1
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Wang D, Wang J, Song J, Shen Q, Wang R, Lu W, Pan J, Xie C, Liu M. Guanidyl and imidazolyl integration group-modified PAMAM for gastric adenocarcinoma gene therapy. J Gene Med 2020; 22:e3240. [PMID: 32558063 DOI: 10.1002/jgm.3240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gene therapy has become a potential strategy for cancer treatment. However, the development of efficient gene vectors restricts the application for cancer gene treatment. Functionalization of polymers with functional groups can significantly improve their transfection efficacy. METHODS Guanidyl can form bidentate hydrogen with the phosphate groups and phosphate groups are present in DNA and cell membranes, thus increasing DNA condensation and cellular uptake. Imidazolyl has high buffering capacity in endosomal/lysosomal acidic environment, facilitating endosome/lysosome escape. We designed a structure-integrated group of guanidyl and imidazolyl, 2-aminoimidazole (AM), which was conjugated to PAMAM generation 2 (G2) for gene therapy of gastric adenocarcinoma. RESULTS Molecular docking results illustrated that G2-AM bound with DNA molecule effectively via multiple interactions. A quantitative luciferase assay showed that the transfection efficacy of G2-AM/pGL3 was approximately 100-fold greater than that of G2/pGL3, 90-fold greater than that of imidazolyl-modified G2 (G2-M) /pGL3 and 100-fold greater than that of G5/pGL3 without additional cytotoxicity. After introducing the pTRAIL gene into gastric adenocarcinoma cells, the apoptosis ratio of gastric adenocarcinoma cells treated with G2-AM/pTRAIL was 36.95%, which is much larger than the corresponding ratio of G2/pTRAIL (7.45%), G2-M/pTRAIL (11.33%) and G5/pTRAIL (23.2%). In a gastric adenocarcinoma xenograft model, the in vivo transfection efficacy of G2-AM/pRFP was much greater than that of G2/pRFP and G2-M/pRFP. CONCLUSIONS These results demonstrate that AM could be modified with cationic polymers for potential application in gene delivery and gastric adenocarcinoma gene therapy.
Collapse
Affiliation(s)
- Dongli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jing Wang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Qing Shen
- Hangzhou YITU Healthcare Technology Co. Ltd, Hangzhou, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jun Pan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Seidi F, Jenjob R, Phakkeeree T, Crespy D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J Control Release 2018; 284:188-212. [DOI: 10.1016/j.jconrel.2018.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
|
4
|
Tan Z, Dhande YK, Reineke TM. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block. Bioconjug Chem 2017; 28:2985-2997. [DOI: 10.1021/acs.bioconjchem.7b00598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhe Tan
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yogesh K. Dhande
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Navarro R, Monterde C, Molina S, Pérez-Perrino M, Reviriego F, del Prado A, Gallardo A, Reinecke H. Understanding the regioselectivity of Michael addition reactions to asymmetric divinylic compounds. RSC Adv 2017. [DOI: 10.1039/c7ra11005g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the present paper, we describe the synthesis of novel monomers prepared by regioselective Michael addition to asymmetric divinylic compounds.
Collapse
Affiliation(s)
| | - Cristina Monterde
- Institute of Organic Chemistry
- Spain
- Institute of Material Science
- Cantoblanco
- Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Mees M, Haladjova E, Momekova D, Momekov G, Shestakova PS, Tsvetanov CB, Hoogenboom R, Rangelov S. Partially Hydrolyzed Poly(n-propyl-2-oxazoline): Synthesis, Aqueous Solution Properties, and Preparation of Gene Delivery Systems. Biomacromolecules 2016; 17:3580-3590. [DOI: 10.1021/acs.biomac.6b01088] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maarten Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | | - Denitsa Momekova
- Faculty
of Pharmacy, Medical University of Sofia, 2 Dunav str., Sofia 1000, Bulgaria
| | - Georgi Momekov
- Faculty
of Pharmacy, Medical University of Sofia, 2 Dunav str., Sofia 1000, Bulgaria
| | | | | | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
7
|
Askarian S, Abnous K, Ayatollahi S, Farzad SA, Oskuee RK, Ramezani M. PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydr Polym 2016; 157:929-937. [PMID: 27988010 DOI: 10.1016/j.carbpol.2016.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
Abstract
Targeted nano-carriers are highly needed to promote nucleic acid delivery into the specific cell for therapeutic approaches. Pullulan as a linear carbohydrate has an intrinsic liver targeting property interacting with asialoglycoprotein receptor (ASGPR) found on liver cells. In the present study, we developed polyamidoamine (PAMAM)-pullulan conjugates and investigated their targeting activity in delivering gene into liver cells. The particle size, zeta potential, buffering capacity and ethidium bromide exclusion assays of the conjugates were evaluated. The cytotoxicity and transfection efficiency of new derivatives were assessed following in vitro transfection of HepG2 (receptor positive) and N2A (receptor negative) cell lines. Size of conjugated polymers ranged between 118 and 184 nanometers and their cytotoxicity were similar to PAMAM. Among six produced nanocarriers, G4PU4 and G5PU4 enhanced transfection efficiency in HepG2 cells compared to unmodified PAMAM. Therefore, the PAMAM-pullulan derivatives seem to improve delivery of nucleic acids into the liver cells expressing asialoglycoprotein receptor with minimal transfection in non-targeted cells.
Collapse
Affiliation(s)
- Saeedeh Askarian
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Ayatollahi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Amel Farzad
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Kazemi Oskuee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Lybaert L, Vanparijs N, Fierens K, Schuijs M, Nuhn L, Lambrecht BN, De Geest BG. A Generic Polymer-Protein Ligation Strategy for Vaccine Delivery. Biomacromolecules 2016; 17:874-81. [PMID: 26812240 DOI: 10.1021/acs.biomac.5b01571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the field of cancer immunotherapy is intensively investigated, there is still a need for generic strategies that allow easy, mild and efficient formulation of vaccine antigens. Here we report on a generic polymer-protein ligation strategy to formulate protein antigens into reversible polymeric conjugates for enhanced uptake by dendritic cells and presentation to CD8 T-cells. A N-hydroxypropylmethacrylamide (HPMA)-based copolymer was synthesized via RAFT polymerization followed by introduction of pyridyldisulfide moieties. To enhance ligation efficiency to ovalbumin, which is used as a model protein antigen, protected thiols were introduced onto lysine residues and deprotected in situ in the presence of the polymer. The ligation efficiency was compared for both the thiol-modified versus unmodified ovalbumin, and the reversibility was confirmed. Furthermore, the obtained nanoconjugates were tested in vitro for their interaction and association with dendritic cells, showing enhanced cellular uptake and antigen cross-presentation to CD8 T-cells.
Collapse
Affiliation(s)
- Lien Lybaert
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kaat Fierens
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Ghent Belgium
| | - Martijn Schuijs
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Ghent Belgium
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Ghent Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Ahmed M, Narain R. Carbohydrate-based materials for targeted delivery of drugs and genes to the liver. Nanomedicine (Lond) 2015. [DOI: 10.2217/nnm.15.58] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The insult to liver by toxic materials leads to cirrhosis, hepatitis and cancer. Upon administration, drugs accumulate in liver, which is systemically cleared by reticuloendothelial system. However, specific targeting of drugs to liver is a serious challenge. Specific delivery of molecules to hepatocytes is accomplished by targeting cell surface lectins, asialoglycoprotein receptors. Asialofetuin, N-acetyl glucosamine and galactose are high-affinity ligands of asialoglycoprotein receptors. The bioconjugation of drugs, fluorescent molecules and gene delivery vectors with lectin-targeting agents, and their delivery in liver hepatocytes, is discussed. Mannose and N-acetyl glucosamine conjugates are evaluated for their delivery to hepatic stellate and kupffer cells. The glycosylated gene and drug delivery vectors in clinical trials are outlined.
Collapse
Affiliation(s)
- Marya Ahmed
- Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Ravin Narain
- Chemical & Materials Engineering, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
10
|
Wang W, Lester JM, Amorosa AE, Chance DL, Mossine VV, Mawhinney TP. Facile and Efficient Preparation of Tri-component Fluorescent Glycopolymers via RAFT-controlled Polymerization. J Vis Exp 2015:e52922. [PMID: 26132587 PMCID: PMC4545147 DOI: 10.3791/52922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Synthetic glycopolymers are instrumental and versatile tools used in various biochemical and biomedical research fields. An example of a facile and efficient synthesis of well-controlled fluorescent statistical glycopolymers using reversible addition-fragmentation chain-transfer (RAFT)-based polymerization is demonstrated. The synthesis starts with the preparation of β-galactose-containing glycomonomer 2-lactobionamidoethyl methacrylamide obtained by reaction of lactobionolactone and N-(2-aminoethyl) methacrylamide (AEMA). 2-Gluconamidoethyl methacrylamide (GAEMA) is used as a structural analog lacking a terminal β-galactoside. The following RAFT-mediated copolymerization reaction involves three different monomers: N-(2-hydroxyethyl) acrylamide as spacer, AEMA as target for further fluorescence labeling, and the glycomonomers. Tolerant of aqueous systems, the RAFT agent used in the reaction is (4-cyanopentanoic acid)-4-dithiobenzoate. Low dispersities (≤1.32), predictable copolymer compositions, and high reproducibility of the polymerizations were observed among the products. Fluorescent polymers are obtained by modifying the glycopolymers with carboxyfluorescein succinimidyl ester targeting the primary amine functional groups on AEMA. Lectin-binding specificities of the resulting glycopolymers are verified by testing with corresponding agarose beads coated with specific glycoepitope recognizing lectins. Because of the ease of the synthesis, the tight control of the product compositions and the good reproducibility of the reaction, this protocol can be translated towards preparation of other RAFT-based glycopolymers with specific structures and compositions, as desired.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry, University of Missouri
| | | | | | - Deborah L Chance
- Department of Molecular Microbiology & Immunology, University of Missouri
| | | | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri; Department of Child Health, University of Missouri;
| |
Collapse
|
11
|
Redondo JA, Martínez-Campos E, Navarro R, Reinecke H, Elvira C, López-Lacomba JL, Gallardo A. Effect on in vitro cell response of the statistical insertion of N-(2-hydroxypropyl) methacrylamide on linear pro-dendronic polyamine's gene carriers. Eur J Pharm Biopharm 2015; 93:303-10. [PMID: 25937440 DOI: 10.1016/j.ejpb.2015.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Statistical copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and the dendronic methacrylic monomer 2-(3-(Bis(2-(diethylamino)ethyl)amino)propanamido)ethyl methacrylate (TEDETAMA, derived from N,N,N',N'-tetraethyldiethylenetriamine, TEDETA), were synthesized through radical copolymerization and evaluated in vitro as non-viral gene carriers. Three copolymers with nominal molar percentages of HPMA of 25%, 50% and 75% were prepared and studied comparatively to the positive controls poly-TEDETAMA and hyperbranched polyethyleneimine (PEI, 25kDa). Their ability to complex DNA at different N/P molar ratios, from 1/1 up to 8/1, was determined through agarose gel electrophoresis and Dynamic Light Scattering. The resulting complexes (polyplexes) were characterized and evaluated in vitro as possible non-viral gene carriers for Swiss-3T3 fibroblasts, using luciferase as reporter gene and a calcein cytocompatibility assay. All the copolymers, except the one with highest HPMA proportion (75 molar %) at the lowest N/P ratio, condensed DNA to a particle size between 100 and 300 nm. The copolymers with 25 and 50 molar % of HPMA displayed higher transfection efficiency and cytocompatibility than the positive controls poly-TEDETAMA and PEI. A higher proportion of HPMA (75 molar %) led to copolymers that displayed very low transfection efficiency, despite their full cytocompatibility even at the highest N/P ratio. These results indicate that the statistical combination of TEDETAMA and HPMA and its fine compositional tuning in the copolymers may fulfill the fine balance of transfection efficiency and cytocompatibility in a superior way to the control poly-TEDETAMA and PEI.
Collapse
Affiliation(s)
- Juan Alfonso Redondo
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Enrique Martínez-Campos
- Institute of Biofunctional Studies (IEB), Tissue Engineering Group, (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Rodrigo Navarro
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Helmut Reinecke
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carlos Elvira
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Luis López-Lacomba
- Institute of Biofunctional Studies (IEB), Tissue Engineering Group, (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Alberto Gallardo
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
12
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
13
|
Redondo J, Velasco D, Pérez-Perrino M, Reinecke H, Gallardo A, Pandit A, Elvira C. Synergistic effect of pendant hydroxypropyl and pyrrolidine moieties randomly distributed along polymethacrylamide backbones on in vitro DNA-transfection. Eur J Pharm Biopharm 2015; 90:38-43. [DOI: 10.1016/j.ejpb.2014.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
14
|
Liu Z, Du H, Wickramasinghe SR, Qian X. Membrane surface engineering for protein separations: experiments and simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10651-10660. [PMID: 25127078 DOI: 10.1021/la5026119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A bisphosphonate derived ligand was successfully synthesized and grafted from the surface of regenerated cellulose membrane using atom transfer radical polymerization (ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further improve specific protein adsorption. The polymerization of bisphosphonate derivatives was successful for the first time using ATRP. Static and dynamic binding capacities were determined for binding and elution of Arg rich lysozyme. The interaction mechanism between the copolymer ligand and lysozyme was elucidated using classical molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Zizhao Liu
- Department of Chemical Engineering and ‡Department of Biomedical Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | | | | | | |
Collapse
|
15
|
Wu Y, Ji J, Yang R, Zhang X, Li Y, Pu Y, Li X. Galactosylated 2-hydroxypropyl methacrylamide-s-3-guanidinopropyl methacrylamide copolymer as a small hairpin RNA carrier for inhibiting human telomerase reverse transcriptase expression. J Gene Med 2014; 16:109-21. [DOI: 10.1002/jgm.2766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yang Wu
- Biomaterials and Drug Delivery Laboratory; School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| | - Jingkai Ji
- Biomaterials and Drug Delivery Laboratory; School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| | - Ran Yang
- Biomaterials and Drug Delivery Laboratory; School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| | - Xiaoqiang Zhang
- The Key Laboratory of Pharmaceutical and Environmental Engineering; School of Public Health; Southeast University; Nanjing China
| | - Yuanhui Li
- The Key Laboratory of Pharmaceutical and Environmental Engineering; School of Public Health; Southeast University; Nanjing China
| | - Yuepu Pu
- The Key Laboratory of Pharmaceutical and Environmental Engineering; School of Public Health; Southeast University; Nanjing China
| | - Xinsong Li
- Biomaterials and Drug Delivery Laboratory; School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| |
Collapse
|
16
|
Wu Y, Qin Z, Ji J, Yang R, Zhang X, Li Y, Yin L, Pu Y, Li X. Galactosylated poly(ethylene glycol) methacrylate-st-3-guanidinopropyl methacrylamide copolymers as siRNA carriers for inhibiting Survivin expressionin vitroandin vivo. J Drug Target 2014; 22:352-64. [DOI: 10.3109/1061186x.2013.877466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Abd Karim KJ, Utama RH, Lu H, Stenzel MH. Enhanced drug toxicity by conjugation of platinum drugs to polymers with guanidine containing zwitterionic functional groups that mimic cell-penetrating peptides. Polym Chem 2014. [DOI: 10.1039/c4py00802b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inspired by the Ringsdorf model, statistical copolymers with solubility enhancers, platinum drugs and groove binders were compared.
Collapse
Affiliation(s)
- Khairil Juhanni Abd Karim
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
- Department of Chemistry
| | - Robert H. Utama
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
| |
Collapse
|
18
|
RAFT-based tri-component fluorescent glycopolymers: synthesis, characterization and application in lectin-mediated bacterial binding study. Glycoconj J 2013; 31:133-43. [PMID: 24218180 PMCID: PMC3901943 DOI: 10.1007/s10719-013-9508-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
A group of fluorescent statistical glycopolymers, prepared via reversible addition–fragmentation chain-transfer (RAFT)-based polymerizations, were successfully employed in lectin-mediated bacterial binding studies. The resultant glycopolymers contained three different monomers: N-(2-hydroxyethyl) acrylamide (HEAA), N-(2-aminoethyl) methacrylamide (AEMA) and N-(2-glyconamidoethyl)-methacrylamides possessing different pendant sugars. Low dispersities (≤1.32) and predictable degrees of polymerization were observed among the products. After the polymerization, the glycopolymers were further modified by different succinimidyl ester fluorophores targeting the primary amine groups on AEMA. With their binding specificities being confirmed by testing with lectin coated agarose beads, the glycopolymers were employed in bacterial binding studies, where polymers containing α-galactose or β-galactose as the pendant sugar were specifically bound by two clinically important pathogens Pseudomonas aeruginosa and Staphylococcus aureus, respectively. This is the first report of using RAFT-based glycopolymers in bacterial binding studies, and the ready access to tri-component statistical glycopolymers also warrants further exploration of their utility in other glycobiological applications.
Collapse
|
19
|
Li X, Qin Z, Wu Y, Liu W, Li L, Guo L, Li Y, Yin L, Pu Y. Improvement of transfection efficiency by galactosylated N-3-guanidinopropyl methacrylamide-co-poly (ethylene glycol) methacrylate copolymers. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Gajbhiye V, Gong S. Lectin functionalized nanocarriers for gene delivery. Biotechnol Adv 2013; 31:552-62. [DOI: 10.1016/j.biotechadv.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
|
21
|
Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev 2013; 65:1204-14. [PMID: 23602906 DOI: 10.1016/j.addr.2013.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022]
Abstract
The widespread use of various cyclodextrin (CyD)-appended polymers and polyrotaxanes as gene carriers has been reported. Among the various polyamidoamine dendrimer (dendrimer) conjugates with CyDs (CDE), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 (α-CDE (G3, DS 2)) displayed remarkable properties as DNA carriers. In an attempt to develop cell-specific gene transfer carriers, we prepared some sugar-appended α-CDEs, e.g. mannosylated, galactosylated, and lactosylated α-CDEs. In addition, PEGylated Lac-α-CDEs (G3) were prepared and evaluated as a hepatocyte-selective and serum-resistant gene transfer carrier. Moreover, PEGylated-α-CDE/CyD polypseudorotaxane systems for novel sustained DNA release system have been developed. Interestingly, glucronylglucosyl-β-cyclodextrin (GUG-β-CyD) conjugates with dendrimer (G2) (GUG-β-CDE (G2)) had superior gene transfer activity to α-CDE (G2), expecting a development of new series of sugar-appended CDEs over α-CDEs (G2). Collectively, sugar-appended α-CDEs have the potential as novel cell-specific and safe carriers for DNA.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
22
|
Lepenies B, Lee J, Sonkaria S. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv Drug Deliv Rev 2013; 65:1271-81. [PMID: 23727341 DOI: 10.1016/j.addr.2013.05.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 01/08/2023]
Abstract
C-type lectin receptors (CLRs) represent a large receptor family including collectins, selectins, lymphocyte lectins, and proteoglycans. CLRs share a structurally homologous carbohydrate-recognition domain (CRD) and often bind carbohydrates in a Ca²⁺-dependent manner. In innate immunity, CLRs serve as pattern recognition receptors (PRRs) and bind to the glycan structures of pathogens and also to self-antigens. In nature, the low affinity of CLR/carbohydrate interactions is overcome by multivalent ligand presentation at the surface of cells or pathogens. Thus, multivalency is a promising strategy for targeting CLR-expressing cells and, indeed, carbohydrate-based targeting approaches have been employed for a number of CLRs, including asialoglycoprotein receptor (ASGPR) in the liver, or DC-SIGN expressed by dendritic cells. Since CLR engagement not only mediates endocytosis but also influences intracellular signaling pathways, CLR targeting may allow for cell-specific drug delivery and also the modulation of cellular functions. Glyconanoparticles, glycodendrimers, and glycoliposomes were successfully used as tools for CLR-specific targeting. This review will discuss different approaches for multivalent CLR ligand presentation and aims to highlight how CLR targeting has been employed for cell specific drug delivery. Major emphasis is directed towards targeting of CLRs expressed by antigen-presenting cells to modulate immune responses.
Collapse
|
23
|
Hayashi Y, Higashi T, Motoyama K, Mori Y, Jono H, Ando Y, Arima H. Design and evaluation of polyamidoamine dendrimer conjugate with PEG,α-cyclodextrin and lactose as a novel hepatocyte-selective gene carrierin vitroandin vivo. J Drug Target 2013; 21:487-96. [DOI: 10.3109/1061186x.2013.769105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Yin Y, Zhu WW, Guo LP, Yang R, Li XS, Jiang Y. RGDC Functionalized Titanium Dioxide Nanoparticles Induce Less Damage to Plasmid DNA but Higher Cytotoxicity to HeLa Cells. J Phys Chem B 2012; 117:125-31. [DOI: 10.1021/jp3092804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Yin
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Wei-Wei Zhu
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Li-Ping Guo
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Ran Yang
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Xin-Song Li
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| | - Yong Jiang
- School of Chemistry
and Chemical Engineering and ‡School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing,
Jiangsu, 211189, People's Republic of China
| |
Collapse
|
25
|
Chu DSH, Schellinger JG, Shi J, Convertine AJ, Stayton PS, Pun SH. Application of living free radical polymerization for nucleic acid delivery. Acc Chem Res 2012; 45:1089-99. [PMID: 22242774 DOI: 10.1021/ar200242z] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Therapeutic gene delivery can alter protein function either through the replacement of nonfunctional genes to restore cellular health or through RNA interference (RNAi) to mask mutated and harmful genes. Researchers have investigated a range of nucleic acid-based therapeutics as potential treatments for hereditary, acquired, and infectious diseases. Candidate drugs include plasmids that induce gene expression and small, interfering RNAs (siRNAs) that silence target genes. Because of their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, cationic polymers have been extensively studied for nucleic acid delivery applications, but toxicity and particle stability have limited the clinical applications of these systems. The advent of living free radical polymerization has improved the quality, control, and reproducibility of these synthesized materials. This process yields well-defined, narrowly disperse materials with designed architectures and molecular weights. As a result, researchers can study the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity, which will improve the design of next-generation vectors. In this Account, we review findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. Researchers have used robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) to engineer materials that enhance extracellular stability and cellular specificity and decrease toxicity. In addition, we discuss polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release. Finally, we describe promising materials with a range of in vivo applications from pulmonary gene delivery to DNA vaccines.
Collapse
Affiliation(s)
- David S. H. Chu
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Joan G. Schellinger
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Julie Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Anthony J. Convertine
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
26
|
Ahmed M, Narain R. The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems. Biomaterials 2012; 33:3990-4001. [DOI: 10.1016/j.biomaterials.2012.02.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 02/06/2012] [Indexed: 01/08/2023]
|