1
|
Im SH, Chung Y, Duskunovic N, Choi H, Park SH, Chung HJ. Oligonucleotide-Linked Lipid Nanoparticles as a Versatile mRNA Nanovaccine Platform. Adv Healthc Mater 2024:e2401868. [PMID: 39363681 DOI: 10.1002/adhm.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024]
Abstract
An effective delivery platform is crucial for the development of mRNA vaccines and therapeutics. Here, a versatile platform utilizing cholesterol-modified oligonucleotides (L-oligo) that bind to the mRNA within lipid nanoparticles (LNP), and enables the effective delivery of the mRNA into target cells is introduced. mRNA incorporated into LNPs via linkage with L-oligo, termed oligonucleotide-linked LNP (lnLNP), is superior in cellular uptake and transfection efficiency in target cells in vitro and in vivo, compared to the conventional LNP formulations. It is further applied lnLNP as an mRNA vaccine platform for SARS-CoV-2, demonstrating robust induction of neutralizing activity as well as polyfunctional SARS-CoV-2-specific T-cell response in vivo. The current strategy can be versatilely applied to different LNP platforms, for vaccine and therapeutic applications against various diseases, such as infections and cancers.
Collapse
Affiliation(s)
- San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Nevena Duskunovic
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Heewon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Gras M, Adler P, Smietana M. A Catalytic Approach for the Synthesis of Peptide-Oligonucleotides Conjugates in Aqueous Solution or On-Column. Chemistry 2024; 30:e202401069. [PMID: 38709711 DOI: 10.1002/chem.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Peptide-oligonucleotide conjugates (POCs) are covalent architectures composed of a DNA or RNA molecules linked to a peptide. These constructs have found widespread applications ranging from hybrid nanomaterials to gene-targeted therapies. Considering the important role of POCs, a new catalytic approach for their preparation is reported here, that could be applied either on solid support in anhydrous media, or post-synthetically in aqueous buffer. Single amino acids, peptides and cell penetrating peptides (CPPs) were conjugated to various oligo(ribo)nucleotides with high conversions and good isolated yields. The applicability of the method was demonstrated on more than 35 examples including an analogue of a commercial therapeutic oligonucleotide. Other conjugation partners, such as deoxycholic acid and biotin were also successfully conjugated to oligonucleotides. To highlight the potential of this catalytic approach, these conditions have been applied to iterative processes, which is of high interest for the development of DNA-Encoded Libraries.
Collapse
Affiliation(s)
- Marion Gras
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Pauline Adler
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Michael Smietana
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
3
|
Bristow P, Schantz K, Moosbrugger Z, Martin K, Liebenberg H, Steimle S, Xiao Q, Percec V, Wilner SE. Aptamer-Targeted Dendrimersomes Assembled from Azido-Modified Janus Dendrimers "Clicked" to DNA. Biomacromolecules 2024; 25:1541-1549. [PMID: 38394608 PMCID: PMC10934268 DOI: 10.1021/acs.biomac.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Amphiphilic Janus dendrimers (JDs), synthetic alternatives to lipids, have the potential to expand the scope of nanocarrier delivery systems. JDs self-assemble into vesicles called dendrimersomes, encapsulate both hydrophobic cargo and nucleic acids, and demonstrate enhanced stability in comparison to lipid nanoparticles (LNPs). Here, we report the ability to enhance the cellular uptake of Janus dendrimersomes using DNA aptamers. Azido-modified JDs were synthesized and conjugated to alkyne-modified DNAs using copper-catalyzed azide alkyne cycloaddition. DNA-functionalized JDs form nanometer-sized dendrimersomes in aqueous solution via thin film hydration. These vesicles, now displaying short DNAs, are then hybridized to transferrin receptor binding DNA aptamers. Aptamer-targeted dendrimersomes show improved cellular uptake as compared to control vesicles via fluorescence microscopy and flow cytometry. This work demonstrates the versatility of using click chemistry to conjugate functionalized JDs with biologically relevant molecules and the feasibility of targeting DNA-modified dendrimersomes for drug delivery applications.
Collapse
Affiliation(s)
- Paige Bristow
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Kyle Schantz
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Zoe Moosbrugger
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Kailey Martin
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Haley Liebenberg
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Stefan Steimle
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Qi Xiao
- Roy
& Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Virgil Percec
- Roy
& Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Samantha E. Wilner
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
4
|
Zharkov TD, Markov OV, Zhukov SA, Khodyreva SN, Kupryushkin MS. Influence of Combinations of Lipophilic and Phosphate Backbone Modifications on Cellular Uptake of Modified Oligonucleotides. Molecules 2024; 29:452. [PMID: 38257365 PMCID: PMC10818405 DOI: 10.3390/molecules29020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Numerous types of oligonucleotide modifications have been developed since automated synthesis of DNA/RNA became a common instrument in the creation of synthetic oligonucleotides. Despite the growing number of types of oligonucleotide modifications under development, only a few of them and, moreover, their combinations have been studied widely enough in terms of their influence on the properties of corresponding NA constructions. In the present study, a number of oligonucleotides with combinations of 3'-end lipophilic (a single cholesteryl or a pair of dodecyl residues) and phosphate backbone modifications were synthesized. The influence of the combination of used lipophilic groups with phosphate modifications of various natures and different positions on the efficiency of cell penetration was evaluated. The obtained results indicate that even a couple of phosphate modifications are able to affect a set of oligonucleotide properties in a complex manner and can remarkably change cellular uptake. These data clearly show that the strategy of using different patterns of modification combinations has great potential for the rational design of oligonucleotide structures with desired predefined properties.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S. Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (T.D.Z.); (O.V.M.); (S.A.Z.); (S.N.K.)
| |
Collapse
|
5
|
Zharkov TD, Mironova EM, Markov OV, Zhukov SA, Khodyreva SN, Kupryushkin MS. Fork- and Comb-like Lipophilic Structures: Different Chemical Approaches to the Synthesis of Oligonucleotides with Multiple Dodecyl Residues. Int J Mol Sci 2023; 24:14637. [PMID: 37834092 PMCID: PMC10572690 DOI: 10.3390/ijms241914637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Lipophilic oligonucleotide conjugates represent a powerful tool for nucleic acid cellular delivery, and many methods for their synthesis have been developed over the past few decades. In the present study, a number of chemical approaches for the synthesis of different fork- and comb-like dodecyl-containing oligonucleotide structures were performed, including use of non-nucleotide units and different types of phosphate modifications such as alkyl phosphoramidate, phosphoryl guanidine, and triazinyl phosphoramidate. The influence of the number of introduced lipophilic residues, their mutual arrangement, and the type of formed modification backbone on cell penetration was evaluated. The results obtained indicate great potential in the developed chemical approaches, not only for the synthesis of complex oligonucleotide structures but also for the fine-tuning of their properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxim S. Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (T.D.Z.); (E.M.M.); (O.V.M.); (S.A.Z.); (S.N.K.)
| |
Collapse
|
6
|
Lundstrom K. Viral vectors engineered for gene therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:1-41. [PMID: 37541721 DOI: 10.1016/bs.ircmb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Gene therapy has seen major progress in recent years. Viral vectors have made a significant contribution through efficient engineering for improved delivery and safety. A large variety of indications such as cancer, cardiovascular, metabolic, hematological, neurological, muscular, ophthalmological, infectious diseases, and immunodeficiency have been targeted. Viral vectors based on adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses including lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, Newcastle disease virus, poxviruses, picornaviruses, reoviruses, and polyomaviruses have been used. Proof-of-concept has been demonstrated for different indications in animal models. Therapeutic efficacy has also been achieved in clinical trials. Several viral vector-based drugs have been approved for the treatment of cancer, and hematological, metabolic, and neurological diseases. Moreover, viral vector-based vaccines have been approved against COVID-19 and Ebola virus disease.
Collapse
|
7
|
Lundstrom K. Alphaviruses in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:143-168. [PMID: 37541722 DOI: 10.1016/bs.ircmb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Alphaviruses have frequently been engineered for cancer therapy, cancer immunotherapy, and cancer vaccine development. As members of self-replicating RNA viruses, alphaviruses provide high levels of transgene expression through efficient self-amplifying of their RNA genome in host cells. Alphavirus vectors can be used as recombinant viral particles or oncolytic viruses. Alternatively, either naked or nanoparticle-encapsulated RNA and DNA replicons can be utilized. In the context of cancer prevention and treatment, antitumor, cytotoxic and suicide genes have been expressed from alphavirus vectors to provide tumor regression and tumor eradication. Moreover, immunostimulatory genes such as cytokines and chemokines have been used for cancer immunotherapy approaches. Expression of tumor antigens has been applied for cancer vaccine development. Alphavirus vectors has demonstrated tumor regression and even cure in various preclinical animal models. Immunization has elicited strong immune responses and showed protection against challenges with tumor cells in animal models. Several clinical trials have confirmed good safety and tolerability of alphaviruses in cancer patients although therapeutic efficacy will still require optimization.
Collapse
|
8
|
Kusznir EA, Hau JC, Portmann M, Reinhart AG, Falivene F, Bastien J, Worm J, Ross A, Lauer M, Ringler P, Sladojevich F, Huber S, Bleicher K, Keller M. Propensities of Fatty Acid-Modified ASOs: Self-Assembly vs Albumin Binding. Bioconjug Chem 2023; 34:866-879. [PMID: 37145959 DOI: 10.1021/acs.bioconjchem.3c00085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We conducted a biophysical study to investigate the self-assembling and albumin-binding propensities of a series of fatty acid-modified locked nucleic acid (LNA) antisense oligonucleotide (ASO) gapmers specific to the MALAT1 gene. To this end, a series of biophysical techniques were applied using label-free ASOs that were covalently modified with saturated fatty acids (FAs) of varying length, branching, and 5'/3' attachment. Using analytical ultracentrifugation (AUC), we demonstrate that ASOs conjugated with fatty acids longer than C16 exhibit an increasing tendency to form self-assembled vesicular structures. The C16 to C24 conjugates interacted via the fatty acid chains with mouse and human serum albumin (MSA/HSA) to form stable adducts with near-linear correlation between FA-ASO hydrophobicity and binding strength to mouse albumin. This was not observed for the longer fatty acid chain ASO conjugates (>C24) under the experimental conditions applied. The longer FA-ASO however adopted self-assembled structures with increasing intrinsic stabilities proportional to the fatty acid chain length. For instance, FA chain lengths smaller than C24 readily formed self-assembled structures containing 2 (C16), 6 (C22, bis-C12), and 12 (C24) monomers, as measured by analytical ultracentrifugation (AUC). Incubation with albumin disrupted these supramolecular architectures to form FA-ASO/albumin complexes mostly with 2:1 stoichiometry and binding affinities in the low micromolar range, as determined by isothermal titration calorimetry (ITC) and analytical ultracentrifugation (AUC). Binding of FA-ASOs underwent a biphasic pattern for medium-length FA chain lengths (>C16) with an initial endothermic phase of particulate disruption, followed by an exothermic binding event to the albumin. Conversely, ASO modified with di-palmitic acid (C32) formed a strong, hexameric complex. This structure was not disrupted when incubated with albumin under conditions above the critical nanoparticle concentration (CNC; <0.4 μM). It is noteworthy that the interaction of parent, fatty acid-free malat1 ASO to albumin was below detectability by ITC (KD ≫150 μM). This work demonstrates that the nature of mono- vs multimeric structures of hydrophobically modified ASOs is governed by the hydrophobic effect. Consequently, supramolecular assembly to form particulate structures is a direct consequence of the fatty acid chain length. This provides opportunities to exploit the concept of hydrophobic modification to influence pharmacokinetics (PK) and biodistribution for ASOs in two ways: (1) binding of the FA-ASO to albumin as a carrier vehicle and (2) self-assembly resulting in albumin-inert, supramolecular architectures. Both concepts create opportunities to influence biodistribution, receptor interaction, uptake mechanism, and pharmacokinetics/pharmacodynamics (PK/PD) properties in vivo, potentially enabling access to extrahepatic tissues in sufficient concentration to treat disease.
Collapse
Affiliation(s)
- Eric-André Kusznir
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Christophe Hau
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michaela Portmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anne-Gaëlle Reinhart
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Falivene
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica Bastien
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jesper Worm
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, 2970 Hoersholm, Denmark
| | - Alfred Ross
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Matthias Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- Biozentrum, University of Basel, Spitalstrasse 41, CH - 4056 Basel, Switzerland
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konrad Bleicher
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
9
|
Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond. Molecules 2023; 28:molecules28041904. [PMID: 36838892 PMCID: PMC9961013 DOI: 10.3390/molecules28041904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key problems in the design of therapeutic and diagnostic oligonucleotides is the attachment of small-molecule ligands for targeted deliveries in such a manner that provides the controlled release of the oligonucleotide at a certain moment. Here, we propose a novel, convenient approach for attaching ligands to the 5'-end of the oligonucleotide via biodegradable, acid-labile phosphoramide linkage. The method includes the activation of the 5'-terminal phosphate of the fully protected, support-bound oligonucleotide, followed by interaction with a ligand bearing the primary amino group. This technique is simple to perform, allows for forcing the reaction to completion by adding excess soluble reactant, eliminates the problem of the limited solubility of reagents, and affords the possibility of using different solvents, including water/organic media. We demonstrated the advantages of this approach by synthesizing and characterizing a wide variety of oligonucleotide 5'-conjugates with different ligands, such as cholesterol, aliphatic oleylamine, and p-anisic acid. The developed method suits different types of oligonucleotides (deoxyribo-, 2'-O-methylribo-, ribo-, and others).
Collapse
|
10
|
Saher O, Zaghloul EM, Umek T, Hagey DW, Mozafari N, Danielsen MB, Gouda AS, Lundin KE, Jørgensen PT, Wengel J, Smith CIE, Zain R. Chemical Modifications and Design Influence the Potency of Huntingtin Anti-Gene Oligonucleotides. Nucleic Acid Ther 2023; 33:117-131. [PMID: 36735581 PMCID: PMC10066784 DOI: 10.1089/nat.2022.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease is a neurodegenerative, trinucleotide repeat (TNR) disorder affecting both males and females. It is caused by an abnormal increase in the length of CAG•CTG TNR in exon 1 of the Huntingtin gene (HTT). The resultant, mutant HTT mRNA and protein cause neuronal toxicity, suggesting that reduction of their levels would constitute a promising therapeutic approach. We previously reported a novel strategy in which chemically modified oligonucleotides (ONs) directly target chromosomal DNA. These anti-gene ONs were able to downregulate both HTT mRNA and protein. In this study, various locked nucleic acid (LNA)/DNA mixmer anti-gene ONs were tested to investigate the effects of varying ON length, LNA content, and fatty acid modification on HTT expression. Altering the length did not significantly influence the ON potency, while LNA content was critical for activity. Utilization of palmitoyl-modified LNA monomers enhanced the ON activity relatively to the corresponding nonmodified LNA under serum starvation conditions. Furthermore, the number of palmitoylated LNA monomers and their positioning greatly affected ON potency. In addition, we performed RNA sequencing analysis, which showed that the anti-gene ONs affect the "immune system process, mRNA processing, and neurogenesis." Furthermore, we observed that for repeat containing genes, there is a higher tendency for antisense off-targeting. Taken together, our findings provide an optimized design of anti-gene ONs that could potentially be developed as DNA-targeting therapeutics for this class of TNR-related diseases.
Collapse
Affiliation(s)
- Osama Saher
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Zaghloul
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tea Umek
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Daniel W Hagey
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Mathias B Danielsen
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - Alaa S Gouda
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark.,Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
| | - Karin E Lundin
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Per T Jørgensen
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
Self-replicating RNA viral vectors have been engineered for both prophylactic and therapeutic applications. Mainly the areas of infectious diseases and cancer have been targeted. Both positive and negative strand RNA viruses have been utilized including alphaviruses, flaviviruses, measles viruses and rhabdoviruses. The high-level of RNA amplification has provided efficient expression of viral surface proteins and tumor antigens. Immunization studies in animal models have elicit robust neutralizing antibody responses. In the context of infectious diseases, immunization with self-replicating RNA viral vectors has provided protection against challenges with lethal doses of pathogens in animal models. Similarly, immunization with vectors expressing tumor antigens has resulted in tumor regression and eradication and protection against tumor challenges in animal models. The transient nature and non-integration of viral RNA into the host genome are ideal features for vaccine development. Moreover, self-replicating RNA viral vectors show great flexibility as they can be applied as recombinant viral particles, RNA replicons or DNA replicon plasmids. Several clinical trials have been conducted especially in the area of cancer immunotherapy.
Collapse
|
12
|
Brown KM, Nair JK, Janas MM, Anglero-Rodriguez YI, Dang LTH, Peng H, Theile CS, Castellanos-Rizaldos E, Brown C, Foster D, Kurz J, Allen J, Maganti R, Li J, Matsuda S, Stricos M, Chickering T, Jung M, Wassarman K, Rollins J, Woods L, Kelin A, Guenther DC, Mobley MW, Petrulis J, McDougall R, Racie T, Bombardier J, Cha D, Agarwal S, Johnson L, Jiang Y, Lentini S, Gilbert J, Nguyen T, Chigas S, LeBlanc S, Poreci U, Kasper A, Rogers AB, Chong S, Davis W, Sutherland JE, Castoreno A, Milstein S, Schlegel MK, Zlatev I, Charisse K, Keating M, Manoharan M, Fitzgerald K, Wu JT, Maier MA, Jadhav V. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat Biotechnol 2022; 40:1500-1508. [PMID: 35654979 DOI: 10.1038/s41587-022-01334-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jing Li
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Alex Kelin
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | | | | | | | - Diana Cha
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sun S, Yang Y, Niu H, Luo M, Wu ZS. Design and application of DNA nanostructures for organelle-targeted delivery of anticancer drugs. Expert Opin Drug Deliv 2022; 19:707-723. [PMID: 35618266 DOI: 10.1080/17425247.2022.2083603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION DNA nanostructures targeting organelles are of great significance for the early diagnosis and precise therapy of human cancers. This review is expected to promote the development of DNA nanostructure-based cancer treatment with organelle-level precision in the future. AREAS COVERED In this review, we introduce the different principles for targeting organelles, summarize the progresses in the development of organelle-targeting DNA nanostructures, highlight their advantages and applications in disease treatment, and discuss current challenges and future prospects. EXPERT OPINION Accurate targeting is a basic problem for effective cancer treatment. However, current DNA nanostructures cannot meet the actual needs. Targeting specific organelles is expected to further improve the therapeutic effect and overcome tumor cell resistance, thereby holding great practical significance for tumor treatment in the clinic. With the deepening of the research on the molecular mechanism of disease development, especially on tumorigenesis and tumor progression, and increasing understanding of the behavior of biological materials in living cells, more versatile DNA nanostructures will be constructed to target subcellular organelles for drug delivery, essentially promoting the early diagnosis of cancers, classification, precise therapy and the estimation of prognosis in the future.
Collapse
Affiliation(s)
- Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Mengxue Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
14
|
Delivery of Oligonucleotides: Efficiency with Lipid Conjugation and Clinical Outcome. Pharmaceutics 2022; 14:pharmaceutics14020342. [PMID: 35214074 PMCID: PMC8879684 DOI: 10.3390/pharmaceutics14020342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Oligonucleotides have shifted drug discovery into a new paradigm due to their ability to silence the genes and inhibit protein translation. Importantly, they can drug the un-druggable targets from the conventional small-molecule perspective. Unfortunately, poor cellular permeability and susceptibility to nuclease degradation remain as major hurdles for the development of oligonucleotide therapeutic agents. Studies of safe and effective delivery technique with lipid bioconjugates gains attention to resolve these issues. Our review article summarizes the physicochemical effect of well-studied hydrophobic moieties to enhance the cellular entry of oligonucleotides. The structural impacts of fatty acids, cholesterol, tocopherol, and squalene on cellular internalization and membrane penetration in vitro and in vivo were discussed first. The crucial assays for delivery evaluation within this section were analyzed sequentially. Next, we provided a few successful examples of lipid-conjugated oligonucleotides advanced into clinical studies for treating patients with different medical backgrounds. Finally, we pinpointed current limitations and outlooks in this research field along with opportunities to explore new modifications and efficacy studies.
Collapse
|
15
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
16
|
An analytical study of lipid-oligonucleotide aggregation properties. J Pharm Biomed Anal 2021; 205:114327. [PMID: 34479172 DOI: 10.1016/j.jpba.2021.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Lipid-oligonucleotides (LON) attract great interest as supramolecular scaffolds to improve the intracellular delivery of nucleic acids. Analytical characterization of LON assemblies is critical to formulation development, understanding in-vivo performance, as well as quality control. For this study, we selected LONs featuring different modifications on both oligonucleotide (with or without a G4 prone sequence) and lipid (mono or bis-alkyl chain covalently attached to the oligonucleotide sequence). Size exclusion chromatography (SEC) and, for the first time, capillary electrophoresis (CE) were investigated to study LON supramolecular self-assemblies. Results were correlated to those obtained with conventional physico-chemical characterization techniques i.e. gel electrophoresis, dynamic light scattering, and circular dichroism. In SEC, a separation between LON monomers and micelles was achieved in 5min on a TSK-gel G3000PW column at 70°C with 100% water, as mobile phase. CE conditions were optimized using a fused-silica capillary length of 10.0cm effective length at 15°C. Different background electrolytes were tested by varying the nature and the concentration of salts added. A sodium tetraborate buffer with 75mM NaCl appeared suitable to promote LON assembly. CE offers benefits to LON micelle analysis in terms of speed of analysis, high resolution, and low quantity of sample injected. Moreover, CE provides an appropriate tool to assess the impact of media of biological relevance on LON self-assembly. In this work, the key role of lipophilic tails and the formation of tetramolecular G-quadruplexes on the stability of LON micelles was confirmed.
Collapse
|
17
|
Shin J, Li S. Tuning lipid layer formation on particle surfaces by using DNA-containing recruiter molecules. Colloids Surf B Biointerfaces 2021; 208:112084. [PMID: 34481246 DOI: 10.1016/j.colsurfb.2021.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Biofunctional interfaces containing DNA-conjugated molecules have been explored for various bioengineering applications. However, there is still a lack of understanding of the interaction between DNA conjugates and surrounding biomolecules. In this study, we prepare DNA-containing recruiter molecules and incorporate them onto DNA immobilized gold nanoparticles through DNA hybridization. Liposomes composed of different phospholipids are then applied to investigate supported lipid layer formation on these recruiter-containing surfaces. We find that the morphology and the amount of lipid layers formed are determined by both the liposome concentration and the type of recruiter molecule. When liposomes are applied in excess above a critical concentration, surface chemistry determines the lipid layers formed, leading to lipid multilayers on hydrophilic DNA recruiter containing surfaces and lipid monolayers on hydrophobic DNA-lipid recruiter containing surfaces. When the liposome concentration is below the critical value, the surface molecules take on a more direct role and recruit lipids through hydrophobic interaction. The total amount of the lipid layers formed is further modulated by the overall charge and the fluidity of the liposomes applied. These results provide quantitative analysis on the interaction of DNA conjugates with lipid molecules and introduce a new approach to fine-tune lipid layer formation behavior.
Collapse
Affiliation(s)
- Jeehae Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea.
| |
Collapse
|
18
|
Clua A, Fàbrega C, García-Chica J, Grijalvo S, Eritja R. Parallel G-quadruplex Structures Increase Cellular Uptake and Cytotoxicity of 5-Fluoro-2'-deoxyuridine Oligomers in 5-Fluorouracil Resistant Cells. Molecules 2021; 26:molecules26061741. [PMID: 33804620 PMCID: PMC8003610 DOI: 10.3390/molecules26061741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2′-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5’-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.
Collapse
Affiliation(s)
- Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Jesús García-Chica
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-006-145
| |
Collapse
|
19
|
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Yong Wang
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
20
|
Shi P, Wang Y. Synthetic DNA for Cell-Surface Engineering. Angew Chem Int Ed Engl 2021; 60:11580-11591. [PMID: 33006229 DOI: 10.1002/anie.202010278] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Indexed: 12/14/2022]
Abstract
The cell membrane is not only a physical barrier, but also a functional organelle that regulates the communication between a cell and its environment. The ability to functionalize the cell membrane with synthetic molecules or nanostructures would advance cellular functions beyond what evolution has provided. The aim of this Minireview is to introduce recent progress in using synthetic DNA and DNA-based nanostructures for cell-surface engineering. We first introduce chemical conjugation and physical binding methods for monovalent and polyvalent surface engineering. We then introduce the application of these methods for either the promotion or inhibition of cell-environment communication in numerous applications, including the promotion of cell-cell recognition, regulation of intracellular pathways, protection of therapeutic cells, and sensing of the intracellular and extracellular microenvironments. Lastly, we summarize current challenges existing in this area and potential solutions to solve these challenges.
Collapse
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
21
|
Tuning G-Quadruplex Nanostructures with Lipids. Towards Designing Hybrid Scaffolds for Oligonucleotide Delivery. Int J Mol Sci 2020; 22:ijms22010121. [PMID: 33374392 PMCID: PMC7796380 DOI: 10.3390/ijms22010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Two G-quadruplex forming oligonucleotides [d(TG4T)4 and d(TG6T)4] were selected as two tetramolecular quadruplex nanostructures because of their demonstrated ability to be modified with hydrophobic molecules. This allowed us to synthesize two series of G-quadruplex conjugates that differed in the number of G-tetrads, as well as in the terminal position of the lipid modification. Both solution and solid-phase syntheses were carried out to yield the corresponding lipid oligonucleotide conjugates modified at their 3′- and 5′-termini, respectively. Biophysical studies confirmed that the presence of saturated alkyl chains with different lengths did not affect the G-quadruplex integrity, but increased the stability. Next, the G-quadruplex domain was added to an 18-mer antisense oligonucleotide. Gene silencing studies confirmed the ability of such G-rich oligonucleotides to facilitate the inhibition of target Renilla luciferase without showing signs of toxicity in tumor cell lines.
Collapse
|
22
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
23
|
Li X, Feng K, Li L, Yang L, Pan X, Yazd HS, Cui C, Li J, Moroz L, Sun Y, Wang B, Li X, Huang T, Tan W. Lipid-oligonucleotide conjugates for bioapplications. Natl Sci Rev 2020; 7:1933-1953. [PMID: 34691533 PMCID: PMC8290939 DOI: 10.1093/nsr/nwaa161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 07/08/2020] [Indexed: 11/12/2022] Open
Abstract
Lipid-oligonucleotide conjugates (LONs) are powerful molecular-engineering materials for various applications ranging from biosensors to biomedicine. Their unique amphiphilic structures enable the self-assembly and the conveyance of information with high fidelity. In particular, LONs present remarkable potential in measuring cellular mechanical forces and monitoring cell behaviors. LONs are also essential sensing tools for intracellular imaging and have been employed in developing cell-surface-anchored DNA nanostructures for biomimetic-engineering studies. When incorporating therapeutic oligonucleotides or small-molecule drugs, LONs hold promise for targeted therapy. Moreover, LONs mediate the controllable assembly and fusion of vesicles based on DNA-strand displacements, contributing to nanoreactor construction and macromolecule delivery. In this review, we will summarize the general synthesis strategies of LONs, provide some characterization analysis and emphasize recent advances in bioanalytical and biomedical applications. We will also consider the relevant challenges and suggest future directions for building better functional LONs in nanotechnology and materials-science applications.
Collapse
Affiliation(s)
- Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Kejun Feng
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Leonid Moroz
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Yujia Sun
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Bang Wang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Tong Huang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
24
|
Chen C, Jing N, Wang Z, Zhang Y, Chen W, Tang X. Multimerized self-assembled caged two-in-one siRNA nanoparticles for photomodulation of RNAi-induced gene silencing. Chem Sci 2020; 11:12289-12297. [PMID: 34094437 PMCID: PMC8162473 DOI: 10.1039/d0sc03562a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We rationally designed and developed caged siRNA nanoparticles (Multi-Chol-siRNA) self-assembled with cholesterol-modified multimerized caged siRNAs for photomodulation of siRNA gene silencing activity. Strong resistance to serum nuclease and RNase A was observed for these cholesterol-modified caged siRNA nanoparticles due to the formation of nanostructures with high intensity of siRNA. These caged Multi-Chol-siRNA self-assembled nanoparticles were successfully used to achieve photochemical regulation of both exogenous GFP and endogenous Eg5 gene expressions with a GFP/RFP transient transfection system and Eg5-associated assays, respectively. Further, Two-in-One caged Multi-Chol-siGFP/siEg5 self-assembled nanoparticles simultaneously targeting GFP and Eg5 genes were also developed. The caged Multi-Chol-siRNA self-assembled nanoparticles have demonstrated the effectiveness of enhancing photomodulation of multiple RNAi-induced gene silencing activities in cells. Upon light irradiation, multimerized self-assembled caged Two-in-One siRNA nanoparticles (Multi-Chol-siRNA) were collapsed to release trapped siRNAs for multiple RNAi-induced gene silencing activity.![]()
Collapse
Affiliation(s)
- Changmai Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Wei Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| |
Collapse
|
25
|
Pavlova AS, Dovydenko IS, Kupryushkin MS, Grigor’eva AE, Pyshnaya IA, Pyshnyi DV. Amphiphilic "Like-a-Brush" Oligonucleotide Conjugates with Three Dodecyl Chains: Self-Assembly Features of Novel Scaffold Compounds for Nucleic Acids Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1948. [PMID: 33003636 PMCID: PMC7600535 DOI: 10.3390/nano10101948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
The conjugation of lipophilic groups to oligonucleotides is a promising approach for improving nucleic acid-based therapeutics' intracellular delivery. Lipid oligonucleotide conjugates can self-aggregate in aqueous solution, which gains much attention due to the formation of micellar particles suitable for cell endocytosis. Here, we describe self-association features of novel "like-a-brush" oligonucleotide conjugates bearing three dodecyl chains. The self-assembly of the conjugates into 30-170 nm micellar particles with a high tendency to aggregate was shown using dynamic light scattering (DLS), atomic force (AFM), and transmission electron (TEM) microscopies. Fluorescently labeled conjugates demonstrated significant quenching of fluorescence intensity (up to 90%) under micelle formation conditions. The conjugates possess increased binding affinity to serum albumin as compared with free oligonucleotides. The dodecyl oligonucleotide conjugate and its duplex efficiently internalized and accumulated into HepG2 cells' cytoplasm without any transfection agent. It was shown that the addition of serum albumin or fetal bovine serum to the medium decreased oligonucleotide uptake efficacy (by 22.5-36%) but did not completely inhibit cell penetration. The obtained results allow considering dodecyl-containing oligonucleotides as scaffold compounds for engineering nucleic acid delivery vehicles.
Collapse
Affiliation(s)
| | | | | | | | | | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.S.P.); (I.S.D.); (M.S.K.); (A.E.G.); (I.A.P.)
| |
Collapse
|
26
|
Lundstrom K. Viral Vectors Applied for RNAi-Based Antiviral Therapy. Viruses 2020; 12:v12090924. [PMID: 32842491 PMCID: PMC7552024 DOI: 10.3390/v12090924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) provides the means for alternative antiviral therapy. Delivery of RNAi in the form of short interfering RNA (siRNA), short hairpin RNA (shRNA) and micro-RNA (miRNA) have demonstrated efficacy in gene silencing for therapeutic applications against viral diseases. Bioinformatics has played an important role in the design of efficient RNAi sequences targeting various pathogenic viruses. However, stability and delivery of RNAi molecules have presented serious obstacles for reaching therapeutic efficacy. For this reason, RNA modifications and formulation of nanoparticles have proven useful for non-viral delivery of RNAi molecules. On the other hand, utilization of viral vectors and particularly self-replicating RNA virus vectors can be considered as an attractive alternative. In this review, examples of antiviral therapy applying RNAi-based approaches in various animal models will be described. Due to the current coronavirus pandemic, a special emphasis will be dedicated to targeting Coronavirus Disease-19 (COVID-19).
Collapse
|
27
|
Transport Oligonucleotides-A Novel System for Intracellular Delivery of Antisense Therapeutics. Molecules 2020; 25:molecules25163663. [PMID: 32796768 PMCID: PMC7464317 DOI: 10.3390/molecules25163663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Biological activity of antisense oligonucleotides (asON), especially those with a neutral backbone, is often attenuated by poor cellular accumulation. In the present proof-of-concept study, we propose a novel delivery system for asONs which implies the delivery of modified antisense oligonucleotides by so-called transport oligonucleotides (tON), which are oligodeoxyribonucleotides complementary to asON conjugated with hydrophobic dodecyl moieties. Two types of tONs, bearing at the 5′-end up to three dodecyl residues attached through non-nucleotide inserts (TD series) or anchored directly to internucleotidic phosphate (TP series), were synthesized. tONs with three dodecyl residues efficiently delivered asON to cells without any signs of cytotoxicity and provided a transfection efficacy comparable to that achieved using Lipofectamine 2000. We found that, in the case of tON with three dodecyl residues, some tON/asON duplexes were excreted from the cells within extracellular vesicles at late stages of transfection. We confirmed the high efficacy of the novel and demonstrated that MDR1 mRNA targeted asON delivered by tON with three dodecyl residues significantly reduced the level of P-glycoprotein and increased the sensitivity of KB-8-5 human carcinoma cells to vinblastine. The obtained results demonstrate the efficacy of lipophilic oligonucleotide carriers and shows they are potentially capable of intracellular delivery of any kind of antisense oligonucleotides.
Collapse
|
28
|
Crooke ST, Vickers TA, Liang XH. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res 2020; 48:5235-5253. [PMID: 32356888 PMCID: PMC7261153 DOI: 10.1093/nar/gkaa299] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Antisense oligonucleotides (ASOs) interact with target RNAs via hybridization to modulate gene expression through different mechanisms. ASO therapeutics are chemically modified and include phosphorothioate (PS) backbone modifications and different ribose and base modifications to improve pharmacological properties. Modified PS ASOs display better binding affinity to the target RNAs and increased binding to proteins. Moreover, PS ASO protein interactions can affect many aspects of their performance, including distribution and tissue delivery, cellular uptake, intracellular trafficking, potency and toxicity. In this review, we summarize recent progress in understanding PS ASO protein interactions, highlighting the proteins with which PS ASOs interact, the influence of PS ASO protein interactions on ASO performance, and the structure activity relationships of PS ASO modification and protein interactions. A detailed understanding of these interactions can aid in the design of safer and more potent ASO drugs, as illustrated by recent findings that altering ASO chemical modifications dramatically improves therapeutic index.
Collapse
|
29
|
Barakat F, Gaudin K, Vialet B, Bathany K, Benizri S, Barthélémy P, Ferey L. Analysis of lipid-oligonucleotide conjugates by cyclodextrin-modified capillary zone electrophoresis. Talanta 2020; 219:121204. [PMID: 32887111 DOI: 10.1016/j.talanta.2020.121204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/28/2023]
Abstract
Lipid-oligonucleotide (LONs) based bioconjugates represent an emerging class of therapeutic agents, allowing the delivery of therapeutic oligonucleotide sequences. The LON development requests accurate and efficient analytical methods. In this contribution, LON analysis methods were developed in cyclodextrin-modified capillary zone electrophoresis (CD-CZE). The LONs selected in this study feature different structures, including i) the oligonucleotide length (from 10 to 20 nucleotides), ii) the inter-nucleotide linkage chemistry (phosphodiester PDE or phosphorothioate PTO), and iii) the lipidic part: single- (LONsc) or double-chain (LONdc) lipids. In CD-CZE, the effect of several parameters on the electrophoretic peaks was investigated (buffer, CD, and capillary temperature). The binding interaction between LON and Me-β-CD was studied in affinity capillary electrophoresis and revealed a 1:1 LON:CD complex. Non-linear regression and three usual linearization methods (y-reciprocal, x-reciprocal, and double-reciprocal) were used to determine the binding constants (K values of 2.5.104 M-1 and 2.0.104 M-1 for LON PDE and LON PTO, respectively). Quantitative methods with good performances and analysis time lower than 5 min were achieved. Importantly, the developed analysis allows a separation between the i) full-length sequence LONs and their truncated sequences, (n-1), (n-2), and (n-4)-mers and ii) LONsc, LONdc and their corresponding unconjugated oligonucleotides. This work highlights the interest of CD-CZE methods for LON analysis.
Collapse
Affiliation(s)
- Fatima Barakat
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France
| | - Karen Gaudin
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France.
| | - Brune Vialet
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France
| | - Katell Bathany
- Chimie et Biologie des Membranes et Nanoobjets (CBMN) UMR 5248 CNRS, Université de Bordeaux, 33600, Pessac, France
| | - Sebastien Benizri
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France
| | - Philippe Barthélémy
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France.
| | - Ludivine Ferey
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France.
| |
Collapse
|
30
|
Zhao B, Tian Q, Bagheri Y, You M. Lipid-Oligonucleotide Conjugates for Simple and Efficient Cell Membrane Engineering and Bioanalysis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:76-83. [PMID: 32642625 PMCID: PMC7343234 DOI: 10.1016/j.cobme.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell membrane modification is important for tissue engineering, cell-based therapies, and cell biology studies. Recently, oligonucleotides have attracted considerable attention to remodel and functionalize live cell membranes. In particular, a type of amphiphilic lipid-oligonucleotide conjugates have been rationally designed and synthesized for this purpose. These conjugates have enabled a rapid, straightforward and efficient cell membrane modification. Taking advantage of the highly precise and programmable self-assembly of DNAs and RNAs, lipid-oligonucleotide conjugates have been used for membrane bioanalysis, therapeutics, building artificial membrane structures, and regulating cell-surface and cell-cell interactions. In this review, we have summarized the current knowledge in the design, synthesis, and regulating membrane properties of lipid-oligonucleotide conjugates. In addition, their state-of-the-art applications in cell membrane engineering and bioanalysis have been illustrated.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. ADVANCED THERAPEUTICS 2020; 3:1900206. [PMID: 34164572 PMCID: PMC8218910 DOI: 10.1002/adtp.201900206] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid delivery provides effective options to control intracellular gene expression and protein production. Efficient delivery of nucleic acid typically requires delivery vehicles to facilitate the entry of nucleic acid into cells. Among non-viral delivery vehicles, cationic materials are favored because of their high loading capacity of nucleic acids and prominent cellular uptake efficiency through electrostatic interaction. However, cationic moieties at high dosage tend to induce severe cytotoxicity due to the interference on cell membrane integrity. In contrast, non-cationic materials present alternative delivery approaches with less safety concerns than cationic materials. In this Progress Report, principles of non-cationic material design for nucleic acid delivery are discussed. Examples of such non-cationic platforms are highlighted, including complexation or conjugation with nucleic acids and self-assembled nucleic acid structures.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
32
|
Small interfering RNA from the lab discovery to patients' recovery. J Control Release 2020; 321:616-628. [PMID: 32087301 DOI: 10.1016/j.jconrel.2020.02.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
In 1998, the RNA interference discovery by Fire and Mello revolutionized the scientific and therapeutic world. They showed that small double-stranded RNAs, the siRNAs, were capable of selectively silencing the expression of a targeted gene by degrading its mRNA. Very quickly, it appeared that the use of this natural mechanism was an excellent way to develop new therapeutics, due to its specificity at low doses. However, one major hurdle lies in the delivery into the targeted cells, given that the different extracellular and intracellular barriers of the organism coupled with the physico-chemical characteristics of siRNA do not allow an efficient and safe administration. The development of nanotechnologies has made it possible to counteract these hurdles by vectorizing the siRNA in a vector composed of cationic lipids or polymers, or to chemically modify it by conjugation to a molecule. This has enabled the first clinical developments of siRNAs to begin very quickly after their discovery, for the treatment of various acquired or hereditary pathologies. In 2018, the first siRNA-containing drug was approved by the FDA and the EMA for the treatment of an inherited metabolic disease, the hereditary transthyretin amyloidosis. In this review, we discuss the different barriers to the siRNA after systemic administration and how vectorization or chemical modifications lead to avoid it. We describe some interesting clinical developments and finally, we present the future perspectives.
Collapse
|
33
|
Yang L, Ma F, Liu F, Chen J, Zhao X, Xu Q. Efficient Delivery of Antisense Oligonucleotides Using Bioreducible Lipid Nanoparticles In Vitro and In Vivo. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1357-1367. [PMID: 32160706 PMCID: PMC7036716 DOI: 10.1016/j.omtn.2020.01.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/30/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The efficient delivery of antisense oligonucleotides (ASOs) to the targeted cells and organs remains a challenge, in particular, in vivo. Here, we investigated the ability of a library of biodegradable lipid nanoparticles (LNPs) in delivering ASO to both cultured human cells and animal models. We first identified three top-performing lipids through in vitro screening using GFP-expressing HEK293 cells. Next, we explored these three candidates for delivering ASO to target proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA in mice. We found that lipid 306-O12B-3 showed efficiency with the median effective dose (ED50) as low as 0.034 mg·kg-1, which is a notable improvement over the efficiency reported in the literature. No liver or kidney toxicity was observed with a dose up to 5 mg·kg-1 of this ASO/LNP formulation. The biodegradable LNPs are efficient and safe in the delivery of ASO and pave the way for clinical translation.
Collapse
Affiliation(s)
- Liu Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Feihe Ma
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Fang Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Xuewei Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
34
|
Chernikov IV, Karelina UA, Meschaninova MI, Ven’yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Investigation of the Internalization of Fluorescently Labeled Lipophilic siRNA into Cultured Tumor Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Abstract
Efficient intracellular delivery of small-interfering ribonucleic acid (siRNA) to the target organ or tissues in the body is assumed as the main hurdle for a widespread use of siRNAs in the clinics. Solid lipid-based nanoparticles (SLNs) and derivatives can potentially fit this purpose by enabling to overcome the extracellular and intracellular physiological barriers affecting the delivery. For that, rational formulations and rational process designs are needed. This chapter addresses a comprehensive description and critical appraisal of the main production methods of this particular type of lipid nanoparticles and the leading strategies to prompt a targeted delivery of siRNA.
Collapse
Affiliation(s)
- Andreia Jorge
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, Coimbra, Portugal.
| | - Alberto Pais
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
36
|
Metelev VG, Bogdanov AA. Synthesis and applications of theranostic oligonucleotides carrying multiple fluorine atoms. Theranostics 2020; 10:1391-1414. [PMID: 31938071 PMCID: PMC6956824 DOI: 10.7150/thno.37936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
The use of various oligonucleotide (ON) syntheses and post-synthetic strategies for targeted chemical modification enables improving their efficacy as potent modulators of gene expression levels in eukaryotic cells. However, the search still continues for new approaches designed for increasing internalization, lysosomal escape, and tissue specific delivery of ON. In this review we emphasized all aspects related to the synthesis and properties of ON derivatives carrying multifluorinated (MF) groups. These MF groups have unique physico-chemical properties because of their simultaneous hydrophobicity and lipophobicity. Such unusual combination of properties results in the overall modification of ON mode of interaction with the cells and making multi-fluorination highly relevant to the goal of improving potency of ON as components of new therapies. The accumulated evidence so far is pointing to high potential of ON probes, RNAi components and ON imaging beacons carrying single or multiple MF groups for improving the stability, specificity of interaction with biological targets and delivery of ONs in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Valeriy G. Metelev
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
- Department of Chemistry, Moscow State University, Moscow, Russian Federation
| | - Alexei A. Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
- Laboratory of Molecular Imaging, A.N. Bakh Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow
| |
Collapse
|
37
|
Zhang R, Qin X, Kong F, Chen P, Pan G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv 2019; 26:328-342. [PMID: 30905189 PMCID: PMC6442206 DOI: 10.1080/10717544.2019.1582730] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Efficient cellular delivery of biologically active molecules is one of the key factors that affect the discovery and development of novel drugs. The plasma membrane is the first barrier that prevents direct translocation of chemic entities, and thus obstructs their efficient intracellular delivery. Generally, hydrophilic small molecule drugs are poor permeability that reduce bioavailability and thus limit the clinic application. The cellular uptake of macromolecules and drug carriers is very inefficient without external assistance. Therefore, it is desirable to develop potent delivery systems for achieving effective intracellular delivery of chemic entities. Apart from of the types of delivery strategies, the composition of the cell membrane is critical for delivery efficiency due to the fact that cellular uptake is affected by the interaction between the chemical entity and the plasma membrane. In this review, we aimed to develop a profound understanding of the interactions between delivery systems and components of the plasma membrane. For the purpose, we attempt to present a broad overview of what delivery systems can be used to enhance the intracellular delivery of poorly permeable chemic entities, and how various delivery strategies are applied according to the components of plasma membrane.
Collapse
Affiliation(s)
- Renshuai Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Fandong Kong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agriculture Sciences, Haikou, P.R. China
| | - Pengwei Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agriculture Sciences, Haikou, P.R. China
| | - Guojun Pan
- School of Life Sciences, Taishan Medical University, Tai’an, P.R. China
| |
Collapse
|
38
|
Bagheri Y, Shafiei F, Chedid S, Zhao B, You M. Lipid-DNA conjugates for cell membrane modification, analysis, and regulation. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1632454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Fatemeh Shafiei
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Sara Chedid
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
39
|
Wang S, Allen N, Prakash TP, Liang XH, Crooke ST. Lipid Conjugates Enhance Endosomal Release of Antisense Oligonucleotides Into Cells. Nucleic Acid Ther 2019; 29:245-255. [PMID: 31158063 DOI: 10.1089/nat.2019.0794] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides modified with phosphorothioate linkages (PS-ASOs) can enter cells via endocytic pathways and must escape from membraned organelles to reach target RNAs. We recently found that membrane destabilization induced by different lipid species contributes to PS-ASO release from late endosomes (LEs). In this study, we characterized intracellular uptake, trafficking, and activities of PS-ASOs conjugated with different lipid species. We found that palmitic acid-, tocopherol-, and cholesterol-conjugated PS-ASOs have increased protein binding and enhanced intracellular uptake compared to unconjugated PS-ASOs. Similar to the parental PS-ASO, the lipid-conjugated PS-ASOs traffic from early to LEs without incorporation into lipid droplets. Unlike parental PS-ASOs, the lipid-conjugated PS-ASOs tend to remain associated with plasma or endosomal membranes, and this appears to influence their release from endosomes. The lipid-conjugated PS-ASOs were released more rapidly than parental PS-ASO. These results suggest that lipid conjugation enhances the interactions of PS-ASOs with proteins or membranes, in turn facilitating intracellular trafficking and endosomal release.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Nickolas Allen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Thazha P Prakash
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| |
Collapse
|
40
|
Huo S, Li H, Boersma AJ, Herrmann A. DNA Nanotechnology Enters Cell Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900043. [PMID: 31131200 PMCID: PMC6523375 DOI: 10.1002/advs.201900043] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Indexed: 05/19/2023]
Abstract
DNA is more than a carrier of genetic information: It is a highly versatile structural motif for the assembly of nanostructures, giving rise to a wide range of functionalities. In this regard, the structure programmability is the main advantage of DNA over peptides, proteins, and small molecules. DNA amphiphiles, in which DNA is covalently bound to synthetic hydrophobic moieties, allow interactions of DNA nanostructures with artificial lipid bilayers and cell membranes. These structures have seen rapid growth with great potential for medical applications. In this Review, the current state of the art of the synthesis of DNA amphiphiles and their assembly into nanostructures are first summarized. Next, an overview on the interaction of these DNA amphiphiles with membranes is provided, detailing on the driving forces and the stability of the interaction. Moreover, the interaction with cell surfaces in respect to therapeutics, biological sensing, and cell membrane engineering is highlighted. Finally, the challenges and an outlook on this promising class of DNA hybrid materials are discussed.
Collapse
Affiliation(s)
- Shuaidong Huo
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Hongyan Li
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Arnold J. Boersma
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Herrmann
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
41
|
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2019; 37:107-124. [PMID: 29243000 DOI: 10.1007/s10555-017-9717-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Whitehouse WL, Noble JE, Ryadnov MG, Howorka S. Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures. Bioconjug Chem 2019; 30:1836-1844. [PMID: 30821443 DOI: 10.1021/acs.bioconjchem.9b00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA nanostructures constitute a rapidly advancing tool-set for exploring cell-membrane functions and intracellular sensing or advancing delivery of biomolecular cargo into cells. Chemical conjugation with lipid anchors can mediate binding of DNA nanostructures to synthetic lipid bilayers, yet how such structures interact with biological membranes and internalize cells has not been shown. Here, an archetypal 6-duplex nanobundle is used to investigate how lipid conjugation influences DNA cell binding and internalization kinetics. Cellular interactions of DNA nanobundles modified with one and three cholesterol anchors were assessed using flow cytometry and confocal microscopy. Nuclease digestion was used to distinguish surface-bound DNA, which is nuclease accessible, from internalized DNA. Three cholesterol anchors were found to enhance cellular association by up to 10-fold when compared with unmodified DNA. The bundles were endocytosed efficiently within 24 h. The results can help design controlled DNA binding and trafficking into cells.
Collapse
Affiliation(s)
- William L Whitehouse
- Department of Chemistry, Institute of Structural and Molecular Biology , University College London , London WC1H 0AJ , United Kingdom
| | - James E Noble
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Stefan Howorka
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| |
Collapse
|
43
|
Aviñó A, Unzueta U, Virtudes Céspedes M, Casanova I, Vázquez E, Villaverde A, Mangues R, Eritja R. Efficient bioactive oligonucleotide-protein conjugation for cell-targeted cancer therapy. ChemistryOpen 2019; 8:382-387. [PMID: 30976478 PMCID: PMC6437810 DOI: 10.1002/open.201900038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Indexed: 11/11/2022] Open
Abstract
Oligonucleotide-protein conjugates have important applications in biomedicine. Simple and efficient methods are described for the preparation of these conjugates. Specifically, we describe a new method in which a bifunctional linker is attached to thiol-oligonucleotide to generate a reactive intermediate that is used to link to the protein. Having similar conjugation efficacy compared with the classical method in which the bifunctional linker is attached first to the protein, this new approach produces significantly more active conjugates with higher batch to batch reproducibility. In a second approach, direct conjugation is proposed using oligonucleotides carrying carboxyl groups. These methodologies have been applied to prepare nanoconjugates of an engineered nanoparticle protein carrying a T22 peptide with affinity for the CXCR4 chemokine receptor and oligomers of the antiproliferative nucleotide 2'-deoxy-5-fluorouridine in a very efficient way. The protocols have potential uses for the functionalization of proteins, amino-containing polymers or amino-lipids in order to produce complex therapeutic nucleic acid delivery systems.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC)Spanish Council for Scientific Research (CSIC)Jordi Girona 18–2608034BarcelonaSpain
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
| | - Ugutz Unzueta
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Resarch InstituteHospital de Santa Creu i Sant Pau08025BarcelonaSpain
| | - María Virtudes Céspedes
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Resarch InstituteHospital de Santa Creu i Sant Pau08025BarcelonaSpain
| | - Isolda Casanova
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Resarch InstituteHospital de Santa Creu i Sant Pau08025BarcelonaSpain
| | - Esther Vázquez
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de Barcelona08193BellaterraSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de Barcelona08193BellaterraSpain
| | - Antonio Villaverde
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de Barcelona08193BellaterraSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de Barcelona08193BellaterraSpain
| | - Ramon Mangues
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Resarch InstituteHospital de Santa Creu i Sant Pau08025BarcelonaSpain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC)Spanish Council for Scientific Research (CSIC)Jordi Girona 18–2608034BarcelonaSpain
- Networking Center on BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)
| |
Collapse
|
44
|
Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019; 30:366-383. [PMID: 30608140 PMCID: PMC6766081 DOI: 10.1021/acs.bioconjchem.8b00761] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this Review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)-followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, α-tocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.
Collapse
Affiliation(s)
- Sebastien Benizri
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Arnaud Gissot
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Andrew Martin
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Brune Vialet
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Philippe Barthélémy
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| |
Collapse
|
45
|
Grijalvo S, Puras G, Zárate J, Sainz-Ramos M, Qtaish NAL, López T, Mashal M, Attia N, Díaz D, Pons R, Fernández E, Pedraz JL, Eritja R. Cationic Niosomes as Non-Viral Vehicles for Nucleic Acids: Challenges and Opportunities in Gene Delivery. Pharmaceutics 2019; 11:E50. [PMID: 30678296 PMCID: PMC6409589 DOI: 10.3390/pharmaceutics11020050] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cationic niosomes have become important non-viral vehicles for transporting a good number of small drug molecules and macromolecules. Growing interest shown by these colloidal nanoparticles in therapy is determined by their structural similarities to liposomes. Cationic niosomes are usually obtained from the self-assembly of non-ionic surfactant molecules. This process can be governed not only by the nature of such surfactants but also by others factors like the presence of additives, formulation preparation and properties of the encapsulated hydrophobic or hydrophilic molecules. This review is aimed at providing recent information for using cationic niosomes for gene delivery purposes with particular emphasis on improving the transportation of antisense oligonucleotides (ASOs), small interference RNAs (siRNAs), aptamers and plasmids (pDNA).
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
| | - Gustavo Puras
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Jon Zárate
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Myriam Sainz-Ramos
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Nuseibah A L Qtaish
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Tania López
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - David Díaz
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain.
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Ramon Pons
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Eduardo Fernández
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain.
| | - José Luis Pedraz
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
| |
Collapse
|
46
|
Chamiolo J, Fang GM, Hövelmann F, Friedrich D, Knoll A, Loewer A, Seitz O. Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging. Chembiochem 2018; 20:595-604. [PMID: 30326174 PMCID: PMC6470956 DOI: 10.1002/cbic.201800526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Fluorogenic oligonucleotide probes allow mRNA imaging in living cells. A key challenge is the cellular delivery of probes. Most delivery agents, such as cell‐penetrating peptides (CPPs) and pore‐forming proteins, require interactions with the membrane. Charges play an important role. To explore the influence of charge on fluorogenic properties and delivery efficiency, we compared peptide nucleic acid (PNA)‐ with DNA‐based forced intercalation (FIT) probes. Perhaps counterintuitively, fluorescence signaling by charged DNA FIT probes proved tolerant to CPP conjugation, whereas CPP–FIT PNA conjugates were affected. Live‐cell imaging was performed with a genetically engineered HEK293 cell line to allow the inducible expression of a specific mRNA target. Blob‐like features and high background were recurring nuisances of the tested CPP and lipid conjugates. By contrast, delivery by streptolysin‐O provided high enhancements of the fluorescence of the FIT probe upon target induction. Notably, DNA‐based FIT probes were brighter and more responsive than PNA‐based FIT probes. Optimized conditions enabled live‐cell multicolor imaging of three different mRNA target sequences.
Collapse
Affiliation(s)
- Jasmine Chamiolo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Felix Hövelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Dhana Friedrich
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Andrea Knoll
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Alexander Loewer
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| |
Collapse
|
47
|
Abstract
Attachment of hydrophobic groups to RNA is challenging because of their poor aqueous solubility. One-step acylation of RNA 2'-OH groups in water using a water-soluble imidazole leaving group is described. The effect of the hydrophobic groups on hybridization is reported. Furthermore, propargyl-functionalized RNA is shown to be readily labeled with a fluorophore. Lastly, heptyl-functionalized RNA is found to exhibit the unusual property of solubility in organic solvents.
Collapse
Affiliation(s)
- Willem A. Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
48
|
Świtalska A, Dembska A, Fedoruk-Wyszomirska A, Juskowiak B. Cholesterol-Bearing Fluorescent G-Quadruplex Potassium Probes for Anchoring at the Langmuir Monolayer and Cell Membrane. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2201. [PMID: 29987195 PMCID: PMC6069133 DOI: 10.3390/s18072201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
The purpose of the present work was to design, synthesize and spectrally characterize cholesterol-anchored fluorescent oligonucleotide probes (Ch(F-TBA-T), Ch(py-TBA-py)), based on G-quadruplexes, which were able to incorporate into a lipid structure (Langmuir monolayer, living cell membrane). The probes, based on the thrombin-binding aptamer (TBA) sequence, were labeled with fluorescent dyes which enabled simultaneous monitoring of the formation of G-quadruplex structures and visualization of probe incorporation into the cellular membrane. The combinations of fluorophores used included fluorescence resonance energy transfer (FRET) and excimer emission approaches. The structural changes of the probes upon binding with K⁺ or Na⁺ ions were monitored with fluorescence techniques. These systems showed a very high binding preference for K⁺ over Na⁺ ions. The use of confocal fluorescence microscopy indicated successful anchoring of the cholesterol-bearing fluorescent probes to the living cell membrane. These structurally simple cholesterol-based fluorescent probes have good potential for opening up new and exciting opportunities in the field of biosensors; e.g., in vivo detection of K⁺ ions.
Collapse
Affiliation(s)
- Angelika Świtalska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Anna Dembska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | | | - Bernard Juskowiak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| |
Collapse
|
49
|
Hartmann AK, Cairns-Gibson DF, Santiana JJ, Tolentino MQ, Barber HM, Rouge JL. Enzymatically Ligated DNA-Surfactants: Unmasking Hydrophobically Modified DNA for Intracellular Gene Regulation. Chembiochem 2018; 19:1734-1739. [PMID: 29862626 DOI: 10.1002/cbic.201800302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Indexed: 01/07/2023]
Abstract
Herein, we describe the characterization of a novel self-assembling and intracellular disassembling nanomaterial for nucleic acid delivery and targeted gene knockdown. By using a recently developed nucleic acid nanocapsule (NAN) formed from surfactants and conjugated DNAzyme (DNz) ligands, it is shown that DNz-NAN can enable cellular uptake of the DNAzyme and result in 60 % knockdown of a target gene without the use of transfection agents. The DNAzyme also exhibits activity without chemical modification, which we attribute to the underlying nanocapsule design and release of hydrophobically modified nucleic acids as a result of enzymatically triggered disassembly of the NAN. Fluorescence-based experiments indicate that the surfactant-conjugated DNAzymes are better able to access a fluorescent mRNA target within a mock lipid bilayer system than the free DNAzyme, highlighting the advantage of the hydrophobic surfactant modification to the nucleic acid ligands. In vitro characterization of DNz-NAN's substrate-cleavage kinetics, stability in biological serum, and persistence of knockdown against a proinflammatory transcription factor, GATA-3, are presented.
Collapse
Affiliation(s)
- Alyssa K Hartmann
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | | | - Joshua J Santiana
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Mark Q Tolentino
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Halle M Barber
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
50
|
Craig K, Abrams M, Amiji M. Recent preclinical and clinical advances in oligonucleotide conjugates. Expert Opin Drug Deliv 2018; 15:629-640. [PMID: 29727206 DOI: 10.1080/17425247.2018.1473375] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Oligonucleotide therapeutics have the potential to change the way disease is treated due to their ability to modulate gene expression of any therapeutic target in a highly specific and potent manner. Unfortunately, this drug class is plagued with inherently poor pharmacological characteristics, which need to be overcome. The development of a chemical modification library for oligonucleotides has addressed many of the initial challenges, but delivery of these payloads across plasma membranes remains difficult. The latest technological advances in oligonucleotide therapeutics utilizes direct conjugation to targeting ligands, which has improved bioavailability and target tissue exposure many-fold. The success of this approach has resulted in numerous clinical programs over the past 5 years. AREAS COVERED We review the literature on oligonucleotide conjugate strategies which have proven effective preclinically and clinically. We summarize the chemical modifications which allow parenteral administration as well as evaluate the efficacy of a multitude of conjugate approaches including lipids, peptides, carbohydrates, and antibodies. EXPERT OPINION The success of future conjugate strategies will likely rely on the effective combination of characteristics from earlier technologies. High-affinity ligand-receptor interactions can be critical to achieving meaningful accumulation in target tissues, but pharmacokinetic modulators which increase the circulating half-life may also be necessary. Synthesis of these approaches has the potential to bring the next breakthrough in oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kevin Craig
- a Department of Pharmaceutical Sciences , School of Pharmacy, Northeastern University , Boston , MA , USA.,b Department of Preclinical Development , Dicerna Pharmaceuticals, Inc , Cambridge , MA , USA
| | - Marc Abrams
- b Department of Preclinical Development , Dicerna Pharmaceuticals, Inc , Cambridge , MA , USA
| | - Mansoor Amiji
- a Department of Pharmaceutical Sciences , School of Pharmacy, Northeastern University , Boston , MA , USA
| |
Collapse
|