1
|
Martinelli S, Fortuna L, Coratti F, Passagnoli F, Amedei A, Cianchi F. Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer. Cancers (Basel) 2024; 16:4141. [PMID: 39766041 PMCID: PMC11675003 DOI: 10.3390/cancers16244141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery, particularly radical gastrectomy, remains the primary treatment; however, there are currently no specific approaches to better distinguish malignant from healthy tissue or to differentiate between metastatic and non-metastatic lymph nodes. As a result, surgeons have to remove all lymph nodes indiscriminately, increasing intraoperative risks for patients and prolonging hospital stay. Near-infrared fluorescence imaging with indocyanine green (ICG) can provide real-time visualization of the surgical field using both conventional laparoscopy and robotic mini-invasive precision surgery platforms. However, its application shows some limits, as ICG is a non-targeted contrast agent. Several studies are now investigating the potential efficacy of fluorescent targeted agents that could selectively bind to the tumor tissue, offering a valuable tool for metastatic mapping during robotic gastrectomy. This review aims to summarize the key fluorescent agents that have been developed to recognize GC markers, as well as those targeting the tumor microenvironment (TME) and metabolic features. These agents hold great potential as valuable tools for enhancing precision surgery in robotic gastrectomy procedures improving the clinical recovery of GC patients.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Laura Fortuna
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Federico Passagnoli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| |
Collapse
|
2
|
Zheng S, Guo Y, Han Q, Peng X, Sheng R, Liu S, Li Z. STING agonists and PI3Kγ inhibitor co-loaded ferric ion-punicalagin networks for comprehensive cancer therapy. Int J Biol Macromol 2024; 282:136776. [PMID: 39454928 DOI: 10.1016/j.ijbiomac.2024.136776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Nanoparticles-based drug delivery system has been a promising approach for the treatment of colorectal cancer (CRC), which can be combined with chemotherapy, targeted therapy and immunotherapy to improve the treatment of CRC. 2'3' cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is an agonist of the STING signaling pathway activating antitumor immunity. IPI-549 is a small-molecule inhibitor for phosphatidylinositol 3-kinase γ (PI3Kγ), which can induce M1 macrophages polarization to provide pro-inflammatory microenvironment to suppress tumors. Here, we developed a ferric ion-punicalagin network (Fe-PU), which can be not only used as an inducer of ferroptosis, but also serve as a carrier to load cGAMP and IPI-549 to obtain nanohybrid (Fe-PU/CD-IPI). In order to improve the delivery effect and targeted ability to CRC, a cyclic arginine-glycine-aspartic acid peptide linked-bovine serum albumin were utilized to modify Fe-PU/CD-IPI to prepare nanohybrid Fe-PU/CD-IPI@cBSA. The therapeutic effect of various nanohybrids were validated in the mice with spontaneous tumor in the colorectal area and tumor-bearing mice, which lead to the increase of ferroptosis, the activation of STING signaling pathway, and the repolarization of macrophages. Collectively, the cGAMP and IPI-549 co-loaded nanohybrids effectively reshaped the tumor immune microenvironment, and exhibited prominent treatment effect of anti-colorectal cancer in vitro, patient-derived organoids, and in vivo.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yitong Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Zhuang Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
4
|
Modirrousta Y, Akbari S. Amine-terminated dendrimers: A novel method for diagnose, control and treatment of cancer. CANCER EPIGENETICS AND NANOMEDICINE 2024:333-379. [DOI: 10.1016/b978-0-443-13209-4.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
6
|
Li Y, Zou H, Zheng Z, Liu Z, Hu H, Wu W, Wang T. Advances in the Study of Bioactive Nanoparticles for the Treatment of HCC and Its Postoperative Residual Cancer. Int J Nanomedicine 2023; 18:2721-2735. [PMID: 37250475 PMCID: PMC10216871 DOI: 10.2147/ijn.s399146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Primary hepatocellular carcinoma (HCC, hepatocellular carcinoma) is the third leading cause of tumor death in the world and the second leading cause in China. The high recurrence rate at 5 years after surgery also seriously affects the long-term survival of HCC patients. For reasons such as poor liver function, large tumors, or vascular invasion, only relatively limited palliative treatment is available. Therefore, effective diagnostic and therapeutic strategies are needed to improve the complex microenvironment and block the mechanism of tumor development in order to treat the tumor and prevent recurrence. A variety of bioactive nanoparticles have been shown to have therapeutic effects on hepatocellular carcinoma and have the advantages of improving drug solubility, reducing drug side effects, preventing degradation in the blood, increasing drug exposure time, and reducing drug resistance. The development of bioactive nanoparticles is expected to complete the current clinical therapeutic approach. In this review, we discuss the therapeutic advances of different nanoparticles for hepatocellular carcinoma and discuss their potential for postoperative applications with respect to possible mechanisms of hepatocellular carcinoma recurrence. We further discuss the limitations regarding the application of NPs and the safety of NPs.
Collapse
Affiliation(s)
- Yanxu Li
- Medical College of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Hao Zou
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zekun Zheng
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhuoheng Liu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huiyuan Hu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Wei Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
7
|
Yu L, Xie L, Chen Z, Guo H, Zhang Y, Wang H, Wang R, Zhou X, Lei Z, Lu D. Target Embolization Combined with Multimodal Thermal Ablation for Solid Tumors by Smart Poly(amino acid)s Nanocomposites. ACS Biomater Sci Eng 2023; 9:2683-2693. [PMID: 37083337 DOI: 10.1021/acsbiomaterials.2c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Noninterventional embolization does not require the use of a catheter, and the treatment of solid tumors in combination with thermal ablation can avoid some of the risks of the surgical procedure. Therefore, we developed an efficient tumor microenvironment-gelled nanocomposites with poly [(l-glutamic acid-ran-l-tyrosine)-b-l-serine-b-l-cysteine] (PGTSCs) coated-nanoparticles (Fe3O4&Au@PGTSCs), from which the prepared PGTSCs were given possession of pH response to an acidic tumor microenvironment. Fe3O4&Au@PGTSC in noninterventional embolization treatment not only achieved the smart targeted medicine delivery but also meshed with noninvasive multimodal thermal ablation therapy and multimodal imaging of solid tumors via intravenous injection. It was worth noting that the results of animal experiments in vivo demonstrated that Fe3O4&Au@PGTSCs have specific tumor accumulation and embolization and thermal ablation effects; at 10 days postinjection, only scars were found at the tumor site. After 20 days, the tumors of model mice completely disappeared. This device is easier to treat solid tumors based on the slightly acidic tumor environment.
Collapse
Affiliation(s)
- Lili Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Liyuan Xie
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhengpeng Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hongyun Guo
- Gansu Provincial Academic for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou 730070, P. R. China
| | - Yongdong Zhang
- Gansu Provincial Academic for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou 730070, P. R. China
| | - Haijun Wang
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Rong Wang
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Xing Zhou
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
8
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Qu B, Han Y, Liang T, Zhang C, Hou G, Gao F. Evaluation of a novel EphA2 targeting peptide for triple negative breast cancer based on radionuclide molecular imaging. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Lv Z, Qiu L, Wang W, Liu Z, Liu Q, Wang L, Song L. RGD-Labeled Hemocytes With High Migration Activity Display a Potential Immunomodulatory Role in the Pacific Oyster Crassostrea gigas. Front Immunol 2022; 13:914899. [PMID: 35865522 PMCID: PMC9294365 DOI: 10.3389/fimmu.2022.914899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunocyte migration to infection sites is important for host cellular defense, but the main types of migrating hemocytes and their mechanisms against pathogen invasions are unclear in invertebrates. In the present study, a population of hemocytes in the Pacific oyster Crassostrea gigas labeled with a fluorescein isothiocyanate (FITC)-conjugated Arg-Gly-Asp (RGD)-containing peptide was sorted. RGD+ hemocytes were characterized by a smaller cell size and cytoplasmic-nucleo ratio, fewer cytoplasmic granules, and higher levels of myeloperoxidase, reactive oxygen species, and intracellular free calcium concentration. RGD+ hemocytes exhibited a high level of migration activity, which was further induced after V. splendidus infection. Transcriptome analysis revealed that RGD+ hemocytes highly expressed a series of migration-related genes, which together with migration-promoting genes were significantly upregulated after V. splendidus infection. The neuroendocrine system was also proven to regulate the migration activity of RGD+ hemocytes, especially with the excitatory neuroendocrine factor dopamine, which promoted migration activity as confirmed by receptor blocking assays. Meanwhile, RGD+ hemocytes could highly express immunomodulatory factor interleukin (IL)-17s and their receptor genes, which was positively related to the production of antimicrobial peptides in whole hemocytes after V. splendidus infection. Collectively, this study identified a specific hemocyte population, i.e., RGD+ hemocytes, that shows high migration activity in response to pathogen infection and exerts a potential immunomodulatory role by highly expressing IL-17s that might enhance the hemocytes’ antimicrobial peptide production in oysters.
Collapse
Affiliation(s)
- Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Limei Qiu, ; Linsheng Song,
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- *Correspondence: Limei Qiu, ; Linsheng Song,
| |
Collapse
|
11
|
Ahmadi A, Sokunbi M, Patel T, Chang MW, Ahmad Z, Singh N. Influence of Critical Parameters on Cytotoxicity Induced by Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2016. [PMID: 35745355 PMCID: PMC9228019 DOI: 10.3390/nano12122016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal-Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results.
Collapse
Affiliation(s)
- Amirsadra Ahmadi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Moses Sokunbi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Trisha Patel
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, Jordanstown Campus, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Zeeshan Ahmad
- Leicester School of Pharmaceutical Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Neenu Singh
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| |
Collapse
|
12
|
Lu D, Yu L, Chen Z, Chen M, Lei Z, Guo H, Wang X, Zhang Y, Xu T, Wang H, Zhou X, Ju S, Teng G. A Simple and Efficient Embolization-Combined Therapy for Solid Tumors by Smart Poly(amino acid)s Nanocomposites. ACS APPLIED BIO MATERIALS 2022; 5:661-674. [PMID: 35135191 DOI: 10.1021/acsabm.1c01106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interventional embolization and minimally invasive thermal ablation are common clinical methods for treatment of unresectable solid tumors, but they both have many insurmountable disadvantages. Inspired by pH-responsive drug delivery systems, we report the tumor microenvironment-gelled nanocomposites with poly[(l-glutamic acid-ran-l-tyrosine)-b-l-threonine-b-l-cysteine]s (PGTTCs) coating nanoparticles (NPs, Au or Fe3O4) for noninterventional targeted embolization combined with noninvasive thermal ablation therapy of solid tumors by intravenous injection without catheter use. The results of the animal trial in vivo with tumor-bearing mice and rabbits showed superior targeted embolization and therapy and fluorescence/single-photon emission computed tomography/magnetic resonance multimodal imaging effects. Tumors treated with NPs@PGTTCs were shrunken and necrotized within 30 days, the long-term survival rate was more than 80%, and the same effects can be achieved within 15 days when combined with thermal ablation. The method is so simple and efficient for many hard-to-treat tumors within an acidic microenvironment, which is not only a great improvement and innovation in tumor theranostics but also an important development in nanomedicine.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lili Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhengpeng Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Mingshu Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongyun Guo
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Xingdong Wang
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Yongdong Zhang
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Tingting Xu
- Southeast University Zhongda Hospital, Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, School of Medicine, Southeast University, Nanjing 210009, China
| | - Haijun Wang
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Xing Zhou
- Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Shenghong Ju
- Southeast University Zhongda Hospital, Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, School of Medicine, Southeast University, Nanjing 210009, China
| | - Gaojun Teng
- Southeast University Zhongda Hospital, Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
13
|
Bacon K, Menegatti S, Rao BM. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries. Methods Mol Biol 2022; 2491:387-415. [PMID: 35482201 DOI: 10.1007/978-1-0716-2285-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have great potential as therapeutic and diagnostic reagents owing to their favorable properties, including high affinity and selectivity. Cyclic peptide binders have generally been isolated from phage display combinatorial libraries utilizing panning based selections. As an alternative, we have developed a yeast surface display platform to identify and characterize cyclic peptide binders from genetically encoded combinatorial libraries. Through a combination of magnetic selection and fluorescence-activated cell sorting (FACS), high-affinity cyclic peptide binders can be efficiently isolated from yeast display libraries. In this platform, linear peptide precursors are expressed as yeast surface fusions. To achieve cyclization of the linear precursors, the cells are incubated with disuccinimidyl glutarate, which crosslinks amine groups within the displayed linear peptide sequence. Here, we detail protocols for cyclizing linear peptides expressed as yeast surface fusions. We also discuss how to synthesize a yeast display library of linear peptide precursors. Subsequently, we provide suggestions on how to utilize magnetic selections and FACS to isolate cyclic peptide binders for target proteins of interest from a peptide combinatorial library. Lastly, we detail how yeast surface displayed cyclic peptides can be used to obtain efficient estimates of binding affinity, eliminating the need for chemically synthesized peptides when performing mutant characterization.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Li SS, Hua XY, Zheng MX, Wu JJ, Ma ZZ, Xing XX, Ma J, Shan CL, Xu JG. Electroacupuncture treatment improves motor function and neurological outcomes after cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 17:1545-1555. [PMID: 34916440 PMCID: PMC8771092 DOI: 10.4103/1673-5374.330617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Electroacupuncture (EA) has been widely used for functional restoration after stroke. However, its role in post-stroke rehabilitation and the associated regulatory mechanisms remain poorly understood. In this study, we applied EA to the Zusanli (ST36) and Quchi (LI11) acupoints in rats with middle cerebral artery occlusion and reperfusion. We found that EA effectively increased the expression of brain-derived neurotrophic factor and its receptor tyrosine kinase B, synapsin-1, postsynaptic dense protein 95, and microtubule-associated protein 2 in the ischemic penumbra of rats with middle cerebral artery occlusion and reperfusion. Moreover, EA greatly reduced the expression of myelin-related inhibitors Nogo-A and NgR in the ischemic penumbra. Tyrosine kinase B inhibitor ANA-12 weakened the therapeutic effects of EA. These findings suggest that EA can improve neurological function after middle cerebral artery occlusion and reperfusion, possibly through regulating the activity of the brain-derived neurotrophic factor/tyrosine kinase B signal pathway. All procedures and experiments were approved by the Animal Research Committee of Shanghai University of Traditional Chinese Medicine, China (approval No. PZSHUTCM200110002) on January 10, 2020.
Collapse
Affiliation(s)
- Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
15
|
Gamage R, Li DH, Schreiber CL, Smith BD. Comparison of cRGDfK Peptide Probes with Appended Shielded Heptamethine Cyanine Dye ( s775z) for Near Infrared Fluorescence Imaging of Cancer. ACS OMEGA 2021; 6:30130-30139. [PMID: 34778684 PMCID: PMC8582267 DOI: 10.1021/acsomega.1c04991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 05/14/2023]
Abstract
Previous work has shown that the sterically shielded near-infrared (NIR) fluorescent heptamethine cyanine dye, s775z, with a reactive carboxyl group produces fluorescent bioconjugates with an unsurpassed combination of high photostability and fluorescence brightness. This present contribution reports two new reactive homologues of s775z with either a maleimide group for reaction with a thiol or a strained alkyne group for reaction with an azide. Three cancer-targeting NIR fluorescent probes were synthesized, each with an appended cRGDfK peptide to provide selective affinity for integrin receptors that are overexpressed on the surface of many cancer cells including the A549 lung adenocarcinoma cells used in this study. A set of cancer cell microscopy and mouse tumor imaging experiments showed that all three probes were very effective at targeting cancer cells and tumors; however, the change in the linker structure produced a statistically significant difference in some aspects of the mouse biodistribution. The mouse studies included a mock surgical procedure that excised the subcutaneous tumors. A paired-agent fluorescence imaging experiment co-injected a binary mixture of targeted probe with 850 nm emission, an untargeted probe with 710 nm emission and determined the targeted probe's binding potential in the tumor tissue. A comparison of pixelated maps of binding potential for each excised tumor indicated a tumor-to-tumor variation of integrin expression levels, and a heterogeneous spatial distribution of integrin receptors within each tumor.
Collapse
Affiliation(s)
- Rananjaya
S. Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
16
|
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340:221-242. [PMID: 34757195 DOI: 10.1016/j.jconrel.2021.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
A bird's eye view is now demanded in the area of cancer research to suppress the suffering of cancer patient and mediate the lack of treatment related to chemotherapy. Chemotherapy is always preferred over surgery or radiation therapy, but they never met the patient's demand of safe medication. Targeted therapy has now been in research that could hinder the unnecessary effect of drug on normal cells but could affect the tumor cells in much efficient manner. Angiogenesis is process involved in development of new blood vessel that nourishes tumor growth. Integrin receptors are over expressed on cancer cells that play vital role in angiogenesis for growth and metastasis of tumor cell. A delivery of RGD based peptide to integrin targeted site could help in its successful binding and liberation of drug in tumor vasculature. Dendrimers, in addition to its excellent pharmacokinetic properties also helps to carry targeting ligand to site of tumor by successfully conjugating with them. The aim of this review is to bring light upon the role of integrin in cancer progression, interaction of RGD to integrin receptor and more importantly the RGD-dendrimer based targeted therapy for the treatment of various cancers.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Rizvi SFA, Ali A, Ahmad M, Mu S, Zhang H. Multifunctional self-assembled peptide nanoparticles for multimodal imaging-guided enhanced theranostic applications against glioblastoma multiforme. NANOSCALE ADVANCES 2021; 3:5959-5967. [PMID: 36132681 PMCID: PMC9419261 DOI: 10.1039/d1na00597a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 05/15/2023]
Abstract
The synthesis of self-assembled peptide nanoparticles using a facile one-pot synthesis approach is gaining increasing attention, allowing therapy in combination with diagnosis. Their drawback is limited diagnostic potential, which can be improved after necessary modifications and efficacious functionalization. Herein, a cyclic heptapeptide having the Arg-Gly-Asp-Lys-Leu-Ala-Lys sequence was modified by conjugation of the ε-amino group of the terminal lysine residue with diethylenetriamine pentaacetic acid (DTPA) as a bifunctional chelating agent (BFC) for radiolabeling with a γ-emitting radionuclide (99mTc, half-life 6.01 h; energy 140 keV). Further, the free amino group of the middle lysine residue was successfully conjugated with near-infrared fluorescence (NIRF) dye Cyanine5.5 N-succinimidyl ester (Ex/Em = 670/701 nm) by a co-assembly method to form newly designed novel NIRF dye conjugated self-assembled peptide-DTPA (Cy5.5@SAPD) nanoparticles. The fluorescent nanoparticle formation was confirmed by using a fluorescence spectrophotometer (Ex/Em = 650/701 nm), and the transmission electron microscope (TEM) images showed a size of ∼ 40 nm with a lattice fringe distance of 0.294 nm. Cytotoxicity and confocal laser scanning microscopy (CLSM) studies showed that these nanoparticles possess a high affinity for the αvβ3-integrin receptor overexpressed on brain tumor glioblastoma with an EC50 = 20 μM. Moreover, these nanoparticles were observed to have potential to internalize into U87MG cells more prominently than HEK-293 cancer cells and induce apoptosis. The apoptosis assay showed 79.5% apoptotic cells after 24 h treatment of Cy5.5@SAPD nanoparticles. Additionally, these nanoparticles were also radiolabeled with 99mTc for the single photon emission computed tomography (SPECT) imaging study in tumor-bearing female Balb/c mice. The excellent imaging feature of Cy5.5@SAPD-99mTc nanoparticles as a multimodal (SPECT/NIRF) diagnostic probe, as well as noteworthy therapeutic potential was observed. The results suggested that our newly designed novel dual-targeting dual-imaging nanoparticles may serve as an admirable theranostic probe to treat brain tumor glioblastoma multiforme.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Oncology (INMOL) Lahore-54000 Punjab Pakistan
| | - Azam Ali
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
| | - Munir Ahmad
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Oncology (INMOL) Lahore-54000 Punjab Pakistan
| | - Shuai Mu
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
| |
Collapse
|
18
|
Synthesis, Characterization and In Vitro Evaluation of Hybrid Monomeric Peptides Suited for Multimodal Imaging by PET/OI: Extending the Concept of Charge-Cell Binding Correlation. Pharmaceuticals (Basel) 2021; 14:ph14100989. [PMID: 34681213 PMCID: PMC8541144 DOI: 10.3390/ph14100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
In the context of hybrid multimodal imaging agents for gastrin releasing peptide receptor (GRPR) targeting, a correlation between the net charge and the receptor affinity of the agents was recently found. In particular, a decrease in in vitro GRPR binding affinity was observed in case of an increasing number of negative charges for dually labeled GRPR-specific peptide dimers suited for positron emission tomography and optical imaging (PET/OI). This adverse influence of anionic charges could be in part compensated by a higher valency of peptide multimerization. However, it remains unknown whether this adverse effect of anionic charges is limited to peptide multimers or if it is also found or even more pronounced when GRPR-specific peptide monomers are dually labeled with fluorescent dye and chelating agent/radionuclide. Moreover, it would be important to know if this effect is limited to GRPR-specific agents only or if these observations also apply to other dually labeled peptides binding to other receptor types. To address these questions, we synthesized hybrid labels, comprising a chelator, different fluorescent dyes carrying different net charges and a functional group for bioconjugation and introduced them into different peptides, specifically targeting the GRPR, the melanocortin-1 receptor (MC1R) and integrin αvβ3. The synthesized conjugates were evaluated with regard to their chemical, radiochemical, photophysical and receptor affinity properties. It was found that neither the 68Ga-radiolabeling nor the fluorescence characteristics of the dyes were altered by the conjugation of the MIUs to the peptides. Further, it was confirmed that the net number of anionic charges has a negative effect on the GRPR-binding affinity of the GRPR-targeting MIU-peptide monomer conjugates and that this same effect was also found to the same extent for the other receptor systems studied.
Collapse
|
19
|
Liu Z, Xie F, Xie J, Chen J, Li Y, Lin Q, Luo F, Yan J. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamic-photothermal therapy. Drug Deliv 2021; 28:1769-1784. [PMID: 34470548 PMCID: PMC8425697 DOI: 10.1080/10717544.2021.1960923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traditional combined photodynamic and photothermal therapy (PDT/PTT) was limited in clinical treatment of cancer due to the exceptionally low drug delivery efficiency to tumor sites and the activation by laser excitation with different wavelengths. We have accidentally discovered that our synthesized chlorin e6-C-15-ethyl ester (HB, a new type of photosensitizer) be activated by a laser with an excitation wavelength of 660 nm. Herein, we utilized Au nanorods (AuNRs) as 660 nm-activated PTT carriers to be successively surface-functionalized with HB and tumor-targeting peptide cyclic RGD (cRGD) to develop HB-AuNRs@cRGD for single NIR laser-induced targeted PDT/PTT. The HB-AuNRs@cRGD could be preferentially accumulated within tumor sites and rapidly internalized by cancer cells. Thereby, the HB-AuNRs@cRGD could exhibit amplified therapeutic effects by producing both significant reactive oxygen species (ROS) and hyperthermia simultaneously under the guidance of fluorescence imaging. The tumor inhibition rate on ECA109 esophageal cancer model was approximately 77.04%, and the negligible systematic toxicity was observed. This study proposed that HB-AuNRs@cRGD might be a promising strategy for single NIR laser-induced and imaging-guided targeted bimodal phototherapy.
Collapse
Affiliation(s)
- Zongjunlin Liu
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| | - Fang Xie
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jun Xie
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| | - Jianhao Chen
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yang Li
- Xiamen Institute of Rare Earth Materials, Institute of Haixi, Chinese Academy of Sciences, Xiamen, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fanghong Luo
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| | - Jianghua Yan
- School of Medicine, Anti-Cancer Center, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
21
|
Abstract
Cucurbitacins (CUCUs) are triterpenoids known to display potent cytotoxic effects; however, their clinical application is limited due to poor pharmacokinetics and systemic toxicity. This work focuses on the development of c(RGDyK)-CUCU conjugates for the selective delivery of CUCUs to integrin-overexpressing cancer cells. The activity of the conjugates against various cancer cells was studied. They exhibited a mild cytostatic effect to six cancer cell lines and a cytotoxic effect against integrin-overexpressing MCF-7 and A549 cells. Their chemical and metabolic stability was extensively studied using LC-MS analysis. The conjugates maintained high affinity for αvβ3 integrin receptors. c(RGDyK) conjugation via a PEG linker was beneficial for CUCU-D and the resulting conjugate was approximately three-times more active than the free CUCU-D in MCF7 cells.
Collapse
|
22
|
Kwon ATJ, Mohri K, Takizawa S, Arakawa T, Takahashi M, Kaczkowski B, Furuno M, Suzuki H, Tagami S, Mukai H, Arner E. Development of p53 knockout U87MG cell line for unbiased drug delivery testing system using CRISPR-Cas9 and transcriptomic analysis. J Biotechnol 2021; 332:72-82. [PMID: 33836165 DOI: 10.1016/j.jbiotec.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Antibody-drug conjugates offers many advantages as a drug delivery platform that allows for highly specific targeting of cell types and genes. Ideally, testing the efficacy of these systems requires two cell types to be different only in the gene targeted by the drug, with the rest of the cellular machinery unchanged, in order to minimize other potential differences from obscuring the effects of the drug. In this study, we created multiple variants of U87MG cells with targeted mutation in the TP53 gene using the CRISPR-Cas9 system, and determined that their major transcriptional differences stem from the loss of p53 function. Using the transcriptome data, we predicted which mutant clones would have less divergent phenotypes from the wild type and thereby serve as the best candidates to be used as drug delivery testing platforms. Further in vitro and in vivo assays of cell morphology, proliferation rate and target antigen-mediated uptake supported our predictions. Based on the combined analysis results, we successfully selected the best qualifying mutant clone. This study serves as proof-of-principle of the approach and paves the way for extending to additional cell types and target genes.
Collapse
Affiliation(s)
| | - Kohta Mohri
- RIKEN Center for Biosystems Dynamic Research, Japan
| | | | | | | | | | | | | | | | | | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Japan.
| |
Collapse
|
23
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
24
|
Bacon K, Blain A, Burroughs M, McArthur N, Rao BM, Menegatti S. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display. ACS COMBINATORIAL SCIENCE 2020; 22:519-532. [PMID: 32786323 DOI: 10.1021/acscombsci.0c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have gained increasing attention for use in therapeutic and biotechnology applications. We describe the efficient isolation and characterization of cyclic peptide binders from genetically encoded combinatorial libraries using yeast surface display. Here, peptide cyclization is achieved by disuccinimidyl glutarate-mediated cross-linking of amine groups within a linear peptide sequence that is expressed as a yeast cell surface fusion. Using this approach, we first screened a library of cyclic heptapeptides using magnetic selection, followed by fluorescence activated cell sorting (FACS) to isolate binders for a model target (lysozyme) with low micromolar binding affinity (KD ∼ 1.2-3.7 μM). The isolated peptides bind lysozyme selectively and only when cyclized. Importantly, we showed that yeast surface displayed cyclic peptides can be used to efficiently obtain quantitative estimates of binding affinity, circumventing the need for chemical synthesis of the selected peptides. Subsequently, to demonstrate broader applicability of our approach, we isolated cyclic heptapeptides that bind human interleukin-17 (IL-17) using yeast-displayed IL-17 as a target for magnetic selection, followed by FACS using recombinant IL-17. Molecular docking simulations and follow-up experimental analyses identified a candidate cyclic peptide that likely binds IL-17 in its receptor binding region with moderate apparent affinity (KD ∼ 300 nM). Taken together, our results show that yeast surface display can be used to efficiently isolate and characterize cyclic peptides generated by chemical modification from combinatorial libraries.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
25
|
Ghabraie E, Kemker I, Tonali N, Ismail M, Dodero VI, Sewald N. Phenothiazine-Biaryl-Containing Fluorescent RGD Peptides. Chemistry 2020; 26:12036-12042. [PMID: 32297686 PMCID: PMC7540173 DOI: 10.1002/chem.202001312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/22/2022]
Abstract
Cyclic RGD peptides are well-known ligands of integrins. The integrins αV β3 and α5 β1 are involved in angiogenesis, and integrin αV β3 is abundantly present on cancer cells, thus representing a therapeutic target. Hence, synthetic and biophysical studies continuously are being directed towards the understanding of ligand-integrin interaction. In this context, the development of versatile synthetic strategies to obtain fluorescent building blocks that can add molecular diversity and modular spectral characteristics while not compromising binding affinity or selectivity is a relevant task. An on-resin intramolecular Suzuki-Miyaura cross-coupling (SMC) between l- or d-7-bromotryptophan (7BrTrp) and a phenothiazine (Ptz) boronic acid affords fluorescent cyclic RGD pseudopeptides, c(RGD(W/w)Ptz). Ring closure by SMC establishes a phenothiazine-indole moiety with axial chirality. An array of eight novel compounds has been synthesized, among them one fluorescent compound with good affinity to integrin αV β3 . The fluorescence properties of the analogues can be efficiently tuned depending on the substituents in Ptz moiety even for fluorescence emission in the visible (red) spectral range.
Collapse
Affiliation(s)
- Elmira Ghabraie
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Isabell Kemker
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Nicolo Tonali
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Mohamed Ismail
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Veronica I. Dodero
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| | - Norbert Sewald
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityPO Box 10013133501BielefeldGermany
| |
Collapse
|
26
|
Majewski MW, Gandhi DM, Holyst T, Wang Z, Hernandez I, Rosas R, Zhu J, Weiler H, Dockendorff C. Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin αVβ3 and PAR2. RSC Med Chem 2020; 11:940-949. [PMID: 33479689 PMCID: PMC7496306 DOI: 10.1039/d0md00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVβ3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVβ3 and PAR2 has not yet been demonstrated.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Disha M Gandhi
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Trudy Holyst
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Zhengli Wang
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Irene Hernandez
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Ricardo Rosas
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Jieqing Zhu
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Hartmut Weiler
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Physiology , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| |
Collapse
|
27
|
Mendive‐Tapia L, Wang J, Vendrell M. Fluorescent cyclic peptides for cell imaging. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jinling Wang
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Marc Vendrell
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| |
Collapse
|
28
|
Rizvi SFA, Mu S, Wang Y, Li S, Zhang H. Fluorescent RGD-based pro-apoptotic peptide conjugates as mitochondria-targeting probes for enhanced anticancer activities. Biomed Pharmacother 2020; 127:110179. [PMID: 32387862 DOI: 10.1016/j.biopha.2020.110179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/10/2023] Open
Abstract
We have designed 2-domain anticancer peptides with RGD-based KLAK bi-functional short motifs (linear and cyclic analogues). RGD tripeptide acts as tumor blood vessel 'homing' motif while KLAK tetrapeptide internalized in mitochondria and causes cell apoptosis. All three peptides (RGDKLAK; HM, cyclic-RGDKLAK; HMC-1, and RGD-cyclic-KLAK; HMC-2) were conjugated with fluorescein isothiocyanate isomer-I (5-FITC; F) for in-vivo and in-vitro optical imaging studies. These fluorescent-peptide (FL-peptide) analogues were analyzed to possess αvβ3-integrin targeting affinity, high uptake in in-vitro cell binding assays followed by in-vivo tumor xenograft mice studies. Pharmacological profile reveals that F-HMC-1 analogue exhibited selectively and specifically higher affinity for αvβ3-integrin than other analogues in U87MG cells in comparison with HeLa cells. The subcutaneous U87MG tumor xenograft mice models clearly visualized the uptake of F-HMC-1 in tumor tissue in contrast with normal tissues with tumor-to-normal tissue ratio (T/NT = 15.9 ± 1.1) at 2 h post-injection. These results suggested that F-HMC-1 peptide has potential diagnostic applications for targeting αvβ3-integrin assessed by optical imaging study in U87MG tumor xenograft mice models.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Yaya Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
29
|
Fang X, Zhu D, Chen Y, Song L, Jiang R, Shan M, Qiu Z, Luo H. LC-MS/MS analysis of partial structure of Panax ginseng protein and its distribution in vivo. Int J Biol Macromol 2020; 150:695-704. [PMID: 32061699 DOI: 10.1016/j.ijbiomac.2020.02.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/12/2023]
Abstract
Protein from Panax ginseng can improve learning, memory, and analgesia. Here, we investigated a fluorescence labeling method that can be used to determine the in vivo distribution of P. ginseng protein (PGP). High-performance liquid chromatography (HPLC) was used to define the amino acid composition and molecular weight of PGP; LC-MS/MS was used to identify the PGP structure, which was fluorescently-labeled using a fluorescein isothiocyanate (FITC) probe. The connection form of the PGP fluorescent marker (PGP-FITC) was identified by ultraviolet and infrared spectrophotometry. The in vivo distribution of PGP was observed by fluorescence imaging, and tissue content was determined. Results showed that PGP was enriched in the brain and that vascular epithelial cells showed specific uptake. We provide an experimental method to label and identify the in vivo distribution of PGP, which forms the basis for future studies to determine whether PGP can penetrate the blood-brain barrier (BBB) and elucidate the transport mechanism.
Collapse
Affiliation(s)
- Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Jilin Jice Inspection Technology Co., Ltd., Changchun 130117, China
| | - Yinghong Chen
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun 130012, China
| | - Lianlian Song
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun 130012, China
| | - Ruizhi Jiang
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun 130012, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
30
|
Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020; 8:218. [PMID: 32296681 PMCID: PMC7136562 DOI: 10.3389/fchem.2020.00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Nelson Casanova
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
31
|
Schreiber CL, Zhai C, Dempsey JM, McGarraugh HH, Matthews BP, Christmann CR, Smith B. Paired Agent Fluorescence Imaging of Cancer in a Living Mouse Using Preassembled Squaraine Molecular Probes with Emission Wavelengths of 690 and 830 nm. Bioconjug Chem 2020; 31:214-223. [PMID: 31756298 PMCID: PMC7768864 DOI: 10.1021/acs.bioconjchem.9b00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New methods are described for the construction of targeted fluorescence probes for imaging cancer and the assessment of tumor targeting performance in a living mouse model. A novel noncovalent assembly process was used to fabricate a set of structurally related targeted fluorescent probes with modular differences in three critical assembly components: the emission wavelength of the squaraine fluorochrome, the number of cRGDfK peptide units that target the cancer cells, and the length of the polyethylene glycol chains as pharmacokinetic controllers. Selective targeting of cancer cells was proven by a series of cell microscopy experiments followed by in vivo imaging of subcutaneous tumors in living mice. The mouse imaging studies included a mock surgery that completely removed a fluorescently labeled tumor. Enhanced tumor accumulation due to probe targeting was first evaluated by conducting Single Agent Imaging (SAI) experiments that compared tumor imaging performance of a targeted probe and untargeted probe in separate mouse cohorts. Although there was imaging evidence for enhanced tumor accumulation of the targeted probe, there was moderate scatter in the data due to tumor-to-tumor variability of the vasculature structure and interstitial pressure. A subsequent Paired Agent Imaging (PAI) study coinjected a binary mixture of targeted probe (with emission at 690 nm) and untargeted probe (with emission at 830 nm) into the same tumor-burdened animal. The conclusion of the PAI experiment also indicated enhanced tumor accumulation of the targeted probe, but the statistical significance was much higher, even though the experiment required a much smaller cohort of mice. The imaging data from the PAI experiment was analyzed to determine the targeted probe's Binding Potential (BP) for available integrin receptors within the tumor tissue. In addition, pixelated maps of BP within each tumor indicated a heterogeneous spatial distribution of BP values. The results of this study show that the combination of fluorescent probe preassembly and PAI is a promising new way to rapidly develop targeted fluorescent probes for tumors with high BP and eventual use in clinical applications such as targeted therapy, image guided surgery, and personalized medicine.
Collapse
Affiliation(s)
- Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Janel M. Dempsey
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Braden P. Matthews
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Caroline R. Christmann
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
32
|
Demin AM, Vakhrushev AV, Tumashov AA, Krasnov VP. Synthesis of glutaryl-containing derivatives of GRGD and KRGD peptides. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2705-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Pan X, Xu J, Jia X. Research Progress Evaluating the Function and Mechanism of Anti-Tumor Peptides. Cancer Manag Res 2020; 12:397-409. [PMID: 32021452 PMCID: PMC6970611 DOI: 10.2147/cmar.s232708] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors cause a high mortality rate worldwide, and they severely threaten human health and negatively affect the economy. Despite the advancements in tumor-related molecular genetics and effective new processes in anti-tumor drug development, the anti-tumor drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for curing cancer. The peptide has become a suitable agent due to its exact molecular weight between whole protein and small molecule, and it has high targeting ability, high penetrability, low immunogenicity, and is convenient to synthesize and easy to modify. Because of these advantages, peptides have excellent prospect for application as anti-tumor agents. This article reviews the recent research progress evaluating anti-tumor peptides and their anti-tumor mechanisms, and may act as a reference for the future development and clinical application of anti-tumor peptides. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/snZy3e6sVio
Collapse
Affiliation(s)
- Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
34
|
Panait ME, Chilug L, Negoita V, Busca A, Manda G, Niculae D, Dumitru M, Gruia MI. Biological Effects Induced by 68Ga-Conjugated Peptides in Human and Rodent Tumor Cell Lines. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
B.S U, Preethi G, Sreeranganathan M, Syama H, Archana M, T.T S. Fabrication of fluorescein labeled galactoxyloglucan polysaccharide for tumor and macrophage tagging. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wada SI, Taniguchi K, Hamazaki H, Yamada A, Hayashi J, Uchiyama K, Urata H. Influence of lysine residue in amphipathic helical peptides on targeted delivery of RNA into cancer cells. Bioorg Med Chem Lett 2019; 29:1934-1937. [DOI: 10.1016/j.bmcl.2019.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 11/24/2022]
|
37
|
Zhao F, Zhang C, Zhao C, Gao W, Fan X, Wu G. A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly. Colloids Surf B Biointerfaces 2019; 179:352-362. [PMID: 30991215 DOI: 10.1016/j.colsurfb.2019.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/30/2022]
|
38
|
Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J Control Release 2019; 305:1-17. [DOI: 10.1016/j.jconrel.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
|
39
|
Jain R, Roy S. Designing a bioactive scaffold from coassembled collagen–laminin short peptide hydrogels for controlling cell behaviour. RSC Adv 2019; 9:38745-38759. [PMID: 35540202 PMCID: PMC9075944 DOI: 10.1039/c9ra07454f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023] Open
Abstract
Exploring the potential of bifunctional collagen–laminin mimetic peptide based co-assembling gels for cell culture applications.
Collapse
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology
- Mohali
- India
| | - Sangita Roy
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|
40
|
Asampille G, Verma BK, Swain M, Shettar A, Rosenzweig SA, Kondaiah P, Atreya HS. An ultra-stable redox-controlled self-assembling polypeptide nanotube for targeted imaging and therapy in cancer. J Nanobiotechnology 2018; 16:101. [PMID: 30526620 PMCID: PMC6286583 DOI: 10.1186/s12951-018-0427-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/24/2018] [Indexed: 01/10/2023] Open
Abstract
We introduce a self-assembling polypeptide-based nanotube system having the ability to specifically target cancer cells. The nanotubes target the cancer cell surface through integrin engagement with the help of multiple RGD units present along their surface. While the nanotubes are non-toxic towards cells in general, they can be loaded with suitable drugs to be released in a sustained manner in cancer cells. In addition, the nanotubes can be utilized for cellular imaging using any covalently tagged fluorescent dye. They are stable over a wide range of temperature due to intermolecular disulphide bonds formed during the self-assembly process. At the same time, presence of disulphide bonds provides a redox molecular switch for their degradation. Taken together this system provides a unique avenue for multimodal formulation in cancer therapy.
Collapse
Affiliation(s)
- Gitanjali Asampille
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Brijesh Kumar Verma
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Monalisa Swain
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.,Basic Research Laboratory, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abhijith Shettar
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.,Biotechnology Engineering, Ramaiah Institute of Technology, Bangalore, Karnataka, 560054, India
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology, & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paturu Kondaiah
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
41
|
Chang CA, Chia J, Lin S. A Cyclic‐RGD Dinuclear Tb
III
Macrocyclic Complex as a Tumor Integrin‐Selective Luminescent Probe. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- C. Allen Chang
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University No. 155, Sec. 2, Li‐Nong St., Beitou 112 Taipei R.O.C. Taiwan
- Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University R.O.C. Taiwan
- Molecular Imaging Research Center National Yang‐Ming University R.O.C. Taiwan
| | - Ju‐Chien Chia
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University No. 155, Sec. 2, Li‐Nong St., Beitou 112 Taipei R.O.C. Taiwan
| | - Syue‐Liang Lin
- Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University R.O.C. Taiwan
- Molecular Imaging Research Center National Yang‐Ming University R.O.C. Taiwan
| |
Collapse
|
42
|
Chung SW, Choi JU, Cho YS, Kim HR, Won TH, Dimitrion P, Jeon O, Kim SW, Kim I, Kim SY, Byun Y. Self-Triggered Apoptosis Enzyme Prodrug Therapy (STAEPT): Enhancing Targeted Therapies via Recurrent Bystander Killing Effect by Exploiting Caspase-Cleavable Linker. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800368. [PMID: 30027061 PMCID: PMC6051143 DOI: 10.1002/advs.201800368] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/18/2018] [Indexed: 05/28/2023]
Abstract
Tumor heterogeneity is associated with the therapeutic failures of targeted therapies. To overcome such heterogeneity, a novel targeted therapy is proposed that could kill tumor populations with diverse phenotypes by delivering nonselective cytotoxins to target-positive cells as well as to the surrounding tumor cells via a recurrent bystander killing effect. A representative prodrug is prepared that targets integrin αvβ3 and releases cytotoxins upon entering cells or by caspase-3. This allows the prodrug to kill integrin αvβ3-positive cells and upregulate caspase-3, which in turn, activates the prodrug to release a cytotoxin that could subsequently diffuse into and kill the neighboring tumor cells. Apoptotic cells further upregulate and release caspase-3, which activate more prodrugs leading to another round of adjacent cell death and caspase-3 release. Thus, the bystander killing effect could occur repeatedly, leading to augmented and widespread anticancer activity. This strategy provides an avenue that could advance the current targeted therapy.
Collapse
Affiliation(s)
- Seung Woo Chung
- Research Institute of Pharmaceutical SciencesCollege of PharmacySeoul National UniversitySeoul08826South Korea
- Center for NanomedicineWilmer Eye Institute and Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Jeong Uk Choi
- Research Institute of Pharmaceutical SciencesCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Young Seok Cho
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergent Science and TechnologySeoul National UniversitySeoul08826South Korea
| | - Ha Rin Kim
- Research Institute of Pharmaceutical SciencesCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Tae Hyung Won
- Boyce Thompson Institute and Department of Chemistry and Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Peter Dimitrion
- Center for NanomedicineWilmer Eye Institute and Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | | | - Seong Who Kim
- Department of Biochemistry and Molecular BiologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505South Korea
| | - In‐San Kim
- Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02792South Korea
- KU‐KIST schoolKorea UniversitySeoul02841South Korea
| | - Sang Yoon Kim
- Department of OtolaryngologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505South Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical SciencesCollege of PharmacySeoul National UniversitySeoul08826South Korea
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergent Science and TechnologySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
43
|
Efficient synthesis of cRGD functionalized polymers as building blocks of targeted drug delivery systems. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
|
45
|
Comparison and evaluation of two RGD peptides labelled with 68Ga or 18F for PET imaging of angiogenesis in animal models of human glioblastoma or lung carcinoma. Oncotarget 2018; 9:19307-19316. [PMID: 29721204 PMCID: PMC5922398 DOI: 10.18632/oncotarget.25028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/19/2018] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to evaluate two RGD radiotracers radiolabelled with fluorine-18 or gallium-68, in detecting angiogenesis in grafted human tumours and monitoring their treatment with the anti-angiogenic agent bevacizumab. Sixteen mice bearing an U87MG tumour in one flank and a contralateral A549 tumour were treated with intravenous injections of bevacizumab twice a week for 3 weeks. PET images with 18F-RGD-K5 and 68Ga-RGD were acquired before treatment (baseline), after three bevacizumab injections (t1) and after seven bevacizumab injections (t2). In A549 tumours, the treatment stopped the tumour growth, with a tumour volume measured by calliper remaining between 0.28 and 0.40 cm3. The decrease in tumour uptake of both RGD tracers was non-significant. Therefore it was not possible to predict this efficacy on tumour growth based on RGD PET results, whereas ex vivo measurements showed a significantly lower tumour uptake of both tracers in mice sacrificed at t2 vs. at baseline. In U87MG tumours, the uptake measured on PET decreased during treatment, reflecting the partial therapeutic effect observed on tumour volume, consisting in a decrease in the slope of tumour growth. Using 18F-RGD-K5, this decrease in tumour SUVmax became significant at t1, whereas it was also observed with the 68Ga-RGD tracer, but only at t2. 18F-RGD-K5 appeared more efficient than 68Ga-RGD in the visualisation and follow-up of U87MG tumours. The comparison of those results with those of immunohistochemistry at baseline and at t2 favoured the hypothesis that tumour RGD uptake reflects other cancer properties than just its angiogenic capacity.
Collapse
|
46
|
Doxorubicin-triggered self-assembly of native amphiphilic peptides into spherical nanoparticles. Oncotarget 2018; 7:58445-58458. [PMID: 27533248 PMCID: PMC5295442 DOI: 10.18632/oncotarget.11213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/19/2016] [Indexed: 01/30/2023] Open
Abstract
In this study, we designed and fabricated self-assembly nanospheres, which consisted of a P45 peptide and doxorubicin (Dox). P45 is a hybrid peptide composed of an Arg-Gly-Asp motif linked to the human matrilin-1 C-terminal domain by a serine linker. The fabricated nanospheres had a uniform mulberry-like spherical shape, a diameter of 63 nm, excellent polydispersity, and high Dox drug-loading efficiency. In the presence of the RGD motif, the Dox/P45 nanospheres could specifically target A549 cells, which have high integrin αvβ3 expression. Confocal laser scanning microscopy and flow cytometry results showed the enhanced cellular uptake of Dox/P45, and the CCK8 assay indicated the low cytotoxicity of the nanospheres to normal human embryonic kidney 293 cells. Furthermore, the fabricated nanospheres were stable in a physiological environment, but they disassembled and exhibited a rapid Dox release in an acidic atmosphere, allowing for a specific pH-sensitive release into cytosol after cellular uptake. These results suggest that natural amphiphilic peptides can be used as carriers of nanodrugs for targeting delivery as well as controlled drug release for cancer therapy.
Collapse
|
47
|
Zhao J, Chen H, Tang Y, Chen H, Chen G, Yin Y, Li G. Research progresses on the functional polypeptides in the detection and imaging of breast cancer. J Mater Chem B 2018; 6:2510-2523. [DOI: 10.1039/c7tb02541f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polypeptides as functional groups continue to garner significant interest in the detection and imaging of breast cancer, working as recognition elements, signal sources, building blocks and therapeutic reagents, etc.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Huinan Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yingying Tang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Hong Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yongmei Yin
- Department of Oncology
- The First Affiliated Hospital of Nanjing Medical University
- Nanjing 210029
- China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
48
|
Novel c(RGDyK)-based conjugates of POPAM and 5-fluorouracil for integrin-targeted cancer therapy. Future Med Chem 2017; 9:2181-2196. [DOI: 10.4155/fmc-2017-0139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: Alkylating agents and antimetabolites are cytotoxic drugs commonly used in cancer treatment. These medications are often associated with serious side effects on normal tissues and organs. Methodology: To improve the pharmacological profile of the alkylating agent POPAM and the antimetabolite 5-fluorouracil, novel integrin-targeted delivery systems based on c(RGDyK) were successfully synthesized. The new conjugates were tested in vitro against different cancer cells such as PC3, SKOV3, A549, MCF7 and MBA-MB-321. Results & conclusion: The c(RGDyK) conjugates of POPAM demonstrated better inhibitory effects and selectivity compared with c(RGDyK) and POPAM. The c(RGDyK) conjugates of 5-FUA demonstrated diverse inhibitory effects compared with c(RGDyK) and 5-FUA related to the levels of integrin expression, the conjugate stability and sensitivity of cancer cells to 5-FUA.
Collapse
|
49
|
Wang J, Li W, Lu Z, Zhang L, Hu Y, Li Q, Du W, Feng X, Jia H, Liu BF. The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. NANOSCALE 2017; 9:15598-15605. [PMID: 28990632 DOI: 10.1039/c7nr04425a] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Promoted therapeutic angiogenesis is a major objective in the area of regenerative medicine, and sufficient vascularization of artificial tissues or organs is one of the main difficulties for the realization of tissue engineering methods. The identification of new kinds of pro-angiogenic materials will greatly profit developments in regenerative medicine. The use of exosomes for this intention is a considerably new idea developed in recent years. However, several limitations need to be addressed before their use as clinical therapeutics, including the lack of efficient exosome enrichment and methods to endow exosomes with targeting ability. Herein, we pioneered biomimetic particles with topographic structures for exosome isolation. Using this system, nearly 80% of exosomes were isolated in 30 min. Through a donor cell-assisted membrane modification strategy, the isolated exosomes exhibited increased targeting to blood vessels due to the modified Arg-Gly-Asp (RGD) peptide on the exosome membrane, and simultaneously possessed a synergistic therapeutic angiogenesis effect and angiogenesis imaging attributed to metabolic labeling by click chemistry both in vitro and in vivo. The engineered exosomes represent a potential new therapeutic tool for angiogenesis therapy and imaging in a bio-friendly manner.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics &Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ding Y, Han Y, Wang R, Wang Y, Chi C, Zhao Z, Zhang H, Wang W, Yin L, Zhou J. Rerouting Native HDL to Predetermined Receptors for Improved Tumor-Targeted Gene Silencing Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30488-30501. [PMID: 28828863 DOI: 10.1021/acsami.7b10047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-density lipoprotein (HDL) is an outstanding biocompatible nanovector for tumor-targeted delivery of multimodel drugs in cancer therapy. However, this seemingly promising delivery platform demonstrates an adverse accumulation in liver and adrenal due to the primary expression of natural target scavenger receptor class B type I (SR-BI), which overexpressed in malignant cells as well. Therefore, we endowed native HDLs with rerouting capacity, that is, enabling HDLs to get away from natural receptors (SR-BI) to selectively alternate tumor-rich receptors. The αvβ3-integrin specific cyclic-RGDyk peptide was conjugated with HDL-protein component apolipoprotein A-I (apoA-I), demonstrating high substitution degree of 26.2%. Afterward, RGD-modified apoA-I was introduced to fabricate cholesterol siRNA-loaded HDL nanoparticles (RGD-HDL/Ch-siRNA) for specific affinity with tumor angiogenesis and αvβ3 integrin on tumor surface. After preparation, RGD-HDL/Ch-siRNA shared desirable particle size, efficient siRNA protection during blood circulation, and favorable proton sponge effect. αvβ3 integrin-associated superior rerouting capacity, endocytosis pathway, and rapid endolysosome escape were confirmed both in vitro and in vivo. For targeted gene silencing therapy, Pokemon-specific siRNA (siPokemon) was introduced as RNA interference candidate; the enhanced antitumor efficacy and decreased Pokemon expression level were commendably confirmed by tumor growth inhibition, survival period extension, and western blot analysis. Collectively, cyclic-RGDyk modification endows native HDLs with rerouting capacity to specific αvβ3 integrin receptor, which provides a promising strategy to extend malignancy targeting potential of native HDL to a broader purview.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Yue Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Ruoning Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Yazhe Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Cheng Chi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Ziqiang Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|