binding energy and strong oxidation resistance. Most importantly, since there is no external physical insulating coating, the optimized QDs can also be directly used in electroluminescent devices, showing great potential in electroluminescence applications.
Collapse
Affiliation(s)
- Fan Fang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, People's Republic of China
| | - Haochen Liu
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, People's Republic of China
| | - Zuoliang Wen
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Chenxi Liu
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, People's Republic of China
| | - Bing Xu
- Shenzhen Planck Innovation Technologies Co. Ltd, Shenzhen 518055, People's Republic of China
| | - Zhikuan Zhang
- Shenzhen Planck Innovation Technologies Co. Ltd, Shenzhen 518055, People's Republic of China
| | - Kai Wang
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, People's Republic of China
| | - Mehmet Ertugrul
- Department of Electric and Electronics Engineering, and Department of Nanoscience and Nanoengineering, Faculty of Engineering, Ataturk University, Erzurum 25240, Turkey
- Department of Electric and Electronics Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
- Department of Electronics Engineering, Faculty of Engineering, Manas University, Bishkek 720044, Kyrgyzstan
| | - Wei Lei
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Xiao Wei Sun
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, People's Republic of China
| |
Collapse
|
6
|
Liu ZZ, Li KP, Yang XB, Zhang YQ, Xie ZX, Duan ZQ, Zhou B, Hu YM. Selenylation to charge transfer improvement at the counter electrode (CE)/electrolyte interface for nanocrystalline Cu 1.8S 1-xSe x CEs. Phys Chem Chem Phys 2022; 24:21157-21164. [PMID: 36039748 DOI: 10.1039/d2cp02308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt counter electrodes (CEs) have been widely used in dye-sensitized solar cells (DSSCs) due to their high conductivity and electrocatalytic activity. However, industrialization of DSSCs is limited by shortcomings of Pt CEs such as being expensive, and weak corrosion resistance in electrolytes. Reported in this paper is two simple approaches to Pt-free Cu1.8S1-xSex CEs. Nanocrystalline Cu1.8S1-xSex CEs were fabricated via two processes, that is, a solvothermal process to Cu1.8S1-xSex powder followed by CE fabrication, and a solvothermal process and CE fabrication to Cu1.8S films followed by selenylation to Cu1.8S1-xSex CEs. Photoelectric conversion efficiencies (PCE) of 4.02% and 4.16% were achieved respectively by the as-fabricated Cu1.8S1-xSex CEs. Compared with the cells with Cu1.8S CEs fabricated by the same processes, increases of 19% and 45% were achieved, respectively. The PCE improvement comes from the enhancement of charge transfer at the CE/electrolyte interface induced by the selenylation of the CEs.
Collapse
Affiliation(s)
- Z Z Liu
- College of Engineering, Dali University, Dali, 671003, China.
| | - K P Li
- College of Engineering, Dali University, Dali, 671003, China.
| | - X B Yang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Y Q Zhang
- College of Engineering, Dali University, Dali, 671003, China.
| | - Z X Xie
- College of Engineering, Dali University, Dali, 671003, China.
| | - Z Q Duan
- College of Engineering, Dali University, Dali, 671003, China.
| | - B Zhou
- College of Engineering, Dali University, Dali, 671003, China.
| | - Y M Hu
- College of Engineering, Dali University, Dali, 671003, China.
| |
Collapse
|
7
|
Chen X, Li J, Zhong Y, Li X, Pan M, Qi H, Dong H, Zhang L. Highly Efficient and Stable CdZnSeS/ZnSeS Quantum Dots for Application in White Light-Emitting Diode. Front Chem 2022; 10:845206. [PMID: 35345537 PMCID: PMC8957214 DOI: 10.3389/fchem.2022.845206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Semiconductor quantum dots (QDs) are a promising luminescent phosphor for next-generation lightings and displays. In particular, QD-based white light-emitting diodes (WLEDs) are considered to be the candidate light sources with the most potential for application in displays. In this work, we synthesized quaternary/ternary core/shell alloyed CdZnSeS/ZnSeS QDs with high bright emission intensity. The QDs show good thermal stability by performing high temperature-dependent experiments that range from 295 to 433 K. Finally, the WLED based on the CdZnSeS/ZnSeS QDs exhibits a luminous efficiency (LE) of 28.14 lm/W, an external quantum efficiency (EQE) of 14.86%, and a warm bright sunlight close to the spectrum of daylight (Commission Internationale de l'éclairage (CIE) coordinates 0.305, 0.371). Moreover, the photoluminescence (PL) intensity, LE, EQE, and correlated color temperature (CCT) of as-prepared QD WLED remained relatively stable with only slight changes in the luminescence stability experiment.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingzhou Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Yichi Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
| | - Xin Li
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
| | - Mingzhong Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Hongxing Qi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Hongxing Dong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- Shanghai Institute of Optics and Fine Mechanic, Chinese Academy of Sciences, Shanghai, China
| | - Long Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- Shanghai Institute of Optics and Fine Mechanic, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Giroux M, Zahra Z, Salawu OA, Burgess RM, Ho KT, Adeleye AS. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. ENVIRONMENTAL SCIENCE. NANO 2022; 9:867-910. [PMID: 35401985 PMCID: PMC8992011 DOI: 10.1039/d1en00712b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (QDs) are engineered semiconductor nanocrystals with unique fluorescent, quantum confinement, and quantum yield properties, making them valuable in a range of commercial and consumer imaging, display, and lighting technologies. Production and usage of QDs are increasing, which increases the probability of these nanoparticles entering the environment at various phases of their life cycle. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms. For most applications, release to the environment is mainly expected to occur during QD synthesis and end-product manufacturing since encapsulation of QDs in these devices prevents release during normal use or landfilling. In natural waters, the fate of QDs is controlled by water chemistry, light intensity, and the physicochemical properties of QDs. Research on the adverse effects of QDs primarily focuses on sublethal endpoints rather than acute toxicity, and the differences in toxicity between pristine and weathered nanoparticles are highlighted. A proposed oxidative stress adverse outcome pathway framework demonstrates the similarities among metallic and carbon-based QDs that induce reactive oxygen species formation leading to DNA damage, reduced growth, and impaired reproduction in several organisms. To accurately evaluate environmental risk, this review identifies critical data gaps in QD exposure and ecological effects, and provides recommendations for future research. Future QD regulation should emphasize exposure and sublethal effects of metal ions released as the nanoparticles weather under environmental conditions. To date, human exposure to QDs from the environment and resulting adverse effects has not been reported.
Collapse
Affiliation(s)
- Marissa Giroux
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Omobayo A. Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| |
Collapse
|
9
|
Kim A, Hosseinmardi A, Annamalai PK, Kumar P, Patel R. Review on Colloidal Quantum Dots Luminescent Solar Concentrators. ChemistrySelect 2021. [DOI: 10.1002/slct.202100674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art New York City, NY 10003 USA
| | - Alireza Hosseinmardi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pratheep K. Annamalai
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pawan Kumar
- Institut National de la Recherche Scientifique, Centre Énergie Materiaux Télecommunications (INRS-EMT) Varennes QC Canada
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE) Integrated Science and Engineering Division (ISED) Underwood International College Yonsei University 85 Songdogwahak-ro, Yeonsugu Incheon 21938 South Korea
| |
Collapse
|
10
|
Malima NM, Khan MD, Choi J, Gupta RK, Mashazi P, Nyokong T, Revaprasadu N. Solventless synthesis of nanospinel Ni 1−xCo xFe 2O 4 (0 ≤ x ≤ 1) solid solutions for efficient electrochemical water splitting and supercapacitance. RSC Adv 2021; 11:31002-31014. [PMID: 35498927 PMCID: PMC9041409 DOI: 10.1039/d1ra04833c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
The formation of solid solutions represents a robust strategy for modulating the electronic properties and improving the electrochemical performance of spinel ferrites. However, solid solutions have been predominantly prepared via wet chemical routes, which involve the use of harmful and/or expensive chemicals. In the present study, a facile, inexpensive and environmentally benign solventless route is employed for the composition-controlled synthesis of nanoscopic Ni1−xCoxFe2O4 (0 ≤ x ≤ 1) solid solutions. The physicochemical characterization of the samples was performed by p-XRD, SEM, EDX, XPS, TEM, HRTEM and UV-Vis techniques. A systematic investigation was also carried out to elucidate the electrochemical performance of the prepared nanospinels towards energy generation and storage. Based on the results of CV, GCD, and stability tests, the Ni0.4Co0.6Fe2O4 electrode showed the highest performance for the supercapacitor electrode exhibiting a specific capacitance of 237 F g−1, superior energy density of 10.3 W h kg−1 and a high power density with a peak value of 4208 W kg−1, and 100% of its charge storage capacity was retained after 4000 cycles with 97% coulombic efficiency. For HER, the Ni0.6Co0.4Fe2O4 and CoFe2O4 electrodes showed low overpotentials of 168 and 169 mV, respectively, indicating better catalytic activity. For OER, the Ni0.8Co0.2Fe2O4 electrode exhibited a lower overpotential of 320 mV at a current density of 10 mA cm−2, with a Tafel slope of 79 mV dec−1, demonstrating a fast and efficient process. These results indicated that nanospinel ferrite solid solutions could be employed as promising electrode materials for supercapacitor and water splitting applications. The formation of solid solutions represents a robust strategy for modulating the electronic properties and improving the electrochemical performance of spinel ferrites.![]()
Collapse
Affiliation(s)
- Nyemaga Masanje Malima
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3880, South Africa
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Malik Dilshad Khan
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3880, South Africa
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jonghyun Choi
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Philani Mashazi
- Department of Chemistry, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
- Institute for Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Neerish Revaprasadu
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3880, South Africa
| |
Collapse
|
11
|
Chen K, Wang C, Peng Z, Qi K, Guo Z, Zhang Y, Zhang H. The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Balakrishnan J, Sreeshma D, Siddesh BM, Jagtap A, Abhale A, Rao KSRK. Ternary alloyed HgCdTe nanocrystals for short-wave and mid-wave infrared region optoelectronic applications. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/aba230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Semiconductor quantum dots (QDs) are emerging as the forefront alternative for the conventional imaging technology, particularly in infrared region from near infrared (0.75–1.4 μm) to long-wave infrared (8–14 μm) region. A handful of materials are explored for mid infrared imaging QDs and they are all invariably binary semiconductor compounds. Ternary alloyed quantum dots in many previous cases have shown properties that are unique and better than parent binary compounds. In this work, we have synthesized ternary alloyed HgCdTe quantum dots and studied their photophysical properties. Previously studied ternary alloyed HgCdTe CQDs absorb and emit in regions limited upto near-infrared region. We have tuned the excitonic absorption of HgCdTe QDs in the range of 2.2–5 μm, where addition of cadmium clearly showed blueshift in excitonic peak as compared to that of HgTe QDs. Structural properties are studied by TEM, XRD & XPS techniques. Electrical behaviour is studied by measuring I-V, I-V-T curves. Photodetectors are fabricated in photoconductive geometry showing promising photo-response under visible (532 nm) and NIR (810 nm, 1550 nm) excitation. Responsivity of the devices is in the order of 1 mA W−1 at 1 V bias and show good linearity over irradiance range of 0.025 and 2.5 W cm−2. These results pave the way for development of next generation cost-effective short-wave and mid-wave infrared region optoelectronic devices based on narrow bandgap HgCdTe nanocrystals.
Collapse
|
13
|
Onwudiwe DC, Nkwe VM. Morphological variations in Bi 2S 3 nanoparticles synthesized by using a single source precursor. Heliyon 2020; 6:e04505. [PMID: 32775716 PMCID: PMC7399123 DOI: 10.1016/j.heliyon.2020.e04505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 11/01/2022] Open
Abstract
A simple solvothermal decomposition of bismuth dithiocarbamate complex in oleylamine, oleic acid, and hexadecylamine at 180 °C, yielded bismuth sulphide nanomaterials of different morphologies represented as Bi2S3(OAm), Bi2S3(OAc) and Bi2S3(HDA) respectively. The bismuth complex, used as the single source precursor, was synthesized and characterised by elemental analysis, FTIR, and NMR spectroscopic techniques. The spectroscopic and micro analysis confirmed the proposed compound, while the as-prepared nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectrometer (EDS). The effects of the different solvent media on the structural properties of the obtained Bi2S3 were investigated. An orthorhombic phase bismuthinite of varying intensities were obtained, with an indication that a bias of orientations existed in the (2 1 1) crystallographic planes in the Bi2S3(OAm) compared to the characteristic (1 3 0) diffraction peak of Bi2S3. The microscopic analysis showed a correlation between the nanoparticles' morphology and the type of solvent used, which also implied that the properties of Bi2S3 were affected by the solvent medium.
Collapse
Affiliation(s)
- Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Violet M Nkwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| |
Collapse
|
14
|
Guo J, Fu Y, Lu M, Zhang X, Kershaw SV, Zhang J, Luo S, Li Y, Yu WW, Rogach AL, Zhang L, Bai X. Cd-Rich Alloyed CsPb 1- x Cd x Br 3 Perovskite Nanorods with Tunable Blue Emission and Fermi Levels Fabricated through Crystal Phase Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000930. [PMID: 32775167 PMCID: PMC7404144 DOI: 10.1002/advs.202000930] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Indexed: 05/23/2023]
Abstract
One-dimensional semiconductor nanostructures have already been used for a variety of optoelectronic applications. Metal halide perovskites have emerged in recent years as promising high-performance optoelectronic materials, but reports on 1D nanorods (NRs) of all-inorganic halide perovskites are still scarce. This work demonstrates a synthetic strategy toward cesium-based inorganic perovskite NRs by exploiting composition-controlled crystal phase engineering. It is accomplished for Cd-rich mixed-cation CsPb1- x Cd x Br3 nanocrystals, where the initial 1D hexagonal perovskite phase drives the growth of the 1D NRs, as supported by first-principles calculations. The band gaps of the resulting NRs are tunable by varying the Cd-content, and the highly uniform CsPb0.08Cd0.92Br3 NRs (with an average length of 84 nm and width of 16 nm) exhibit a true blue-color emission centered at 460 nm, with a high quantum yield of 48%. Moreover, this work also demonstrates the tunability of the Fermi levels in the films made of CsPb1- x Cd x Br3 alloyed nanocrystals, where samples with highest Cd content show an increase of the electron concentration and a related increase in the conductivity.
Collapse
Affiliation(s)
- Jie Guo
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials andCollege of PhysicsJilin UniversityChangchun130012China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Xiaoyu Zhang
- State Key Laboratory of Integrated OptoelectronicsKey Laboratory of Automobile Materials of MOE and College of Materials Science and EngineeringJilin UniversityChangchun130012China
| | - Stephen V. Kershaw
- Department of Materials Science and EngineeringCentre for Functional Photonics (CFP)City University of Hong KongHong Kong SARChina
| | - Jia Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Shulin Luo
- State Key Laboratory of Integrated OptoelectronicsKey Laboratory of Automobile Materials of MOE and College of Materials Science and EngineeringJilin UniversityChangchun130012China
| | - Yanxiu Li
- Department of Materials Science and EngineeringCentre for Functional Photonics (CFP)City University of Hong KongHong Kong SARChina
| | - William W. Yu
- Department of Chemistry and PhysicsLouisiana State UniversityShreveportLA71115USA
| | - Andrey L. Rogach
- Department of Materials Science and EngineeringCentre for Functional Photonics (CFP)City University of Hong KongHong Kong SARChina
| | - Lijun Zhang
- State Key Laboratory of Integrated OptoelectronicsKey Laboratory of Automobile Materials of MOE and College of Materials Science and EngineeringJilin UniversityChangchun130012China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| |
Collapse
|
15
|
Sadeghi S, Bahmani Jalali H, Srivastava SB, Melikov R, Baylam I, Sennaroglu A, Nizamoglu S. High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. iScience 2020; 23:101272. [PMID: 32590328 PMCID: PMC7322176 DOI: 10.1016/j.isci.2020.101272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 02/01/2023] Open
Abstract
Colloidal quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs). For their widespread use, they need to simultaneously satisfy non-toxic material content, low reabsorption, high photoluminescence quantum yield, and large-scale production. Here, copper doping of zinc carboxylate-passivated InP core and nano-engineering of ZnSe shell facilitated high in-device quantum efficiency of QDs over 80%, having well-matched spectral emission profile with the photo-response of silicon solar cells. The optimized QD-LSCs showed an optical quantum efficiency of 37% and an internal concentration factor of 4.7 for a 10 × 10-cm2 device area under solar illumination, which is comparable with the state-of-the-art LSCs based on cadmium-containing QDs and lead-containing perovskites. Synthesis of the copper-doped InP/ZnSe QDs in gram-scale and large-area deposition (3,000 cm2) onto commercial window glasses via doctor-blade technique showed their scalability for mass production. These results position InP-based QDs as a promising alternative for efficient solar energy harvesting. The luminescent solar concentrators based on copper-doped InP QDs are demonstrated Efficient excitation transfer led to the exceptionally high in-film PLQY of 81.2% The LSCs based on copper-doped QDs showed the optical quantum efficiency of 37% The gram-scale synthesis of QDs led to the fabrication of large-area LSCs (3,000 cm2)
Collapse
Affiliation(s)
- Sadra Sadeghi
- Graduate School of Materials Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Houman Bahmani Jalali
- Department of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Isinsu Baylam
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
| | - Alphan Sennaroglu
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey; Laser Research Laboratory, Departments of Physics and Electrical-Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Graduate School of Materials Science and Engineering, Koç University, Istanbul 34450, Turkey; Department of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey; Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey.
| |
Collapse
|
16
|
Sarkar S, Le P, Geng J, Liu Y, Han Z, Zahid MU, Nall D, Youn Y, Selvin PR, Smith AM. Short-Wave Infrared Quantum Dots with Compact Sizes as Molecular Probes for Fluorescence Microscopy. J Am Chem Soc 2020; 142:3449-3462. [PMID: 31964143 PMCID: PMC7335634 DOI: 10.1021/jacs.9b11567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Materials with short-wave infrared (SWIR) emission are promising contrast agents for in vivo animal imaging, providing high-contrast and high-resolution images of blood vessels in deep tissues. However, SWIR emitters have not been developed as molecular labels for microscopy applications in the life sciences, which require optimized probes that are bright, stable, and small. Here, we design and synthesize semiconductor quantum dots (QDs) with SWIR emission based on HgxCd1-xSe alloy cores red shifted to the SWIR by epitaxial deposition of thin HgxCd1-xS shells with a small band gap. By tuning alloy composition alone, the emission can be shifted across the visible-to-SWIR (VIR) spectra while maintaining a small and equal size, allowing direct comparisons of molecular labeling performance across a broad range of wavelength. After coating with click-functional multidentate polymers, the VIR-QD spectral series has high quantum yield in the SWIR (14-33%), compact size (13 nm hydrodynamic diameter), and long-term stability in aqueous media during continuous excitation. We show that these properties enable diverse applications of SWIR molecular probes for fluorescence microscopy using conjugates of antibodies, growth factors, and nucleic acids. A broadly useful outcome is a 10-55-fold enhancement of the signal-to-background ratio at both the single-molecule level and the ensemble level in the SWIR relative to visible wavelengths, primarily due to drastically reduced autofluorescence. We anticipate that VIR-QDs with SWIR emission will enable ultrasensitive molecular imaging of low-copy number analytes in biospecimens with high autofluorescence.
Collapse
Affiliation(s)
- Suresh Sarkar
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Phuong Le
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Junlong Geng
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yang Liu
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Zhiyuan Han
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Mohammad U Zahid
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Duncan Nall
- Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for the Physics of Living Cells , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yeoan Youn
- Center for the Physics of Living Cells , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Paul R Selvin
- Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for the Physics of Living Cells , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Andrew M Smith
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Micro and Nanotechnology Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Carle Illinois College of Medicine , Urbana , Illinois 61801 , United States
| |
Collapse
|
17
|
Maity P, Ghorai N, Dana J, Ghosh HN. Impact of one step alloying on the carrier relaxation and charge separation dynamics of CdxZn1-xSe graded nanocrystals. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
In Situ Preparation of Amphibious ZnO Quantum Dots with Blue Fluorescence Based on Hyperbranched Polymers and their Application in Bio-Imaging. Polymers (Basel) 2020; 12:polym12010144. [PMID: 31935952 PMCID: PMC7023060 DOI: 10.3390/polym12010144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/24/2019] [Accepted: 01/01/2020] [Indexed: 01/27/2023] Open
Abstract
A new strategy for preparing amphibious ZnO quantum dots (QDs) with blue fluorescence within hyper-branched poly(ethylenimine)s (HPEI) was proposed in this paper. By changing [Zn2+]/[OH-] molar ratio and heating time, ZnO QDs with a quantum yields (QY) of 30% in ethanol were obtained. Benefiting from the amphibious property of HPEI, the ZnO/HPEI nanocomposites in ethanol could be dissolved in chloroform and water, acquiring a QY of 53%, chloroform and 11% in water. By this strategy, the ZnO/HPEI nano-composites could be applied in not only in optoelectronics, but also biomedical fields (such as bio-imaging and gene transfection). The bio-imaging application of water-soluble ZnO/HPEI nanocomposites was investigated and it was found that they could easily be endocytosed by the COS-7 cells, without transfection reagent, and they exhibited excellent biological imaging behavior.
Collapse
|
19
|
Loghina L, Kaderavkova A, Chylii M, Frumarova B, Svec P, Slang S, Vlcek M. The systematic study of the precursor ratio effect in the Cd–Zn–S quantum dot synthesis. CrystEngComm 2020. [DOI: 10.1039/d0ce00597e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controllable synthesis of highly photoluminescent Cd–Zn–S QDs with application of novel N-phenylmorpholine-4-carbothioamide as an eco-friendly sulphur source.
Collapse
Affiliation(s)
- Liudmila Loghina
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Anastasia Kaderavkova
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Maksym Chylii
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Bozena Frumarova
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Petr Svec
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Stanislav Slang
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Miroslav Vlcek
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| |
Collapse
|
20
|
He Z, Yang Y, Liang HW, Liu JW, Yu SH. Nanowire Genome: A Magic Toolbox for 1D Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902807. [PMID: 31566828 DOI: 10.1002/adma.201902807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Indexed: 06/10/2023]
Abstract
1D nanomaterials with high aspect ratio, i.e., nanowires and nanotubes, have inspired considerable research interest thanks to the fact that exotic physical and chemical properties emerge as their diameters approach or fall into certain length scales, such as the wavelength of light, the mean free path of phonons, the exciton Bohr radius, the critical size of magnetic domains, and the exciton diffusion length. On the basis of their components, aspect ratio, and properties, there may be imperceptible connections among hundreds of nanowires prepared by different strategies. Inspired by the heredity system in life, a new concept termed the "nanowire genome" is introduced here to clarify the relationships between hundreds of nanowires reported previously. As such, this approach will not only improve the tools incorporating the prior nanowires but also help to precisely synthesize new nanowires and even assist in the prediction on the properties of nanowires. Although the road from start-ups to maturity is long and fraught with challenges, the genetical syntheses of more than 200 kinds of nanostructures stemming from three mother nanowires (Te, Ag, and Cu) are summarized here to demonstrate the nanowire genome as a versatile toolbox. A summary and outlook on future challenges in this field are also presented.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
21
|
McBride JR, Rosenthal SJ. Real colloidal quantum dot structures revealed by high resolution analytical electron microscopy. J Chem Phys 2019; 151:160903. [DOI: 10.1063/1.5128366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- James R. McBride
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, USA
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, USA
- Department of Interdisciplinary Materials Science, Department of Chemical and Biomolecular Engineering, Department of Physics and Astronomy, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
22
|
Maiti S, Anand P, Azlan F, Dana J, Ghosh HN. Improving the Power-Conversion Efficiency through Alloying in Common Anion CdZnX (X=S, Se) Nanocrystal Sensitized Solar Cells. Chemphyschem 2019; 20:2662-2667. [PMID: 31120604 DOI: 10.1002/cphc.201900379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Indexed: 11/06/2022]
Abstract
In this paper, we have investigated the possibility of utilizing CdZnS and CdZnSe alloy nanocrystals (NCs) as sensitizers in quantum-dot solar cells (QDSCs). The alloy NCs were synthesized by a high-temperature hot injection method and subsequently characterized through high photoluminescence quantum yield, along with larger size compared to binary NCs. Femtosecond transient absorption measurements revealed long-lived charge carriers in the alloy structure due to more structural rigidity and less defect states. Finally, the solar-cell efficiencies of the CdZnS (CdZnSe) NCs were found to be 3.05 % (3.69 %) as compared to 1.23 % (3.12 %) efficiencies for CdS (CdSe) NCs. Thus, common anion ternary NCs have been successfully utilized for solar-cell assembly and can be helpful for constructing tandem solar cells to harvest the high-energy portion of solar radiation.
Collapse
Affiliation(s)
- Sourav Maiti
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Pranav Anand
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Farazuddin Azlan
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Jayanta Dana
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Hirendra N Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| |
Collapse
|
23
|
|
24
|
Hu L, Xu T, Zhu H, Ma C, Chen G. Luminescence Change of CdS and CdSe Quantum Dots on a Ag Film. ACS OMEGA 2019; 4:14193-14201. [PMID: 31508541 PMCID: PMC6732985 DOI: 10.1021/acsomega.9b01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Enhanced luminescence of an emitter on a Ag film is usually ascribed to the resonant surface plasmons. In these studies, the solid cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dot/silver (QD/Ag) hybrids were prepared, and the luminescence characteristics of these QD/Ag hybrids were measured. It is found that the enhancement of the trap state emission (TSE) is related to the QD size. The TSE features of the annealed QD/Ag hybrids are insensitive to the morphology of the Ag film. We used the wet and dry methods to separate the QD and Ag components and found that the photoluminescence (PL) of the QD component was permanently changed from the initial state. The PL modification is ascribed to the Ag+ doping effect rather than the surface plasmons. This doping method uses pure Ag as the Ag+ ion source. In this case, though the CdS and CdSe QD/Ag hybrids are the solid state, the cation exchange between Ag+ and Cd2+ ions can still occur on the QD surface. Even a small amount of Ag can efficiently influence the luminescence of the QDs embedded in the poly(methyl methacrylate) matrix. A hypothetical model was proposed to explain the PL modification of the QD/Ag hybrid with and without annealing. Using this dry method for doping, the transparent luminescence label can be prepared easily, and the doped QDs can be further doped with Ag+ dopants.
Collapse
Affiliation(s)
- Lian Hu
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| | - Tianning Xu
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312030, Zhejiang, People’s Republic of China
| | - Huaxin Zhu
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| | - Chaoqun Ma
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| | - Guoqing Chen
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| |
Collapse
|
25
|
Antolini F, Orazi L. Quantum Dots Synthesis Through Direct Laser Patterning: A Review. Front Chem 2019; 7:252. [PMID: 31058137 PMCID: PMC6478899 DOI: 10.3389/fchem.2019.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
In this brief review the advances on Direct Laser Patterning (DLP) for the synthesis of photo-luminescent semiconductor quantum dots (QDs) belonging to II-VI groups, especially in solid state using laser-assisted conversion are reported and commented. The chemistry of the precursor synthesis is illustrated because it is a crucial step for the development of the direct laser patterning of QDs. In particular, the analysis of cadmium (bis)thiolate and cadmium xanthates precursors after thermal and laser treatment is examined, with a special focus on the optical properties of the formed QDs. The second part of the review examines how the laser parameters such as the wavelength and pulse duration may regulate the properties of the patterned QDs. The DLP technique does not require complex laser systems or the use of dangerous chemical post treatments, so it can be introduced as a potential method for the patterning of pixels in quantum dot light emitting diodes (QD-LEDs) for display manufacturing.
Collapse
Affiliation(s)
- Francesco Antolini
- Photonics Micro and Nanostructures Laboratory, Physical Technologies for Safety and Health Division, Fusion and Technologies for Nuclear Safety and Security Department, ENEA, Frascati, Italy
| | - Leonardo Orazi
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
26
|
Hong Y, Wu Y, Wu S, Wang X, Zhang J. Overview of Computational Simulations in Quantum Dots. Isr J Chem 2019. [DOI: 10.1002/ijch.201900026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Hong
- Department of ChemistryUniversity of Nebraska-Lincoln Lincoln NE 68588 USA
| | | | - Shuimu Wu
- SPIC Power Plant Operation Technology (Beijing) CO., Ltd Beijing 102209 China
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong University Jinan 250061 China
| | - Jingchao Zhang
- Holland Computing CenterUniversity of Nebraska-Lincoln Lincoln NE 68588 USA
| |
Collapse
|
27
|
Cho J, Sheng A, Suwandaratne N, Wangoh L, Andrews JL, Zhang P, Piper LFJ, Watson DF, Banerjee S. The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation. Acc Chem Res 2019; 52:645-655. [PMID: 30543407 DOI: 10.1021/acs.accounts.8b00378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of efficient solar energy conversion to augment other renewable energy approaches is one of the grand challenges of our time. Water splitting, or the disproportionation of H2O into energy-dense fuels, H2 and O2, is undoubtedly a promising strategy. Solar water splitting involves the concerted transfer of four electrons and four protons, which requires the synergistic operation of solar light harvesting, charge separation, mass and charge transport, and redox catalysis processes. It is unlikely that individual materials can mediate the entire sequence of charge and mass transport as well as energy conversion processes necessary for photocatalytic water splitting. An alternative approach, emulating the functioning of photosynthetic systems, involves the utilization of hybrid systems wherein different components perform the various functions required for solar water splitting. The design of such hybrid systems requires the multiple components to operate in lockstep with optimal thermodynamic driving forces and interfacial charge transfer kinetics. This Account describes a new class of nanoscale heterostructures comprising M xV2O5 nanowires, where M is a p-block cation with a ( n - 1) d10 ns2 np0 electronic configuration characterized by a stereoactive lone pair of electrons and x is its stoichiometry, interfaced with II-VI semiconductor quantum dots (QDs). Photocatalytic water splitting involves the transfer of excited-state holes from QDs to mid-gap states (derived from the stereoactive lone pairs of p-block cations) of nanowires, hole transport through nanowires, the reduction of protons at a QD-immobilized catalyst, and water oxidation at an anode. The M xV2O5/QD architectures provide a vast design space for evolutionary optimization of function with considerable tunability of composition and structure of the individual components as well as of the interfacial structure, thereby facilitating programmability of absorption spectra, energetic offsets, and charge-transfer reactivity. The available design space spans choice of the p-block cation M, its stoichiometry x, the composition and size of various QDs, and the nature of the nanowire/QD interface. This multivariate parameter space has been navigated by integrating first-principles modeling, diversified synthesis, spectroscopic measurements, and catalytic evaluation to facilitate the rational design of several generations of heterostructures and the systematic improvement of their photocatalytic performance. The electronic structures of the target heterostructures are predicted by DFT calculations in light of the revised lone pair model of stereoactive structural distortions and evaluated by hard X-ray photoelectron spectroscopy such as to systematically tune the interfacial band offsets. Central to this approach is the development of a topochemical "etch-a-sketch" intercalation approach that allows for facile installation of p-block cations in metastable polymorphs of V2O5. The interfacial charge transfer kinetics of M xV2O5/QD heterostructures is further evaluated by transient absorption spectroscopy to measure excited-state charge-transfer dynamics and is found to depend sensitively on interfacial structure and the thermodynamic driving forces in accordance with Marcus theory. The integration of theory and experiment has allowed for the design of viable photocatalytic architectures exemplified by the exceptional catalytic performance of β-Pb xV2O5/CdX (X= S, Se) architectures, which has subsequently been elaborated to other lone-pair M xV2O5 compounds, demonstrating the effective exploitation of the opportunities for programmability available in the design space.
Collapse
Affiliation(s)
- Junsang Cho
- Departments of Chemistry and Materials Science and Engineering, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Aaron Sheng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Nuwanthi Suwandaratne
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Linda Wangoh
- Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902, United States
| | - Justin L. Andrews
- Departments of Chemistry and Materials Science and Engineering, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Peihong Zhang
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Louis F. J. Piper
- Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902, United States
| | - David F. Watson
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Sarbajit Banerjee
- Departments of Chemistry and Materials Science and Engineering, Texas A&M University, College Station, Texas 77842-3012, United States
| |
Collapse
|
28
|
Review of Core/Shell Quantum Dots Technology Integrated into Building’s Glazing. ENERGIES 2019. [DOI: 10.3390/en12061058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skylights and windows are building openings that enhance human comfort and well-being in various ways. Recently, a massive drive is witnessed to replace traditional openings with building integrated photovoltaic (BIPV) systems to generate power in a bid to reduce buildings’ energy. The problem with most of the BIPV glazing lies in the obstruction of occupants’ vision of the outdoor view. In order to resolve this problem, new technology has emerged that utilizes quantum dots semiconductors (QDs) in glazing systems. QDs can absorb and re-emit the incoming radiation in the desired direction with the tunable spectrum, which renders them favorable for building integration. By redirecting the radiation towards edges of the glazing, they can be categorized as luminescent solar concentrators (QD-LSCs) that can help to generate electricity while maintaining transparency in the glazing. The aim of this paper is to review the different properties of core/shell quantum dots and their potential applications in buildings. Literature from various disciplines was reviewed to establish correlations between the optical and electrical properties of different types, sizes, thicknesses, and concentration ratios of QDs when used in transparent glazing. The current article will help building designers and system integrators assess the merits of integrating QDs on windows/skylights with regards to energy production and potential impact on admitted daylighting and visual comfort.
Collapse
|
29
|
Zhan W, Kosinskiy AY, Vines L, Johansen KM, Carvalho PA, Prytz Ø. ZnCr₂O₄ Inclusions in ZnO Matrix Investigated by Probe-Corrected STEM-EELS. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12060888. [PMID: 30884841 PMCID: PMC6471317 DOI: 10.3390/ma12060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The ZnCr₂O₄/ZnO materials system has a wide range of potential applications, for example, as a photocatalytic material for waste-water treatment and gas sensing. In this study, probe-corrected high-resolution scanning transmission electron microscopy and geometric phase analysis were utilized to study the dislocation structure and strain distribution at the interface between zinc oxide (ZnO) and embedded zinc chromium oxide (ZnCr₂O₄) particles. Ball-milled and dry-pressed ZnO and chromium oxide (α-Cr₂O₃) powder formed ZnCr₂O₄ inclusions in ZnO with size ~400 nm, where the interface properties depended on the interface orientation. In particular, sharp interfaces were observed for ZnO [2113]/ZnCr₂O₄ [110] orientations, while ZnO [1210]/ZnCr₂O₄ [112] orientations revealed an interface over several atomic layers, with a high density of dislocations. Further, monochromated electron energy-loss spectroscopy was employed to map the optical band gap of ZnCr₂O₄ nanoparticles in the ZnO matrix and their interface, where the average band gap of ZnCr₂O4 nanoparticles was measured to be 3.84 ± 0.03 eV, in contrast to 3.22 ± 0.01 eV for the ZnO matrix.
Collapse
Affiliation(s)
- Wei Zhan
- Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, N-0316 Oslo, Norway.
| | - Andrey Yurievich Kosinskiy
- Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, N-0316 Oslo, Norway.
| | - Lasse Vines
- Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, N-0316 Oslo, Norway.
| | - Klaus Magnus Johansen
- Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, N-0316 Oslo, Norway.
| | | | - Øystein Prytz
- Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, N-0316 Oslo, Norway.
| |
Collapse
|
30
|
Stepanidenko EA, Gromova YA, Kormilina TK, Cherevkov SA, Kurshanov DA, Dubavik A, Baranov MA, Medvedev OS, Fedorov AV, Gun'ko YK, Ushakova EV, Baranov AV. Porous flower-like superstructures based on self-assembled colloidal quantum dots for sensing. Sci Rep 2019; 9:617. [PMID: 30679451 PMCID: PMC6346065 DOI: 10.1038/s41598-018-36250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
Quantum dots (QDs) have been envisaged as very promising materials for the development of advanced optical sensors. Here we report a new highly porous luminescent material based on colloidal QDs for potential applications in optical sensing devices. Bulk flower-like porous structures with sizes of hundreds of microns have been produced by slow destabilization of QD solution in the presence of a non-solvent vapor. The porous highly luminescent material was formed from CdSe QDs using the approach of non-solvent destabilization. This material demonstrated a 4-fold decrease in PL signal in the presence of the ammonia vapor. The relationship between the destabilization rate of QDs in solution and the resulting morphology of structural elements has been established. The proposed model of bulk porous flower-like nanostructured material fabrication can be applied to nanoparticles of different nature combining their unique properties. This research opens up a new approach to design novel multi-component composite materials enabling potential performance improvements of various photonic devices.
Collapse
Grants
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oleg S Medvedev
- Saint-Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Yurii K Gun'ko
- ITMO University, Saint Petersburg, 197101, Russia
- School of Chemistry and CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | | | | |
Collapse
|
31
|
He W, Qin C, Qiao Z, Gong Y, Zhang X, Zhang G, Chen R, Gao Y, Xiao L, Jia S. In situ manipulation of fluorescence resonance energy transfer between quantum dots and monolayer graphene oxide by laser irradiation. NANOSCALE 2019; 11:1236-1244. [PMID: 30601539 DOI: 10.1039/c8nr07858k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The unique optical properties of solution-processable colloidal semiconductor quantum dots (QDs) highlight their promising applications in the next generation of optoelectronic and biomedical technologies. In order to optimize these applications, the tunability of QDs' optical properties is always highly desired. Although the tuning during synthesis stages has been intensively investigated, the in situ alteration after device fabrication is still limited. Here we report the tuning of the optical properties of CdSeTe/ZnS QDs through an in situ manipulation of fluorescence resonance energy transfer (FRET) between QDs and monolayer graphene oxide (GO). By increasing the acceptor's absorption ability of GO through laser irradiation, the efficiency of FRET between QDs and GO has been substantially improved from 29.7% to 70.0%. The corresponding energy transfer rate is enhanced by 5.5 times. These results can be well explored by a spectral overlap between the fluorescence emission of QDs and the absorption of original or reduced GO. Our scheme, with the features of in situ manipulation, high spatial resolution and wireless steering, enables the potential functionality of such hybrid structures in optoelectronic applications.
Collapse
Affiliation(s)
- Wenjun He
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang SC, Yeh CW, Chen GH, Liu MC, Chen HS. Investigation of Luminescence Enhancement and Decay of QD-LEDs: Interface Reactions between QDs and Atmospheres. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2516-2525. [PMID: 30558425 DOI: 10.1021/acsami.8b18558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the current unsolved problem of short-term enhancement and long-term decay of the luminescence intensity of quantum dots (QDs)-based light-emitting diodes (LEDs) in applications for lighting and displays, and proved that the interface interaction between the QD surface and atmospheres plays a key role in the QD-LED operation process. It is suggested that the initial luminescence enhancement of QD-LEDs would be caused by the QD surface-adsorbed species, such as ligands and gas molecules, rather than QDs themselves, whereas the luminescence decay is correlated to the interface reactions between QDs and photo-generated reactive oxygen species, which leads to formations of sulfate, hydroxide, and oxide compounds after QDs are illuminated by 450 nm blue light in oxygen and water environments according to surface analysis and theoretic thermodynamic calculations. It was also found that involvement of water in the QD-LED operation can cause crystal merging of QDs possibly because of the surface sulfates in the presence of water.
Collapse
Affiliation(s)
- Shang-Chieh Huang
- Department of Material Science and Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Chang-Wei Yeh
- Department of Material Science and Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Guan-Hong Chen
- Department of Material Science and Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Meng-Chi Liu
- Department of Material Science and Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Hsueh-Shih Chen
- Department of Material Science and Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan
| |
Collapse
|
33
|
Kravtsova AN, Guda LV, Polozhentsev OE, Pankin IA, Soldatov AV. Xanes Specroscopic Diagnostics of the 3D Local Atomic Structure of Nanostructured Materials. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618070259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Behr S, Bestvater T, Feldmann A, Kirschbaum K, Conrad O, Giolando DM. Syntheses and Structures of Zinc(tmeda)bis(aryltellurolato) and its Facile Chalcogenospecific Ligand Exchange Reactivity. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandra Behr
- School of Green Chemistry and Engineering; Department of Chemistry and Biochemistry; University of Toledo; 43606 Toledo OH USA
| | - Thorsten Bestvater
- School of Green Chemistry and Engineering; Department of Chemistry and Biochemistry; University of Toledo; 43606 Toledo OH USA
| | - Arnold Feldmann
- School of Green Chemistry and Engineering; Department of Chemistry and Biochemistry; University of Toledo; 43606 Toledo OH USA
| | - Kristin Kirschbaum
- School of Green Chemistry and Engineering; Department of Chemistry and Biochemistry; University of Toledo; 43606 Toledo OH USA
| | - Olaf Conrad
- School of Green Chemistry and Engineering; Department of Chemistry and Biochemistry; University of Toledo; 43606 Toledo OH USA
| | - Dean M. Giolando
- School of Green Chemistry and Engineering; Department of Chemistry and Biochemistry; University of Toledo; 43606 Toledo OH USA
| |
Collapse
|
35
|
Wu M, Wang Y, Wang H, Wang H, Sui Y, Du F, Yang X, Zou B. Phosphine-free engineering toward the synthesis of metal telluride nanocrystals: the role of a Te precursor coordinated at room temperature. NANOSCALE 2018; 10:21928-21935. [PMID: 30431639 DOI: 10.1039/c8nr07595f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A colloidal strategy offers opportunities for the rational design and synthesis of metal telluride nanocrystals (NCs) with the desired crystal structure, uniform geometry, and composition. However, it remains a challenge to use the paradigm to construct metal telluride NCs by a phosphine-free synthesis procedure for promising applications such as luminescence, photovoltaics and thermoelectricity. Here, we developed a new strategy for fabricating metal telluride nanocrystals, e.g. CdTe and PbTe NCs, by using a highly reactive phosphine-free Te precursor. The ability to reduce a TeO2 powder with dodecanethiol (DDT) has been achieved in the presence of oleylamine (OLA) to generate a soluble alkylammonium telluride at room temperature. We provide direct experimental evidence that the OLA-Te complexes were formed in an order of second magnitude kinetic process based on an in situ UV-vis absorption test. In the case of the CdTe NC system, the straightforward measurement of luminescence and the fabrication of LED devices are presented that can semiquantitatively assess the quality of preparation and the reactivity of this air-stable precursor. The proposed strategy highlights several unique features of this solution-based green chemistry that can be useful for synthesizing other metal telluride NCs to develop novel functional materials.
Collapse
Affiliation(s)
- Min Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lu J, Liu H, Zhang X, Sow CH. One-dimensional nanostructures of II-VI ternary alloys: synthesis, optical properties, and applications. NANOSCALE 2018; 10:17456-17476. [PMID: 30211428 DOI: 10.1039/c8nr05019h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One-dimensional (1D) nanostructures of II-VI ternary alloys are of prime interest due to their compatible features of both 1D nanostructures and semiconducting alloys. These features can facilitate materials with tunable bandgaps, which are crucial to the performance of photoelectrical devices. Herein, we present a comprehensive review summarizing the recent research progress pertinent to the diverse synthesis, optical fundamentals and applications of 1D nanostructures of II-VI ternary alloys. Considering multifunctional applications, the different growth mechanisms of the rational design and synthesis techniques are highlighted. Investigations of the fundamentals of the optical and photoelectrical properties of ternary alloyed II-VI semiconductors via the corresponding characterization techniques are also particularly discussed. Furthermore, we present the versatile potential practical applications of these materials. Finally, we extend the discussion to the most recent research advances on quaternary alloys, which provides a possible prospective forecast for the sustained development of alloyed 1D nanostructures.
Collapse
Affiliation(s)
- Junpeng Lu
- School of Physics, Southeast University, 2 Southeast University Road, Nanjing 211189, China.
| | | | | | | |
Collapse
|
37
|
Yarema O, Perevedentsev A, Ovuka V, Baade P, Volk S, Wood V, Yarema M. Colloidal Phase-Change Materials: Synthesis of Monodisperse GeTe Nanoparticles and Quantification of Their Size-Dependent Crystallization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:6134-6143. [PMID: 30270986 DOI: 10.1021/acs.chemmater.7b04710] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/19/2018] [Indexed: 05/28/2023]
Abstract
Phase-change memory materials refer to a class of materials that can exist in amorphous and crystalline phases with distinctly different electrical or optical properties, as well as exhibit outstanding crystallization kinetics and optimal phase transition temperatures. This paper focuses on the potential of colloids as phase-change memory materials. We report a novel synthesis for amorphous GeTe nanoparticles based on an amide-promoted approach that enables accurate size control of GeTe nanoparticles between 4 and 9 nm, narrow size distributions down to 9-10%, and synthesis upscaling to reach multigram chemical yields per batch. We then quantify the crystallization phase transition for GeTe nanoparticles, employing high-temperature X-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. We show that GeTe nanoparticles crystallize at higher temperatures than the bulk GeTe material and that crystallization temperature increases with decreasing size. We can explain this size-dependence using the entropy of crystallization model and classical nucleation theory. The size-dependences quantified here highlight possible benefits of nanoparticles for phase-change memory applications.
Collapse
Affiliation(s)
- Olesya Yarema
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Aleksandr Perevedentsev
- Polymer Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Vladimir Ovuka
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Paul Baade
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Sebastian Volk
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Vanessa Wood
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Maksym Yarema
- Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| |
Collapse
|
38
|
Zhang HX, Yang YT, Liu XJ. Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1708181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hai-xiao Zhang
- Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Yue-tao Yang
- Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Xiao-jun Liu
- Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
39
|
Lin J, Hu D, Yang H, Liu Y, Xue C, Wu T. Nonlinear Variation in the Composition and Optical Band Gap of an Alloyed Cluster-Based Open-Framework Metal Chalcogenide. Inorg Chem 2018; 57:4248-4251. [DOI: 10.1021/acs.inorgchem.8b00542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Lin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Dandan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Huajun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Yong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Chaozhuang Xue
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Tao Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| |
Collapse
|
40
|
Navarro-Pardo F, Zhao H, Wang ZM, Rosei F. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics. Acc Chem Res 2018; 51:609-618. [PMID: 29260851 DOI: 10.1021/acs.accounts.7b00467] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Semiconductor nanocrystals exhibit size-tunable absorption and emission ranging from the ultraviolet (UV) to the near-infrared (NIR) spectral range, high absorption coefficient, and high photoluminescence quantum yield. Effective surface passivation of these so-called quantum dots (QDs) may be achieved by growing a shell of another semiconductor material. The resulting core/shell QDs can be considered as a model system to study and optimize structure/property relations. A special case consists in growing thick shells (1.5 up to few tens of nanometers) to produce "giant" QDs (g-QDs). Tailoring the chemical composition and structure of CdSe/CdS and PbS/CdS g-QDs is a promising approach to widen the spectral separation of absorption and emission spectra (i.e., the Stokes shift), improve the isolation of photogenerated carriers from surface defects and enhance charge carrier lifetime and mobility. However, most stable systems are limited by a thick CdS shell, which strongly absorbs radiation below 500 nm, covering the UV and part of the visible range. Modification of the interfacial region between the core and shell of g-QDs or tuning their doping with narrow band gap semiconductors are effective approaches to circumvent this challenge. In addition, the synthesis of g-QDs composed of environmentally friendly elements (e.g., CuInSe2/CuInS2) represents an alternative to extend their absorption into the NIR range. Additionally, the band gap and band alignment of g-QDs can be engineered by proper selection of the constituents according to their band edge positions and by tuning their stoichiometry during wet chemical synthesis. In most cases, the quasi-type II localization regime of electrons and holes is achieved. In this type of g-QDs, electrons can leak into the shell region, while the holes remain confined within the core region. This electron-hole spatial distribution is advantageous for optoelectronic devices, resulting in efficient electron-hole separation while maintaining good stability. This Account provides an overview of emerging engineering strategies that can be adopted to optimize structure/property relations in colloidal g-QDs for efficient photon management or charge separation/transfer. In particular, we focus on our recent contributions to this rapidly expanding field of research. We summarize the design and synthesis of a variety of colloidal g-QDs with the aim of tuning the optical properties, such as absorption/emission in a wide region of the solar spectrum, which allows enlargement of their Stokes shift. We also describe the band alignment within these systems, charge carrier dynamics, and charge transfer from g-QDs into semiconducting oxides. We show how these tailored g-QDs may be used as active components in luminescent solar concentrators, photoelectrochemical cells for hydrogen generation, QD-sensitized solar cells and optical nanothermometers. In each case, we aim at providing insights on structure/property relationships and on how to optimize them toward improving device performance. Finally, we describe perspectives for future work, sketching new directions and opportunities in this field of research at the intersection between chemistry, physics, materials science and engineering.
Collapse
Affiliation(s)
- Fabiola Navarro-Pardo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Haiguang Zhao
- College of Physics and The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Federico Rosei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| |
Collapse
|
41
|
Huang J, Gatty MG, Xu B, Pati PB, Etman AS, Tian L, Sun J, Hammarström L, Tian H. Covalently linking CuInS2 quantum dots with a Re catalyst by click reaction for photocatalytic CO2 reduction. Dalton Trans 2018; 47:10775-10783. [DOI: 10.1039/c8dt01631c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covalently linking a Re catalyst to CuInS2 QDs through a facile click reaction for efficient electron transfer to improve photocatalytic CO2 reduction is reported.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | | | - Bo Xu
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Palas Baran Pati
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Ahmed S. Etman
- Department of Materials and Environmental Chemistry (MMK)
- Stockholm University
- SE 106 91 Stockholm
- Sweden
| | - Lei Tian
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Junliang Sun
- Department of Materials and Environmental Chemistry (MMK)
- Stockholm University
- SE 106 91 Stockholm
- Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
42
|
Zhang C, Fu X, Peng Z, Gao J, Xia Y, Zhang J, Luo W, Li H, Wang Y, Zhang D. Phosphine-free synthesis and optical stabilities of composition-tuneable monodisperse ternary PbSe1−xSx alloyed nanocrystals via cation exchange. CrystEngComm 2018. [DOI: 10.1039/c7ce02114c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Composition-tunable monodisperse PbSe1−xSx alloyed NCs were synthesized by employing the cation exchange method, which demonstrated excellent air stability.
Collapse
|
43
|
Zhou Y, Zhao H, Ma D, Rosei F. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem Soc Rev 2018; 47:5866-5890. [DOI: 10.1039/c7cs00701a] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review summarizes the recent progress, challenges and perspectives of luminescent solar concentrators based on colloidal quantum dots via harnessing their properties.
Collapse
Affiliation(s)
- Yufeng Zhou
- Énergie Matériaux Télécommunications Research Centre
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| | - Haiguang Zhao
- College of Physics & The Cultivation Base for State Key Laboratory
- Qingdao University
- P. R. China
| | - Dongling Ma
- Énergie Matériaux Télécommunications Research Centre
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| | - Federico Rosei
- Énergie Matériaux Télécommunications Research Centre
- Institut National de la Recherche Scientifique
- Varennes
- Canada
- Institute of Fundamental and Frontier Sciences
| |
Collapse
|
44
|
Gaikwad AP, Patil SH, Patil KR, Sathaye SD, Rode CV. A composite thin film of simultaneously formed carbon and SnO2 QDs for supercapacitor application. NEW J CHEM 2018. [DOI: 10.1039/c8nj00375k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple, one-step, low-cost combustion method for the simultaneous formation of two/more component QD thin films
Collapse
Affiliation(s)
| | - Sagar H. Patil
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- KBP College Vashi
- Navi
| | | | | | | |
Collapse
|
45
|
Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X. Quantum dot-sensitized solar cells. Chem Soc Rev 2018; 47:7659-7702. [DOI: 10.1039/c8cs00431e] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive overview of the development of quantum dot-sensitized solar cells (QDSCs) is presented.
Collapse
Affiliation(s)
- Zhenxiao Pan
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Huashang Rao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Juan Bisquert
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Xinhua Zhong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
46
|
Feng G, He Q, Xie W, He Y, Chen X, Wang B, Lu B, Guan T. Dual-spectra encoded suspension array using reversed-phase microemulsion UV curing and electrostatic self-assembling. RSC Adv 2018; 8:21272-21279. [PMID: 35539940 PMCID: PMC9080948 DOI: 10.1039/c8ra02410c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/16/2018] [Indexed: 11/24/2022] Open
Abstract
The rapid growth of demand for high-throughput multiplexed biochips from modern biotechnology has led to growing interest in suspension array based on multi-channel encoded microbeads. We prepare dual-spectra encoded PEGDA microbeads (DSEPM) by reversed-phase microemulsion UV curing method and layer-by-layer electrostatic self-assembly method. Excitation of the synthesized DSEPM results in two spectra, including fluorescence spectra from quantum dots and laser induced breakdown spectra from nanoparticles with specific elements. With further surface modification and bio-probes grafting, we use DSEPM to carry a series of detection experiments of biomolecules. The adsorption experiment to two types of anti-IgG in mixture sample has demonstrated the availability of DSEPM in multiplexing. Then, the contrast experiment has verified the specificity of DSEPM in detection. Finally, we carry out the concentration gradient experiment and obtain the response curve to show the performance of DSEPM in quantitative analysis. The results indicate our method provide an effective way to improve multiplexed biochips with more coding capacity, accuracy and stability. The rapid growth of demand for high-throughput multiplexed biochips from modern biotechnology has led to growing interest in suspension array based on multi-channel encoded microbeads.![]()
Collapse
Affiliation(s)
- Guangxia Feng
- Institute of Optical Imaging and Sensing
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Qinghua He
- Institute of Optical Imaging and Sensing
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - WenYue Xie
- Department of Clinical Laboratory
- Peking University ShenZhen Hospital
- China
| | - Yonghong He
- Institute of Optical Imaging and Sensing
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Xuejing Chen
- Institute of Optical Imaging and Sensing
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Bei Wang
- Institute of Optical Imaging and Sensing
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Bangrong Lu
- Institute of Optical Imaging and Sensing
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Tian Guan
- Institute of Optical Imaging and Sensing
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| |
Collapse
|
47
|
Yue L, Rao H, Du J, Pan Z, Yu J, Zhong X. Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Adv 2018; 8:3637-3645. [PMID: 35542942 PMCID: PMC9077672 DOI: 10.1039/c7ra12321c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/06/2018] [Indexed: 11/23/2022] Open
Abstract
Alloyed structures of quantum dot light-harvesting materials favor the suppression of unwanted charge recombination as well as acceleration of the charge extraction and therefore the improvement of photovoltaic performance of the resulting solar cell devices. Herein, the advantages of Zn–Cu–In–S (ZCIS) alloy QD serving as light-harvesting sensitizer materials in the construction of quantum dot-sensitized solar cells (QDSCs) were compared with core/shell structured CIS/ZnS, as well as pristine CIS QDs. The built QDSCs with alloyed Zn–Cu–In–S QDs as photosensitizer achieved an average power conversion efficiency (PCE) of 8.47% (Voc = 0.613 V, Jsc = 22.62 mA cm−2, FF = 0.610) under AM 1.5G one sun irradiation, which was enhanced by 21%, and 82% in comparison to those of CIS/ZnS, and CIS based solar cells, respectively. In comparison to cell device assembled by the plain CIS and core/shell structured CIS/ZnS, the enhanced photovoltaic performance in ZCIS QDSCs is mainly ascribed to the faster photon generated electron injection rate from QD into TiO2 substrate, and the effective restraint of charge recombination, as confirmed by incident photon-to-current conversion efficiency (IPCE), open-circuit voltage decay (OCVD), as well as electrochemical impedance spectroscopy (EIS) measurements. Benefiting from the accelerative electron injection and retarded charge recombination, Zn–Cu–In–S alloy QD based QDSC achieved a PCE of 8.55%, which is 21%, and 82% higher than those of CIS/ZnS, and pristine CIS QDs based solar cells, respectively.![]()
Collapse
Affiliation(s)
- Liang Yue
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- College of Materials and Energy
| | - Huashang Rao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Jun Du
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhenxiao Pan
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Juan Yu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xinhua Zhong
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
48
|
Wu W, Ren S, Han Q, Gao Y, Kong D. Ultrafast spectroscopic studies of composition-dependent near-infrared-emitting alloyed CdSeTe quantum dots. Phys Chem Chem Phys 2018; 20:23556-23563. [DOI: 10.1039/c8cp03904f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, ultrafast optical properties of composition-dependent near infrared-emitting alloyed CdSeTe quantum dots are measured and analyzed.
Collapse
Affiliation(s)
- Wenzhi Wu
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| | - Shiwei Ren
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| | - Qiuju Han
- School of Science
- Northeast Agricultural University
- Harbin
- China
| | - Yachen Gao
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| | - Degui Kong
- School of Electronic Engineering
- Heilongjiang University
- Harbin
- China
| |
Collapse
|
49
|
Mansur AAP, Mansur HS, Caires AJ, Mansur RL, Oliveira LC. Composition-Tunable Optical Properties of Zn x Cd (1 - x)S Quantum Dot-Carboxymethylcellulose Conjugates: Towards One-Pot Green Synthesis of Multifunctional Nanoplatforms for Biomedical and Environmental Applications. NANOSCALE RESEARCH LETTERS 2017; 12:443. [PMID: 28683540 PMCID: PMC5498436 DOI: 10.1186/s11671-017-2212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/25/2017] [Indexed: 05/16/2023]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanocrystals with unique properties that can be engineered by controlling the nanoparticle size and chemical composition by doping and alloying strategies. However, due to their potential toxicity, augmenting their biocompatibility is yet a challenge for expanding to several biomedical and environmentally friendly applications. Thus, the main goal of this study was to develop composition-tunable and biocompatible Zn x Cd1 - x S QDs using carboxymethylcellulose polysaccharide as direct capping ligand via green colloidal aqueous route at neutral pH and at room temperature for potential biomedical and environmental applications. The ternary alloyed QDs were extensively characterized using UV-vis spectroscopy, photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), and X-ray photoelectrons spectroscopy (XPS). The results indicated that Zn x Cd(1 - x)S QDs were surface stabilized by carboxymethylcellulose biopolymer with spherical morphology for all composition of alloys and narrow sizes distributions ranging from 4 to 5 nm. The XRD results indicated that monophasic ternary alloyed Zn x Cd1 - x S nanocrystals were produced with homogenous composition of the core as evidenced by EELS and XPS analyses. In addition, the absorption and emission optical properties of Zn x Cd1 - x S QDs were red shifted with increasing the amount of Cd2+ in the alloyed nanocrystals, which have also increased the quantum yield compared to pure CdS and ZnS nanoparticles. These properties of alloyed nanomaterials were interpreted based on empirical model of Vegard's law and chemical bond model (CBM). As a proof of concept, these alloyed-QD conjugates were tested for biomedical and environmental applications. The results demonstrated that they were non-toxic and effective fluorophores for bioimaging live HEK293T cells (human embryonic kidney cells) using confocal laser scanning fluorescence microscopy. Moreover, these conjugates presented photocatalytic activity for photodegradation of methylene blue used as model organic industrial pollutant in water. Hence, composition-tunable optical properties of ternary Zn x Cd1 - x S (x = 0-1) fluorescent alloyed QDs was achieved using a facile eco-friendly aqueous processing route, which can offer promising alternatives for developing innovative nanomaterials for applications in nanomedicine and environmental science and technology.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil.
- Federal University of Minas Gerais, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, Belo Horizonte, MG, 31.270-901, Brazil.
| | - Anderson J Caires
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Rafael L Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Luiz C Oliveira
- Department of Chemistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
50
|
Liu F, Ding C, Zhang Y, Ripolles TS, Kamisaka T, Toyoda T, Hayase S, Minemoto T, Yoshino K, Dai S, Yanagida M, Noguchi H, Shen Q. Colloidal Synthesis of Air-Stable Alloyed CsSn1–xPbxI3 Perovskite Nanocrystals for Use in Solar Cells. J Am Chem Soc 2017; 139:16708-16719. [DOI: 10.1021/jacs.7b08628] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Feng Liu
- Faculty
of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Chao Ding
- Faculty
of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Yaohong Zhang
- Faculty
of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Teresa S. Ripolles
- Faculty
of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
| | - Taichi Kamisaka
- Faculty
of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Taro Toyoda
- Faculty
of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shuzi Hayase
- Faculty
of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Minemoto
- Department
of Electrical and Electronic Engineering, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kenji Yoshino
- Department
of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen, Kibanadai Nishi, Miyazaki 889-2192, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Songyuan Dai
- Beijing
Key Laboratory of Novel Thin Film Solar Cells, State Key Laboratory
of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, P. R. China
| | - Masatoshi Yanagida
- Center for
Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Global Research
Center for Environmental and Energy Based on Nanomaterials Science, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Hidenori Noguchi
- Center for
Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Global Research
Center for Environmental and Energy Based on Nanomaterials Science, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Qing Shen
- Faculty
of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|