1
|
Mehrarya M, Gharehchelou B, Kabarkouhi Z, Ataei S, Esfahani FN, Wintrasiri MN, Mozafari MR. Functionalized Nanostructured Bioactive Carriers: Nanoliposomes, Quantum Dots, Tocosome and Theranostic Approach. Curr Drug Deliv 2022; 19:1001-1011. [PMID: 35331111 DOI: 10.2174/1567201819666220324092933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipidic nanocarriers have great potential for the encapsulation and delivery of numerous bioactive compounds. They have demonstrated significant benefits over traditional disease management and conventional therapy. The benefits associated with the particular properties of lipidic nanocarriers include site-specific drug deposition, improved pharmacokinetics and pharmacodynamics, enhanced internalization and intracellular transport, biodegradability, and decreased biodistribution. These properties result in the alleviation of the harmful consequences of conventional treatment protocols. Scope and approach: The administration of various bioactive molecules has been extensively investigated using nanostructured lipid carriers. In this article, theranostic applications of novel formulations of lipidic nanocarriers combined or complexed with quantum dots, certain polymers such as chitosan, and metallic nanoparticles (particularly gold) are reviewed. These formulations have demonstrated better controlled release features, improved drug loading capability, as well as a lower burst release rate. As a recent innovation in the field of drug delivery, tocosomes and their unique advantages are also explained in the final section of this entry. KEY FINDINGS AND CONCLUSIONS Theranostic medicine requires nanocarriers with improved target-specific accumulation and bio-distribution. Towards this end, lipid-based nanocarrier systems and tocosomes combined with unique properties of quantum dots, biocompatible polymers, and metallic nanoparticles seem to be ideal candidates to be considered for safe and efficient drug delivery.
Collapse
Affiliation(s)
- Mehrnoush Mehrarya
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Zeinab Kabarkouhi
- Laser and Plasma Research Institute, Shahid Beheshti University, and Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara Ataei
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fahime Nasr Esfahani
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milint Neleptchenko Wintrasiri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| | - M R Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| |
Collapse
|
2
|
Liang Z, Khawar MB, Liang J, Sun H. Bio-Conjugated Quantum Dots for Cancer Research: Detection and Imaging. Front Oncol 2021; 11:749970. [PMID: 34745974 PMCID: PMC8569511 DOI: 10.3389/fonc.2021.749970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Ultrasound, computed tomography, magnetic resonance, and gamma scintigraphy-based detection and bio-imaging technologies have achieved outstanding breakthroughs in recent years. However, these technologies still encounter several limitations such as insufficient sensitivity, specificity and security that limit their applications in cancer detection and bio-imaging. The semiconductor quantum dots (QDs) are a kind of newly developed fluorescent nanoparticles that have superior fluorescence intensity, strong resistance to photo-bleaching, size-tunable light emission and could produce multiple fluorescent colors under single-source excitation. Furthermore, QDs have optimal surface to link with multiple targets such as antibodies, peptides, and several other small molecules. Thus, QDs might serve as potential, more sensitive and specific methods of detection than conventional methods applied in cancer molecular targeting and bio-imaging. However, many challenges such as cytotoxicity and nonspecific uptake still exist limiting their wider applications. In the present review, we aim to summarize the current applications and challenges of QDs in cancer research mainly focusing on tumor detection, bio-imaging, and provides opinions on how to address these challenges.
Collapse
Affiliation(s)
- Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
3
|
Yaghini E, Tacconi E, Pilling A, Rahman P, Broughton J, Naasani I, Keshtgar MRS, MacRobert AJ, Della Pasqua O. Population pharmacokinetic modelling of indium-based quantum dot nanoparticles: preclinical in vivo studies. Eur J Pharm Sci 2020; 157:105639. [PMID: 33188925 PMCID: PMC8214104 DOI: 10.1016/j.ejps.2020.105639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
There is considerable interest in biomedical applications of quantum dot (QD) nanoparticles, in particular their use as imaging agents for diagnostic applications. In order to investigate the in vivo biodistribution and the potential toxicity of quantum dots (QDs), it is crucial to develop pharmacokinetic (PK) models as basis for prediction of QDs exposure profiles over time. Here, we investigated the in vivo biodistribution of novel indium-based QDs in mice for up to three months after intravenous administration and subsequently developed a translational population PK model to scale findings to humans. This evaluation was complemented by a comprehensive overview of the in vivo toxicology of QDs in rats. The QDs were primarily taken up by the liver and spleen and were excreted via hepatobiliary and urinary pathways. A non-linear mixed effects modelling approach was used to describe blood and organ disposition characteristics of QDs using a multi-compartment PK model. The observed blood and tissue exposure to QDs was characterised with an acceptable level of accuracy at short and long-term. Of note is the fast distribution of QDs from blood into liver and spleen in the first 24 h post-injection (half-life of 28 min) followed by a long elimination profile (half-life range: 47-90 days). This is the first study to assess the PK properties of QDs using a population pharmacokinetic approach to analyse in vivo preclinical data. No organ damage was observed following systemic administration of QDs at doses as high as 48 mg/kg at 24 h, 1 week and 5 weeks post-injection. In conjunction with the data arising from the toxicology experiments, PK parameter estimates provide insight into the potential PK properties of QDs in humans, which ultimately allow prediction of their disposition and enable optimisation of the design of first-in-human QDs studies.
Collapse
Affiliation(s)
- Elnaz Yaghini
- UCL Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK.
| | - Elisa Tacconi
- Clinical Pharmacology and Therapeutics Group, University College London, School of Pharmacy, BMA House, Tavistock Square, London, WC1H 9JP, UK
| | - Andrew Pilling
- ToxPath Consultancy Ltd, Church Road, Wingfield, Diss, IP21 5RA, UK
| | - Paula Rahman
- Nanoco Technologies Ltd, 46 Grafton Street, Manchester M13 9NT, UK
| | - Joe Broughton
- Nanoco Technologies Ltd, 46 Grafton Street, Manchester M13 9NT, UK
| | - Imad Naasani
- Nanoco Technologies Ltd, 46 Grafton Street, Manchester M13 9NT, UK
| | - Mohammed R S Keshtgar
- UCL Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Alexander J MacRobert
- UCL Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Oscar Della Pasqua
- Clinical Pharmacology and Therapeutics Group, University College London, School of Pharmacy, BMA House, Tavistock Square, London, WC1H 9JP, UK
| |
Collapse
|
4
|
Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. Int J Nanomedicine 2020; 15:1437-1456. [PMID: 32184597 PMCID: PMC7060777 DOI: 10.2147/ijn.s236927] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
Collapse
Affiliation(s)
- Umme Ruman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mas Jaffri Masarudin
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
5
|
Targeting and imaging of monocyte-derived macrophages in rat's injured artery following local delivery of liposomal quantum dots. J Control Release 2020; 318:145-157. [DOI: 10.1016/j.jconrel.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 12/27/2022]
|
6
|
Near-Infrared Ag2S quantum dots loaded in phospholipid nanostructures: Physical properties, stability and cytotoxicity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Aizik G, Waiskopf N, Agbaria M, Ben-David-Naim M, Levi-Kalisman Y, Shahar A, Banin U, Golomb G. Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue. NANO LETTERS 2019; 19:5844-5852. [PMID: 31424944 DOI: 10.1021/acs.nanolett.9b01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The majority of developed and approved anticancer nanomedicines have been designed to exploit the dogma of the enhanced permeability and retention (EPR) effect, which is based on the leakiness of the tumor's blood vessels accompanied by impeded lymphatic drainage. However, the EPR effect has been under scrutiny recently because of its variable manifestation across tumor types and animal species and its poor translation to human cancer therapy. To facilitate the EPR effect, systemically injected NPs should overcome the obstacle of rapid recognition and elimination by the mononuclear phagocyte system (MPS). We hypothesized that circulating monocytes, major cells of the MPS that infiltrate the tumor, may serve as an alternative method for achieving increased tumor accumulation of NPs, independent of the EPR effect. We describe here the accumulation of liposomal quantum dots (LipQDs) designed for active delivery via monocytes, in comparison to LipQDs designed for passive delivery (via the EPR effect), following IV administration in a mammary carcinoma model. Hydrophilic QDs were synthesized and entrapped in functionalized liposomes, conferring passive ("stealth" NPs; PEGylated, neutral charge) and active (monocyte-mediated delivery; positively charged) properties by differing in their lipid composition, membrane PEGylation, and charge (positively, negatively, and neutrally charged). The various physicochemical parameters affecting the entrapment yield and optical stability were examined in vitro and in vivo. Biodistribution in the blood, various organs, and in the tumor was determined by the fluorescence intensity and Cd analyses. Following the treatment of animals (intact and mammary-carcinoma-bearing mice) with disparate formulations of LipQDs (differing by their lipid composition, neutrally and positively charged surfaces, and hydrophilic membrane), we demonstrate comparable tumor uptake of QDs delivered by the passive and the active routes (mainly by Ly-6Chi monocytes). Our findings suggest that entrapping QDs in nanosized liposomal formulations, prepared by a new facile method, imparts superior structural and optical stability and a suitable biodistribution profile leading to increased tumor uptake of fluorescently stable QDs.
Collapse
|
8
|
Zayed DG, AbdElhamid AS, Freag MS, Elzoghby AO. Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging. Nanomedicine (Lond) 2019; 14:225-228. [PMID: 30652951 DOI: 10.2217/nnm-2018-0414] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Dina G Zayed
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed S AbdElhamid
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - May S Freag
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA 02139, USA
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Chen LJ, Yang CX, Yan XP. Liposome-Coated Persistent Luminescence Nanoparticles as Luminescence Trackable Drug Carrier for Chemotherapy. Anal Chem 2017; 89:6936-6939. [PMID: 28605896 DOI: 10.1021/acs.analchem.7b01397] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Near-infrared persistent luminescence nanoparticles (NIR-PLNPs) are promising imaging agents due to deep tissue penetration, high signal-to-noise ratio, and repeatedly charging ability. Here, we report liposome-coated NIR-PLNPs (Lipo-PLNPs) as a novel persistent luminescence imaging guided drug carrier for chemotherapy. The Lipo-PLNP nanocomposite shows the advantages of superior persistent luminescence and high drug loading efficiency and enables autofluorescence-free and long-term tracking of drug delivery carriers with remarkable therapeutic effect.
Collapse
Affiliation(s)
- Li-Jian Chen
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Xiu-Ping Yan
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University , 94 Weijin Road, Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
10
|
Aizik G, Waiskopf N, Agbaria M, Levi-Kalisman Y, Banin U, Golomb G. Delivery of Liposomal Quantum Dots via Monocytes for Imaging of Inflamed Tissue. ACS NANO 2017; 11:3038-3051. [PMID: 28196324 DOI: 10.1021/acsnano.7b00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantum dots (QDs), semiconductor nanocrystals, are fluorescent nanoparticles of growing interest as an imaging tool of a diseased tissue. However, a major concern is their biocompatibility, cytotoxicity, and fluorescence instability in biological milieu, impeding their use in biomedical applications, in general, and for inflammation imaging, in particular. In addition, for an efficient fluorescent signal at the desired tissue, and avoiding systemic biodistribution and possible toxicity, targeting is desired. We hypothesized that phagocytic cells of the innate immunity system (mainly circulating monocytes) can be exploited as transporters of specially designed liposomes containing QDs to the inflamed tissue. We developed a liposomal delivery system of QDs (LipQDs) characterized with high encapsulation yield, enhanced optical properties including far-red emission wavelength and fluorescent stability, high quantum yield, and protracted fluorescent decay lifetime. Treatment with LipQDs, rather than free QDs, exhibited high accumulation and retention following intravenous administration in carotid-injured rats (an inflammatory model). QD-monocyte colocalization was detected in the inflamed arterial segment only following treatment with LipQDs. No cytotoxicity was observed following LipQD treatment in cell cultures, and changes in liver enzymes and gross histopathological changes were not detected in mice and rats, respectively. Our results suggest that the LipQD formulation could be a promising strategy for imaging inflammation.
Collapse
Affiliation(s)
- Gil Aizik
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Nir Waiskopf
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Majd Agbaria
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Yael Levi-Kalisman
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Uri Banin
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Gershon Golomb
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| |
Collapse
|
11
|
Abstract
Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.
Collapse
Affiliation(s)
- Qi Wang
- School of Medicine, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Yi-Min Chao
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
12
|
Yaghini E, Turner HD, Le Marois AM, Suhling K, Naasani I, MacRobert AJ. In vivo biodistribution studies and ex vivo lymph node imaging using heavy metal-free quantum dots. Biomaterials 2016; 104:182-91. [PMID: 27454064 PMCID: PMC4993815 DOI: 10.1016/j.biomaterials.2016.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/08/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Quantum dots (QDs) are attractive photoluminescence probes for biomedical imaging due to their unique photophysical properties. However, the potential toxicity of QDs has remained a major obstacle to their clinical use because they commonly incorporate the toxic heavy metal cadmium within the core of the QDs. In this work, we have evaluated a novel type of heavy metal-free/cadmium-free and biocompatible QD nanoparticles (bio CFQD(®) nanoparticles) with a good photoluminescence quantum yield. Sentinel lymph node mapping is an increasingly important treatment option in the management of breast cancer. We have demonstrated their potential for lymph node mapping by ex vivo imaging of regional lymph nodes after subcutaneous injection in the paw of rats. Using photoluminescence imaging and chemical extraction measurements based on elemental analysis by inductively coupled plasma mass spectroscopy, the quantum dots are shown to accumulate quickly and selectively in the axillary and thoracic regional lymph nodes. In addition, lifetime imaging microscopy of the QD photoluminescence indicates minimal perturbation to their photoluminescence properties in biological systems.
Collapse
Affiliation(s)
- Elnaz Yaghini
- Division of Surgery and Interventional Science and Institute of Healthcare Engineering, University College London, London, UK.
| | - Helen D Turner
- Nanoco Technologies Ltd., 46 Grafton Street, Manchester, UK
| | | | - Klaus Suhling
- Department of Physics, King's College London, London, UK
| | - Imad Naasani
- Nanoco Technologies Ltd., 46 Grafton Street, Manchester, UK
| | - Alexander J MacRobert
- Division of Surgery and Interventional Science and Institute of Healthcare Engineering, University College London, London, UK
| |
Collapse
|
13
|
Huang Y, Hemmer E, Rosei F, Vetrone F. Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs. J Phys Chem B 2016; 120:4992-5001. [DOI: 10.1021/acs.jpcb.6b02013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Huang
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
| | - Eva Hemmer
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
| | - Federico Rosei
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
- Institute
for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, PR China
- Centre
for Self-Assembled Chemical Structures, McGill University, Montreal, Québec H3A 2K6, Canada
| | - Fiorenzo Vetrone
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
- Institute
for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, PR China
- Centre
for Self-Assembled Chemical Structures, McGill University, Montreal, Québec H3A 2K6, Canada
| |
Collapse
|
14
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Guo F, Yu M, Wang J, Tan F, Li N. Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20556-20567. [PMID: 26322900 DOI: 10.1021/acsami.5b06552] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The therapeutic effectiveness of chemotherapy was hampered by dose-limiting toxicity and was optimal only when tumor cells were subjected to a maximum drug exposure. The purpose of this work was to design a dual-functional thermosensitive bubble-generating liposome (BTSL) combined with conjugated targeted ligand (folate, FA) and photothermal agent (IR780), to realize enhanced therapeutic and diagnostic functions. This drug carrier was proposed to target tumor cells owing to FA-specific binding, followed by triggering drug release due to the decomposition of encapsulated ammonium bicarbonate (NH4HCO3) (generated CO2 bubbles) by being subjected to near-infrared (near-IR) laser irradiation, creating permeable defects in the lipid bilayer that rapidly release drug. In vitro temperature-triggered release study indicated the BTSL system was sensitive to heat triggering, resulting in rapid drug release under hyperthermia. For in vitro cellular uptake experiments, different results were observed on human epidermoid carcinoma cells (KB cells) and human lung cancer cells (A549 cells) due to their different (positive or negative) response to FA receptor. Furthermore, in vivo biodistribution analysis and antitumor study indicated IR780-BTSL-FA could specifically target KB tumor cells, exhibiting longer circulation time than free drug. In the pharmacodynamics experiments, IR780-BTSL-FA efficiently inhibited tumor growth in nude mice with no evident side effect to normal tissues and organs. Results of this study demonstrated that the constructed smart theranostic nanocarrier IR780-BTSL-FA might contribute to establishment of tumor-selective and effective chemotherapy.
Collapse
Affiliation(s)
- Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , 300072 Tianjin, People's Republic of China
| | - Meng Yu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , 300072 Tianjin, People's Republic of China
| | - Jinping Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , 300072 Tianjin, People's Republic of China
| | - Fengping Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , 300072 Tianjin, People's Republic of China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , 300072 Tianjin, People's Republic of China
| |
Collapse
|
16
|
Gui R, Jin H, Wang Z, Tan L. Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0700-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Zheng M, Zhao P, Luo Z, Gong P, Zheng C, Zhang P, Yue C, Gao D, Ma Y, Cai L. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6709-16. [PMID: 24697646 DOI: 10.1021/am5004393] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Folic acid (FA)-targeted indocyanine green (ICG)-loaded nanoparticles (NPs) (FA-INPs) were developed to a near-infrared (NIR) fluorescence theranostic nanoprobe for targeted imaging and photothermal therapy of cancer. The FA-INPs with good monodispersity exhibited excellent size and fluorescence stability, preferable temperature response under laser irradiation, and specific molecular targeting to MCF-7 cells with FA receptor overexpression, compared to free ICG. The FA-INPs enabled NIR fluorescence imaging to in situ monitor the tumor accumulation of the ICG. The cell survival rate assays in vitro and photothermal therapy treatments in vivo indicated that FA-INPs could efficiently targeted and suppressed MCF-7 cells and xenograft tumors. Hence, the FA-INPs are notable theranostic NPs for imaging-guided cancer therapy in clinical application.
Collapse
Affiliation(s)
- Mingbin Zheng
- Department of Chemistry, Guangdong Medical College , Dongguan 523808, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brasil AG, Carvalho KHG, Leite ES, Fontes A, Santos BS. Semiquantitative fluorescence method for bioconjugation analysis. Methods Mol Biol 2014; 1199:103-10. [PMID: 25103803 DOI: 10.1007/978-1-4939-1280-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quantum dots (QDs) have been used as fluorescent probes in biological and medical fields such as bioimaging, bioanalytical, and immunofluorescence assays. For these applications, it is important to characterize the QD-protein bioconjugates. This chapter provides details on a versatile method to confirm quantum dot-protein conjugation including the required materials and instrumentation in order to perform the step-by-step semiquantitative analysis of the bioconjugation efficiency by using fluorescence plate readings. Although the protocols to confirm the QD-protein attachment shown here were developed for CdTe QDs coated with specific ligands and proteins, the principles are the same for other QDs-protein bioconjugates.
Collapse
Affiliation(s)
- Aluízio G Brasil
- Research Group on Biomedical Nanotechnology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
20
|
Wen CJ, Sung CT, Aljuffali IA, Huang YJ, Fang JY. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes. NANOTECHNOLOGY 2013; 24:325101. [PMID: 23867977 DOI: 10.1088/0957-4484/24/32/325101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92–134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g(−1); it could be increased to 50 nmol g(−1) after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.
Collapse
Affiliation(s)
- Chih-Jen Wen
- School of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Shen J, Zhao L, Han G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev 2013; 65:744-55. [PMID: 22626980 DOI: 10.1016/j.addr.2012.05.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/11/2022]
Abstract
Lanthanide-doped upconverting luminescent nanoparticles (UCNPs) are promising materials for optical imaging-guided drug delivery and therapy due to their unique optical and chemical properties. UCNPs absorb low energy near-infrared (NIR) light and emit high-energy shorter wavelength photons. Their special features allow them to overcome various problems associated with conventional imaging probes and to provide versatility for creating nanoplatforms with both imaging and therapeutic modalities. Here, we discuss several approaches to fabricate and utilize UCNPs for traceable drug delivery and therapy.
Collapse
Affiliation(s)
- Jie Shen
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts-Medical School, 364 Plantation Street, LRB 806, Worcester, MA 01605, USA
| | | | | |
Collapse
|
22
|
Zhang Y, Zhang Y, Hong G, He W, Zhou K, Yang K, Li F, Chen G, Liu Z, Dai H, Wang Q. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013; 34:3639-46. [DOI: 10.1016/j.biomaterials.2013.01.089] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/27/2013] [Indexed: 12/12/2022]
|
23
|
In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:257-63. [DOI: 10.1016/j.nano.2012.06.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/07/2012] [Accepted: 06/08/2012] [Indexed: 12/19/2022]
|
24
|
Al-Ahmady ZS, Al-Jamal WT, Bossche JV, Bui TT, Drake AF, Mason AJ, Kostarelos K. Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS NANO 2012; 6:9335-46. [PMID: 22857653 PMCID: PMC3480335 DOI: 10.1021/nn302148p] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The present study describes leucine zipper peptide-lipid hybrid nanoscale vesicles engineered by self-assembled anchoring of the amphiphilic peptide within the lipid bilayer. These hybrid vesicles aim to combine the advantages of traditional temperature-sensitive liposomes (TSL) with the dissociative, unfolding properties of a temperature-sensitive peptide to optimize drug release under mild hyperthermia, while improving in vivo drug retention. The secondary structure of the peptide and its thermal responsiveness after anchoring onto liposomes were studied with circular dichroism. In addition, the lipid-peptide vesicles (Lp-peptide) showed a reduction in bilayer fluidity at the inner core, as observed with DPH anisotropy studies, while the opposite effect was observed with an ANS probe, indicating peptide interactions with both the headgroup region and the hydrophobic core. A model drug molecule, doxorubicin, was successfully encapsulated in the Lp-peptide vesicles at higher than 90% efficiency following the remote loading, pH-gradient methodology. The release of doxorubicin from Lp-peptide hybrids in vitro indicated superior serum stability at physiological temperatures compared to lysolipid-containing temperature-sensitive liposomes (LTSL) without affecting the overall thermo-responsive nature of the vesicles at 42 °C. A similar stabilizing effect was observed in vivo after intravenous administration of the Lp-peptide vesicles by measuring (14)C-doxorubicin blood kinetics that also led to increased tumor accumulation after 24 h. We conclude that Lp-peptide hybrid vesicles present a promising new class of TSL that can offer previously unexplored opportunities for the development of clinically relevant mild hyperthermia-triggered therapeutic modalities.
Collapse
Affiliation(s)
- Zahraa S. Al-Ahmady
- Nanomedicine Lab, Centre for Drug Delivery Research, UCL School of Pharmacy, University College London, WC1N 1AX, United Kingdom
| | - Wafa’ T. Al-Jamal
- Nanomedicine Lab, Centre for Drug Delivery Research, UCL School of Pharmacy, University College London, WC1N 1AX, United Kingdom
| | - Jeroen V. Bossche
- Nanomedicine Lab, Centre for Drug Delivery Research, UCL School of Pharmacy, University College London, WC1N 1AX, United Kingdom
| | - Tam T. Bui
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Alex F. Drake
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - A. James Mason
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Centre for Drug Delivery Research, UCL School of Pharmacy, University College London, WC1N 1AX, United Kingdom
| |
Collapse
|
25
|
Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 2012; 51:9818-21. [PMID: 22951900 DOI: 10.1002/anie.201206059] [Citation(s) in RCA: 466] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Indexed: 11/07/2022]
Abstract
Hits the dot: Ag(2)S quantum dots (QDs) with bright near-infrared-II fluorescence emission (around 1200 nm) and six-arm branched PEG surface coating were synthesized for in vivo small-animal imaging. The 6PEG-Ag(2)S QDs afforded a tumor uptake of approximately 10 % injected dose/gram, owing to a long circulation half-life of approximately 4 h. Clearance of the injected 6PEG-Ag(2)S QDs occurs mainly through the biliary pathway in mice.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206059] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Dan M, Tseng MT, Wu P, Unrine JM, Grulke EA, Yokel RA. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial. Int J Nanomedicine 2012; 7:4023-36. [PMID: 22888240 PMCID: PMC3414084 DOI: 10.2147/ijn.s32526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 11/23/2022] Open
Abstract
Purpose: Ceria engineered nanomaterials (ENMs) have current commercial applications and both neuroprotective and toxic effects. Our hypothesis is that ceria ENMs can associate with brain capillary cells and/or cross the blood–brain barrier. Methods: An aqueous dispersion of ∼5 nm ceria ENM was synthesized and characterized in house. Its uptake space in the Sprague Dawley rat brain was determined using the in situ brain perfusion technique at 15 and 20 mL/minute flow rates; 30, 100, and 500 μg/mL ceria perfused for 120 seconds at 20 mL/minute; and 30 μg/mL perfused for 20, 60, and 120 seconds at 20 mL/minute. The capillary depletion method and light and electron microscopy were used to determine its capillary cell and brain parenchymal association and localization. Results: The vascular space was not significantly affected by brain perfusion flow rate or ENM, demonstrating that this ceria ENM did not influence blood–brain barrier integrity. Cerium concentrations, determined by inductively coupled plasma mass spectrometry, were significantly higher in the choroid plexus than in eight brain regions in the 100 and 500 μg/mL ceria perfusion groups. Ceria uptake into the eight brain regions was similar after 120-second perfusion of 30, 100, and 500 μg ceria/mL. Ceria uptake space significantly increased in the eight brain regions and choroid plexus after 60 versus 20 seconds, and it was similar after 60 and 120 seconds. The capillary depletion method showed 99.4% ± 1.1% of the ceria ENM associated with the capillary fraction. Electron microscopy showed the ceria ENM located on the endothelial cell luminal surface. Conclusion: Ceria ENM association with brain capillary endothelial cells saturated between 20 and 60 seconds and ceria ENM brain uptake was not diffusion-mediated. During the 120-second ceria ENM perfusion, ceria ENM predominately associated with the surface of the brain capillary cells, providing the opportunity for its cell uptake or redistribution back into circulating blood.
Collapse
Affiliation(s)
- Mo Dan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Academic Medical Center, Lexington, KY 40536-0596, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Liu J, Yang X, Wang K, He Y, Zhang P, Ji H, Jian L, Liu W. Single nanoparticle imaging and characterization of different phospholipid-encapsulated quantum dot micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10602-10609. [PMID: 22716937 DOI: 10.1021/la301873m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phospholipid quantum dot (QD) micelles have been extensively used as fluorescent tags in single nanoparticle imaging for biomedical imaging. In this work, the microscopic structures and photophysical properties of the phospholipid QD micelles were studied at the single nanoparticle level. Two commonly used types of phospholipid QD micelles were prepared and tested both on a solid-phase surface and in liquid phase, including 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-encapsulated QD micelles (DSPE-QDMs) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]-encapsulated QD micelles (PEG-DSPE-QDMs). Their fluorescence intensities and diffusion trajectories were determined by a total internal reflection fluorescence-based single nanoparticle imaging platform and comparatively analyzed carefully. It was demonstrated that DSPE-QDMs possessed a comparably wider intensity distribution and lower diffusion coefficient than that of PEG-DSPE-QDMs. PEG-DSPE-QDMs exhibited an obvious fluorescent intermittence. The results suggested that for most of the DSPE-QDMs, more than one QD were encapsulated in a single micelle. On the other hand, only one QD was embedded in a single micelle of PEG-DSPE-QDMs for most of the cases. Such variances suggested that phospholipids play a key role in the fabrication of the QD micelles. This work provides a useful foundation for their further biomedical applications.
Collapse
Affiliation(s)
- Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu SJ, Wen Q, Tang LJ, Jiang JH. Phospholipid–Graphene Nanoassembly as a Fluorescence Biosensor for Sensitive Detection of Phospholipase D Activity. Anal Chem 2012; 84:5944-50. [DOI: 10.1021/ac300539s] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Si-Jia Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic
of China
| | - Qian Wen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic
of China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic
of China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic
of China
| |
Collapse
|
30
|
Ye L, Yong KT, Liu L, Roy I, Hu R, Zhu J, Cai H, Law WC, Liu J, Wang K, Liu J, Liu Y, Hu Y, Zhang X, Swihart MT, Prasad PN. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. NATURE NANOTECHNOLOGY 2012; 7:453-8. [PMID: 22609691 DOI: 10.1038/nnano.2012.74] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/17/2012] [Indexed: 05/20/2023]
Abstract
Quantum dots have been used in biomedical research for imaging, diagnostics and sensing purposes. However, concerns over the cytotoxicity of their heavy metal constituents and conflicting results from in vitro and small animal toxicity studies have limited their translation towards clinical applications. Here, we show in a pilot study that rhesus macaques injected with phospholipid micelle-encapsulated CdSe/CdS/ZnS quantum dots do not exhibit evidence of toxicity. Blood and biochemical markers remained within normal ranges following treatment, and histology of major organs after 90 days showed no abnormalities. Our results show that acute toxicity of these quantum dots in vivo can be minimal. However, chemical analysis revealed that most of the initial dose of cadmium remained in the liver, spleen and kidneys after 90 days. This means that the breakdown and clearance of quantum dots is quite slow, suggesting that longer-term studies will be required to determine the ultimate fate of these heavy metals and the impact of their persistence in primates.
Collapse
Affiliation(s)
- Ling Ye
- Institute of Gerontology and Geriatrics, Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine 2012; 7:1599-611. [PMID: 22619515 PMCID: PMC3356172 DOI: 10.2147/ijn.s29369] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Quantum dots (QDs) and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders.
Collapse
Affiliation(s)
- Chih-Jen Wen
- Molecular Imaging Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Design and Engineering of Multifunctional Quantum Dot-Based Nanoparticles for Simultaneous Therapeutic-Diagnostic Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-4614-2305-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
33
|
Dakwar GR, Abu Hammad I, Popov M, Linder C, Grinberg S, Heldman E, Stepensky D. Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles. J Control Release 2012; 160:315-21. [PMID: 22261280 DOI: 10.1016/j.jconrel.2011.12.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 12/18/2022]
Abstract
Bolaamphiphilic cationic vesicles with acetylcholine (ACh) surface groups were investigated for their ability to deliver a model protein-bovine serum albumin conjugated to fluorescein isothiocyanate (BSA-FITC) across biological barriers in vitro and in vivo. BSA-FITC-loaded vesicles were internalized into cells in culture, including brain endothelial b.End3 cells, at 37 °C, but not at 4 °C, indicating an active uptake process. To examine if BSA-FITC-loaded vesicles were stable enough for in vivo delivery, we tested vesicle stability in whole serum. The half-life of cationic BSA-FITC-loaded vesicles with ACh surface groups that are hydrolyzed by choline esterase (ChE) was about 2 h, whereas the half-life of vesicles with similar surface groups, but which are not hydrolyzed by choline esterase (ChE), was over 5 h. Pyridostigmine, a choline esterase inhibitor that does not penetrate the blood-brain barrier (BBB), increased the stability of the ChE-sensitive vesicles to 6 h but did not affect the stability of vesicles with ACh surface groups that are not hydrolyzed by ChE. Following intravenous administration to pyridostigmine-pretreated mice, BSA-FITC encapsulated in ChE-sensitive vesicles was distributed into various tissues with marked accumulation in the brain, whereas non-encapsulated (free) BSA-FITC was detected only in peripheral tissues, but not in the brain. These results show that cationic bolaamphiphilic vesicles with ACh head groups are capable of delivering proteins across biological barriers, such as the cell membrane and the blood-brain barrier (BBB). Brain ChE activity destabilizes the vesicles and releases the encapsulated protein, enabling its accumulation in the brain.
Collapse
Affiliation(s)
- George R Dakwar
- Department of Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | | | | | | | | | | | | |
Collapse
|
34
|
Dan M, Wu P, Grulke EA, Graham UM, Unrine JM, Yokel RA. Ceria-engineered nanomaterial distribution in, and clearance from, blood: size matters. Nanomedicine (Lond) 2012; 7:95-110. [DOI: 10.2217/nnm.11.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aims: Characterize different sized ceria-engineered nanomaterial (ENM) distribution in, and clearance from, blood (compared to the cerium ion) following intravenous infusion. Materials & Methods: Cerium (Ce) was quantified in whole blood, serum and clot (the formed elements) up to 720 h. Results: Traditional pharmacokinetic modeling showed best fit for 5 nm ceria ENM and the cerium ion. Ceria ENMs larger than 5 nm were rapidly cleared from blood. After initially declining, whole blood 15 and 30 nm ceria increased (results that have not been well-described by traditional pharmacokinetic modeling). The cerium ion and 5 and 55 nm ceria did not preferentially distribute into serum or clot, a mixture of cubic and rod shaped ceria was predominantly in the clot, and 15 and 30 nm ceria migrated into the clot over 4 h. Conclusion: Reticuloendothelial organs may not readily recognize five nm ceria. Increased ceria distribution into the clot over time may be due to opsonization. Traditional pharmacokinetic analysis was not very informative. Ceria ENM pharmacokinetics are quite different from the cerium ion.
Collapse
Affiliation(s)
- Mo Dan
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Graduate Center for Toxicology University of Kentucky, Lexington, KY, USA
| | - Peng Wu
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Eric A Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Uschi M Graham
- Center for Applied Energy Research, University of Kentucky, Lexington, KY, USA
| | - Jason M Unrine
- Plant & Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
35
|
Popov M, Grinberg S, Linder C, Waner T, Levi-Hevroni B, Deckelbaum RJ, Heldman E. Site-directed decapsulation of bolaamphiphilic vesicles with enzymatic cleavable surface groups. J Control Release 2011; 160:306-14. [PMID: 22226780 DOI: 10.1016/j.jconrel.2011.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 12/20/2022]
Abstract
Stable nano-sized vesicles with a monolayer encapsulating membrane were prepared from novel bolaamphiphiles with choline ester head groups. The head groups were covalently bound to the alkyl chain of the bolaamphiphiles either via the nitrogen atom of the choline moiety, or via the choline ester's methyl group. Both types of bolaamphiphiles competed with acetylthiocholine for binding to acetylcholine esterase (AChE), yet, only the choline ester head groups bound to the alkyl chain via the nitrogen atom of the choline moiety were hydrolyzed by the enzyme. Likewise, only vesicles composed of bolaamphiphiles with head groups that were hydrolyzed by AChE released their encapsulated material upon exposure to the enzyme. Injection of carboxyfluorescein (CF)-loaded vesicles with cleavable choline ester head groups into mice resulted in the accumulation of CF in tissues that express high AChE activity, including the brain. By comparison, when vesicles with choline ester head groups that are not hydrolyzed by AChE were injected into mice, there was no accumulation of CF in tissues that highly express the enzyme. These results imply that bolaamphiphilic vesicles with surface groups that are substrates to enzymes which are highly expressed in target organs may potentially be used as a drug delivery system with controlled site-directed drug release.
Collapse
Affiliation(s)
- Mary Popov
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | | | | | | | |
Collapse
|
36
|
Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH, Shim JS, Kim K, Kwon IC, Kim DD. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 2011; 33:1190-200. [PMID: 22074664 DOI: 10.1016/j.biomaterials.2011.10.064] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/22/2011] [Indexed: 12/22/2022]
Abstract
Polyethylene glycol (PEG)-conjugated hyaluronic acid-ceramide (HACE) was synthesized for the preparation of doxorubicin (DOX)-loaded HACE-PEG-based nanoparticles, 160 nm in mean diameter with a negative surface charge. Greater uptake of DOX from these HACE-PEG-based nanoparticles was observed in the CD44 receptor highly expressed SCC7 cell line, compared to results from the CD44-negative cell line, NIH3T3. A strong fluorescent signal was detected in the tumor region upon intravenous injection of cyanine 5.5-labeled nanoparticles into the SCC7 tumor xenograft mice; the extended circulation time of the HACE-PEG-based nanoparticle was also observed. Pharmacokinetic study in rats showed a 73.0% reduction of the in vivo clearance of DOX compared to the control group. The antitumor efficacy of the DOX-loaded HACE-PEG-based nanoparticles was also verified in a tumor xenograft mouse model. DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction and by passive targeting due to its small mean diameter (<200 nm). Moreover, PEGylation resulted in prolonged nanoparticle circulation and reduced DOX clearance rate in an in vivo model. These results therefore indicate that PEGylated HACE nanoparticles represent a promising anticancer drug delivery system for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hyun-Jong Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 44:1094-104. [PMID: 21812415 DOI: 10.1021/ar200105p] [Citation(s) in RCA: 460] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For decades, clinicians have used liposomes, self-assembled lipid vesicles, as nanoscale systems to deliver encapsulated anthracycline molecules for cancer treatment. The more recent proposition to combine liposomes with nanoparticles remains at the preclinical development stages; however, such hybrid constructs present great opportunities to engineer theranostic nanoscale delivery systems, which can combine simultaneous therapeutic and imaging functions. Many novel nanoparticles of varying chemical compositions are being developed in nanotechnology laboratories, but further chemical modification is often required to make these structures compatible with the biological milieu in vitro and in vivo. Such nanoparticles have shown promise as diagnostic and therapeutic tools and generally offer a large surface area that allows covalent and non-covalent surface functionalization with hydrophilic polymers, therapeutic moieties, and targeting ligands. In most cases, such surface manipulation diminishes the theranostic properties of nanoparticles and makes them less stable. From our perspective, liposomes offer structural features that can make nanoparticles biocompatible and present a clinically proven, versatile platform for further enhancement of the pharmacological and diagnostic efficacy of nanoparticles. In this Account, we describe two examples of liposome-nanoparticle hybrids developed as theranostics: liposome-quantum dot hybrids loaded with a cytotoxic drug (doxorubicin) and artificially enveloped adenoviruses. We incorporated quantum dots into lipid bilayers, which rendered them dispersible in physiological conditions. This overall vesicular structure allowed them to be loaded with doxorubicin molecules. These structures exhibited cytotoxic activity and labeled cells both in vitro and in vivo. In an alternative design, lipid bilayers assembled around non-enveloped viral nanoparticles and altered their infection tropism in vitro and in vivo with no chemical or genetic capsid modifications. Overall, we have attempted to illustrate how alternative strategies to incorporate nanoparticles into liposomal nanostructures can overcome some of the shortcomings of nanoparticles. Such hybrid structures could offer diagnostic and therapeutic combinations suitable for biomedical and even clinical applications.
Collapse
Affiliation(s)
- Wafa' T Al-Jamal
- Nanomedicine Laboratory, Centre for Drug Delivery Research, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | |
Collapse
|
38
|
Karakoti AS, Das S, Thevuthasan S, Seal S. PEGylierte anorganische Nanopartikel. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201002969] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Karakoti AS, Das S, Thevuthasan S, Seal S. PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl 2011; 50:1980-94. [PMID: 21275011 DOI: 10.1002/anie.201002969] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/16/2010] [Indexed: 12/23/2022]
Abstract
Application of inorganic nanoparticles in diagnosis and therapy has become a critical component in the targeted treatment of diseases. The surface modification of inorganic oxides is important for providing diversity in size, shape, solubility, long-term stability, and attachment of selective functional groups. This Minireview describes the role of polyethylene glycol (PEG) in the surface modification of oxides and focuses on their biomedical applications. Such a PEGylation of surfaces provides "stealth" characteristics to nanomaterials otherwise identified as foreign materials by human body. The role of PEG as structure-directing agent in synthesis of oxides is also presented.
Collapse
Affiliation(s)
- Ajay S Karakoti
- Environmental and Molecular Sciences Laboratory, PNNL, Richland, WA, USA
| | | | | | | |
Collapse
|
40
|
Kaminskas LM, Boyd BJ. Nanosized Drug Delivery Vectors and the Reticuloendothelial System. INTRACELLULAR DELIVERY 2011. [DOI: 10.1007/978-94-007-1248-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
Herber-Jonat S, Mittal R, Gsinn S, Bohnenkamp H, Guenzi E, Schulze A. Comparison of lung accumulation of cationic liposomes in normal rats and LPS-treated rats. Inflamm Res 2010; 60:245-53. [PMID: 20938712 DOI: 10.1007/s00011-010-0260-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Cationic liposomes have been shown to target angiogenic endothelial cells in lungs and joints with evidence of chronic inflammation. We sought to determine whether cationic liposomes accumulate in acutely inflamed lung tissue. SUBJECTS, TREATMENT AND METHODS: Acute lung injury was induced by intratracheal instillation of lipopolysaccharide (LPS) in Sprague Dawley rats. The controls received saline. Following instillation, the rats were ventilated for 5 h. Four hours after LPS-instillation each rat received rhodamine-labeled, cationic liposomes intravenously. The liposomes were allowed to circulate for 1 h. Thereafter, a bronchoalveolar lavage (BAL) was done and the lungs were perfused with saline and formalin. Accumulation of liposomes was assessed by quantitative confocal microscopy and determination of rhodamine-content in lung tissue. RESULTS LPS induced a significant increase in BAL white blood cell count (3,444 ± 1,420 vs. 1,314 ± 906*10(3)/μl) and cytokines (IL-1β: 145.57 vs. 51.94 pg/ml; TNF-α: 3,467.5 vs. 42.1 pg/ml) as compared to controls. Cationic liposomes exhibited an accumulation up to twofold in the inflamed lung tissue as compared to healthy lungs (fluorescent pixels 2.93 vs. 1.90(%)). CONCLUSIONS Our findings indicate that cationic liposomes accumulate in the acutely inflamed lung tissue. This uptake raises the possibility of using cationic liposomes to direct diagnostic/therapeutic agents selectively to the sites of acute inflammation in the lung.
Collapse
Affiliation(s)
- Susanne Herber-Jonat
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Grosshadern, Marchioninistr.15, 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Pang Y, Liu J, Wu J, Li G, Wang R, Su Y, He P, Zhu X, Yan D, Zhu B. Synthesis, characterization, and in vitro evaluation of long-chain hyperbranched poly(ethylene glycol) as drug carrier. Bioconjug Chem 2010; 21:2093-102. [PMID: 20923233 DOI: 10.1021/bc100325a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel long-chain hyperbranched poly(ethylene glycol)s (LHPEGs) with biodegradable connections were designed and synthesized in one pot through proton-transfer polymerization using PEG and commercial glycidyl methacrylate as monomers and potassium hydride as catalyst. The LHPEGs were hydrolyzed at neutral pH resulting in the decrease of molecular weights. In vitro evaluation demonstrated that LHPEGs were biocompatible and displayed negligible hemolytic activity. The efficient cellular uptake of LHPEGs was confirmed by flow cytometry and confocal laser scanning microscopy. Moreover, conjugation of a model hydrophobic anticancer drug methotrexate to LHPEGs inhibited the proliferation of a human cervical carcinoma Hela cell line. MTT assay indicated that the conjugated methotrexate dose required for 50% cellular growth inhibition against Hela cells was 20 μg/mL. By combining the advantages of long-chain hyperbranched structure and PEG, LHPEG provides a promising drug carrier for therapeutic fields.
Collapse
Affiliation(s)
- Yan Pang
- Instrumental Analysis Center, Shanghai Jiao Tong University, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tavares AJ, Chong L, Petryayeva E, Algar WR, Krull UJ. Quantum dots as contrast agents for in vivo tumor imaging: progress and issues. Anal Bioanal Chem 2010; 399:2331-42. [PMID: 20658228 DOI: 10.1007/s00216-010-4010-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Quantum dots (QDs) have shown promise as imaging agents in cancer, heart disease, and gene therapy research. This review focuses on the design of QDs, and modification using peptides and proteins for mediated targeting of tissues for fluorescence imaging of tumors in vivo. Recent examples from the literature are used to illustrate the potential of QDs as effective imaging agents. The distribution and ultimate fate of QDs in vivo is considered, and considerations of designs that minimize potential toxicity are presented.
Collapse
Affiliation(s)
- Anthony J Tavares
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, ON, Canada
| | | | | | | | | |
Collapse
|