1
|
Li Y, Kang Z, Zhang X, Sun Y, Han Z, Zhang H, Liu Z, Liang Y, Zhang J, Ren J. Fluoroamphiphiles for enhancing immune response of subunit vaccine against SARS-CoV-2. Eur J Pharm Biopharm 2024; 204:114528. [PMID: 39383977 DOI: 10.1016/j.ejpb.2024.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
In recent decades, protein-based therapy has garnered valid attention for treating infectious diseases, genetic disorders, cancer, and other clinical requirements. However, preserving protein-based drugs against degradation and denaturation during processing, storage, and delivery poses a formidable challenge. Herein, we designed a novel fluoroamphiphiles polymer to deliver protein. Two different formulations of nanoparticles, cross-linked (CNP) and micelle (MNP) polymer, were prepared rationally by disulfide cross-linked and thin-film hydration techniques, respectively. The size, zeta potential, and morphology of both formulations were characterized and the delivery efficacy of both in vitro and in vivo was also assessed. The in vitro findings demonstrated that both formulations effectively facilitated protein delivery into various cell lines. Moreover, in vivo experiments revealed that intramuscular administration of the two formulations loaded with a SARS-CoV-2 recombinant receptor-binding domain (RBD) vaccine induced robust antibody responses in mice without adding another adjuvant. These results highlight the potential use of our carrier system as a safe and effective platform for the in vivo delivery of subunit vaccines.
Collapse
Affiliation(s)
- Yuan Li
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Ziyao Kang
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Xuefeng Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yun Sun
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zibo Han
- National Engineering Center for Novel Vaccine Research, Beijing, China; Immunological Evaluation Unit, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Hao Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zhaoming Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yu Liang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Jing Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| | - Jin Ren
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
4
|
Mohapatra A, Rajendrakumar SK, Cherukula K, Park MS, Padmanaban S, Vasukuty A, Mohanty A, Lee JY, Bae WK, Park IK. A sugar modified amphiphilic cationic nano-adjuvant ceased tumor immune suppression and rejuvenated peptide vaccine induced antitumor immunity in cervical cancer. Biomater Sci 2023; 11:1853-1866. [PMID: 36655902 DOI: 10.1039/d2bm01715f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human papilloma virus (HPV), one of the most common cancer-causing viruses, accounts for more than 90% of human anal and cervical cancers. Clinical studies have focused on adjuvant therapy with vaccines to improve therapeutic outcomes in patients with late-stage HPV-related cancers. In the present study, a mannose receptor (CD206) targeting a lithocholic acid-modified polyethylenimine (PEI) nano-adjuvant delivering the toll-like receptor 7/8 agonist, resiquimod (R848) (mLAPMi-R848), in a HPV E6- and E7-expressing TC-1 tumor murine model was developed. Peritumoral administration of mLAPMi resulted in enhanced accumulation in tumor/tumor-draining lymph nodes and significantly targeted antigen presenting cells like macrophage and dendritic cells. PEI-based nanocarriers can exploit the adjuvant potency of R848 and improve the antitumor immunity. Hence, co-administration of mLAPMi-R848 along with an E6E7 peptide in TC-1 tumor mice eradicated tumor burden and elicited splenocyte-induced cytotoxicity in TC-1 cancer cells. In a bilateral TC-1 tumor model, administration of mLAPMi-R848 and E6E7 peptide significantly suppressed both primary and secondary tumor burdens and improved the overall survival rate. Immune cell profiling revealed elevated levels of mature DCs and CD8+ T cells but reduced levels of tumor-associated immunosuppressive cells (TAICs) like myeloid derived suppressor cells (MDSCs) and regulatory T (Treg) cells in distal tumors. Overall, this study demonstrated that mLAPMi-R848 has improved the antitumor immunity of the peptide antigen against HPV-induced cancers by targeted immunodulation of antigen presenting cells (APCs) and reducing TAICs. Furthermore, this nano-adjuvant has the potential to offer a new treatment option for patients with cervical cancer and can be applied for the treatment of other HPV induced cancers.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Myong-Suk Park
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Sathiyamoorthy Padmanaban
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Arathy Vasukuty
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Ayeskanta Mohanty
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Engineering, Gwangju 61005, Korea
| | - Woo Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
5
|
Application of bioengineered elastin-like polypeptide-based system for targeted gene delivery in tumor cells. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100050. [PMID: 36824163 PMCID: PMC9934475 DOI: 10.1016/j.bbiosy.2022.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Successful gene delivery depends on the entry of negatively charged DNAs and oligonucleotides across the various barriers of the tumor cells and localization into the nucleus for its transcription and protein translation. Here, we have reported a thermal responsive self-assemble and highly biocompatible, targeted ELP-based gene delivery system. These systems consist of cell-penetrating peptides, Tat and single or multiple repeats of IL-4 receptor targeting peptide AP-1 along the backbone of ELP. Cell-penetrating peptides were introduced for nuclear localization of genes of interest, AP-1 for targeting IL-4R highly expressed tumor cells and ELP for stable condensation favoring protection of nucleic acids. The designed multidomain fusion ELPs referred to as Tat-ELP, Tat-A1E28 and Tat-A4V48 were employed to generate formulation with pEGFP-N1. Profound formulation of stable complexes occurred at different molar ratios owing to electrostatic interactions of positively charged amino acids in polymers with negatively charged nucleic acids. Among the complexes, Tat-A4V48 containing four copies of AP-1 showed maximum complexation with pEGFP-N1 in lower molar ratio. The polymer-pEGFP complexes were further analyzed for its transfection efficiency in different cancer cell lines. Both the targeted polymers, Tat-A4V48 and Tat-A1E28 upon transfection displayed significant EGFP-expression with low toxicity in different cancer cells. Therefore, both Tat-A4V48 and Tat-A1E28 can be considered as novel transfection system for successful gene delivery with therapeutic applications.
Collapse
|
6
|
Kavanagh EW, Green JJ. Toward Gene Transfer Nanoparticles as Therapeutics. Adv Healthc Mater 2022; 11:e2102145. [PMID: 35006646 DOI: 10.1002/adhm.202102145] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Genetic medicine has great potential to treat the underlying causes of many human diseases with exquisite precision, but the field has historically been stymied by delivery as the central challenge. Nanoparticles, engineered constructs the size of natural viruses, are being designed to more closely mimic the delivery efficiency of viruses, while enabling the advantages of increased safety, cargo-carrying flexibility, specific targeting, and ease in manufacturing. The speed in which nonviral gene transfer nanoparticles are making progress in the clinic is accelerating, with clinical validation of multiple nonviral nucleic acid delivery nanoparticle formulations recently FDA approved for both expression and for silencing of genes. While much of this progress has been with lipid nanoparticle formulations, significant development is being made with other nanomaterials for gene transfer as well, with favorable attributes such as biodegradability, scalability, and cell targeting. This review highlights the state of the field, current challenges in delivery, and opportunities for engineered nanomaterials to meet these challenges, including enabling long-term therapeutic gene editing. Delivery technology utilizing different kinds of nanomaterials and varying cargos for gene transfer (DNA, mRNA, and ribonucleoproteins) are discussed. Clinical applications are presented, including for the treatment of genetic diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Erin W. Kavanagh
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering Translational Tissue Engineering Center and Institute for NanoBioTechnology Johns Hopkins University School of Medicine 400 North Broadway, Smith Building 5017 Baltimore MD 21231 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering Translational Tissue Engineering Center and Institute for NanoBioTechnology Johns Hopkins University School of Medicine 400 North Broadway, Smith Building 5017 Baltimore MD 21231 USA
| |
Collapse
|
7
|
Liu J, Bao X, Kolesnik I, Jia B, Yu Z, Xing C, Huang J, Gu T, Shao X, Kletskov A, Kritchenkov AS, Potkin V, Li W. Enhancing the in vivo stability of polyanion gene carriers by using PEGylated hyaluronic acid as a shielding system. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2021-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To increase the in vivo stability of cationic gene carriers and avoid the adverse effects of their positive charge, we synthesized a new shielding material by conjugating low molecular weight polyethylene glycol (PEG) to a hyaluronic acid (HA) core. The HA-PEG conjugate assembled with the positively charged complex, forming a protective layer through electrostatic interactions. DNA/polyetherimide/HA-PEG (DNA/PEI/HA-PEG) nanoparticles had higher stability than both DNA/polyethyleneimine (DNA/PEI) and DNA/PEI/HA complexes. Furthermore, DNA/PEI/HA-PEG nanoparticles also showed a diminished nonspecific response toward serum proteins in vivo. The in vivo transfection efficiency was also enhanced by the low cytotoxicity and the improved stability; therefore, this material might be promising for use in gene delivery applications.
Collapse
Affiliation(s)
- Jiaxue Liu
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Xiaoli Bao
- 2Norman Bethune Health Science Center, Jilin University, Jilin, China
| | - Irina Kolesnik
- 3Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov Str., 220072, Minsk, Belarus
| | - Boyan Jia
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Zihan Yu
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Caiyun Xing
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Jiawen Huang
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Tingting Gu
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Xiaotong Shao
- 5School of Medical Laboratory, Jilin Medical University, Jilin, China
| | - Alexey Kletskov
- 6Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Andreii S. Kritchenkov
- 6Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Vladimir Potkin
- 3Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov Str., 220072, Minsk, Belarus
| | - Wenliang Li
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China; 4School of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
8
|
Hashemzadeh I, Hasanzadeh A, Radmanesh F, Khodadadi Chegeni B, Hosseini ES, Kiani J, Shahbazi A, Naseri M, Fatahi Y, Nourizadeh H, Kheiri Yeghaneh Azar B, Aref AR, Liu Y, Hamblin MR, Karimi M. Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes. ACS APPLIED BIO MATERIALS 2021; 4:7979-7992. [DOI: 10.1021/acsabm.1c00890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Iman Hashemzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Fatemeh Radmanesh
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Beheshteh Khodadadi Chegeni
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Elaheh Sadat Hosseini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417613151, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Helena Nourizadeh
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Amir R. Aref
- Belfer Center for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| |
Collapse
|
9
|
Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021; 29:665-680. [PMID: 34754286 PMCID: PMC8568687 DOI: 10.1007/s13233-021-9093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
The potential of oligonucleotides is exceptional in therapeutics because of their high safety, potency, and specificity compared to conventional therapeutic agents. However, many obstacles, such as low in vivo stability and poor cellular uptake, have hampered their clinical success. Use of polymeric carriers can be an effective approach for overcoming the biological barriers and thereby maximizing the therapeutic efficacy of the oligonucleotides due to the availability of highly tunable synthesis and functional modification of various polymers. As loaded in the polymeric carriers, the therapeutic oligonucleotides, such as antisense oligonucleotides, small interfering RNAs, microRNAs, and even messenger RNAs, become nuclease-resistant by bypassing renal filtration and can be efficiently internalized into disease cells. In this review, we introduced a variety of systematic combinations between the therapeutic oligonucleotides and the synthetic polymers, including the uses of highly functionalized polymers responding to a wide range of endogenous and exogenous stimuli for spatiotemporal control of oligonucleotide release. We also presented intriguing characteristics of oligonucleotides suitable for targeted therapy and immunotherapy, which can be fully supported by versatile polymeric carriers.
Collapse
Affiliation(s)
- Moohyun Han
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Jiyun Beon
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429 Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| |
Collapse
|
10
|
Zelcak A, Unal YC, Mese G, Bulmus V. A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Meenakshi Sundaram DN, Kucharski C, Bahadur KC R, Tarman IO, Uludağ H. Polymeric siRNA delivery targeting integrin-β1 could reduce interactions of leukemic cells with bone marrow microenvironment. BIOMATERIALS AND BIOSYSTEMS 2021; 3:100021. [PMID: 36824309 PMCID: PMC9934419 DOI: 10.1016/j.bbiosy.2021.100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Uncontrolled proliferation of the myeloid cells due to BCR-ABL fusion has been successfully treated with tyrosine kinase inhibitors (TKIs), which improved the survival rate of Chronic Myeloid Leukemia (CML) patients. However, due to interactions of CML cells with bone marrow microenvironment, sub-populations of CML cells could become resistant to TKI treatment. Since integrins are major cell surface molecules involved in such interactions, the potential of silencing integrin-β1 on CML cell line K562 cells was explored using short interfering RNA (siRNA) delivered through lipid-modified polyethyleneimine (PEI) polymers. Reduction of integrin-β1 in K562 cells decreased cell adhesion towards human bone marrow stromal cells and to fibronectin, a major extracellular matrix protein for which integrin-β1 is a primary receptor. Interaction of K562 cells with fibronectin decreased the sensitivity of the cells to BCR-ABL siRNA treatment, but a combinational treatment with integrin-β1 and BCR-ABL siRNAs significantly reduced colony forming ability of the cells. Moreover, integrin-β1 silencing enhanced the detachment of K562 cells from hBMSC samples (2 out of 4 samples), which could make them more susceptible to TKIs. Therefore, the polymeric-siRNA delivery targeting integrin-β1 could be beneficial to reduce interactions with bone marrow microenvironment, aiding in the response of CML cells to therapeutic treatment.
Collapse
Affiliation(s)
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Remant Bahadur KC
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada,Corresponding author at: Department of Chemical and Materials Engineering, 2-021 RTF, University of Alberta, Edmonton, Alberta, T6G 2G6, Canada.
| |
Collapse
|
12
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
14
|
The combined disulfide cross-linking and tyrosine-modification of very low molecular weight linear PEI synergistically enhances transfection efficacies and improves biocompatibility. Eur J Pharm Biopharm 2021; 161:56-65. [PMID: 33582186 DOI: 10.1016/j.ejpb.2021.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/12/2023]
Abstract
Efficient and non-toxic DNA delivery is still a major limiting factor for non-viral gene therapy. Among the large diversity of non-viral vectors, the cationic polymer polyethylenimine (PEI) plays a prominent role in nucleic acid delivery. Since higher molecular weight of PEI is beneficial for transfection efficacy, but also leads to higher cytotoxicity, the biodegradable cross-linking of low-molecular PEIs, e.g. through disulfide-groups, has been introduced. Another promising strategy is the chemical modification of PEI, for example with amino acids like tyrosine. In the case of small RNA molecules, this PEI grafting has been found to enhance transfection efficacies and improve biocompatibility. In this paper, we report on the combination of these two strategies for improving DNA delivery: the (i) cross-linking of very small 2 kDa PEI ("P2") molecules through biodegradable disulfide-groups ("SS"), in combination with (ii) tyrosine-modification ("Y"). We demonstrate a surprisingly substantial, synergistic enhancement of transfection efficacies of these SSP2Y/DNA complexes over their non- or mono-modified polymer counterparts, accompanied by high biocompatibility as well as favorable physicochemical and biological properties. Beyond various cell lines, high biological activity of the SSP2Y-based complexes is also seen in an ex vivo tissue slice model, more closely mimicking in vivo conditions. The particularly high transfection efficacy SSP2Y/DNA complexes in 2D and 3D models, based on their optimized complex stability and DNA release, as well as their high biocompatibility thus provides the basis for their further exploration for therapeutic application.
Collapse
|
15
|
Yoon DY, Alle M, Kim JC. Reduction and temperature-responsive hydrogel composed of hydroxyethyl disulfide-bis-glycidyl ether-crosslinked poly(hydroxyethyl acrylate-co-methyl methacrylate). INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1871613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dong Youl Yoon
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
16
|
Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13010087. [PMID: 33440768 PMCID: PMC7826834 DOI: 10.3390/pharmaceutics13010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, highly osmotic oxidized sucrose-crosslinked polyethylenimine (SP2K) polymers were developed for gene delivery systems, and the transfection mechanism is examined. First, periodate-oxidized sucrose and polyethylenimine 2K (PEI2K) were crosslinked with various feed ratios via reductive amination. The synthesis was confirmed by 1H NMR and FTIR. The synthesized SP2K polymers could form positively charged (~40 mV zeta-potential) and nano-sized (150–200 nm) spherical polyplexes with plasmid DNA (pDNA). They showed lower cytotoxicity than PEI25K but concentration-dependent cytotoxicity. Among them, SP2K7 and SP2K10 showed higher transfection efficiency than PEI25K in both serum and serum-free conditions, revealing the good serum stability. It was found that SP2K polymers possessed high osmolality and endosome buffering capacity. The transfection experiments with cellular uptake inhibitors suggest that the transfection of SP2K polymers would progress by multiple pathways, including caveolae-mediated endocytosis. It was also thought that caveolae-mediated endocytosis of SP2K polyplexes would be facilitated through cyclooxygenase-2 (COX-2) expression induced by high osmotic pressure of SP2K polymers. Confocal microscopy results also supported that SP2K polyplexes would be internalized into cells via multiple pathways and escape endosomes efficiently via high osmolality and endosome buffering capacity. These results demonstrate the potential of SP2K polymers for gene delivery systems.
Collapse
|
17
|
Li Z, Chen R, Wang Y, Zhu L, Luo W, Zhang Z, Hadjichristidis N. Solvent and catalyst-free modification of hyperbranched polyethyleneimines by ring-opening-addition or ring-opening-polymerization of N-sulfonyl aziridines. Polym Chem 2021. [DOI: 10.1039/d1py00125f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ring-opening (polymerization) of N-sulfonyl aziridines with PEI under solvent/catalyst-free conditions allows the atom-economic synthesis of amphiphilic alkylated PEIs and luminescent PEI-graft-polysulfonamide.
Collapse
Affiliation(s)
- Zhunxuan Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Rui Chen
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Wenyi Luo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division
- KAUST Catalysis Center
- Polymer Synthesis Laboratory
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
| |
Collapse
|
18
|
Wang J, Guo C, Wang XY, Yang H. "Double-punch" strategy for delivery of viral immunotherapy with prolonged tumor retention and enhanced transfection efficacy. J Control Release 2020; 329:328-336. [PMID: 33278479 DOI: 10.1016/j.jconrel.2020.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Viral immunotherapy has shown clinical efficacy in treating cancers (e.g., melanoma). Given that viral immunotherapy commonly uses intratumoral injection, prolonging the duration of therapeutic virus at the tumor site can further enhance the antitumor efficacy and reduce potential off-target effects. In this work, we describe a "double-punch" strategy by combining dendrimer platform and injectable hydrogel encapsulation for delivery of an adenovirus encoding Flagrp170 (Adv-Flagrp170), which has been shown to effectively mount a cytotoxic T lymphocyte response through enhanced tumor immunogenicity and optimized antigen cross-presentation. We first complexed PAMAM generation 4 (G4) with Adv (G4/Adv) to strengthen its transfection efficiency and then loaded G4/Adv into a biocompatible and injectable supramolecular hydrogel (SH) made of α-cyclodextrin and 4-arm polyethylene glycol via host-guest interaction. When tested in a murine melanoma model, the G4/Adv complex was shown to have improved retention at the tumor site. The presence of SH facilitated the targeted gene expression in tumor-infiltrating leukocytes, including antigen-presenting dendritic cells. Delivery of Adv-Flagrp170 by both G4 coating and SH encapsulation significantly enhanced its therapeutic efficacy in controlling mouse melanoma (8-fold reduction in tumor volume), which is associated with increased immune activation in the tumor microenvironment as well as decreased adenovirus-reactive antibodies. Taken together, this new formulation may be used to improve the treatment outcome of adenovirus-based cancer immunotherapy.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65401, United States.
| |
Collapse
|
19
|
Ullah I, Zhao J, Su B, Rukh S, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:118. [PMID: 33247778 DOI: 10.1007/s10856-020-06457-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Redox-responsive cationic polymers have gained considerable attention in gene delivery due to low cytotoxicity and spatio-temporal release of DNA into the cells. Here, we reported the synthesis of reducible disulfide conjugated polyethyleneimine (1.8 kDa) (denoted as SS-PEI) and its application to transfer pEGFP-ZNF580 plasmid (pZNF580) into EA.hy926 cell. This reducible SS-PEI polymer was prepared by one-step polycondensation reaction of low molecular weight PEI with bis-(p-nitrophenyl)-3,3'-dithiodipropionate. The SS-PEI successfully condensed pZNF580 into nano-sized complexes (170 ± 1.5 nm to 255 ± 1.6 nm) with zeta potentials of 3 ± 0.4 mV to 17 ± 0.9 mV. The complexes could be triggered to release pZNF580 when exposed to the reducing environment of 5 mM dithiothreitol. Besides, the SS-PEI exhibited low cytotoxicity. In vitro transfection results showed that SS-PEI exhibited good transfection efficiency comparable to PEI25kDa. Thus, the SS-PEI could act as an reducible gene carrier with good transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| | - Bin Su
- Department of Clinical Research, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, 300162, China
| | - Shah Rukh
- Department of Chemistry, School of Science, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
- Collaborative Innovation Centre of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
- Collaborative Innovation Centre of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin, 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Tianjin, 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China.
- Department of Clinical Research, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, 300162, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| |
Collapse
|
20
|
Wang C, You J, Gao M, Zhang P, Xu G, Dou H. Bio-inspired gene carriers with low cytotoxicity constructed via the assembly of dextran nanogels and nano-coacervates. Nanomedicine (Lond) 2020; 15:1285-1296. [PMID: 32468909 DOI: 10.2217/nnm-2020-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To achieve safe and biocompatible gene carriers. Materials & methods: A core/shell-structured hierarchical carrier with an internal peptide/gene coacervate 'core' and a dextran nanogel 'shell' on the surface has been designed. Results: The dextran nanogels shield coacervate (DNSC) can effectively condense genes and release them in reducing environments. The dextran nanogel-based 'shell' can effectively shield the positive charge of the peptide/gene coacervate 'core', thus reducing the side effects of cationic gene carriers. In contrast with the common nonviral gene carriers that had high cytotoxicities, the DNSC showed a high transfection efficiency while maintaining a low cytotoxicity. Conclusion: The DNSC provides an effective environmentally responsive gene carrier with potential applications in the fields of gene therapy and gene carrier development.
Collapse
Affiliation(s)
- Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
21
|
Amirova A, Kirila T, Kurlykin M, Tenkovtsev A, Filippov A. Influence of Cross-Linking Degree on Hydrodynamic Behavior and Stimulus-Sensitivity of Derivatives of Branched Polyethyleneimine. Polymers (Basel) 2020; 12:polym12051085. [PMID: 32397458 PMCID: PMC7284568 DOI: 10.3390/polym12051085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Cross-linked derivatives of acylated branched polyethyleneimine containing 2-isopropyl-2-oxazoline units were investigated in chloroform and aqueous solutions using methods of molecular hydrodynamics, static and dynamic light scattering, and turbidity. The studied samples differed by the cross-linker content. The solubility of the polyethyleneimines studied worsened with the increasing mole fraction of the cross-linker. Cross-linked polyethyleneimines were characterized by small dimensions in comparison with linear analogs; the increase in the cross-linker content leads to a growth of intramolecular density. At low temperatures, the aqueous solutions of investigated samples were molecularly dispersed, and the large aggregates were formed due to the dehydration of oxazoline units and the formation of intermolecular hydrogen bonds. For the cross-linked polyethyleneimines, the phase separation temperatures were lower than that for linear and star-shaped poly-2-isopropyl-2-oxazolines. The low critical solution temperature of the solutions of studied polymers decreased with the increasing cross-linker mole fraction. The time of establishment of the constant characteristics of the studied solutions after the jump-like change in temperature reaches 3000 s, which is at least two times longer than for linear polymers.
Collapse
|
22
|
Chen L, Wang S, Liu Q, Zhang Z, Lin S, Zheng Q, Cheng M, Li Y, Cheng C. Reduction sensitive nanocarriers mPEG-g-γ-PGA/SSBPEI@siRNA for effective targeted delivery of survivin siRNA against NSCLC. Colloids Surf B Biointerfaces 2020; 193:111105. [PMID: 32417465 DOI: 10.1016/j.colsurfb.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Poly γ-glutamic acid (γ-PGA) is attractive due to its desirable biological properties such as nontoxicity, excellent biocompatibility, and minimal immunogenicity. Additionally, γ-PGA could be recognized by γ-glutamyl transpeptidase, which is regarded as a potential biomarker for many tumors. In this study, we have developed a new biodegradable, reduction sensitive, and tumor-specific gene nano-delivery platform consisting of a cationic carrier (SSBPEI) for siRNA condensation, mPEG shell for nanoparticle stabilization, and γ-PGA for accelerated cellular uptake. Disulfide bonds (-SS-) could be reduced specifically in the tumor environment, which is full of reductants such as glutathione reductase. Conjugating polyethylene glycol (PEG) to the γ-PGA led to the formation of mPEG-g-γ-PGA, with a decreased positive charge on the surface of SSBPEI@siRNA and substantially higher stability in an aqueous medium. As a result, mPEG-g-γ-PGA/SSBPEI@siRNA nanoparticles could protect siRNAs from RNase A degradation and release siRNAs in a reduction sensitive way. The multifunctional delivery system was shown to silence the Survivin gene and further promote chemotherapeutic drug-induced apoptosis in the A549 NSCLC cell line efficiently, thereby representing a novel promising platform for the delivery of siRNAs.
Collapse
Affiliation(s)
- Li Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China; Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Siyuan Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.
| | - Zhihong Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Shaofeng Lin
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China; Department of Thoracic Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Miaomiao Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Yuying Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Cui Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China.
| |
Collapse
|
23
|
Chen J, Guo Z, Jiao Z, Lin L, Xu C, Tian H, Chen X. Poly(l-glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19295-19306. [PMID: 32239907 DOI: 10.1021/acsami.0c02769] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, pH-sensitive polymers have received extensive attention in tumor therapy. However, the rapid response to pH changes is the key to achieving efficient treatment. Here, a novel shielding system with a rapidly pH-responsive polymer (PAMT) is synthesized by click reaction between poly(γ-allyl-l-glutamate) and thioglycolic acid or 2-(Boc-amino)ethanethiol. The zwitterionic biodegradable polymer PAMT, which is negatively charged at physiological pH, can be used to shield positively charged nanoparticles. PAMT is electrostatically attached to the surface of the positively charged PEI/pDNA complex to form a ternary complex. The zwitterionic PAMT-shielded complex exhibits rapid charge conversion when the pH decreases from 7.4 to 6.8. For the in vivo tumor inhibition experiment, PAMT/PEI/shVEGF injected intravenously shows a more significant inhibitory effect on tumor growth. The excellent results are mainly attributed to introduction of the zwitterionic copolymer PAMT, which can shield the positively charged PEI/shVEGF complex in physiological conditions, while the surface potential of the shielded complexes changes to a positive charge in the acidic tumor environment.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
24
|
Yin N, Tan X, Liu H, He F, Ding N, Gou J, Yin T, He H, Zhang Y, Tang X. A novel indomethacin/methotrexate/MMP-9 siRNA in situ hydrogel with dual effects of anti-inflammatory activity and reversal of cartilage disruption for the synergistic treatment of rheumatoid arthritis. NANOSCALE 2020; 12:8546-8562. [PMID: 32243486 DOI: 10.1039/d0nr00454e] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammatory cell infiltration, and cartilage and bone disruption, which ultimately leads to loss of joint function. Current treatments for RA only focus on anti-inflammatory activity but neglect to prevent further damage to articular cartilage and bone. Here we attempted to co-deliver indomethacin (IND), methotrexate (MTX) and a small-interfering RNA targeting MMP-9 using an in situ hydrogel loaded with PEI-SS-IND-MTX-MMP-9 siRNA nanoparticles (D/siRNA-NGel) to treat RA synergistically and comprehensively. IND, MTX and MMP-9 siRNA were able to escape from the endosome and down-regulate the expression of MMP-9 and inflammatory cytokines of Raw-264.7 cells. After intra-articular injection in arthritic mice, the D/siRNA-NGel effectively relieved joint swelling and significantly reduced the expression of TNF-α, IL-6 and MMP-9 in the ankle fluid, knee joint fluid and plasma of RA mice without causing any side effects. Most importantly, the co-delivery system restored the morphological parameters of the ankle joints close to normal. The D/siRNA-NGel could achieve good anti-inflammatory activity and reverse cartilage disruption through a synergistic effect between chemical drugs and MMP-9 siRNA. This co-delivery system should have promising applications in the treatment of rheumatoid arthritis and other metabolic bone diseases which cause serious bone erosion.
Collapse
Affiliation(s)
- Na Yin
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW. Biodegradable Polymers for Gene-Delivery Applications. Int J Nanomedicine 2020; 15:2131-2150. [PMID: 32280211 PMCID: PMC7125329 DOI: 10.2147/ijn.s222419] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gene-based therapies have emerged as a new modality for combating a myriad of currently incurable diseases. However, the fragile nature of gene therapeutics has significantly hampered their biomedical applications. Correspondingly, the development of gene-delivery vectors is of critical importance for gene-based therapies. To date, a variety of gene-delivery vectors have been created and utilized for gene delivery. In general, they can be categorized into viral- and non-viral vectors. Due to safety issues associated with viral vectors, non-viral vectors have recently attracted much more research focus. Of these non-viral vectors, polymeric vectors, which have been preferred due to their low immunogenicity, ease of production, controlled chemical composition and high chemical versatility, have constituted an ideal alternative to viral vectors. In particular, biodegradable polymers, which possess advantageous biocompatibility and biosafety, have been considered to have great potential in clinical applications. In this context, the aim of this review is to introduce the recent development and progress of biodegradable polymers for gene delivery applications, especially for their chemical structure design, gene delivery capacity and additional biological functions. Accordingly, we first define and categorize biodegradable polymers, followed by describing their corresponding degradation mechanisms. Various types of biodegradable polymers resulting from natural and synthetic polymers will be introduced and their applications in gene delivery will be examined. Finally, a future perspective regarding the development of biodegradable polymer vectors will be given.
Collapse
Affiliation(s)
- Chih-Kuang Chen
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung80424, Taiwan
| | - Ping-Kuan Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung40724, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, Taichung40402, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| |
Collapse
|
26
|
Chenglong W, Shuhan X, Jiayi Y, Wencai G, Guoxiong X, Hongjing D. Dextran-based coacervate nanodroplets as potential gene carriers for efficient cancer therapy. Carbohydr Polym 2020; 231:115687. [PMID: 31888837 DOI: 10.1016/j.carbpol.2019.115687] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
The intractable toxicity of cationic polymers limits their applicability in gene transport and controlled release. In consideration of the good biocompatibility and biofunctionality of dextran, herein we design and synthesize two types of amino group-containing cationic copolymers based on dextran by the copolymerization of cationic monomers from dextran backbones. Additionally, allyl crosslinkers containing disulfide bonds were introduced into polymerization, that made the copolymer crosslinked by disulfide. The resultant coacervates were formed from the self-assembly of cationic coplymers and anionic genes, and redox-responsive disulfide branch points endow coacervates with reducing environment responsiveness. The in vitro experiments showed that the dextran-based coacervates were sensitive to the reducing environment and underwent cleavage, which resulted in an effective release, uptake, and transfection of the genes by 293T cells. In addition, dextran-based coacervates can be used to carry siRNA into cancer cells with a high transfection efficiency, demonstrating their potential applicability in treatment against cancer.
Collapse
Affiliation(s)
- Wang Chenglong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiong Shuhan
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - You Jiayi
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guan Wencai
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China
| | - Xu Guoxiong
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China.
| | - Dou Hongjing
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
27
|
Yi A, Sim D, Lee YJ, Sarangthem V, Park RW. Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J Nanobiotechnology 2020; 18:15. [PMID: 31952530 PMCID: PMC6969399 DOI: 10.1186/s12951-020-0574-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
Background The successful deliveries of siRNA depend on their stabilities under physiological conditions because greater in vivo stability enhances cellular uptake and enables endosomal escape. Viral-based systems appears as most efficient approaches for gene delivery but often compromised in terms of biocompatibility, patient safety and high cost scale up process. Here we describe a novel platform of gene delivery by elastin-like polypeptide (ELP) based targeting biopolymers. Results For better tumor targeting and membrane penetrating characteristics, we designed various chimeric ELP-based carriers containing a cell penetrating peptide (Tat), single or multiple copies of AP1 an IL-4 receptor targeting peptide along with coding sequence of ELP and referred as Tat-A1E28 or Tat-A4V48. These targeted polypeptides were further analyzed for its ability to deliver siRNA (Luciferase gene) in tumor cells in comparison with non-targeted controls (Tat-E28 or E28). The positively charged amino acids of these polypeptides enabled them to readily complex with negatively charged nucleic acids. The complexation of nucleic acid with respective polypeptides facilitated its transfection efficiency as well as stability. The targeted polypeptides (Tat-A1E28 or Tat-A4V48) selectively delivered siRNA into tumor cells in a receptor-specific fashion, achieved endosomal and lysosomal escape, and released gene into cytosol. The target specific delivery of siRNA by Tat-A1E28 or Tat-A4V48 was further validated in murine breast carcinoma 4T1 allograft mice model. Conclusion The designed delivery systems efficiently delivered siRNA to the target site of action thereby inducing significant gene silencing activity. The study shows Tat and AP1 functionalized ELPs constitute a novel gene delivery system with potential therapeutic applications.
Collapse
Affiliation(s)
- Aena Yi
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Dahye Sim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Young-Jin Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea. .,Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| |
Collapse
|
28
|
Yin N, Guo X, Sun R, Liu H, Tang L, Gou J, Yin T, He H, Zhang Y, Tang X. Intra-articular injection of indomethacin-methotrexate in situ hydrogel for the synergistic treatment of rheumatoid arthritis. J Mater Chem B 2020; 8:993-1007. [PMID: 31930243 DOI: 10.1039/c9tb01795j] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease that causes joint swelling and cartilage damage. The objective of the present work was to develop a temperature-sensitive hydrogel (D-NGel) containing nanoparticles (D-NPs), which could simultaneously deliver combination indomethacin and methotrexate. D-NPs were formed by multiple non-covalent interactions between PEI-SS and the carboxyl-containing hydrophobic small molecule drugs IND and MTX, which were then loaded into a temperature-sensitive hydrogel matrix. The Tsol/gel of the temperature-sensitive hydrogel matrix composed of 27% F127 and 10% F68 was 33 °C and the gelation time was less than 15 s. The resultant D-NGel was injected into the articular cavity of collagen-induced arthritis rats and quickly transformed in situ into gels which slowly released drug in the joint fluid for up to 72 h. The D-NGel effectively reduced joint swelling, bone erosion and expression of inflammatory cytokines in the ankle fluid and knee joint fluid. In addition, liver and kidney function tests and histopathological examination indicated there was a good biological safety for D-NGel. In conclusion, this work has demonstrated the great potential of the D-NGel for sustained co-delivery of IND and MTX for the synergistic treatment of rheumatoid arthritis, treating both the symptoms and the root causes of rheumatoid arthritis.
Collapse
Affiliation(s)
- Na Yin
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Xueting Guo
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Rong Sun
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Lihua Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.
| |
Collapse
|
29
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
30
|
Hujaya SD, Manninen A, Kling K, Wagner JB, Vainio SJ, Liimatainen H. Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes. J Colloid Interface Sci 2019; 553:71-82. [DOI: 10.1016/j.jcis.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 02/01/2023]
|
31
|
Reduction sensitive CC9-PEG-SSBPEI/miR-148b nanoparticles: Synthesis, characterization, targeting delivery and application for anti-metastasis. Colloids Surf B Biointerfaces 2019; 183:110412. [PMID: 31398620 DOI: 10.1016/j.colsurfb.2019.110412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
miRNAs such as miR-148b play crucial regulatory role in tumor metastasis, but their applications are limited because they are easy to degrade in serum conditions and lack targeting ability. Herein, CC9-PEG-SSBPEI was synthesized and used as nano-carrier for miR-148b. DLS and gel retardation analyses indicated that CC9-PEG-SSBPEI could combine with miR-148b by charge interaction and formed into nanoparticles with the size changed from 811.6 nm to 146.4 nm. CC9-PEG-SSBPEI could protect miR-148b from RNase A degradation and showed a reduction sensitive release of miR-148b. FACS analysis and CLSM images displayed that the conjugated CC9 peptide improved the accumulation and penetration of the nanoparticles in HuH-7 liver cancer cells through binding with the target of miR-148b neuropilin-1(NRP-1) on the cell surface. The raised level of miR-148b in turn inhibited the expression of NRP-1 and suppressed the migration of HuH-7 liver cancer cells. Moreover, hemolysis and cytotoxicity assay demonstrated that the nanoparticles had good hemo- and cyto- compatibility. Hence, CC9-PEG-SSBPEI/miR-148b nanoparticles had the potential for targeting delivery of miR-148b and anti-metastasis of hepatocellular carcinoma (HCC) cells.
Collapse
|
32
|
Synthesis of Bioreducible Polycations with Controlled Topologies. Methods Mol Biol 2019. [PMID: 30838607 DOI: 10.1007/978-1-4939-9092-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bioreducible polycations, which possess disulfide linkages in the backbone, have emerged as promising nucleic acid delivery carriers due to their high stability in extracellular physiological condition and bioreduction-triggered release of the genetic material. Further benefits of bioreducible polycations include decreased cytotoxicity due to intracellular reducing environment in the cytoplasm that contains high levels of reducing molecules such as glutathione. Here, we describe the synthesis of bioreducible polycations with emphasis on methods to control their topology.
Collapse
|
33
|
Ullah I, Zhao J, Rukh S, Muhammad K, Guo J, Ren XK, Xia S, Zhang W, Feng Y. A PEG-b-poly(disulfide-l-lysine) based redox-responsive cationic polymer for efficient gene transfection. J Mater Chem B 2019; 7:1893-1905. [PMID: 32255052 DOI: 10.1039/c8tb03226b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gene therapy is concerned with the transfer of complement genes to functionally defective cells in a safe and directed manner for the treatment of the most challenging diseases. But safety issues and low transfection efficiency of the gene vectors are the major challenges, which need to be overcome. Recently, redox-responsive bioreducible polymers containing disulfide linkages have been considered as efficient gene vectors, owing to the selective degradation of the disulfide bond in the reducing environment of the cells. This enables spatiotemporal release of pDNA with no or minimum toxicity. Herein, we reported a bioreducible poly(ethyleneglycol)-b-poly(disulfide-l-lysine) cationic polymer (denoted as PEG-SSL) via a Michael addition reaction of poly(ethyleneglycol)tetraacrylate PEG(Ac)4 and the terminal amine group of poly(disulfide-l-lysine). PEG-SSL efficiently condensed the plasmid ZNF580 gene (pZNF580) forming nano-sized polyplexes (155 ± 4 to 285 ± 3 nm) with zeta potentials of 1.9 ± 0.1 to 26.7 ± 0.4 mV. PEG-SSL successfully retarded pZNF580 at a small polymer/pDNA weight ratio of 10/1 and higher. When exposed to a reducing environment of 5 mM DTT, it rapidly released genes even at higher weight ratios of the PEG-SSL polymer in the PEG-SSL/pDNA complexes. The PEG-SSL/pZNF580 complexes exhibited good stability when exposed to DNase I and efficiently protected pDNA from degradation. In vitro transfection and cytotoxicity were investigated in EA.hy926 cells. The results showed that PEG-SSL successfully delivered pZNF580 into the cells with less cytotoxicity compared to PEI25kDa. The flow cytometry and confocal scanning laser microscopy results indicated that PEG-SSL polyplexes exhibited good cellular uptake and nuclear co-localization rates. All these results implied that PEG-SSL had the potential as a non-viral vector for gene transfection.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Naito M, Otsu Y, Kamegawa R, Hayashi K, Uchida S, Kim HJ, Miyata K. Tunable nonenzymatic degradability of N-substituted polyaspartamide main chain by amine protonation and alkyl spacer length in side chains for enhanced messenger RNA transfection efficiency. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:105-115. [PMID: 30787961 PMCID: PMC6374946 DOI: 10.1080/14686996.2019.1569818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Degradability of polycations under physiological conditions is an attractive feature for their use in biomedical applications, such as the delivery of nucleic acids. This study aims to design polycations with tunable nonenzymatic degradability. A series of cationic N-substituted polyaspartamides were prepared to possess primary amine via various lengths of alkyl spacers in side chains. The degradation rate of each polyaspartamide derivative was determined by size exclusion chromatography under different pH conditions. The N-substituted polyaspartamide containing a 2-aminoethyl moiety in the side chain (PAsp(AE)) showed considerable degradability under physiological conditions (pH 7.4, 37 °C). In contrast, the N-substituted polyaspartamides bearing a longer alkyl spacer in the side chain, i.e. the 3-aminopropyl (PAsp(AP)) and 4-aminobutyl moieties (PAsp(AB)), more strongly suppressed degradation. Further, a positive correlation was observed between the degradation rate of N-substituted polyaspartamides and a deprotonation degree of primary amines in their side chains. Therefore, we conclude that the deprotonated primary amine in the side chain of N-substituted polyaspartamides can induce the degradation of the main chain through the activation of amide nitrogen in the side chain. When N-substituted polyaspartamides were utilized as a messenger RNA (mRNA) delivery vehicle via formation of polyion complexes (PICs), degradable PAsp(AE) elicited significantly higher mRNA expression efficiency in cultured cells compared to PAsp(AP) and PAsp(AB). The higher efficiency of PAsp(AE) might be due to the facilitated destabilization of PICs within the cells, directed toward mRNA release. Additionally, degradation of PAsp(AE) considerably reduced its cytotoxicity. Thus, our study highlights a useful design of well-defined cationic poly(amino acid)s with tunable nonenzymatic degradability.
Collapse
Affiliation(s)
- Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Otsu
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Rimpei Kamegawa
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Dai Y, Zhang X. MicroRNA Delivery with Bioreducible Polyethylenimine as a Non‐Viral Vector for Breast Cancer Gene Therapy. Macromol Biosci 2019; 19:e1800445. [DOI: 10.1002/mabi.201800445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Dai
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
| | - Xiaojin Zhang
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
| |
Collapse
|
36
|
Zhou Z, Zhang Q, Zhang M, Li H, Chen G, Qian C, Oupicky D, Sun M. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Am J Cancer Res 2018; 8:4604-4619. [PMID: 30279726 PMCID: PMC6160761 DOI: 10.7150/thno.26889] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 02/04/2023] Open
Abstract
Stimuli-responsive polycations have been developed for improved nucleic acid transfection and enhanced therapeutic efficacy. The most reported mechanisms for controlled release of siRNA are based on polyelectrolyte exchange reactions in the cytoplasm and the degradation of polycations initiated by specific triggers. However, the degradation strategy has not always been sufficient due to unsatisfactory kinetics and binding of cationic fragments to siRNA, which limits the gene silencing effect. In this study, a new strategy that combines degradation and charge reversal is proposed. Methods: We prepared a polycation (CrossPPA) by crosslinking of phenylboronic acid (PBA)-grafted 1.8k PEI with alginate. It was compared with 25k PEI, 1.8k PEI and 1.8k PEI-PBA on siRNA encapsulation, ATP-responsive behavior and mechanism, cytotoxicity, cell uptake, siRNA transfection, in vivo biodistribution and in vivo anti-tumor efficacy. The in vitro and in vivo experiments were performed on 4T1 murine breast cancer cells and 4T1 tumor model separately. Results: The crosslinking strategy obviously improve the siRNA loading ability of 1.8k PEI. We validated that intracellular levels of ATP could trigger CrossPPA disassembly and charge reversal, which resulted in efficient and rapid siRNA release due to electrostatic repulsion. Besides, CrossPPA/siRNA showed strong cell uptake in 4T1 cells compared with 1.8k PEI/siRNA. Notably, the cytotoxicity of CrossPPA was pretty low, which was owing to its biodegradability. Furthermore, the crosslinked polyplexes significantly enhanced siRNA transfection and improved tumor accumulation. The high gene silencing ability of CrossPPA polyplex led to strong anti-tumor efficacy when using Bcl2-targeted siRNA. Conclusion: These results indicated that the ATP-triggered disassembly and charge reversal strategy provided a new way for developing stimuli-responsive siRNA carriers and showed potential for nucleic acid delivery in the treatment of cancer.
Collapse
|
37
|
Modular Synthesis of Bioreducible Gene Vectors through Polyaddition of N, N'-Dimethylcystamine and Diglycidyl Ethers. Polymers (Basel) 2018; 10:polym10060687. [PMID: 30966721 PMCID: PMC6404356 DOI: 10.3390/polym10060687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 02/01/2023] Open
Abstract
Bioreducible, cationic linear poly(amino ether)s (PAEs) were designed as promising gene vectors. These polymers were synthesized by the reaction of a disulfide-functional monomer, N,N'-dimethylcystamine (DMC), and several different diglycidyl ethers. The resulting PAEs displayed a substantial buffer capacity (up to 64%) in the endosomal acidification region of pH 7.4⁻5.1. The PAEs condense plasmid DNA into 80⁻200 nm sized polyplexes, and have surface charges ranging from +20 to +40 mV. The polyplexes readily release DNA upon exposure to reducing conditions (2.5 mM DTT) due to the cleavage of the disulfide groups that is present in the main chain of the polymers, as was demonstrated by agarose gel electrophoresis. Upon exposing COS-7 cells to polyplexes that were prepared at polymer/DNA w/w ratios below 48, cell viabilities between 80⁻100% were observed, even under serum-free conditions. These polyplexes show comparable or higher transfection efficiencies (up to 38%) compared to 25 kDa branched polyethylenimine (PEI) polyplexes (12% under serum-free conditions). Moreover, the PAE-based polyplexes yield transfection efficiencies as high as 32% in serum-containing medium, which makes these polymers interesting for gene delivery applications.
Collapse
|
38
|
Xu B, Xu Y, Su G, Zhu H, Zong L. A multifunctional nanoparticle constructed with a detachable albumin outer shell and a redox-sensitive inner core for efficient siRNA delivery to hepatocellular carcinoma cells. J Drug Target 2018; 26:941-954. [PMID: 29564911 DOI: 10.1080/1061186x.2018.1455840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful delivery of small interfering RNA (siRNA) into the cytoplasm of target cells relies on biocompatible and efficient vectors. In this study, a novel multifunctional core/shell nanoparticle [CS-SS-9R/BSA-c(RGDyK)] was developed to effectively deliver siVEGF to hepatocellular carcinoma cells (Bel-7402 cells). To improve the gene payload and transfection efficiency, a positively charged inner core (CS-SS-9R) was constructed by grafting nona-arginine (9R) onto chitosan (CS) using disulphide bonds. The negatively charged outer shell [BSA-c(RGDyK)] assembled on the surface of the inner core by electrostatic forces that shielded high cationic charges and provided improved targeting. The protein outer shell gradually detached from the inner core in the acidic lysosomal environment, leaving the cationic inner core exposed in order to escape from lysosomes. The nanoparticles were capable of delivering siVEGF into Bel-7402 cells via integrin receptor-mediated endocytosis. Successful lysosomal escape of the inner core and the rapid release of siVEGF into the cytoplasm resulted in a 78.9% decrease in VEGF expression and 81.2% inhibition of tumour cell proliferation. In conclusion, this nanoparticle is responsive to the intracellular environment and accurately delivered siRNA into the cytoplasm, providing a safe and highly efficient gene delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Bohui Xu
- a School of Pharmacy , China Pharmaceutical University , Nanjing , China.,b School of Pharmacy , Nantong University , Nantong , China
| | - Yan Xu
- b School of Pharmacy , Nantong University , Nantong , China
| | - Gaoxing Su
- b School of Pharmacy , Nantong University , Nantong , China
| | - Hongyan Zhu
- b School of Pharmacy , Nantong University , Nantong , China
| | - Li Zong
- a School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
39
|
Cherukula K, Bae WK, Lee JH, Park IK. Programmed 'triple-mode' anti-tumor therapy: Improving peritoneal retention, tumor penetration and activatable drug release properties for effective inhibition of peritoneal carcinomatosis. Biomaterials 2018; 169:45-60. [PMID: 29631167 DOI: 10.1016/j.biomaterials.2018.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Peritoneal carcinomatosis (PC) is a fatal condition arising in the gastrointestinal tract. PC patients administered drugs locally in the tumor region, such as in intraperitoneal chemotherapy (IPCh), suffer from low drug retention time and tumor penetration. Herein, we synthesized a lithocholic acid (LCA)-conjugated disulfide-linked polyethyleneimine (ssPEI) micelle (LAPMi) nanoconstruct by covalently conjugating ssPEI and LCA, thereby forming positive charged nanomicellar structures loaded with paclitaxel (PTX) (LAPMi-PTX) for IPCh. The incorporation of a positive surface charge aided in prolonging the peritoneal retention time, presumably via ascites-induced protein corona formation, and the subsequent size expansion caused resistance against undesired clearance through lymphatic openings. Furthermore, preferential tumor penetration by LAPMi-PTX is attributable to the permeation-enhancing properties of LCA, and the subsequent tumor activatable drug release was induced by the presence of disulfide linkages. By integrating these properties, LAPMi exhibited prolonged peritoneal residence time, enhanced tumor permeation and chemotherapeutic effect evidenced by in vitro, tumor spheroid and in vivo studies. Importantly, our strategy enabled significant PC inhibition and increased the overall survival rate of tumor-bearing mice. In conclusion, we provided a new paradigm of intractable PC treatment by enabling the prolonged residence time of the nanoconstruct, thereby enhancing tumor penetration and anti-tumor therapy.
Collapse
Affiliation(s)
- Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Jae Hyuk Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
40
|
Rajendrakumar SK, Cherukula K, Park HJ, Uthaman S, Jeong YY, Lee BI, Park IK. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J Control Release 2018; 276:72-83. [PMID: 29499218 DOI: 10.1016/j.jconrel.2018.02.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/10/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Stimuli-responsive polymeric nanoparticles are useful for overcoming challenges such as transfection efficiency and the specific and safe delivery of genes to cancer cells. Transfection outcomes can be improved through spatially and temporally controlled gene release. We formulated a nanoassembly comprising a disulfide-crosslinked polyethylenimine (ssPEI) conjugated with a tumor-specific cell-penetrating peptide (DS 4-3) (SPD) polyplex and bovine serum albumin (BSA)-loaded IR780 (BI) nanoparticle, thereby forming a dual-stimulus-triggered, tumor-penetrating and gene-carrying nanoassembly (BI-SPD) via electrostatic complexing. BI-SPD nanoassembly were composed of highly stable nanosized complexes with an average size of 457 ± 27.5 nm, exhibiting an up to two-fold enhanced transfection efficiency with no sign of potential cytotoxicity in breast cancer cells. Moreover, upon laser irradiation, a four-fold increase in transfection efficiency was achieved due to the rapid endosomal escape of polyplexes triggered by the local heat induced by the BI-SPD nanoassembly. Additionally, the high redox environment in tumor cells facilitated the disassembly of the SPD polyplex for efficient plasmid release in the cytosol. The BI-SPD nanoassembly also exhibited high penetration and enhanced photothermally triggered gene expression in the 4T1 spheroid model. This BI-SPD nanoassembly has the potential to enhance the expression of therapeutic genes in tumor models without causing significant toxicity to surrounding healthy tissues, since it has shown higher tumor targeting and accumulation in the 4T1 tumor in mice model.
Collapse
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | - Hyeong Ju Park
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju 61007, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 58128, South Korea
| | - Byeong-Il Lee
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju 61007, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea.
| |
Collapse
|
41
|
Qiu L, Zhao L, Xing C, Zhan Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Yao W, Cheng X, Fu S, Yan G, Wang X, Tang R. Low molecular weight polyethylenimine-grafted soybean protein gene carriers with low cytotoxicity and greatly improved transfection in vitro. J Biomater Appl 2018; 32:957-966. [PMID: 29262753 DOI: 10.1177/0885328217748021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A series of gene carriers (SP-PEI) have been synthesized by acylation reaction between soybean protein and branched polyethylenimine with low molecular weight of 600, 1200 and 1800 Da, and designed as SP-PEI600, SP-PEI1200 and SP-PEI1800, respectively. SP-PEI could effectively condense plasmid DNA into nanoscale polyplexes with size range of 100-200 nm, and exhibited much lower cytotoxicity against 293T and SH-SY5Y cells than that of branched polyethylenimine (25 kDa). In vitro gene transfection demonstrated that SP-PEI/DNA complex displayed increased transfection against 293T and SH-SY5Y cells with the increase of the weight ratio of SP-PEI/DNA complex with or without 10% serum. At weight ratio of 24, SP-PEI1800/DNA polyplexes showed the highest transfection on SH-SY5Y cells, which was almost three folds higher than PEI (25 kDa). Furthermore, these SP-PEIs/DNA polyplexes could effectively transfect 293T and SH-SY5Y cells with or without 10% serum, suggesting their excellent serum tolerance.
Collapse
Affiliation(s)
- Weijing Yao
- School of Life Science, Anhui University, Hefei, China
| | - Xu Cheng
- School of Life Science, Anhui University, Hefei, China
| | - Shengxiang Fu
- School of Life Science, Anhui University, Hefei, China
| | - Guoqing Yan
- School of Life Science, Anhui University, Hefei, China
| | - Xin Wang
- School of Life Science, Anhui University, Hefei, China
| | - Rupei Tang
- School of Life Science, Anhui University, Hefei, China
| |
Collapse
|
43
|
Kwon K, Kim JC. Monoolein cubic phase containing disulfide proteinoid and its reduction-responsive release property. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1370675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyeongnan Kwon
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
44
|
Redox sensitive cationic pullulan for efficient gene transfection and drug retention in C6 glioma cells. Int J Pharm 2017; 530:401-414. [DOI: 10.1016/j.ijpharm.2017.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/22/2022]
|
45
|
Shi B, Zheng M, Tao W, Chung R, Jin D, Ghaffari D, Farokhzad OC. Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. Biomacromolecules 2017; 18:2231-2246. [DOI: 10.1021/acs.biomac.7b00803] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bingyang Shi
- International
Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Meng Zheng
- International
Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wei Tao
- Center for
Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Roger Chung
- Faculty
of Medicine and Health Science, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Dayong Jin
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Institute
for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Dariush Ghaffari
- Center for
Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Center for
Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
46
|
Subianto S, Dutta NK, Choudhury NR. Water-Reprocessable, Reformable, and Ecofriendly Sustainable Material Based on Disulfide-Cross-Linked Polyethyleneimine. ACS OMEGA 2017; 2:3036-3042. [PMID: 31457637 PMCID: PMC6641179 DOI: 10.1021/acsomega.7b00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 05/06/2023]
Abstract
A reformable polymer gel material has been developed based on the disulfide cross-linking of low-molecular-weight polyethylenimine (PEI) that can be synthesized through a facile thiolation method and reprocessed through an aqueous method without the use of solvents or additional chemicals. Despite being made with water-soluble PEI, the cross-linked gel shows good mechanical integrity and its properties can be controlled through the fabrication parameters, maintaining the hydrophilic nature of PEI while being sufficiently robust to form a free-standing film that does not dissolve in water. The properties of the gel have been characterized by Fourier transform infrared spectroscopy, thermogravimetry, and dynamic mechanical analyses, showing the effect of parameters such as the degree of thiolation and thermal curing. The reformability of the gel comes from the disulfide cross-links, which can be disrupted and reformed through a simple, aqueous processing method utilizing ultrasonication, creating an aqueous dispersion, which can be recast multiple times with minimal loss in physical properties.
Collapse
Affiliation(s)
- Surya Subianto
- Future
Industries Institute, University of South
Australia, Adelaide, South Australia 5001, Australia
| | - Naba Kumar Dutta
- Future
Industries Institute, University of South
Australia, Adelaide, South Australia 5001, Australia
- School
of Chemical Engineering, The University
of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Namita Roy Choudhury
- Future
Industries Institute, University of South
Australia, Adelaide, South Australia 5001, Australia
- School
of Chemical Engineering, The University
of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- E-mail: ,
| |
Collapse
|
47
|
Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. Int J Pharm 2017; 525:313-333. [DOI: 10.1016/j.ijpharm.2017.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
|
48
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
49
|
Ashrafi K, Heaysman CL, Phillips GJ, Lloyd AW, Lewis AL. Towards Hypoxia-responsive Drug-eluting Embolization Beads. Int J Pharm 2017; 524:226-237. [PMID: 28373099 DOI: 10.1016/j.ijpharm.2017.03.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Drug release from chemoembolization microspheres stimulated by the presence of a chemically reducing environment may provide benefits for targeting drug resistant and metastatic hypoxic tumours. A water-soluble disulfide-based bifunctional cross-linker bis(acryloyl)-(l)-cystine (BALC) was synthesised, characterised and incorporated into a modified poly(vinyl) alcohol (PVA) hydrogel beads at varying concentrations using reverse suspension polymerisation. The beads were characterised to confirm the amount of cross-linker within each formulation and its effects on the bead properties. Elemental and UV/visible spectroscopic analysis confirmed the incorporation of BALC within the beads and sizing studies showed that in the presence of a reducing agent, all bead formulations increased in mean diameter. The BALC beads could be loaded with doxorubicin hydrochloride and amounts in excess of 300mg of drug per mL of hydrated beads could be achieved but required conversion of the carboxylic acid groups of the BALC to their sodium carboxylate salt forms. Elution of doxorubicin from the beads demonstrated a controlled release via ionic exchange. Some formulations exhibited an increase in size and release of drug in the presence of a reducing agent, and therefore demonstrated the ability to respond to an in vitro reducing environment.
Collapse
Affiliation(s)
- Koorosh Ashrafi
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, United Kingdom; Biocompatibles UK Ltd, A BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, United Kingdom
| | - Clare L Heaysman
- Biocompatibles UK Ltd, A BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, United Kingdom
| | - Gary J Phillips
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, United Kingdom
| | - Andrew W Lloyd
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, United Kingdom
| | - Andrew L Lewis
- Biocompatibles UK Ltd, A BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, United Kingdom.
| |
Collapse
|
50
|
Niida A, Sasaki S, Yonemori K, Sameshima T, Yaguchi M, Asami T, Sakamoto K, Kamaura M. Investigation of the structural requirements of K-Ras(G12D) selective inhibitory peptide KRpep-2d using alanine scans and cysteine bridging. Bioorg Med Chem Lett 2017; 27:2757-2761. [PMID: 28457754 DOI: 10.1016/j.bmcl.2017.04.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
Abstract
A structure-activity relationship study of a K-Ras(G12D) selective inhibitory cyclic peptide, KRpep-2d was performed. Alanine scanning of KRpep-2d focusing on the cyclic moiety showed that Leu7, Ile9, and Asp12 are the key elements for K-Ras(G12D) selective inhibition of KRpep-2d. The cysteine bridging was also examined to identify the stable analog of KRpep-2d under reductive conditions. As a result, the KRpep-2d analog (12) including mono-methylene bridging showed potent K-Ras(G12D) selective inhibition in both the presence and the absence of dithiothreitol. This means that mono-methylene bridging is an effective strategy to obtain a reduction-resistance analog of parent disulfide cyclic peptides. Peptide 12 inhibited proliferation of K-Ras(G12D)-driven cancer cells significantly. These results gave valuable information for further optimization of KRpep-2d to provide novel anti-cancer drug candidates targeting the K-Ras(G12D) mutant.
Collapse
Affiliation(s)
- Ayumu Niida
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Shigekazu Sasaki
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuko Yonemori
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoya Sameshima
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Yaguchi
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Taiji Asami
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kotaro Sakamoto
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masahiro Kamaura
- Research, Takeda Pharmaceutical Company, Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|