1
|
Rani K, Gurnani B, Jain N. Probing a salt-induced conformational switch in β 2-microglobulin under low pH conditions. FEBS J 2025. [PMID: 40418633 DOI: 10.1111/febs.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/21/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Self-assembly of proteins and peptides into amyloid fibrils is an active field of research due to its connection with debilitating human ailments such as Parkinson's disease, dialysis-related amyloidosis (DRA), and type II diabetes. In most disease conditions, amyloid formation proceeds via distinct on-pathway conformers such as oligomers and protofibrils. However, the detailed mechanism by which monomers transform into different species and contribute to disease progression remains an area of intense research. Isolating and characterizing distinct conformers are pertinent to understanding disease initiation and progression. One such ailment is DRA, where an amyloidogenic protein, β2-microglobulin (β2m), undergoes a profound conformational switch to adopt an amyloid fold. β2m amyloids accumulate in tissues such as joints and kidneys, causing tissue damage and dysfunction. Soluble β2m oligomers are considered more toxic than amyloids due to impaired cellular processes, resulting in cell death. In the present study, we have identified and characterized three stages of β2m aggregation, namely, oligomers, protofibrils, and fibrils, while varying salt concentrations and agitation under low pH conditions. Our kinetic results indicate that β2m oligomers and protofibrils follow a nucleation-independent pathway, whereas amyloids are formed through the classical nucleation process. Further, we implemented microscopic techniques and biochemical assays to verify the formation and stability of distinct conformers. We believe these findings provide insights into the process of amyloid formation, which may help us to understand the initiation of the disease at an early stage.
Collapse
Affiliation(s)
- Khushboo Rani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, India
| | - Bharat Gurnani
- Centre of Excellence-AyurTech, Indian Institute of Technology Jodhpur, Karwar, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
2
|
Tammara V, Das A. A Self-Consistent Molecular Mechanism of β 2-Microglobulin Aggregation. J Phys Chem B 2024; 128:12425-12442. [PMID: 39656191 DOI: 10.1021/acs.jpcb.4c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Despite the consensus on the origin of dialysis-related amyloidosis (DRA) being β2-microglobulin (β2m) aggregation, the debate on the underlying mechanism persists because of the continuous emergence of β2m variant- and pH-dependent contradictory results. By characterizing the native monomeric (initiation) and aggregated fibrillar (termination) states of β2m via a combination of two enhanced sampling approaches, we here propose a mechanism that explains the heterogeneous behavior of wild-type (WT) and pathogenic (V27M and D76N) β2m variants in physiological and disease-pertinent acidic pH environments. It appears that the higher retainment of monomeric native folds at neutral pH (native-like) distinguishes pathogenic β2m mutants from the WT (moderate loss). However, at acidic pH, all three variants behave similarly in producing a substantial amount of partially unfolded states (conformational switch, propensity), though with different extents (WT < V27M < D76N). Whereas at the fibrillar end, all β2m variants display a pH-dependent protofilament separation pathway and a higher protofilament binding affinity (stability) at acidic pH, where the relative order of binding affinity (WT < V27M < D76N) remains consistent with pH modulation. Combining these observations, we conclude that β2m variants possibly shift from native-like aggregation to conformational switch-initiated fibrillation as the pH is altered from neutral to acidic. The combined propensity-stability approach based on the initiation and termination points of β2m aggregation not only assists us in deciphering the mechanism but also emphasizes the protagonistic roles of both terminal points in the overall aggregation process.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Dilshad S, Shabnam, Ali A, Firdaus S, Ahmad M, Ahmad A. Suppression of human lysozyme aggregation by a novel copper-based complex of 3,4-dimethoxycinnamic acid. J Biomol Struct Dyn 2024; 42:8372-8384. [PMID: 37578054 DOI: 10.1080/07391102.2023.2246567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
In this work, a new Cu(II)-based complex as a chemotherapeutic drug agent, formulated as[Cu(DCA)4(H2O)2]⋅4H2O⋅4MeOH, (DCA = 3,4-dimethoxycinnamic acid), namely 1 was successfully synthesized utilizing DCA as a ligand to arrest fibrillation in Human lysozyme. The 1 was thoroughly characterized by single crystal X-ray diffraction (SC-XRD), spectroscopic (UV-Vis and FTIR) techniques, PXRD, and TGA analysis. Its crystal structure reveals a paddle wheel network around central copper metal ions. The Cu(II) metal ions exhibit a distorted square pyramidal configuration. The fluorescence titration studies showed moderate binding interaction of 1 with HuL with Ka of 6.3x105 M-1 at pH-2, 25 °C due to its interaction withAsp53, Tyr63, Val110, and Ala111 as shown by docking and simulation studies. 1suppresses the HuL fibrillation in a concentration-dependent manner, as demonstrated by ThT assay. At 200 µM concentration, it leads to the formation of smaller species of the protein in comparison to the control sample, as suggested by Light Scattering studies. The species formed are less hydrophobic and retain their native α-helix structure compared to the control samples, which are hydrophobic and form β-sheet rich amyloids as shown by ANS hydrophobicity assay and CD spectroscopy, respectively. Furthermore, morphological analysis of the species by AFM has demonstrated that, unlike mature amyloid fibrils in the control sample, HuL forms small-size aggregates in the presence of 1 under similar fibrillation conditions. It can be concluded that 1 effectively suppresses HuL fibrillation due to moderate binding to the protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumra Dilshad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Shabnam
- Biophysical Chemistry Lab, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Arif Ali
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Shama Firdaus
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Aiman Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Arya A, Jain A, Kishore N. Thermodynamics of modulation of interaction of α-helix inducer 2, 2, 2-trifluoroethanol with lysozyme in presence of cationic, anionic and non-ionic surfactants. J Biomol Struct Dyn 2024; 42:7289-7303. [PMID: 37493410 DOI: 10.1080/07391102.2023.2239922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
The interactions of anionic sodium dodecyl sulphate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and nonionic triton X-100 (TX-100) surfactants with lysozyme at pH = 2.4 have been studied individually as well as in combination with 2,2,2-trifluoroetanol (TFE). Urea has also been used in combination with surfactants. By using these combinations, efforts have been made to obtain partially folded conformations of the protein in the presence of surfactants and effect of α-helix inducer 2,2,2-trifluoroethanol on these intermediate states. Thermodynamic analysis of all these interactions has been done employing a combination of UV-visible, fluorescence and circular dichroism spectroscopies. The results have been correlated with each other and characterized qualitatively as well as quantitatively. At lower concentration of surfactant, the thermodynamic parameters indicated the destabilizing effect of SDS, stabilizing effect of CTAB and unappreciable destabilizing impact of TX-100 on lysozyme. The enhancement in destabilization effect or reduction in stabilization effect of surfactants on lysozyme in the presence of TFE and urea has also been indicated.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anju Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
6
|
Jain A, Judy E, Kishore N. Analytical Aspects of ANSA-BSA Association: A Thermodynamic and Conformational Approach. J Phys Chem B 2024; 128:5344-5362. [PMID: 38773936 DOI: 10.1021/acs.jpcb.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Many studies have demonstrated the manner in which ANS interacts with bovine serum albumin (BSA), although they are limited by the extremely low solubility of dye. The present study demonstrates the binding of ANSA dye with BSA, and since this dye can easily replace ANS, it not only simplifies research but also improves sensor accuracy for serum albumin. A combination of calorimetry and spectroscopy has been employed to establish the thermodynamic signatures associated with the interaction of ANSA with the protein and the consequent conformational changes in the latter. The results of differential scanning calorimetry reveal that when the concentration of ANSA in solution is increased, the thermal stability of the protein increases substantially. The fluorescence data demonstrated a decrease in the binding affinity of ANSA with the protein when pH increased but was unable to identify a change in the mode of interaction of the ligand. ITC has demonstrated that the mode of interaction between ANSA and the protein varies from a single set of binding sites at pH 5 and 7.4 to a sequential binding site at pH 10, emphasizing the potential relevance of protein conformational changes. TCSPC experiments suggested a dynamic type in the presence of ANSA. Molecular docking studies suggest that ANSA molecules are able to find ionic centers in the hydrophobic pockets of BSA. The findings further imply that given its ease of use in experiments, ANSA may be a useful probe for tracking the presence of serum albumin and partially folded protein states.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Miller JE, Castells-Graells R, Arbing MA, Munoz A, Jiang YX, Espinoza CT, Nguyen B, Moroz P, Yeates TO. Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles. Biomolecules 2023; 13:1122. [PMID: 37509158 PMCID: PMC10377675 DOI: 10.3390/biom13071122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Beta-2 microglobulin (B2M) is an immune system protein that is found on the surface of all nucleated human cells. B2M is naturally shed from cell surfaces into the plasma, followed by renal excretion. In patients with impaired renal function, B2M will accumulate in organs and tissues leading to significantly reduced life expectancy and quality of life. While current hemodialysis methods have been successful in managing electrolyte as well as small and large molecule disturbances arising in chronic renal failure, they have shown only modest success in managing plasma levels of B2M and similar sized proteins, while sparing important proteins such as albumin. We describe a systematic protein design effort aimed at adding the ability to selectively remove specific, undesired waste proteins such as B2M from the plasma of chronic renal failure patients. A novel nanoparticle built using a tetrahedral protein assembly as a scaffold that presents 12 copies of a B2M-binding nanobody is described. The designed nanoparticle binds specifically to B2M through protein-protein interactions with nanomolar binding affinity (~4.2 nM). Notably, binding to the nanoparticle increases the effective size of B2M by over 50-fold, offering a potential selective avenue for separation based on size. We present data to support the potential utility of such a nanoparticle for removing B2M from plasma by either size-based filtration or by polyvalent binding to a stationary matrix under blood flow conditions. Such applications could address current shortcomings in the management of problematic mid-sized proteins in chronic renal failure patients.
Collapse
Affiliation(s)
- Justin E. Miller
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Mark A. Arbing
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Aldo Munoz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yi-Xiao Jiang
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Charlize T. Espinoza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Brian Nguyen
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Paul Moroz
- School of Medicine, Curtin University, Perth, WA 6845, Australia
| | - Todd O. Yeates
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Anani OA, Adama KK, Ukhurebor KE, Habib AI, Abanihi VK, Pal K. Application of nanofibrous protein for the purification of contaminated water as a next generational sorption technology: a review. NANOTECHNOLOGY 2023; 34:232004. [PMID: 36807991 DOI: 10.1088/1361-6528/acbd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Globally, wastes from agricultural and industrial activities cause water pollution. Pollutants such as microbes, pesticides, and heavy metals in contaminated water bodies beyond their threshold limits result in several diseases like mutagenicity, cancer, gastrointestinal problems, and skin or dermal issues when bioaccumulated via ingestion and dermal contacts. Several technologies have been used in modern times to treat wastes or pollutants such as membrane purification technologies and ionic exchange methods. However, these methods have been recounted to be capital intensive, non-eco-friendly, and need deep technical know-how to operate thus, contributing to their inefficiencies and non-efficacies. This review work evaluated the application of Nanofibrils-protein for the purification of contaminated water. Findings from the study indicated that Nanofibrils protein is economically viable, green, and sustainable when used for water pollutant management or removal because they have outstanding recyclability of wastes without resulting in a secondary phase-pollutant. It is recommended to use residues from dairy industries, agriculture, cattle guano, and wastes from a kitchen in conjunction with nanomaterials to develop nanofibrils protein which has been recounted for the effective removal of micro and micropollutants from wastewater and water. The commercialization of nanofibrils protein for the purification of wastewater and water against pollutants has been tied to novel methods in nanoengineering technology, which depends strongly on the environmental impact in the aqueous ecosystem. So, there is a need to establish a legal framework for the establishment of a nano-based material for the effective purification of water against pollutants.
Collapse
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State, Nigeria
| | - Kenneth Kennedy Adama
- Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | | | - Aishatu Idris Habib
- Department of Microbiology, Edo State University, Faculty of Science, Uzairue, Nigeria
| | - Vincent Kenechi Abanihi
- Department of Electrical/Electronic Engineering, Faculty of Engineering, Edo State University, Uzairue, Nigeria
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| |
Collapse
|
9
|
Tomiyama R, So M, Yamaguchi K, Miyanoiri Y, Sakurai K. The residual structure of acid-denatured β 2 -microglobulin is relevant to an ordered fibril morphology. Protein Sci 2023; 32:e4487. [PMID: 36321362 PMCID: PMC9793977 DOI: 10.1002/pro.4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
β2 -Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.
Collapse
Affiliation(s)
- Ryosuke Tomiyama
- Graduate School of Biology‐oriented Science and TechnologyKindai UniversityWakayamaJapan
| | - Masatomo So
- Institute for Protein ResearchOsaka UniversityOsakaJapan,Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and InformaticsOsaka UniversitySuitaJapan
| | | | - Kazumasa Sakurai
- Graduate School of Biology‐oriented Science and TechnologyKindai UniversityWakayamaJapan,High Pressure Protein Research Center, Institute of Advanced TechnologyKindai UniversityWakayamaJapan
| |
Collapse
|
10
|
Inhibition of lysozyme amyloid fibrillation by curcumin-conjugated silver nanoparticles: A multispectroscopic molecular level study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Sharma R, Kumari A, Kundu B, Grover A. Amyloid fibrillation of the glaucoma associated myocilin protein is inhibited by epicatechin gallate (ECG). RSC Adv 2022; 12:29469-29481. [PMID: 36320765 PMCID: PMC9562371 DOI: 10.1039/d2ra05061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Inherited glaucoma is a recent addition to the inventory of diseases arising due to protein misfolding. Mutations in the olfactomedin (OLF) domain of myocilin are the most common genetic cause behind this disease. Disease associated variants of m-OLF are predisposed to misfold and aggregate in the trabecular meshwork (TM) tissue of the eye. In recent years, the nature of these aggregates was revealed to exhibit the hallmarks of amyloids. Amyloid aggregates are highly stable structures that are formed, often with toxic consequences in a number of debilitating diseases. In spite of its clinical relevance the amyloidogenic nature of m-OLF has not been studied adequately. Here we have studied the amyloid fibrillation of m-OLF and report ECG as an inhibitor against it. Using biophysical and biochemical assays, coupled with advanced microscopic evaluations we show that ECG binds and stabilizes native m-OLF and thus prevents its aggregation into amyloid fibrils. Furthermore, we have used REMD simulations to delineate the stabilizing effects of ECG on the structure of m-OLF. Collectively, we report ECG as a molecular scaffold for designing and testing of novel inhibitors against m-OLF amyloid fibrillation.
Collapse
Affiliation(s)
- Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi-110067India+91-8130738032
| | - Anchala Kumari
- Indian Council of Medical Research, International Health DivisionNew Delhi-110029India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology DelhiHauz KhasNew DelhiIndia – 110016
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi-110067India+91-8130738032
| |
Collapse
|
12
|
The Possible Mechanism of Amyloid Transformation Based on the Geometrical Parameters of Early-Stage Intermediate in Silico Model for Protein Folding. Int J Mol Sci 2022; 23:ijms23169502. [PMID: 36012765 PMCID: PMC9409474 DOI: 10.3390/ijms23169502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
The specificity of the available experimentally determined structures of amyloid forms is expressed primarily by the two- and not three-dimensional forms of a single polypeptide chain. Such a flat structure is possible due to the β structure, which occurs predominantly. The stabilization of the fibril in this structure is achieved due to the presence of the numerous hydrogen bonds between the adjacent chains. Together with the different forms of twists created by the single R- or L-handed α-helices, they form the hydrogen bond network. The specificity of the arrangement of these hydrogen bonds lies in their joint orientation in a system perpendicular to the plane formed by the chain and parallel to the fibril axis. The present work proposes the possible mechanism for obtaining such a structure based on the geometric characterization of the polypeptide chain constituting the basis of our early intermediate model for protein folding introduced formerly. This model, being the conformational subspace of Ramachandran plot (the ellipse path), was developed on the basis of the backbone conformation, with the side-chain interactions excluded. Our proposal is also based on the results from molecular dynamics available in the literature leading to the unfolding of α-helical sections, resulting in the β-structural forms. Both techniques used provide a similar suggestion in a search for a mechanism of conformational changes leading to a formation of the amyloid form. The potential mechanism of amyloid transformation is presented here using the fragment of the transthyretin as well as amyloid Aβ.
Collapse
|
13
|
Mehta D, Singh H, Haridas V, Chaudhuri TK. Molecular Insights into the Inhibition of Dialysis-Related β2m Amyloidosis Orchestrated by a Bispidine Peptidomimetic Analogue. Biochemistry 2022; 61:1473-1484. [PMID: 35749234 DOI: 10.1021/acs.biochem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic β2-microglobulin (β2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity. Through our in vitro and in cellulo studies, we introduce a peptidomimetic-based approach to help develop future therapeutics against DRA. Our study reports the ability of a nontoxic, core-modified, bispidine peptidomimetic analogue "B(LVI)2" to inhibit acid-induced amyloid fibrillation of β2m (Hβ2m). Using thioflavin-T, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis, we demonstrate that B(LVI)2 delays aggregation lag time of Hβ2m amyloid fibrillation and reduces the yield of Hβ2m amyloid fibrils in a dose-dependent manner. Our findings suggest a B(LVI)2-orchestrated alteration in the route of Hβ2m amyloid fibrillation resulting in the formation of noncytotoxic, morphologically distinct amyloid-like species. Circular dichroism data show gradual sequestration of Hβ2m species in a soluble nonamyloidogenic noncytotoxic conformation in the presence of B(LVI)2. Dynamic light scattering measurements indicate incompetence of Hβ2m species in the presence of B(LVI)2 to undergo amyloid-competent intermolecular associations. Overall, our study reports the antifibrillation property of a novel peptidomimetic with the potential to bring a paradigm shift in therapeutic approaches against DRA.
Collapse
Affiliation(s)
- Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
14
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Structure and Polymorphism of Amyloid and Amyloid-Like Aggregates. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:450-463. [PMID: 35790379 DOI: 10.1134/s0006297922050066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Amyloids are protein aggregates with the cross-β structure. The interest in amyloids is explained, on the one hand, by their role in the development of socially significant human neurodegenerative diseases, and on the other hand, by the discovery of functional amyloids, whose formation is an integral part of cellular processes. To date, more than a hundred proteins with the amyloid or amyloid-like properties have been identified. Studying the structure of amyloid aggregates has revealed a wide variety of protein conformations. In the review, we discuss the diversity of protein folds in the amyloid-like aggregates and the characteristic features of amyloid aggregates that determine their unusual properties, including stability and interaction with amyloid-specific dyes. The review also describes the diversity of amyloid aggregates and its significance for living organisms.
Collapse
Affiliation(s)
- Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Yury A Barbitoff
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Bioinformatics Institute, Saint Petersburg, 197342, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
15
|
Nasi GI, Aktypi FD, Spatharas PM, Louros NN, Tsiolaki PL, Magafa V, Trougakos IP, Iconomidou VA. Arabidopsis thaliana Plant Natriuretic Peptide Active Domain Forms Amyloid-like Fibrils in a pH-Dependent Manner. PLANTS (BASEL, SWITZERLAND) 2021; 11:9. [PMID: 35009013 PMCID: PMC8747288 DOI: 10.3390/plants11010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Plant natriuretic peptides (PNPs) are hormones that have been extracted from many different species, with the Arabidopsis thaliana PNP (AtPNP-A) being the most studied among them. AtPNP-A is a signaling molecule that consists of 130 residues and is secreted into the apoplast, under conditions of biotic or abiotic stress. AtPNP-A has distant sequence homology with human ANP, a protein that forms amyloid fibrils in vivo. In this work, we investigated the amyloidogenic properties of a 34-residue-long peptide, located within the AtPNP-A sequence, in three different pH conditions, using transmission electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy, Congo red and Thioflavin T staining assays. We also utilize bioinformatics tools to study its association with known plant amyloidogenic proteins and other A. thaliana proteins. Our results reveal a new case of a pH-dependent amyloid forming peptide in A. thaliana, with a potential functional role.
Collapse
Affiliation(s)
- Georgia I. Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Foteini D. Aktypi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Panagiotis M. Spatharas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Nikolaos N. Louros
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Paraskevi L. Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Vassiliki Magafa
- Department of Pharmacy, University of Patras, 265 04 Patras, Greece;
| | - Ioannis P. Trougakos
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (G.I.N.); (F.D.A.); (P.M.S.); (N.N.L.); (P.L.T.); (I.P.T.)
| |
Collapse
|
16
|
Singh G, Kaur M, Singh M, Kaur H, Kang TS. Spontaneous Fibrillation of Bovine Serum Albumin at Physiological Temperatures Promoted by Hydrolysis-Prone Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10319-10329. [PMID: 34407374 DOI: 10.1021/acs.langmuir.1c01350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study highlights the role of time-dependent hydrolysis of ionic liquid anion, [BF4]-, of ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate, [C2mim][BF4], which results in ever-changing pH conditions. Such pH changes along with the ionic interactions bring conformational changes in bovine serum albumin (BSA), leading to the formation of amyloid fibers at 37 °C without external control of pH or addition of electrolyte. The fibrillation of BSA occurs spontaneously with the addition of IL; however, the highest growth rate has been observed in aqueous solution of 10% IL (v/v %) among investigated systems. Thioflavin T (ThT) fluorescence emission has been employed to monitor the growth and development of β-sheet content in amyloid fibrils. The structural alterations in BSA have also been investigated using intrinsic fluorescence measurements. Circular dichroism (CD) measurements confirmed the formation of amyloid fibrils. Transmission electron microscopy (TEM) has been explored to establish the morphologies of BSA fibrils at different intervals of time, whereas atomic force microscopy (AFM) has established the helically twisted nature of grown amyloid fibrils. The docking studies have been utilized to understand the insertion of IL ions in different domains of BSA, which along with decreased pH cause the unfolding and growth of BSA into amyloid fibrils. It is expected that the results obtained from this study would help to understand the impact of IL containing [BF4]- anion on protein stability and aggregation along with providing a new platform to control the formation of amyloid fibrils and other biomaterials driven via ionic interactions and alterations in pH.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Manvir Kaur
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Manpreet Singh
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Harmandeep Kaur
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Tejwant Singh Kang
- Department of Chemistry, UGC-Centre for Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
17
|
Hofbauer D, Mougiakakos D, Broggini L, Zaiss M, Büttner-Herold M, Bach C, Spriewald B, Neumann F, Bisht S, Nolting J, Zeiser R, Hamarsheh S, Eberhardt M, Vera J, Visentin C, De Luca CMG, Moda F, Haskamp S, Flamann C, Böttcher M, Bitterer K, Völkl S, Mackensen A, Ricagno S, Bruns H. β 2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. Immunity 2021; 54:1772-1787.e9. [PMID: 34289378 DOI: 10.1016/j.immuni.2021.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/28/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
As substantial constituents of the multiple myeloma (MM) microenvironment, pro-inflammatory macrophages have emerged as key promoters of disease progression, bone destruction, and immune impairment. We identify beta-2-microglobulin (β2m) as a driver in initiating inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed β2m promotes β2m amyloid aggregation in MAMs, resulting in lysosomal rupture and ultimately production of active interleukin-1β (IL-1β) and IL-18. This process depends on activation of the NLRP3 inflammasome after β2m accumulation, as macrophages from NLRP3-deficient mice lack efficient β2m-induced IL-1β production. Moreover, depletion or silencing of β2m in MM cells abrogates inflammasome activation in a murine MM model. Finally, we demonstrate that disruption of NLRP3 or IL-18 diminishes tumor growth and osteolytic bone destruction normally promoted by β2m-induced inflammasome signaling. Our results provide mechanistic evidence for β2m's role as an NLRP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NLRP3 represents a potential therapeutic approach in MM.
Collapse
Affiliation(s)
- Daniel Hofbauer
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | | | - Luca Broggini
- Department of Biosciences, University of Milan, Milan, Italy; Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milano, Italy
| | - Mario Zaiss
- Department of Internal Medicine 3, University Hospital Erlangen, Erlangen, Germany
| | | | - Christian Bach
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Frank Neumann
- Department of Internal Medicine 1, Saarland University Medical School, Homburg, Germany
| | - Savita Bisht
- Department of Oncology/Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jens Nolting
- Department of Oncology/Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Robert Zeiser
- Department of Medicine 1, University of Freiburg, Freiburg, Germany
| | | | - Martin Eberhardt
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | - Chiara Maria Giulia De Luca
- Divisione di Neurologia 5 - Neuropatologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fabio Moda
- Divisione di Neurologia 5 - Neuropatologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Stefan Haskamp
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Cindy Flamann
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Katrin Bitterer
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Heiko Bruns
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
18
|
Rahamtullah, Mishra R. Nicking and fragmentation are responsible for α-lactalbumin amyloid fibril formation at acidic pH and elevated temperature. Protein Sci 2021; 30:1919-1934. [PMID: 34107116 DOI: 10.1002/pro.4144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
Amyloid fibrils are ordered aggregates that may be formed from disordered, partially unfolded, and fragments of proteins and peptides. There are several diseases, which are due to the formation and deposition of insoluble β-sheet protein aggregates in various tissue, collectively known as amyloidosis. Here, we have used bovine α-lactalbumin as a model protein to understand the mechanism of amyloid fibril formation at pH 1.6 and 65°C under non-reducing conditions. Amyloid fibril formation is confirmed by Thioflavin T fluorescence and atomic force microscopy (AFM). Our finding demonstrates that hydrolysis of peptide bonds occurs under these conditions, which results in nicking and fragmentation. The nicking and fragmentation have been confirmed on non-reducing and reducing gel. We have identified the fragments by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The fragmentation may initiate nucleation as it coincides with AFM images. Conformational changes associated with monomer resulting in fibrillation are shown by circular dichroism and Raman spectroscopy. The current study highlights the importance of nicking and fragmentation in amyloid fibril formation, which may help understand the role of acidic pH and proteolysis under in vivo conditions in the initiation of amyloid fibril formation.
Collapse
Affiliation(s)
- Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
19
|
Abstract
Protein aggregation is a widespread phenomenon with important implications in many scientific areas. Although amyloid formation is typically considered as detrimental, functional amyloids that perform physiological roles have been identified in all kingdoms of life. Despite their functional and pathological relevance, the structural details of the majority of molecular species involved in the amyloidogenic process remains elusive. Here, we explore the application of AlphaFold, a highly accurate protein structure predictor, in the field of protein aggregation. While we envision a straightforward application of AlphaFold in assisting the design of globular proteins with improved solubility for biomedical and industrial purposes, the use of this algorithm for predicting the structure of aggregated species seems far from trivial. First, in amyloid diseases, the presence of multiple amyloid polymorphs and the heterogeneity of aggregation intermediates challenges the "one sequence, one structure" paradigm, inherent to sequence-based predictions. Second, aberrant aggregation is not the subject of positive selective pressure, precluding the use of evolutionary-based approaches, which are the core of the AlphaFold pipeline. Instead, amyloid polymorphism seems to be constrained by the need for a defined structure-activity relationship in functional amyloids. They may thus provide a starting point for the application of AlphaFold in the amyloid landscape.
Collapse
|
20
|
Identification of critical amino acid residues in the regulatory N-terminal domain of PMEL. Sci Rep 2021; 11:7730. [PMID: 33833328 PMCID: PMC8032716 DOI: 10.1038/s41598-021-87259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
The pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.
Collapse
|
21
|
Maschio MC, Fregoni J, Molteni C, Corni S. Proline isomerization effects in the amyloidogenic protein β2-microglobulin. Phys Chem Chem Phys 2021; 23:356-367. [DOI: 10.1039/d0cp04780e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein β2-microglobulin can aggregate in insoluble amyloid fibrils. By relying on extensive sampling simulations, we study the Pro32 isomerization as a possible triggering factor leading to structural modifications in β2-m.
Collapse
Affiliation(s)
| | - Jacopo Fregoni
- CNR-Nano S3
- Modena
- Italy
- Department of Chemical Sciences
- University of Padova
| | - Carla Molteni
- Department of Physics
- King's College London
- Strand
- London WC2R 2LS
- UK
| | - Stefano Corni
- CNR-Nano S3
- Modena
- Italy
- Department of Chemical Sciences
- University of Padova
| |
Collapse
|
22
|
Azulay DN, Ghrayeb M, Ktorza IB, Nir I, Nasser R, Harel YS, Chai L. Colloidal-like aggregation of a functional amyloid protein. Phys Chem Chem Phys 2020; 22:23286-23294. [PMID: 33033811 DOI: 10.1039/d0cp03265d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional amyloid proteins are self-secreted by microbial cells that aggregate into extracellular networks and provide microbial colonies with mechanical stability and resistance to antibiotic treatment. In order to understand the formation mechanism of functional amyloid networks, their aggregation has been studied in vitro under different physical conditions, such as temperature, salt concentration, and pH. Typical aggregates' morphologies include fibers or plaques, the latter resembling amyloid aggregates in neurodegenerated brains. Here, we studied the pH-reduction-induced aggregation of TasA, an extracellular functional amyloid appearing as fibers in biofilms of the soil bacterium, Bacillus subtilis. We used turbidity and zeta potential measurements, electron microscopy, atomic force microscopy, and static light scattering measurements, to characterize the aggregates of TasA and to compare them with colloidal aggregates. We further studied the aggregation of TasA in the presence of negatively charged nanoparticles and showed that nanoparticles co-aggregated with TasA, and that the co-aggregation was hindered sterically. Based on these studies, we concluded that, similarly to colloidal aggregation, TasA aggregation occurs due to surface potential modulations and that the aggregation is followed by a rearrangement process. Shedding light on the aggregation mechanism of TasA, our results can be used for the design of TasA aggregation inhibitors and promoters.
Collapse
Affiliation(s)
- David N Azulay
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Mnar Ghrayeb
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Ilanit Bensimhon Ktorza
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Ido Nir
- The Israel Institute for Biological Research, Ness Ziona, Israel
| | - Rinad Nasser
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Yair S Harel
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
23
|
Khan JM, Malik A, Rehman MT, AlAjmi MF, Ahmed MZ, Almutairi GO, Anwer MK, Khan RH. Cationic gemini surfactant stimulates amyloid fibril formation in bovine liver catalase at physiological pH. A biophysical study. RSC Adv 2020; 10:43751-43761. [PMID: 35519682 PMCID: PMC9058321 DOI: 10.1039/d0ra07560d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
Surfactant molecules stimulate amyloid fibrillation and conformational switching in proteins but the mechanisms by which they accomplish these effects are unclear. A cationic gemini surfactant, C16C4C16Br2, with two positively charged heads and two-16C hydrophobic tails induces the amyloid fibrillation of bovine liver catalase (BLC) in vitro at physiological pH. The BLC transformed into amyloid aggregates in the presence of low concentrations (2–150 μM) of C16C4C16Br2 at pH 7.4, as confirmed by the use of several biophysical techniques (Rayleigh light scattering (RLS), intrinsic fluorescence, thioflavin T fluorescence (ThT), far-UV circular dichroism, and transmission electron microscopy). The secondary structure of BLC also changed according to the concentration of C16C4C16Br2: the α-helical structure of BLC decreased in the presence of 2–100 μM of C16C4C16Br2 but at concentrations above 200 μM BLC regained a α-helical structure very similar to the native BLC. In silico molecular docking between BLC and C16C4C16Br2 suggest that the positively charged heads of the surfactant interact with Asp127 through attractive electrostatic interactions. Moreover, a Pi-cation electrostatic interaction and hydrophobic interactions also take place between the tails of the surfactant and BLC. The stability of the BLC–C16C4C16Br2 complex was confirmed by performing a molecular dynamics simulation and evaluating parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and solvent accessible surface area (SASA). Apart from its aggregation inducing properties, the gemini surfactant itself causes toxicity to the cancerous cell (A549): which is confirmed by MTT assay. This work delivers new insight into the effect of cationic gemini surfactants in amyloid aggregation and paves the way to the rational design of new anti-amyloidogenic agents. Surfactant molecules stimulate amyloid fibrillation and conformational switching in proteins but the mechanisms by which they accomplish these effects are unclear.![]()
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2460 Riyadh 11451 Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University Riyadh Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Ghada Obaid Almutairi
- Department of Biochemistry, College of Science, King Saud University Riyadh Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj 11942 Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh U.P. India
| |
Collapse
|
24
|
Khan A, Nayeem SM. Effect of TMAO and Urea on Dimers and Tetramers of Amyloidogenic Heptapeptides ( 23FGAILSS 29). ACS OMEGA 2020; 5:26986-26998. [PMID: 33134659 PMCID: PMC7593999 DOI: 10.1021/acsomega.0c01031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) (1-37) is an intrinsically disordered protein that is released with insulin by β-cells found in the pancreas. Under certain environmental conditions, hIAPP can aggregate, which leads to β-cell death. FGAILSS (23-29) residues of the hIAPP protein form β sheets, which may be toxic species in type 2 diabetes (T2D) patients. All-atom molecular dynamics (MD) simulations have been used to analyze the effect of two distinct types of osmolytes trimethylamine N-oxide (TMAO) and urea on two and four FGAILSS heptapeptides. TMAO leads the individual peptide toward an extended conformation with a higher radius of gyration and favors the formation of antiparallel β-sheets with an increase in its concentration. However, urea mostly shows compaction of individual peptides except at 4.0 M in the case of a tetramer but does not show aggregation behavior as a whole. TMAO leads both the dimer and tetramer toward the native state with an increase in its concentration. Moreover, both the dimer and tetramer show irregular behavior in urea. The tetramer in 4.0 M urea shows the maximum fraction of native contacts due to the formation of antiparallel β-sheets. This formation of antiparallel β-sheets favors the aggregation of peptides. TMAO forms a smaller number of hydrogen bonds with peptides as compared to urea as the exclusion of TMAO and accumulation of urea around the peptides have occurred in the first solvation shell (FSS). Principal component analysis (PCA) results suggest that the minima in the free energy landscape (FEL) plot are homogeneous for a particular conformation in TMAO with smaller basins, while in urea, the dimer shows minima mostly for extended conformations. For a 4.0 M urea concentration, the tetramer shows the minimum for antiparallel β-sheets, which indicates the aggregation behavior of the tetramer, and for a higher concentration, it shows minima with wider basins of extended conformations.
Collapse
|
25
|
Loureiro RJS, Faísca PFN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biosci 2020; 7:578433. [PMID: 33134317 PMCID: PMC7550760 DOI: 10.3389/fmolb.2020.578433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Protein β2-microglobulin is the causing agent of two amyloidosis, dialysis related amyloidosis (DRA), affecting the bones and cartilages of individuals with chronic renal failure undergoing long-term hemodialysis, and a systemic amyloidosis, found in one French family, which impairs visceral organs. The protein’s small size and its biomedical significance attracted the attention of theoretical scientists, and there are now several studies addressing its aggregation mechanism in the context of molecular simulations. Here, we review the early phase of β2-microglobulin aggregation, by focusing on the identification and structural characterization of monomers with the ability to trigger aggregation, and initial small oligomers (dimers, tetramers, hexamers etc.) formed in the so-called nucleation phase. We focus our analysis on results from molecular simulations and integrate our views with those coming from in vitro experiments to provide a broader perspective of this interesting field of research. We also outline directions for future computer simulation studies.
Collapse
Affiliation(s)
- Rui J S Loureiro
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Patrícia F N Faísca
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal.,Department of Physics, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Monhemi H, Tabaee SS. The effects of mutation and modification on the structure and stability of human lysozyme: A molecular link between carbamylation and atherosclerosis. J Mol Graph Model 2020; 100:107703. [PMID: 32799051 DOI: 10.1016/j.jmgm.2020.107703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 01/09/2023]
Abstract
Amino acid mutations in some proteins such as lysozyme lead to genetically disorder variants and adverse pathogenic consequences. Recently, amino acid modifications were known as a risk factor in many related diseases such as uremia and atherosclerosis, showing the importance of these surface-structure changes. Although the structural consequences of the hereditary proteins have been examined extensively, such effects for the protein modifications are known to a lesser extent. One drawback in the examination of protein modifications is hardness in experimental detection of modifications by techniques such as NMR and crystallography. Molecular modeling and simulation can help to understand such phenomena at the molecular levels. It is more rational that the effects of both mutation and modification can be compared in a single protein model. Here, molecular dynamics simulation is used to compare the effects of a disease-related carbamylation modification and an amyloidogenic mutation (D67H) in human lysozyme as a model protein. The results show that the carbamylation adversely effects on the tertiary structure, leading to the similar unfolding pathway to the hereditary amyloidogenic form. The carbamylation leads to the instability of the overall protein conformation, especially on the β-domain, which is a characteristic of hereditary amyloidosis in human lysozymes. The aggregation behaviors of both modified and mutant lysozyme were examined by molecular docking calculations. The results showed that the partially unfolded lysozyme might form tight protein aggregates upon carbamylation similar to the amyloidogenic variant. Both single and all-residues carbamylations impose serious conformational changes to the tertiary structure of lysozyme. It was obtained that carbamylation of lysozyme strongly effects on the stability of N-terminal β-sheet, which can produce a highly unstable conformation. The results of this study not only show the adverse structural consequences of a disease-associated post-translational modification, but it also may be very helpful to understand the molecular basis for many carbamylation-related diseases such as atherosclerosis in ESRD patients. The results show that non-native post-translational modifications may be as structurally important as hereditary mutations.
Collapse
Affiliation(s)
- Hassan Monhemi
- Department of Chemistry, University of Neyshabur, Neyshabur, Iran.
| | - Seyedeh Samaneh Tabaee
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
27
|
Kabani M, Melki R. The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils. Biochem Biophys Res Commun 2020; 529:533-539. [PMID: 32736670 DOI: 10.1016/j.bbrc.2020.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022]
Abstract
The translation terminator Sup35p assembles into self-replicating fibrillar aggregates that are responsible for the [PSI+] prion state. The Q/N-rich N-terminal domain together with the highly charged middle-domain (NM domain) drive the assembly of Sup35p into amyloid fibrils in vitro. NM domains are highly divergent among yeasts. The ability to convert to a prion form is however conserved among Sup35 orthologs. In particular, the Yarrowia lipolytica Sup35p stands out with an exceptionally high prion conversion rate. In the present work, we show that different Yarrowia lipolytica strains contain one of two Sup35p orthologs that differ by the number of repeats within their NM domain. The Y. lipolytica Sup35 proteins are able to assemble into amyloid fibrils. Contrary to S. cerevisiae Sup35p, fibrils made of full-length or NM domains of Y. lipolytica Sup35 proteins did not bind Thioflavin-T, a well-known marker of amyloid aggregates.
Collapse
Affiliation(s)
- Mehdi Kabani
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), F-92265, Fontenay-aux-Roses, France.
| | - Ronald Melki
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), F-92265, Fontenay-aux-Roses, France
| |
Collapse
|
28
|
Arden BG, Borotto NB, Burant B, Warren W, Akiki C, Vachet RW. Measuring the Energy Barrier of the Structural Change That Initiates Amyloid Formation. Anal Chem 2020; 92:4731-4735. [PMID: 32159946 DOI: 10.1021/acs.analchem.0c00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obtaining kinetic and thermodynamic information for protein amyloid formation can yield new insight into the mechanistic details of this biomedically important process. The kinetics of the structural change that initiates the amyloid pathway, however, has been challenging to access for any amyloid protein system. Here, using the protein β-2-microglobulin (β2m) as a model, we measure the kinetics and energy barrier associated with an initial amyloidogenic structural change. Using covalent labeling and mass spectrometry, we measure the decrease in solvent accessibility of one of β2m's Trp residues, which is buried during the initial structural change, as a way to probe the kinetics of this structural change at different temperatures and under different amyloid forming conditions. Our results provide the first-ever measure of the activation barrier for a structural change that initiates the amyloid formation pathway. The results also yield new mechanistic insight into β2m's amyloidogenic structural change, especially the role of Pro32 isomerization in this reaction.
Collapse
Affiliation(s)
- Blaise G Arden
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas B Borotto
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Brittney Burant
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - William Warren
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Christine Akiki
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
29
|
Marcinko TM, Drews T, Liu T, Vachet RW. Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Biochemistry 2020; 59:1093-1103. [PMID: 32100530 DOI: 10.1021/acs.biochem.0c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is a catechin found in green tea that can inhibit the amyloid formation of a wide variety of proteins. EGCG's ability to prevent or redirect the amyloid formation of so many proteins may reflect a common mechanism of action, and thus, greater molecular-level insight into how it exerts its effect could have broad implications. Here, we investigate the molecular details of EGCG's inhibition of the protein β-2-microglobulin (β2m), which forms amyloids in patients undergoing long-term dialysis treatment. Using size-exclusion chromatography and a collection of mass spectrometry-based techniques, we find that EGCG prevents Cu(II)-induced β2m amyloid formation by diverting the normal progression of preamyloid oligomers toward the formation of spherical, redissolvable aggregates. EGCG exerts its effect by binding with a micromolar affinity (Kd ≈ 5 μM) to the β2m monomer on the edge of two β-sheets near the N-terminus. This interaction destabilizes the preamyloid dimer and prevents the formation of a tetramer species previously shown to be essential for Cu(II)-induced β2m amyloid formation. EGCG's binding at the edge of the β-sheets in β2m is consistent with a previous hypothesis that EGCG generally prevents amyloid formation by binding cross-β-sheet aggregation intermediates.
Collapse
Affiliation(s)
- Tyler M Marcinko
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Thomas Drews
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Hoop CL, Zhu J, Bhattacharya S, Tobita CA, Radford SE, Baum J. Collagen I Weakly Interacts with the β-Sheets of β 2-Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. J Am Chem Soc 2020; 142:1321-1331. [PMID: 31875390 PMCID: PMC7135851 DOI: 10.1021/jacs.9b10421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Amyloidogenesis is
significant in both protein function and pathology.
Amyloid formation of folded, globular proteins is commonly initiated
by partial or complete unfolding. However, how this unfolding event
is triggered for proteins that are otherwise stable in their native
environments is not well understood. The accumulation of the immunoglobulin
protein β2-microglobulin (β2m) into
amyloid plaques in the joints of long-term hemodialysis patients is
the hallmark of dialysis-related amyloidosis (DRA). While β2m does not form amyloid unassisted near neutral pH in vitro, the localization of β2m deposits
to joint spaces suggests a role for the local extracellular matrix
(ECM) proteins, specifically collagens, in promoting amyloid formation.
Indeed, collagen and other ECM components have been observed to facilitate
β2m amyloid formation, but the large size and anisotropy
of the complex, combined with the low affinity of these interactions,
have limited atomic-level elucidation of the amyloid-promoting mechanism(s)
by these molecules. Using solution NMR approaches that uniquely probe
weak interactions in large molecular weight complexes, we are able
to map the binding interfaces on β2m for collagen
I and detect collagen I-induced μs–ms time-scale dynamics
in the β2m backbone. By combining solution NMR relaxation
methods and 15N-dark-state exchange saturation transfer
experiments, we propose a model in which weak, multimodal collagen
I−β2m interactions promote exchange with a
minor population of amyloid-competent species to induce fibrillogenesis.
The results portray the intimate role of the environment in switching
an innocuous protein into an amyloid-competent state, rationalizing
the localization of amyloid deposits in DRA.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Jie Zhu
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | | | - Caitlyn A Tobita
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Jean Baum
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
31
|
Pantoja-Uceda D, Oroz J, Fernández C, de Alba E, Giraldo R, Laurents DV. Conformational Priming of RepA-WH1 for Functional Amyloid Conversion Detected by NMR Spectroscopy. Structure 2020; 28:336-347.e4. [PMID: 31918960 DOI: 10.1016/j.str.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
How proteins with a stable globular fold acquire the amyloid state is still largely unknown. RepA, a versatile plasmidic DNA binding protein from Pseudomonas savastanoi, is functional as a transcriptional repressor or as an initiator or inhibitor of DNA replication, the latter via assembly of an amyloidogenic oligomer. Its N-terminal domain (WH1) is responsible for discrimination between these functional abilities by undergoing insufficiently understood structural changes. RepA-WH1 is a stable dimer whose conformational dynamics had not been explored. Here, we have studied it through NMR {1H}-15N relaxation and H/D exchange kinetics measurements. The N- and the C-terminal α-helices, and the internal amyloidogenic loop, are partially unfolded in solution. S4-indigo, a small inhibitor of RepA-WH1 amyloidogenesis, binds to and tethers the N-terminal α-helix to a β-hairpin that is involved in dimerization, thus providing evidence for a priming role of fraying ends and dimerization switches in the amyloidogenesis of folded proteins.
Collapse
Affiliation(s)
- David Pantoja-Uceda
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Javier Oroz
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Cristina Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Eva de Alba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
32
|
Devitt G, Rice W, Crisford A, Nandhakumar I, Mudher A, Mahajan S. Conformational Evolution of Molecular Signatures during Amyloidogenic Protein Aggregation. ACS Chem Neurosci 2019; 10:4593-4611. [PMID: 31661242 DOI: 10.1021/acschemneuro.9b00451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aggregation is a pathological hallmark of proteinopathies such as Alzheimer's disease and results in the deposition of β-sheet-rich amyloidogenic protein aggregates. Such proteinopathies can be classified by the identity of one or more aggregated proteins, with recent evidence also suggesting that distinct molecular conformers (strains) of the same protein can be observed in different diseases, as well is in subtypes of the same disease. Therefore, methods for the quantification of pathological changes in protein conformation are central to understanding and treating proteinopathies. In this work, the evolution of Raman spectroscopic molecular signatures of three conformationally distinct proteins, bovine serum albumin (α-helical-rich), β2-microglobulin (β-sheet-rich), and tau (natively disordered), was assessed during aggregation into oligomers and fibrils. The morphological evolution was tracked using atomic force microscopy and corresponding conformational changes were assessed by their Raman signatures acquired in both wet and dried conditions. A deconvolution model was developed which allowed us to quantify the conformation of the nonregular protein tau, as well as for the oligomeric and fibrillar species of each of the proteins. Principle component analysis of the fingerprint region allowed further identification of the distinguishing spectral features and unsupervised distinction. While an increase in β-sheet is seen on aggregation, crucially, however, each protein also retains a significant proportion of its native monomeric structure after aggregation. Thus, spectral analysis of each aggregated species, oligomeric, as well as fibrillar, for each protein resulted in a unique and quantitative "conformational fingerprint". This approach allowed us to provide the first differential detection of both oligomers and fibrils of the three different amyloidogenic proteins, including tau, whose aggregates have never before been interrogated using spontaneous Raman spectroscopy. Quantitative "conformational fingerprinting" by Raman spectroscopy thus demonstrates its huge potential and utility in understanding proteinopathic disease mechanisms and for providing strain-specific early diagnostic markers and targets for disease-modifying therapies.
Collapse
|
33
|
Marcinko TM, Liang C, Savinov S, Chen J, Vachet RW. Structural Heterogeneity in the Preamyloid Oligomers of β-2-Microglobulin. J Mol Biol 2019; 432:396-409. [PMID: 31711963 DOI: 10.1016/j.jmb.2019.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 11/29/2022]
Abstract
In dialysis patients, the protein β2-microglobulin (β2m) forms amyloid fibrils in a condition known as dialysis-related amyloidosis. To understand the early stages of the amyloid assembly process, we have used native electrospray ionization (ESI) together with ion mobility mass spectrometry (IM-MS) to study soluble preamyloid oligomers. ESI-IM-MS reveals the presence of multiple conformers for the dimer, tetramer, and hexamer that precede the Cu(II)-induced amyloid assembly process, results which are distinct from β2m oligomers formed at low pH. Experimental and computational results indicate that the predominant dimer is a Cu(II)-bound structure with an antiparallel side-by-side configuration. In contrast, tetramers exist in solution in both Cu(II)-bound and Cu(II)-free forms. Selective depletion of Cu(II)-bound species results in two primary conformers-one that is compact and another that is more expanded. Molecular modeling and molecular dynamics simulations identify models for these two tetrameric conformers with unique interactions and interfaces that enthalpically compensate for the loss of Cu(II). Unlike with other amyloid systems in which conformational heterogeneity is often associated with different amyloid morphologies or off-pathway events, conformational heterogeneity in the tetramer seems to be a necessary aspect of Cu(II)-induced amyloid formation by β2m. Moreover, the Cu(II)-free models represent a new advance in our understanding of Cu(II) release in Cu(II)-induced amyloid formation, laying a foundation for further mechanistic studies as well as development of new inhibition strategies.
Collapse
Affiliation(s)
- Tyler M Marcinko
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Chungwen Liang
- Computational and Modeling Core Facility, Institute for Applied Life Sciences, Amherst, MA 01003, United States
| | - Sergey Savinov
- Computational and Modeling Core Facility, Institute for Applied Life Sciences, Amherst, MA 01003, United States; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, United States
| | - Jianhen Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
34
|
J S Loureiro R, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, F N Faísca P. The Early Phase of β2m Aggregation: An Integrative Computational Study Framed on the D76N Mutant and the ΔN6 Variant. Biomolecules 2019; 9:biom9080366. [PMID: 31416179 PMCID: PMC6722664 DOI: 10.3390/biom9080366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human β2-microglobulin (b2m) protein is classically associated with dialysis-related amyloidosis (DRA). Recently, the single point mutant D76N was identified as the causative agent of a hereditary systemic amyloidosis affecting visceral organs. To get insight into the early stage of the β2m aggregation mechanism, we used molecular simulations to perform an in depth comparative analysis of the dimerization phase of the D76N mutant and the ΔN6 variant, a cleaved form lacking the first six N-terminal residues, which is a major component of ex vivo amyloid plaques from DRA patients. We also provide first glimpses into the tetramerization phase of D76N at physiological pH. Results from extensive protein–protein docking simulations predict an essential role of the C- and N-terminal regions (both variants), as well as of the BC-loop (ΔN6 variant), DE-loop (both variants) and EF-loop (D76N mutant) in dimerization. The terminal regions are more relevant under acidic conditions while the BC-, DE- and EF-loops gain importance at physiological pH. Our results recapitulate experimental evidence according to which Tyr10 (A-strand), Phe30 and His31 (BC-loop), Trp60 and Phe62 (DE-loop) and Arg97 (C-terminus) act as dimerization hot-spots, and further predict the occurrence of novel residues with the ability to nucleate dimerization, namely Lys-75 (EF-loop) and Trp-95 (C-terminus). We propose that D76N tetramerization is mainly driven by the self-association of dimers via the N-terminus and DE-loop, and identify Arg3 (N-terminus), Tyr10, Phe56 (D-strand) and Trp60 as potential tetramerization hot-spots.
Collapse
Affiliation(s)
- Rui J S Loureiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Patrícia F N Faísca
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
35
|
Visconti L, Malagrinò F, Broggini L, De Luca CMG, Moda F, Gianni S, Ricagno S, Toto A. Investigating the Molecular Basis of the Aggregation Propensity of the Pathological D76N Mutant of Beta-2 Microglobulin: Role of the Denatured State. Int J Mol Sci 2019; 20:E396. [PMID: 30669253 PMCID: PMC6359115 DOI: 10.3390/ijms20020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/23/2022] Open
Abstract
Beta-2 microglobulin (β2m) is a protein responsible for a pathologic condition, known as dialysis-related amyloidosis (DRA), caused by its aggregation and subsequent amyloid formation. A naturally occurring mutation of β2m, D76N, presents a higher amyloidogenic propensity compared to the wild type counterpart. Since the three-dimensional structure of the protein is essentially unaffected by the mutation, the increased aggregation propensity of D76N has been generally ascribed to its lower thermodynamic stability and increased dynamics. In this study we compare the equilibrium unfolding and the aggregation propensity of wild type β2m and D76N variant at different experimental conditions. Our data revealed a surprising effect of the D76N mutation in the residual structure of the denatured state, which appears less compact than that of the wild type protein. A careful investigation of the structural malleability of the denatured state of wild type β2m and D76N pinpoint a clear role of the denatured state in triggering the amyloidogenic propensity of the protein. The experimental results are discussed in the light of the previous work on β2m and its role in disease.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Chiara Maria Giulia De Luca
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Divisione di Neurologia 5-Neuropatologia, 20133 Milano, Italy.
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Divisione di Neurologia 5-Neuropatologia, 20133 Milano, Italy.
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
36
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
37
|
Davies HA, Lee CF, Miller L, Liu LN, Madine J. Insights into the Origin of Distinct Medin Fibril Morphologies Induced by Incubation Conditions and Seeding. Int J Mol Sci 2018; 19:ijms19051357. [PMID: 29751581 PMCID: PMC5983645 DOI: 10.3390/ijms19051357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Incubation conditions are an important factor to consider when studying protein aggregation in vitro. Here, we employed biophysical methods and atomic force microscopy to show that agitation dramatically alters the morphology of medin, an amyloid protein deposited in the aorta. Agitation reduces the lag time for fibrillation by ~18-fold, suggesting that the rate of fibril formation plays a key role in directing the protein packing arrangement within fibrils. Utilising preformed sonicated fibrils as seeds, we probed the role of seeding on medin fibrillation and revealed three distinct fibril morphologies, with biophysical modelling explaining the salient features of experimental observations. We showed that nucleation pathways to distinct fibril morphologies may be switched on and off depending on the properties of the seeding fibrils and growth conditions. These findings may impact on the development of amyloid-based biomaterials and enhance understanding of seeding as a pathological mechanism.
Collapse
Affiliation(s)
- Hannah A Davies
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| | - Leanne Miller
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
38
|
Saha B, Chowdhury S, Sanyal D, Chattopadhyay K, Suresh Kumar G. Comparative Study of Toluidine Blue O and Methylene Blue Binding to Lysozyme and Their Inhibitory Effects on Protein Aggregation. ACS OMEGA 2018; 3:2588-2601. [PMID: 30023840 PMCID: PMC6044680 DOI: 10.1021/acsomega.7b01991] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 06/01/2023]
Abstract
A comparative binding interaction of toluidine blue O (TBO) and methylene blue (MB) with lysozyme was investigated by multifaceted biophysical approaches as well as from the aspects of in silico biophysics. The bindings were static, and it occurred via ground-state complex formation as confirmed from time-resolved fluorescence experiments. From steady-state fluorescence and anisotropy, binding constants were calculated, and it was found that TBO binds more effectively than MB. Synchronous fluorescence spectra revealed that binding of dyes to lysozyme causes polarity changes around the tryptophan (Trp) moiety, most likely at Trp 62 and 63. Calorimetric titration also depicts the higher binding affinity of TBO over MB, and the interactions were exothermic and entropy-driven. In silico studies revealed the potential binding pockets in lysozyme and the participation of residues Trp 62 and 63 in ligand binding. Furthermore, calculations of thermodynamic parameters from the theoretical docking studies were in compliance with experimental observations. Moreover, an inhibitory effect of these dyes to lysozyme fibrillogenesis was examined, and the morphology of the formed fibril was scanned by atomic force microscopy imaging. TBO was observed to exhibit higher potential in inhibiting the fibrillogenesis than MB, and this phenomenon stands out as a promising antiamyloid therapeutic strategy.
Collapse
Affiliation(s)
- Baishakhi Saha
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sourav Chowdhury
- Structural
Biology and Bioinformatics Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Dwipanjan Sanyal
- Structural
Biology and Bioinformatics Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Krishnananda Chattopadhyay
- Structural
Biology and Bioinformatics Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
39
|
Katina NS, Balobanov VA, Ilyina NB, Vasiliev VD, Marchenkov VV, Glukhov AS, Nikulin AD, Bychkova VE. sw ApoMb Amyloid Aggregation under Nondenaturing Conditions: The Role of Native Structure Stability. Biophys J 2017; 113:991-1001. [PMID: 28877500 DOI: 10.1016/j.bpj.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Investigation of the molecular mechanisms underlying amyloid-related human diseases attracts close attention. These diseases, the number of which currently is above 40, are characterized by formation of peptide or protein aggregates containing a cross-β structure. Most of the amyloidogenesis mechanisms described so far are based on experimental studies of aggregation of short peptides, intrinsically disordered proteins, or proteins under denaturing conditions, and studies of amyloid aggregate formations by structured globular proteins under conditions close to physiological ones are still in the initial stage. We investigated the effect of amino acid substitutions on propensity of the completely helical protein sperm whale apomyoglobin (sw ApoMb) for amyloid formation from its structured state in the absence of denaturing agents. Stability and aggregation of mutated sw ApoMb were studied using circular dichroism, Fourier transform infrared spectroscopy, x-ray diffraction, native electrophoresis, and electron microscopy techniques. Here, we demonstrate that stability of the protein native state determines both protein aggregation propensity and structural peculiarities of formed aggregates. Specifically, structurally stable mutants show low aggregation propensity and moderately destabilized sw ApoMb variants form amyloids, whereas their strongly destabilized mutants form both amyloids and nonamyloid aggregates.
Collapse
Affiliation(s)
- Natalya S Katina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vitalii A Balobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nelly B Ilyina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Victor D Vasiliev
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Anatoly S Glukhov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valentina E Bychkova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
40
|
Iwakawa N, Morimoto D, Walinda E, Kawata Y, Shirakawa M, Sugase K. Real-Time Observation of the Interaction between Thioflavin T and an Amyloid Protein by Using High-Sensitivity Rheo-NMR. Int J Mol Sci 2017; 18:ijms18112271. [PMID: 29143789 PMCID: PMC5713241 DOI: 10.3390/ijms18112271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 01/27/2023] Open
Abstract
Amyloid fibril formation is associated with numerous neurodegenerative diseases. To elucidate the mechanism of fibril formation, the thioflavin T (ThT) fluorescence assay is widely used. ThT is a fluorescent dye that selectively binds to amyloid fibrils and exhibits fluorescence enhancement, which enables quantitative analysis of the fibril formation process. However, the detailed binding mechanism has remained unclear. Here we acquire real-time profiles of fibril formation of superoxide dismutase 1 (SOD1) using high-sensitivity Rheo-NMR spectroscopy and detect weak and strong interactions between ThT and SOD1 fibrils in a time-dependent manner. Real-time information on the interaction between ThT and fibrils will contribute to the understanding of the binding mechanism of ThT to fibrils. In addition, our method provides an alternative way to analyze fibril formation.
Collapse
Affiliation(s)
- Naoto Iwakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan.
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
41
|
Zhang J, Sandberg A, Wu X, Nyström S, Lindgren M, Konradsson P, Hammarström P. trans-Stilbenoids with Extended Fluorescence Lifetimes for the Characterization of Amyloid Fibrils. ACS OMEGA 2017; 2:4693-4704. [PMID: 31457755 PMCID: PMC6641930 DOI: 10.1021/acsomega.7b00535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/13/2017] [Indexed: 05/29/2023]
Abstract
It was previously reported that two naphthyl-based trans-stilbene probes, (E)-4-(2-(naphthalen-1-yl)vinyl)benzene-1,2-diol (1) and (E)-4-(2-(naphthalen-2-yl)vinyl)benzene-1,2-diol (3), can bind to both native transthyretin (TTR) and misfolded protofibrillar TTR at physiological concentrations, displaying distinct emission maxima bound to the different conformational states (>100 nm difference). To further explore this amyloid probe scaffold to obtain extended fluorescence lifetimes, two new analogues with expanded aromatic ring systems (anthracene and pyrene), (E)-4-(2-(anthracen-2-yl)vinyl)benzene-1,2-diol (4) and (E)-4-(2-(pyren-2-yl)vinyl)benzene-1,2-diol (5), were synthesized employing the palladium-catalyzed Mizoroki-Heck reaction. (E)-4-Styrylbenzene-1,2-diol (2), 3, 4, and 5 were investigated with respect to their photophysical properties in methanol and when bound to insulin, lysozyme, and Aβ1-42 fibrils, including time-resolved fluorescence measurements. In conclusion, 4 and 5 can bind to both native and fibrillar TTR, becoming highly fluorescent. Compounds 2-5 bind specifically to insulin, lysozyme, and Aβ1-42 fibrils with an apparent fluorescence intensity increase and moderate binding affinities. The average fluorescence lifetimes of the probes bound to Aβ1-42 fibrils are 1.3 ns (2), 1.5 ns (3), 5.7 ns (4), and 29.8 ns (5). In summary, the variable aromatic moieties of the para-positioned trans-stilbenoid vinyl-benzene-1,2-diol with benzene, naphthalene, anthracene, and pyrene showed that the extended conjugated systems retained the amyloid targeting properties of the probes. Furthermore, both the anthracene and pyrene moieties extensively enhanced the fluorescence intensity and prolonged lifetimes. These attractive probe properties should improve amyloid detection and characterization by fluorescence-based techniques.
Collapse
Affiliation(s)
- Jun Zhang
- IFM-Department
of Chemistry, Linköping University, Linköping 581 83, Sweden
| | - Alexander Sandberg
- IFM-Department
of Chemistry, Linköping University, Linköping 581 83, Sweden
| | - Xiongyu Wu
- IFM-Department
of Chemistry, Linköping University, Linköping 581 83, Sweden
| | - Sofie Nyström
- IFM-Department
of Chemistry, Linköping University, Linköping 581 83, Sweden
| | - Mikael Lindgren
- Department
of Physics, The Norwegian University of
Science and Technology, 7491 Trondheim, Norway
| | - Peter Konradsson
- IFM-Department
of Chemistry, Linköping University, Linköping 581 83, Sweden
| | - Per Hammarström
- IFM-Department
of Chemistry, Linköping University, Linköping 581 83, Sweden
| |
Collapse
|
42
|
Patel S, Sasidhar YU, Chary KVR. Mechanism of Initiation, Association, and Formation of Amyloid Fibrils Modeled with the N-Terminal Peptide Fragment, IKYLEFIS, of Myoglobin G-Helix. J Phys Chem B 2017; 121:7536-7549. [PMID: 28707888 DOI: 10.1021/acs.jpcb.7b02205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Some peptides and proteins undergo self-aggregation under certain conditions, leading to amyloid fibrils formation, which is related to many disease conditions. It is important to understand such amyloid fibrils formation to provide mechanistic detail that governs the process. A predominantly α-helical myoglobin has been reported recently to readily form amyloid fibrils at a higher temperature, similar to its G-helix segment. Here, we have investigated the mechanism of amyloid fibrils formation by performing multiple long molecular dynamics simulations (27 μs) on the N-terminal segment of the G-helix of myoglobin. These simulations resulted in the formation of a single-layered tetrameric β-sheet with mixed parallel and antiparallel β-strands and this is the most common event irrespective of many different starting structures. Formation of the single-layered tetrameric β-sheet takes place following three distinctive pathways. The process of fibril initiation is dependent on temperature. Further, this study provides mechanistic insights into the formation of multilayered fibrilar structure, which could be applicable to a wider variety of peptides or proteins to understand the amyloidogenesis.
Collapse
Affiliation(s)
- Sunita Patel
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500075, India.,UM-DAE Centre for Excellence in Basic Sciences , Mumbai University Campus, Mumbai 400098, India
| | - Yellamraju U Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Kandala V R Chary
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500075, India.,Tata Institute of Fundamental Research , Mumbai 400005, India
| |
Collapse
|
43
|
Franco R, Favier A, Schanda P, Brutscher B. Optimized fast mixing device for real-time NMR applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:125-129. [PMID: 28595119 PMCID: PMC5542027 DOI: 10.1016/j.jmr.2017.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/29/2017] [Indexed: 05/03/2023]
Abstract
We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem. Soc. 125 (2003) 12484-12492). Such a device is important for off-equilibrium studies of molecular kinetics by multidimensional real-time NMR spectrsocopy. The novelty of this device is that it allows removing the injector from the NMR detection volume after mixing, and thus provides good magnetic field homogeneity independently of the initial sample volume placed in the NMR probe. The apparatus is simple to build, inexpensive, and can be used without any hardware modification on any type of liquid-state NMR spectrometer. We demonstrate the performance of our fast mixing device in terms of improved magnetic field homogeneity, and show an application to the study of protein folding and the structural characterization of transiently populated folding intermediates.
Collapse
Affiliation(s)
- Rémi Franco
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | - Adrien Favier
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | - Paul Schanda
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.
| |
Collapse
|
44
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
45
|
Auer S. Simple Model of the Effect of Solution Conditions on the Nucleation of Amyloid Fibrils. J Phys Chem B 2017; 121:8893-8901. [DOI: 10.1021/acs.jpcb.7b05400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Auer
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
46
|
Khan JM, Khan MS, Alsenaidy MA, Ahmed A, Sen P, Oves M, Al-Shabib NA, Khan RH. Sodium louroyl sarcosinate (sarkosyl) modulate amyloid fibril formation in hen egg white lysozyme (HEWL) at alkaline pH: a molecular insight study. J Biomol Struct Dyn 2017; 36:1550-1565. [DOI: 10.1080/07391102.2017.1329097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Javed Masood Khan
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Priyankar Sen
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Mohammad Oves
- Center of Excellence in Enviromental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
47
|
Bag S, Mitra R, DasGupta S, Dasgupta S. Inhibition of Human Serum Albumin Fibrillation by Two-Dimensional Nanoparticles. J Phys Chem B 2017; 121:5474-5482. [DOI: 10.1021/acs.jpcb.7b01289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sudipta Bag
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rishav Mitra
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunando DasGupta
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
48
|
Marcinko TM, Dong J, LeBlanc R, Daborowski KV, Vachet RW. Small molecule-mediated inhibition of β-2-microglobulin-based amyloid fibril formation. J Biol Chem 2017; 292:10630-10638. [PMID: 28468825 DOI: 10.1074/jbc.m116.774083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
In dialysis patients, β-2 microglobulin (β2m) can aggregate and eventually form amyloid fibrils in a condition known as dialysis-related amyloidosis, which deleteriously affects joint and bone function. Recently, several small molecules have been identified as potential inhibitors of β2m amyloid formation in vitro Here we investigated whether these molecules are more broadly applicable inhibitors of β2m amyloid formation by studying their effect on Cu(II)-induced β2m amyloid formation. Using a variety of biophysical techniques, we also examined their inhibitory mechanisms. We found that two molecules, doxycycline and rifamycin SV, can inhibit β2m amyloid formation in vitro by causing the formation of amorphous, redissolvable aggregates. Rather than interfering with β2m amyloid formation at the monomer stage, we found that doxycycline and rifamycin SV exert their effect by binding to oligomeric species both in solution and in gas phase. Their binding results in a diversion of the expected Cu(II)-induced progression of oligomers toward a heterogeneous collection of oligomers, including trimers and pentamers, that ultimately matures into amorphous aggregates. Using ion mobility mass spectrometry, we show that both inhibitors promote the compaction of the initially formed β2m dimer, which causes the formation of other off-pathway and amyloid-incompetent oligomers that are isomeric with amyloid-competent oligomers in some cases. Overall, our results suggest that doxycycline and rifamycin are general inhibitors of Cu(II)-induced β2m amyloid formation. Interestingly, the putative mechanism of their activity is different depending on how amyloid formation is initiated with β2m, which underscores the complexity of how these structures assemble in vitro.
Collapse
Affiliation(s)
- Tyler M Marcinko
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jia Dong
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Raquel LeBlanc
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kate V Daborowski
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Richard W Vachet
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
49
|
Melanosomal formation of PMEL core amyloid is driven by aromatic residues. Sci Rep 2017; 7:44064. [PMID: 28272432 PMCID: PMC5341037 DOI: 10.1038/srep44064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/01/2017] [Indexed: 12/05/2022] Open
Abstract
PMEL is a pigment cell protein that forms physiological amyloid in melanosomes. Many amyloids and/or their oligomeric precursors are toxic, causing or contributing to severe, incurable diseases including Alzheimer’s and prion diseases. Striking similarities in intracellular formation pathways between PMEL and various pathological amyloids including Aβ and PrPSc suggest PMEL is an excellent model system to study endocytic amyloid. Learning how PMEL fibrils assemble without apparent toxicity may help developing novel therapies for amyloid diseases. Here we identify the critical PMEL domain that forms the melanosomal amyloid core (CAF). An unbiased alanine-scanning screen covering the entire region combined with quantitative electron microscopy analysis of the full set of mutants uncovers numerous essential residues. Many of these rely on aromaticity for function suggesting a role for π-stacking in melanosomal amyloid assembly. Various mutants are defective in amyloid nucleation. This extensive data set informs the first structural model of the CAF and provides insights into how the melanosomal amyloid core forms.
Collapse
|
50
|
Borotto NB, Zhang Z, Dong J, Burant B, Vachet RW. Increased β-Sheet Dynamics and D-E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin. Biochemistry 2017; 56:1095-1104. [PMID: 28168880 DOI: 10.1021/acs.biochem.6b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-2-Microglobulin (β2m) forms amyloid fibrils in the joints of patients undergoing dialysis treatment as a result of kidney failure. One of the ways in which β2m can be induced to form amyloid fibrils in vitro is via incubation with stoichiometric amounts of Cu(II). To better understand the structural changes caused by Cu(II) binding that allow β2m to form amyloid fibrils, we compared the effect of Ni(II) and Zn(II) binding, which are two similarly sized divalent metal ions that do not induce β2m amyloid formation. Using hydrogen/deuterium exchange mass spectrometry (HDX/MS) and covalent labeling MS, we find that Ni(II) has little effect on β2m structure, despite binding in the same region of the protein as Cu(II). This observation indicates that subtle differences in the organization of residues around Cu(II) cause distant changes that are necessary for oligomerization and eventual amyloid formation. One key difference that we find is that only Cu(II), not Ni(II) or Zn(II), is able to cause the cis-trans isomerization of Pro32 that is an important conformational switch that initiates β2m amyloid formation. By comparing HDX/MS data from the three metal-β2m complexes, we also discover that increased dynamics in the β-sheet formed by the A, B, D, and E β strands of the protein and repositioning of residues in the D-E loop are necessary aspects of β2m forming an amyloid-competent dimer. Altogether, our results reveal new structural insights into the unique effect of Cu(II) in the metal-induced amyloid formation of β2m.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Zhe Zhang
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Jia Dong
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Brittney Burant
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|