1
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Manning JC, Baldoneschi V, Romero-Hernández LL, Pichler KM, GarcÍa Caballero G, André S, Kutzner TJ, Ludwig AK, Zullo V, Richichi B, Windhager R, Kaltner H, Toegel S, Gabius HJ, Murphy PV, Nativi C. Targeting osteoarthritis-associated galectins and an induced effector class by a ditopic bifunctional reagent: Impact of its glycan part on binding measured in the tissue context. Bioorg Med Chem 2022; 75:117068. [PMID: 36327696 DOI: 10.1016/j.bmc.2022.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Pairing glycans with tissue lectins controls multiple effector pathways in (patho)physiology. A clinically relevant example is the prodegradative activity of galectins-1 and -3 (Gal-1 and -3) in the progression of osteoarthritis (OA) via matrix metalloproteinases (MMPs), especially MMP-13. The design of heterobifunctional inhibitors that can block galectin binding and MMPs both directly and by preventing their galectin-dependent induction selectively offers a perspective to dissect the roles of lectins and proteolytic enzymes. We describe the synthesis of such a reagent with a bivalent galectin ligand connected to an MMP inhibitor and of two tetravalent glycoclusters with a subtle change in headgroup presentation for further elucidation of influence on ligand binding. Testing was performed on clinical material with mixtures of galectins as occurring in vivo, using sections of fixed tissue. Two-colour fluorescence microscopy monitored binding to the cellular glycome after optimization of experimental parameters. In the presence of the inhibitor, galectin binding to OA specimens was significantly reduced. These results open the perspective to examine the inhibitory capacity of custom-made ditopic compounds on binding of lectins in mixtures using sections of clinical material with known impact of galectins and MMPs on disease progression.
Collapse
Affiliation(s)
- Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Veronica Baldoneschi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Laura L Romero-Hernández
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Katharina M Pichler
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gabriel GarcÍa Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Stefan Toegel
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090 Vienna, Austria
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Paul V Murphy
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland; SSPC - Science Foundation Ireland Research Centre for Pharmaceuticals, CÚRAM - Science Foundation Ireland Research Centre for Medical Devices, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy; CeRM, University of Florence, via L. Sacconi, 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
3
|
Homo- and Heterogeneous Glycoconjugates on the Basis of N-Glycans and Human Serum Albumin: Synthesis and Biological Evaluation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041285. [PMID: 35209074 PMCID: PMC8877828 DOI: 10.3390/molecules27041285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
Neoglycoconjugates mimicking natural compounds and possessing a variety of biological functions are very successful tools for researchers to understand the general mechanisms of many biological processes in living organisms. These substances are characterized by high biotolerance and specificity, with low toxicity. Due to the difficult isolation of individual glycoclusters from biological objects, special interest has been directed toward synthetic analogs. This review is mainly focused on the one-pot, double-click methodology (containing alkyne–azide click cycloaddition with the following 6π-azaelectrocyclization reactions) used in the synthesis of N-glycoconjugates. Homogeneous (including one type of biantennary N-glycan fragments) and heterogeneous (containing two to four types of biantennary N-glycan fragments) glycoclusters on albumin were synthesized via this strategy. A series of cell-, tissue- and animal-based experiments proved glycoclusters to be a very promising class of targeted delivery systems. Depending on the oligosaccharide units combined in the cluster, their amount, and arrangement relative to one another, conjugates can recognize various cells, including cancer cells, with high selectivity. These results open new perspectives for affected tissue visualization and treatment.
Collapse
|
4
|
Uhler R, Popa-Wagner R, Kröning M, Brehm A, Rennert P, Seifried A, Peschke M, Krieger M, Kohla G, Kannicht C, Wiedemann P, Hafner M, Rosenlöcher J. Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics. Glycobiology 2021; 31:859-872. [PMID: 33403396 DOI: 10.1093/glycob/cwaa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. Simultaneous knock-out of B4GALNT3 and B4GALNT4, and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.
Collapse
Affiliation(s)
- Rico Uhler
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | | | - Mario Kröning
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Anja Brehm
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Paul Rennert
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | | | | | - Markus Krieger
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | - Guido Kohla
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Christoph Kannicht
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany.,Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Philipp Wiedemann
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Institute for Medical Technology, University Heidelberg and the Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | |
Collapse
|
5
|
Smirnov I, Sibgatullina R, Urano S, Tahara T, Ahmadi P, Watanabe Y, Pradipta AR, Kurbangalieva A, Tanaka K. A Strategy for Tumor Targeting by Higher-Order Glycan Pattern Recognition: Synthesis and In Vitro and In Vivo Properties of Glycoalbumins Conjugated with Four Different N-Glycan Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004831. [PMID: 33079456 DOI: 10.1002/smll.202004831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Natural glycoconjugates that form glycocalyx play important roles in various biological processes based on cell surface recognition through pattern recognition mechanisms. This work represents a new synthesis-based screening strategy to efficiently target the cancer cells by higher-order glycan pattern recognition in both cells and intact animals (mice). The use of the very fast, selective, and effective RIKEN click reaction (6π-azaelectrocyclization of unsaturated imines) allows to synthesize and screen various structurally well-defined glycoalbumins containing two and eventually four different N-glycan structures in a very short time. The importance of glycan pattern recognition is exemplified in both cell- and mouse-based experiments. The use of pattern recognition mechanisms for cell targeting represents a novel and promising strategy for the development of diagnostic, prophylactic, and therapeutic agents for various diseases including cancers.
Collapse
Affiliation(s)
- Ivan Smirnov
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Regina Sibgatullina
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Peni Ahmadi
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ambara R Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
6
|
Vong K, Yamamoto T, Tanaka K. Artificial Glycoproteins as a Scaffold for Targeted Drug Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906890. [PMID: 32068952 DOI: 10.1002/smll.201906890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Akin to a cellular "fingerprint," the glycocalyx is a glycan-enriched cellular coating that plays a crucial role in mediating cell-to-cell interactions. To gain a better understanding of the factors that govern in vivo recognition, artificial glycoproteins were initially created to probe changes made to the accumulation and biodistribution of specific glycan assemblies through biomimicry. As a result, the organ-specific accumulation for a variety of glycoproteins decorated with simple and/or complex glycans was identified. Additionally, binding trends with regard to cancer cell selectivity were also investigated. To exploit the knowledge gained from these studies, numerous groups thus became engaged in developing targeted drug methodologies based on the use of artificial glycoproteins. This has either been done through adopting the glycoprotein scaffold as a drug carrier, or to directly glycosylate therapeutic proteins/enzymes to localize their biological activity. The principle aim of this Review is to present the foundational research that has driven artificial glycoprotein-based targeting and subsequent adaptations with potential therapeutic applications.
Collapse
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
7
|
Ogura A, Tanaka K. Next-generation Glycocluster for Achieving Pattern Recognition in Living System. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research
| |
Collapse
|
8
|
Kaltner H, Manning JC, García Caballero G, Di Salvo C, Gabba A, Romero-Hernández LL, Knospe C, Wu D, Daly HC, O'Shea DF, Gabius HJ, Murphy PV. Revealing biomedically relevant cell and lectin type-dependent structure–activity profiles for glycoclusters by using tissue sections as an assay platform. RSC Adv 2018; 8:28716-28735. [PMID: 35542469 PMCID: PMC9084366 DOI: 10.1039/c8ra05382k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
The increasing realization of the involvement of lectin-glycan recognition in (patho)physiological processes inspires envisioning therapeutic intervention by high-avidity/specificity blocking reagents. Synthetic glycoclusters are proving to have potential for becoming such inhibitors but the commonly used assays have their drawbacks to predict in vivo efficacy. They do not represent the natural complexity of (i) cell types and (ii) spatial and structural complexity of glycoconjugate representation. Moreover, testing lectins in mixtures, as present in situ, remains a major challenge, giving direction to this work. Using a toolbox with four lectins and six bi- to tetravalent glycoclusters bearing the cognate sugar in a model study, we here document the efficient and versatile application of tissue sections (from murine jejunum as the model) as a platform for routine and systematic glycocluster testing without commonly encountered limitations. The nature of glycocluster structure, especially core and valency, and of protein features, i.e. architecture, fine-specificity and valency, are shown to have an influence, as cell types can differ in response profiles. Proceeding from light microscopy to monitoring by fluorescence microscopy enables grading of glycocluster activity on individual lectins tested in mixtures. This work provides a robust tool for testing glycoclusters prior to considering in vivo experiments. Introducing tissue sections for testing glycocluster activity as inhibitors of lectin binding close to in vivo conditions.![]()
Collapse
|
9
|
Sibgatullina R, Fujiki K, Murase T, Yamamoto T, Shimoda T, Kurbangalieva A, Tanaka K. Highly reactive “RIKEN click” probe for glycoconjugation on lysines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius HJ. Network analysis of adhesion/growth-regulatory galectins and their binding sites in adult chicken retina and choroid. J Anat 2017; 231:23-37. [PMID: 28425099 DOI: 10.1111/joa.12612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
The highly ordered multilayered organization of the adult chicken retina is a suitable test model for examining zonal distribution of the members of a bioeffector family. Based on the concept of the sugar code, the functional pairing of glycan epitopes with cognate receptors (lectins) is emerging as a means to explain the control of diverse physiological activities. Having recently completed the biochemical characterization of all seven adhesion/growth-regulatory galectins present in chicken, it was possible to establish how the individual characteristics of their expression profiles add up to shape the galectin network, which until now has not been defined at this level of complexity. This information will also have relevance in explaining the region-specific presence of glycan determinants in the retina, as illustrated in the first part of this study using a panel of nine plant/fungal agglutinins. The following systematic monitoring of the galectins yielded patterns for which quantitative and qualitative differences were detected. Obviously, positivity in distinct layers is not confined to a single protein of this family, e.g. CG-1A, CG-3 or CG-8. These results underline the requirement for network analysis for these proteins that can functionally interact in additive or antagonistic modes. Labeling of the tissue galectins facilitated profiling of their accessible binding sites. It also revealed differences among the galectin family members, highlighting the ability of this method to define binding properties on the level of tissue sections. Methodologically, the detection of endogenous lectins intimates that cognate glycans can become inaccessible, a notable caveat for lectin histochemical studies.
Collapse
Affiliation(s)
- Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Clemens Knospe
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
11
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
12
|
Latypova L, Sibgatullina R, Ogura A, Fujiki K, Khabibrakhmanova A, Tahara T, Nozaki S, Urano S, Tsubokura K, Onoe H, Watanabe Y, Kurbangalieva A, Tanaka K. Sequential Double "Clicks" toward Structurally Well-Defined Heterogeneous N-Glycoclusters: The Importance of Cluster Heterogeneity on Pattern Recognition In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600394. [PMID: 28251056 PMCID: PMC5323863 DOI: 10.1002/advs.201600394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 05/27/2023]
Abstract
Structurally well-defined heterogeneous N-glycoclusters are prepared on albumin via a double click procedure. The number of glycan molecules present, in addition to the spatial arrangement of glycans in the heterogeneous glycoclusters, plays an important role in the in vivo kinetics and organ-selective accumulation through glycan pattern recognition mechanisms.
Collapse
Affiliation(s)
- Liliya Latypova
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Regina Sibgatullina
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Akihiro Ogura
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Katsumasa Fujiki
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Alsu Khabibrakhmanova
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Tsuyoshi Tahara
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Satoshi Nozaki
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Hirotaka Onoe
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Yasuyoshi Watanabe
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
- JST‐PRESTO, HirosawaWako‐shi, Saitama351‐0198Japan
| |
Collapse
|
13
|
Bayón C, He N, Deir-Kaspar M, Blasco P, André S, Gabius HJ, Rumbero Á, Jiménez-Barbero J, Fessner WD, Hernáiz MJ. Direct Enzymatic Branch-End Extension of Glycocluster-Presented Glycans: An Effective Strategy for Programming Glycan Bioactivity. Chemistry 2016; 23:1623-1633. [DOI: 10.1002/chem.201604550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Bayón
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| | - Ning He
- Department of Organic Chemistry and Biochemistry; Technische Universität Darmstadt, A; larich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Mario Deir-Kaspar
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| | - Pilar Blasco
- Departamento de Ciencia de Proteínas; CIB-CSIC; C/Ramiro denMaeztu 9 28040 Madrid Spain
| | - Sabine André
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Veterinärstrasse 13 80539 München Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Veterinärstrasse 13 80539 München Germany
| | - Ángel Rumbero
- Department of Organic Chemistry; Faculty of Science; Autonoma University of Madrid; Spain
| | - Jesús Jiménez-Barbero
- Departamento de Ciencia de Proteínas; CIB-CSIC; C/Ramiro denMaeztu 9 28040 Madrid Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology; University of the Basque Country; 48940 Leioa Bizkaia Spain
| | - Wolf-Dieter Fessner
- Department of Organic Chemistry and Biochemistry; Technische Universität Darmstadt, A; larich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - María J. Hernáiz
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| |
Collapse
|
14
|
Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73:1989-2016. [PMID: 26956894 PMCID: PMC11108359 DOI: 10.1007/s00018-016-2163-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited.
Collapse
Affiliation(s)
- H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany.
| | - J C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - J Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - S André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - H Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| |
Collapse
|
15
|
Ogura A, Tahara T, Nozaki S, Onoe H, Kurbangalieva A, Watanabe Y, Tanaka K. Glycan multivalency effects toward albumin enable N-glycan-dependent tumor targeting. Bioorg Med Chem Lett 2016; 26:2251-4. [DOI: 10.1016/j.bmcl.2016.03.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 11/28/2022]
|
16
|
Ogura A, Kurbangalieva A, Tanaka K. Exploring the glycan interaction in vivo: Future prospects of neo-glycoproteins for diagnostics. Glycobiology 2016; 26:804-12. [PMID: 26980440 DOI: 10.1093/glycob/cww038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Herein the biodistributions and in vivo kinetics of chemically prepared neoglycoproteins are reviewed. Chemical methods can be used to conjugate various mono- and oligosaccharides onto a protein surface. The kinetics and organ-specific accumulation profiles of these glycoconjugates, which are introduced through intravenous injections, have been analyzed using conventional dissection studies as well as noninvasive methods such as single photon emission computed tomography, positron emission tomography and fluorescence imaging. These studies suggest that glycan-dependent protein distribution kinetics may be useful for pharmacological and diagnostic applications.
Collapse
Affiliation(s)
- Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia JST PRESTO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Ogura A, Tahara T, Nozaki S, Morimoto K, Kizuka Y, Kitazume S, Hara M, Kojima S, Onoe H, Kurbangalieva A, Taniguchi N, Watanabe Y, Tanaka K. Visualizing Trimming Dependence of Biodistribution and Kinetics with Homo- and Heterogeneous N-Glycoclusters on Fluorescent Albumin. Sci Rep 2016; 6:21797. [PMID: 26902314 PMCID: PMC4763176 DOI: 10.1038/srep21797] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
A series of N-glycans, each sequentially trimmed from biantennary sialoglycans, were homo- or heterogeneously clustered efficiently on fluorescent albumin using a method that combined strain-promoted alkyne-azide cyclization and 6π-azaelectrocyclization. Noninvasive in vivo kinetics and dissection analysis revealed, for the first time, a glycan-dependent shift from urinary to gall bladder excretion mediated by sequential trimming of non-reducing end sialic acids. N-glycoalbumins that were trimmed further, in particular, GlcNAc- and hybrid biantennary-terminated congeners, were selectively taken up by sinusoidal endothelial and stellate cells in the liver, which are critical for diagnosis and treatment of liver fibrillation. Our glycocluster strategy can not only reveal the previously unexplored extracellular functions of N-glycan trimming, but will be classified as the newly emerging glycoprobes for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satoshi Nozaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Koji Morimoto
- Osaka Women's Junior College, 3-8-1 Kasugaoka, Fujiidera-shi, Osaka, 583-8558, Japan
| | - Yasuhiko Kizuka
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Mitsuko Hara
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako-shi, Saitama, 351-0198, Japan
| | - Soichi Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako-shi, Saitama, 351-0198, Japan
| | - Hirotaka Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia.,Japan Science and Technology Agency-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Tanaka K. Chemically synthesized glycoconjugates on proteins: effects of multivalency and glycoform in vivo. Org Biomol Chem 2016; 14:7610-21. [DOI: 10.1039/c6ob00788k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The biodistributions and in vivo kinetics of chemically prepared glycoconjugates on proteins are reviewed.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Wako-shi
- Japan
- Biofunctional Chemistry Laboratory
| |
Collapse
|
19
|
Cell surface and in vivo interaction of dendrimeric N-glycoclusters. Glycoconj J 2015; 32:497-503. [DOI: 10.1007/s10719-015-9594-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 11/25/2022]
|
20
|
In vivo kinetics and biodistribution analysis of neoglycoproteins: effects of chemically introduced glycans on proteins. Glycoconj J 2014; 31:273-9. [DOI: 10.1007/s10719-014-9520-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/15/2022]
|
21
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
22
|
Tanaka K, Fukase K. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans. Top Curr Chem (Cham) 2014; 367:201-30. [PMID: 25971916 DOI: 10.1007/128_2014_603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PET and noninvasive fluorescence imaging of the sialo-N-linked glycan derivatives are described. To establish the efficient labeling protocol for N-glycans and/or glycoconjugates, new labeling probes of fluorescence and ⁶⁸Ga-DOTA, as the positron emission nucleus for PET, through rapid 6π-azaelectrocyclization were designed and synthesized, (E)-ester aldehydes. The high reactivity of these probes enabled the labeling of lysine residues in peptides, proteins, and even amino groups on the cell surfaces at very low concentrations of the target molecules (~10⁻⁸ M) within a short reaction time (~5 min) to result in "selective" and "non-destructive" labeling of the more accessible amines. The first MicroPET of glycoproteins, ⁶⁸Ga-DOTA-orosomucoid and asialoorosomucoid, successfully visualized the differences in the circulatory residence of glycoproteins, in the presence or absence of sialic acids. In vivo dynamics of the new N-glycoclusters, prepared by the "self-activating" Huisgen cycloaddition reaction, could also be affected significantly by their partial structures at the non-reducing end, i.e., the presence or absence of sialic acids, and/or sialoside linkages to galactose. Azaelectrocyclization chemistry is also applicable to the engineering of the proteins and/or the cell surfaces by the oligosaccharides; lymphocytes chemically engineered by sialo-N-glycan successfully target the tumor implanted in BALB/C nude mice, detected by noninvasive fluorescence imaging.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan,
| | | |
Collapse
|
23
|
Canales A, Mallagaray A, Pérez-Castells J, Boos I, Unverzagt C, André S, Gabius HJ, Cañada FJ, Jiménez-Barbero J. Breaking Pseudo-Symmetry in Multiantennary Complex N-Glycans Using Lanthanide-Binding Tags and NMR Pseudo-Contact Shifts. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Canales A, Mallagaray A, Pérez-Castells J, Boos I, Unverzagt C, André S, Gabius HJ, Cañada FJ, Jiménez-Barbero J. Breaking Pseudo-Symmetry in Multiantennary Complex N-Glycans Using Lanthanide-Binding Tags and NMR Pseudo-Contact Shifts. Angew Chem Int Ed Engl 2013; 52:13789-93. [DOI: 10.1002/anie.201307845] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 01/24/2023]
|
25
|
Kopitz J, Fik Z, André S, Smetana K, Gabius HJ. Single-site mutational engineering and following monoPEGylation of the human lectin galectin-2: effects on ligand binding, functional aspects, and clearance from serum. Mol Pharm 2013; 10:2054-61. [PMID: 23581621 DOI: 10.1021/mp4000629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The emerging insights into the physiological significance of endogenous lectins prompted us to characterize the effect of monosubstitution with poly(ethylene glycol) (PEG; 5 kDa) on a human lectin. As role model, we used a member of the galectin family, that is, galectin-2, the Cys57Met (single-site) mutant and its monoPEGylated derivative. The activities of these three proteins were comparatively studied by biochemical, cell biological, and histochemical methods, using surface-immobilized glycoproteins, different types of cells presenting gangliosides or (glyco)proteins as counterreceptors in vitro and tissue sections. PEGylation led to decreases in affinity/signal intensity with context dependence. The introduction of the mutation, too, can influence reactivity. Assays on haemagglutination and inhibition of cell proliferation underscored that mutational engineering and substitution can (but must not necessarily) affect this protein's activity. Serum clearance in rats was markedly retarded by PEGylation. Overall, the bulky substitution, spatially comparable to N-glycans, can markedly reduce binding of the galectin to physiological binding sites.
Collapse
Affiliation(s)
- Jürgen Kopitz
- Abteilung Angewandte Tumorbiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Ardá A, Blasco P, Varón Silva D, Schubert V, André S, Bruix M, Cañada FJ, Gabius HJ, Unverzagt C, Jiménez-Barbero J. Molecular recognition of complex-type biantennary N-glycans by protein receptors: a three-dimensional view on epitope selection by NMR. J Am Chem Soc 2013; 135:2667-75. [PMID: 23360551 DOI: 10.1021/ja3104928] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current surge in defining glycobiomarkers by applying lectins rekindles interest in definition of the sugar-binding sites of lectins at high resolution. Natural complex-type N-glycans can present more than one potential binding motif, posing the question of the actual mode of interaction when interpreting, for example, lectin array data. By strategically combining N-glycan preparation with saturation-transfer difference NMR and modeling, we illustrate that epitope recognition depends on the structural context of both the sugar and the lectin (here, wheat germ agglutinin and a single hevein domain) and cannot always be predicted from simplified model systems studied in the solid state. We also monitor branch-end substitutions by this strategy and describe a three-dimensional structure that accounts for the accommodation of the α2,6-sialylated terminus of a biantennary N-glycan by viscumin. In addition, we provide a structural explanation for the role of terminal α2,6-sialylation in precluding the interaction of natural N-glycans with lectin from Maackia amurensis . The approach described is thus capable of pinpointing lectin-binding motifs in natural N-glycans and providing detailed structural explanations for lectin selectivity.
Collapse
Affiliation(s)
- Ana Ardá
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fukase K, Tanaka K. Bio-imaging and cancer targeting with glycoproteins and N-glycans. Curr Opin Chem Biol 2012. [DOI: 10.1016/j.cbpa.2012.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Lohr M, Kaltner H, Schwartz-Albiez R, Sinowatz F, Gabius HJ. Towards functional glycomics by lectin histochemistry: strategic probe selection to monitor core and branch-end substitutions and detection of cell-type and regional selectivity in adult mouse testis and epididymis. Anat Histol Embryol 2011; 39:481-93. [PMID: 20624157 DOI: 10.1111/j.1439-0264.2010.01019.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The emerging insights into glycan functionality direct increasing attention to monitor core modifications of N-glycans and branch-end structures. To address this issue in histochemistry, a panel of lectins with respective specificities was devised. The selection of probes with overlapping specificities facilitated to relate staining profiles to likely target structures. The experiments on fixed sections of adult murine testis and epididymis were carried out at non-saturating lectin concentrations to visualize high-affinity sites with optimal signal-to-background ratio. They revealed selectivity in lectin reactivity for distinct cell types and segment-dependent staining in the epididymis. Leydig cells, for instance, were reactive with the Sambucus nigra agglutinin and human siglec-2 (CD22), two lectins also separating principal from basal and apical cells in the caput segments I-III of the epididymis. Apical cells were reactive with the Maackia amurensis agglutinin-I, and basal cells with the erythroagglutinin of Phaseolus vulgaris. The reported differences support the concept of lectin staining as cell marker. They thus intimate to study glycogene (genes for glycosyltransferases and lectins) expression and cellular reactivity with tissue lectins. These investigations will be instrumental to assign a role as biochemical signals to the detected staining properties.
Collapse
Affiliation(s)
- M Lohr
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | | | | | | | | |
Collapse
|
29
|
Tanaka K, Siwu ERO, Minami K, Hasegawa K, Nozaki S, Kanayama Y, Koyama K, Chen WC, Paulson JC, Watanabe Y, Fukase K. Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed Engl 2011; 49:8195-200. [PMID: 20857462 DOI: 10.1002/anie.201000892] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tanaka K, Siwu ERO, Minami K, Hasegawa K, Nozaki S, Kanayama Y, Koyama K, Chen WC, Paulson JC, Watanabe Y, Fukase K. Noninvasive Imaging of Dendrimer-Type N-Glycan Clusters: In Vivo Dynamics Dependence on Oligosaccharide Structure. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Unverzagt C, Gundel G, Eller S, Schuberth R, Seifert J, Weiss H, Niemietz M, Pischl M, Raps C. Synthesis of multiantennary complex type N-glycans by use of modular building blocks. Chemistry 2010; 15:12292-302. [PMID: 19806620 DOI: 10.1002/chem.200901908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A modular set of oligosaccharide building blocks was developed for the synthesis of multiantennary N-glycans of the complex type, which are commonly found on glycoproteins. The donor building blocks were laid out for the elongation of a core trisaccharide acceptor (beta-mannosyl chitobiose) conveniently protected with a single benzylidene moiety at the beta-mannoside. Through two consecutive regio- and stereoselective couplings the donors gave N-glycans with three to five antennae in high yields. Due to the consistent protection group pattern of the donors the deprotection of the final products can be performed by using a general reaction sequence.
Collapse
Affiliation(s)
- Carlo Unverzagt
- Bioorganische Chemie, Universität Bayreuth, Gebäude NW1, 95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Leyden R, Velasco-Torrijos T, André S, Gouin S, Gabius HJ, Murphy PV. Synthesis of Bivalent Lactosides Based on Terephthalamide, N,N′-Diglucosylterephthalamide, and Glycophane Scaffolds and Assessment of Their Inhibitory Capacity on Medically Relevant Lectins. J Org Chem 2009; 74:9010-26. [DOI: 10.1021/jo901667r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rosaria Leyden
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trinidad Velasco-Torrijos
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sebastien Gouin
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Paul V. Murphy
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- School of Chemistry, National University of Ireland, Galway
| |
Collapse
|
33
|
Serna S, Kardak B, Reichardt NC, Martin-Lomas M. Synthesis of a core trisaccharide building block for the assembly of N-glycan neoconjugates. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Abstract
The glycan part of cellular glycoconjugates affords a versatile means to build biochemical signals. These oligosaccharides have an exceptional talent in this respect. They surpass any other class of biomolecule in coding capacity within an oligomer (code word). Four structural factors account for this property: the potential for variability of linkage points, anomeric position and ring size as well as the aptitude for branching (first and second dimensions of the sugar code). Specific intermolecular recognition is favoured by abundant potential for hydrogen/co-ordination bonds and for C-H/pi-interactions. Fittingly, an array of protein folds has developed in evolution with the ability to select certain glycans from the natural diversity. The thermodynamics of this reaction profits from the occurrence of these ligands in only a few energetically favoured conformers, comparing favourably with highly flexible peptides (third dimension of the sugar code). Sequence, shape and local aspects of glycan presentation (e.g. multivalency) are key factors to regulate the avidity of lectin binding. At the level of cells, distinct glycan determinants, a result of enzymatic synthesis and dynamic remodelling, are being defined as biomarkers. Their presence gains a functional perspective by co-regulation of the cognate lectin as effector, for example in growth regulation. The way to tie sugar signal and lectin together is illustrated herein for two tumour model systems. In this sense, orchestration of glycan and lectin expression is an efficient means, with far-reaching relevance, to exploit the coding potential of oligosaccharides physiologically and medically.
Collapse
|
35
|
|
36
|
André S, Velasco-Torrijos T, Leyden R, Gouin S, Tosin M, Murphy PV, Gabius HJ. Phenylenediamine-based bivalent glycocyclophanes: synthesis and analysis of the influence of scaffold rigidity and ligand spacing on lectin binding in cell systems with different glycomic profiles. Org Biomol Chem 2009; 7:4715-25. [DOI: 10.1039/b913010a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Maljaars CEP, André S, Halkes KM, Gabius HJ, Kamerling JP. Assessing the inhibitory potency of galectin ligands identified from combinatorial (glyco)peptide libraries using surface plasmon resonance spectroscopy. Anal Biochem 2008; 378:190-6. [PMID: 18471425 DOI: 10.1016/j.ab.2008.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/29/2022]
Abstract
Combinatorial (glyco)peptide libraries offer the possibility to define effective inhibitors of protein (lectin)-glycan interactions. If a (glyco)peptide surpasses the inhibitory potency of the free sugar, then the new peptide-lectin contacts underlying the affinity enhancement may guide further rational drug design. Focusing on the adhesion/growth regulatory human galectins 1 and 3, a screening of three combinatorial solid-phase (glyco)peptide libraries, containing Gal(beta1-O)Thr, Gal(beta1-S)Cys/Gal(beta1-N)Asn, and Lac(beta1-O)Thr, with the fluorescently labeled lectins had led to a series of lead compounds. To define the inhibitory potency of a selection of resynthesized (glyco)peptides systematically, a surface plasmon resonance-based inhibition assay with immobilized asialofetuin was set up. (Glyco)Peptides with up to 66-fold potency relative to free lactose as inhibitor were characterized. The presence of lactose in the most effective glycopeptides indicated the presence of affinity-enhancing peptide-lectin contacts. In addition to drug design, they may be helpful for fine-structural analysis of the binding sites.
Collapse
Affiliation(s)
- C Elizabeth P Maljaars
- Bijvoet Center, Department of Bioorganic Chemistry, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Unverzagt C, Eller S, Mezzato S, Schuberth R. A Double Regio- and Stereoselective Glycosylation Strategy for the Synthesis of N-Glycans. Chemistry 2008; 14:1304-11. [DOI: 10.1002/chem.200701251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Geng J, Mantovani G, Tao L, Nicolas J, Chen G, Wallis R, Mitchell DA, Johnson BRG, Evans SD, Haddleton DM. Site-Directed Conjugation of “Clicked” Glycopolymers To Form Glycoprotein Mimics: Binding to Mammalian Lectin and Induction of Immunological Function. J Am Chem Soc 2007; 129:15156-63. [DOI: 10.1021/ja072999x] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jin Geng
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Giuseppe Mantovani
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Lei Tao
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Julien Nicolas
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Gaojian Chen
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Russell Wallis
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Daniel A. Mitchell
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Benjamin R. G. Johnson
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Stephen D. Evans
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - David M. Haddleton
- Contribution from the Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom; Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, CV2 2DX, Coventry, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
40
|
Scott SA, Scott K, Blanchard H. Crystallization and preliminary crystallographic analysis of recombinant human galectin-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:967-71. [PMID: 18007053 PMCID: PMC2339748 DOI: 10.1107/s1744309107050142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/10/2022]
Abstract
Galectin-1 is considered to be a regulator protein as it is ubiquitously expressed throughout the adult body and is responsible for a broad range of cellular regulatory functions. Interest in galectin-1 from a drug-design perspective is founded on evidence of its overexpression by many cancers and its immunomodulatory properties. The development of galectin-1-specific inhibitors is a rational approach to the fight against cancer because although galectin-1 induces a plethora of effects, null mice appear normal. X-ray crystallographic structure determination will aid the structure-based design of galectin-1 inhibitors. Here, the crystallization and preliminary diffraction analysis of human galectin-1 crystals generated under six different conditions is reported. X-ray diffraction data enabled the assignment of unit-cell parameters for crystals grown under two conditions, one belongs to a tetragonal crystal system and the other was determined as monoclinic P2(1), representing two new crystal forms of human galectin-1.
Collapse
Affiliation(s)
- Stacy A. Scott
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Ken Scott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Helen Blanchard
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| |
Collapse
|
41
|
André S, Kozár T, Schuberth R, Unverzagt C, Kojima S, Gabius HJ. Substitutions in the N-glycan core as regulators of biorecognition: the case of core-fucose and bisecting GlcNAc moieties. Biochemistry 2007; 46:6984-95. [PMID: 17497937 DOI: 10.1021/bi7000467] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Core fucosylation and the bisecting N-acetylglucosamine residue are prominent natural substitutions of the N-glycan core. To address the issue of whether these two substituents can modulate ligand properties of complex-type biantennary N-glycans, we performed chemoenzymatic synthesis of the respective galactosylated and alpha2,3/6-sialylated N-glycans. Neoglycoproteins were then produced to determine these glycans' reactivities with sugar receptors in solid-phase assays and with tumor cells in vitro as well as their in vivo biodistribution profiles in mice. Slight protein-type-dependent changes were noted in lectin binding, including adhesion/growth-regulatory galectins as study objects, when the data were related to properties of N-glycans without or with only one core substituent. Monitoring binding in vitro revealed cell-type-dependent changes. They delimited the ligand activity of this glycan type from that of chains with un- and monosubstituted cores. A markedly prolonged serum half-life was conferred to the neoglycoprotein by the galactose-terminated N-glycan, which together with increased organ retention of all three neoglycoproteins underscores the conspicuous relevance for glycoengineering of pharmaproteins. The predominant presentation of the two branches in the disubstituted N-glycan as extended (alpha1,3-antenna) and backfolded (alpha1,6-antenna) forms, revealed by molecular dynamics simulations, can underlie the measured characteristics. These results obtained by a combined strategy further support the concept of viewing N-glycan core substitutions as non-random additions which exert a modulatory role on ligand properties. Moreover, our data inspire us to devise new, non-natural modifications to realize the full potential of glycoengineering for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, D-80539 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Siebert HC, Rosen J, Seyrek K, Kaltner H, André S, Bovin NV, Nyholm PG, Sinowatz F, Gabius HJ. α2,3/α2,6-Sialylation of N-glycans: non-synonymous signals with marked developmental regulation in bovine reproductive tracts. Biochimie 2006; 88:399-410. [PMID: 16360259 DOI: 10.1016/j.biochi.2005.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
The glycan part endows cellular glycoconjugates with significant potential for biological recognition. N-Glycan branches often end with alpha2,3/alpha2,6-sialylation, posing the question whether and how placement of the sialic acid at 3 - or 6 -acceptor positions of galactose has cell biological relevance. As attractive model to study developmental regulation we monitored the expression of alpha2,3/alpha2,6-sialylated determinants in fetal and adult bovine testes and ovaries by lectin histochemistry. Distinct expression patterns were detected in both organ types. Oocyte staining, as a prominent example, was restricted to the presence of alpha2,6-sialylated glycans. Treatment with sialidase abolished binding and thus excluded sulfate esters as lectin targets. We added computer simulations to rationalize the observed evidence for non-random expression of the two closely related sialylgalactose isomers. Extensive molecular mechanics and molecular dynamics calculations reveal that the seemingly minor shift of the glycosidic bond from the alpha2,3 position to the alpha2,6 configuration causes significant shape and flexibility changes. They give each disaccharide its own characteristic meaning as signal in the sugar code.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Park EI, Mi Y, Unverzagt C, Gabius HJ, Baenziger JU. The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acid alpha 2,6GalNAc. Proc Natl Acad Sci U S A 2005; 102:17125-9. [PMID: 16286643 PMCID: PMC1288006 DOI: 10.1073/pnas.0508537102] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous ligands have not, to date, been identified for the asialoglycoprotein receptor (ASGP-R), which is abundantly expressed by parenchymal cells in the liver of mammals. On the basis of the rapid clearance of BSA bearing multiple chemically coupled sialic acid (Sia)alpha2,6GalNAcbeta1,4GlcNAcbeta1,2Man tetrasaccharides (SiaGGnM-BSA) from the circulation, and the ability of the ASGP-R hepatic lectin-1 subunit to bind SiaGGnM-BSA, we previously proposed that glycoproteins modified with structures terminating with Siaalpha2,6GalNAc may represent previously unrecognized examples of endogenous ligands for this receptor. Here, we have taken a genetic approach using wild-type and ASGP-R-deficient mice to determine that the ASGP-R in vivo does indeed account for the rapid clearance of glycoconjugates terminating with Siaalpha2,6GalNAc. We have also determined that the ASGP-R is able to bind core-substituted oligosaccharides with the terminal sequence Siaalpha2,6Galbeta1,4GlcNAc but not those with the terminal Siaalpha2,3Galbeta1,4GlcNAc. We propose that glycoproteins bearing terminals Siaalpha2,6GalNAc and Siaalpha2,6Gal are endogenous ligands for the ASGP-R, and that the ASGP-R helps to regulate the relative concentration of serum glycoproteins bearing alpha2,6-linked Sia.
Collapse
Affiliation(s)
- Eric I Park
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Schuberth R, Unverzagt C. Synthesis of a N-glycan nonasaccharide of the bisecting type with additional core-fucose. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.04.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
André S, Arnusch CJ, Kuwabara I, Russwurm R, Kaltner H, Gabius HJ, Pieters RJ. Identification of peptide ligands for malignancy- and growth-regulating galectins using random phage-display and designed combinatorial peptide libraries. Bioorg Med Chem 2005; 13:563-73. [PMID: 15598577 DOI: 10.1016/j.bmc.2004.09.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 09/24/2004] [Indexed: 11/20/2022]
Abstract
Members of the galectin family of endogenous lectins are involved in tumor growth regulation and in establishing characteristics of the malignant phenotype via protein-carbohydrate and protein-protein interactions. To identify peptide ligands with the potential to modulate these tumor-relevant interactions beneficially, complementary screening methods were employed, that is, both phage-display and a combinatorial pentapeptide library with the key YXY tripeptide core. Three representative prototype galectins were selected. The search for high-affinity ligands among phage-displayed random heptamers yielded enrichment after five selection cycles of the nonglycomimetic CQSPSARSC peptide in the case of the chicken homologue of galectin-1 but not the human protein, an indication for specificity. The most active glycomimetic from the combinatorial library of 5832 pentamers was WYKYW. Identification of peptide ligands for galectins with and without glycomimetic properties is thus possible. Our study documents the potential to combine the two library-based approaches for structural optimization of lead peptides.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, Veterinärstr. 13, 80539 München, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
André S, Kojima S, Prahl I, Lensch M, Unverzagt C, Gabius HJ. Introduction of extended LEC14-type branching into core-fucosylated biantennary N-glycan. FEBS J 2005; 272:1986-98. [PMID: 15819890 DOI: 10.1111/j.1742-4658.2005.04637.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of enzymatic substitutions modifies the basic structure of complex-type biantennary N-glycans. Among them, a beta1,2-linked N-acetylglucosamine residue is introduced to the central mannose moiety of the core-fucosylated oligosaccharide by N-acetylglucosaminyltransferase VII. This so-called LEC14 epitope can undergo galactosylation at the beta1,2-linked N-acetylglucosamine residue. Guided by the hypothesis that structural modifications in the N-glycan alter its capacity to serve as ligand for lectins, we prepared a neoglycoprotein with the extended LEC14 N-glycan and tested its properties in three different assays. In order to allow comparison to previous results on other types of biantennary N-glycans the functionalization of the glycans for coupling and assay conditions were deliberately kept constant. Compared to the core-fucosylated N-glycan no significant change in affinity was seen when testing three galactoside-specific proteins. However, cell positivity in flow cytofluorimetry was enhanced in six of eight human tumor lines. Analysis of biodistribution in tumor-bearing mice revealed an increase of blood clearance by about 40%, yielding a favorable tumor/blood ratio. Thus, the extended LEC14 motif affects binding properties to cellular lectins on cell surfaces and organs when compared to the core-fucosylated biantennary N-glycan. The results argue in favor of the concept of viewing substitutions as molecular switches for lectin-binding affinity. Moreover, they have potential relevance for glycoengineering of reagents in tumor imaging.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
A high-density coding system is essential to allow cells to communicate efficiently and swiftly through complex surface interactions. All the structural requirements for forming a wide array of signals with a system of minimal size are met by oligomers of carbohydrates. These molecules surpass amino acids and nucleotides by far in information-storing capacity and serve as ligands in biorecognition processes for the transfer of information. The results of work aiming to reveal the intricate ways in which oligosaccharide determinants of cellular glycoconjugates interact with tissue lectins and thereby trigger multifarious cellular responses (e.g. in adhesion or growth regulation) are teaching amazing lessons about the range of finely tuned activities involved. The ability of enzymes to generate an enormous diversity of biochemical signals is matched by receptor proteins (lectins), which are equally elaborate. The multiformity of lectins ensures accurate signal decoding and transmission. The exquisite refinement of both sides of the protein-carbohydrate recognition system turns the structural complexity of glycans--a demanding but essentially mastered problem for analytical chemistry--into a biochemical virtue. The emerging medical importance of protein-carbohydrate recognition, for example in combating infection and the spread of tumors or in targeting drugs, also explains why this interaction system is no longer below industrial radarscopes. Our review sketches the concept of the sugar code, with a solid description of the historical background. We also place emphasis on a distinctive feature of the code, that is, the potential of a carbohydrate ligand to adopt various defined shapes, each with its own particular ligand properties (differential conformer selection). Proper consideration of the structure and shape of the ligand enables us to envision the chemical design of potent binding partners for a target (in lectin-mediated drug delivery) or ways to block lectins of medical importance (in infection, tumor spread, or inflammation).
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
48
|
Chovanec M, Smetana K, Dvoránková B, Plzáková Z, André S, Gabius HJ. Decrease of nuclear reactivity to growth-regulatory galectin-1 in senescent human keratinocytes and detection of non-uniform staining profile alterations upon prolonged culture for galectin-1 and -3. Anat Histol Embryol 2005; 33:348-54. [PMID: 15540994 DOI: 10.1111/j.1439-0264.2004.00568.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Multipotent stem cells (source for interfollicular epidermis, hairs and sebaceous glands) are localized in the bulge region of the outer root sheath of hair follicles, while stem cells giving rise to interfollicular epidermis reside in its basal. Using the multifunctional lectin galectin-1 as a marker to localize accessible binding sites in situ as a step to figure out galectin functionality in stem cells, we studied hair follicle-derived keratinocytes. Specific nuclear binding of galectin-1 associated with expression of DeltaNp63alpha, a potential marker of epidermal stem cells, was detected. Binding of chimera-type galectin-3 to a nuclear site was not found in parallel assays. During the process of ageing in culture when cells acquire properties of senescence, disappearance of the nuclear signal for galectin-1 binding was accompanied by a similar decrease of nuclear DeltaNp63alpha expression and increased binding of galectin-3 to the cell membrane, namely in regions of intercellular contacts. Expression of cytokeratin 10, a marker of the terminal differentiation was seen only in a small fraction of the cell population. These data extend the evidence for nuclear sites with galectin-1 reactivity in squamous epithelial cells, the expression of which is modulated upon senescence. Moreover, the results document the divergence of galectin-1 and -3 on the level of ligand selection in this cell type, underscoring the importance of the technical aspect to employ tissue lectins as probe and to perform a fingerprinting with several markers of the galectin family in parallel.
Collapse
Affiliation(s)
- M Chovanec
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
49
|
Wu AM, Wu JH, Liu JH, Singh T, André S, Kaltner H, Gabius HJ. Effects of polyvalency of glycotopes and natural modifications of human blood group ABH/Lewis sugars at the Galbeta1-terminated core saccharides on the binding of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N). Biochimie 2005; 86:317-26. [PMID: 15194236 DOI: 10.1016/j.biochi.2004.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 03/18/2004] [Indexed: 10/26/2022]
Abstract
In our recent publication, we defined core aspects of the carbohydrate specificity of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N), especially its potent interaction with the linear tetrasaccharide Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc (Ibeta1-3L). The assumed role of galectin-4 as a microvillar raft stabilizer/organizer and as a malignancy-associated factor in hepatocellular and gastrointestinal carcinomas called for further refinement of its binding specificity. Thus, the effects of polyvalency of glycotopes and natural modifications of human blood group ABH/Lewis sugars at the terminal Galbeta1-core saccharides were thoroughly examined by the enzyme-linked lectinosorbent and lectin-glycan inhibition assays. The results indicate that (a) a high-density of polyvalent Galbeta1-3/4GlcNAc (I/II), Galbeta1-3GalNAc (T) and/or GalNAcalpha1-Ser/Thr (Tn) strongly favors G4-N/glycoform binding. These glycans were up to 2.3 x 10(6), 1.4 x 10(6), 8.8 x 10(5), and 1.4 x 10(5) more active than Gal, GalNAc, monomeric I/II and T, respectively; (b) while lFuc is a poor inhibitor, its presence as alpha1-2 linked to terminal Galbeta1-containing oligosaccharides, such as H active Ibeta1-3L, markedly enhances the reactivities of these ligands; (c) when blood group A (GalNAcalpha1-) or B (Galalpha1-) determinants are attached to terminal Galbeta1-3/4GlcNAc (or Glc) oligosaccharides, the reactivities are also increased; (d) with lFucalpha1-3/4 linked to sub-terminal GlcNAc, the reactivities of these haptens are reduced; and (e) short chain Le(a)/Le(x)/Le(y) and the short chains of sialyl Le(a)/Le(x) are poor inhibitors. These distinct binding features of G4-N establish the important concept of affinity enhancement by high density polyvalencies of glycotopes (vs. multi-antennary I/II) and by introduction of an ABH key sugar to Galbeta1-terminated core glycotopes. The polyvalent ligand binding properties of G4-N may help our understanding of its crucial role for cell membrane raft stability and provide salient information for the optimal design of blocking substances such as anti-tumoral glycodendrimers.
Collapse
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, Kwei-san, Tao-yuan 333, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
50
|
André S, Kaltner H, Lensch M, Russwurm R, Siebert HC, Fallsehr C, Tajkhorshid E, Heck AJR, von Knebel Doeberitz M, Gabius HJ, Kopitz J. Determination of structural and functional overlap/divergence of five proto-type galectins by analysis of the growth-regulatory interaction with ganglioside GM1in silicoandin vitroon human neuroblastoma cells. Int J Cancer 2004; 114:46-57. [PMID: 15523676 DOI: 10.1002/ijc.20699] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The growth-regulatory interplay between ganglioside GM1 on human SK-N-MC neuroblastoma cells and an endogenous lectin provides a telling example for glycan (polysaccharide) functionality. Galectin-1 is the essential link between the sugar signal and the intracellular response. The emerging intrafamily complexity of galectins raises the question on defining extent of their structural and functional overlap/divergence. We address this problem for proto-type galectins in this system: ganglioside GM1 as ligand, neuroblastoma cells as target. Using the way human galectin-1 interacts with this complex natural ligand as template, we first defined equivalent positioning for distinct substitutions in the other tested proto-type galectins, e.g., Lys63 vs. Leu60/Gln72 in galectins-2 and -5. As predicted from our in silico work, the tested proto-type galectins have affinity for the pentasaccharide of ganglioside GM1. In contrast to solid-phase assays, cell surface presentation of the ganglioside did not support binding of galectin-5, revealing the first level of regulation. Next, a monomeric proto-type galectin (CG-14) can impair galectin-1-dependent negative growth control by competitively blocking access to the shared ligand without acting as effector. Thus, the quaternary structure of proto-type galectins is an efficient means to give rise to functional divergence. The identification of this second level of regulation is relevant for diagnostic monitoring. It might be exploited therapeutically by producing galectin variants tailored to interfere with galectin activities associated with the malignant phenotype. Moreover, the given strategy for comparative computational analysis of extended binding sites has implications for the rational design of galectin-type-specific ligands.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|