1
|
Ahmad S, Ahmad MFA, Khan S, Alouffi S, Khan M, Prakash C, Khan MWA, Ansari IA. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int J Biol Macromol 2024; 280:135761. [PMID: 39306154 DOI: 10.1016/j.ijbiomac.2024.135761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Diabetes mellitus significantly increases mortality and morbidity rates due to complications like neuropathy and nephropathy. It also leads to retinopathy and cataract formation, which is a leading cause of vision disability. The polyol pathway emerges as a promising therapeutic target among the various pathways associated with diabetic complications. This review focuses on the development of natural and synthetic aldose reductase inhibitors (ARIs), along with recent discoveries in diabetic complication treatment. AR, pivotal in the polyol pathway converting glucose to sorbitol, plays a key role in secondary diabetes complications' pathophysiology. Understanding AR's function and structure lays the groundwork for improving ARIs to mitigate diabetic complications. New developments in ARIs open up exciting possibilities for treating diabetes-related complications. However, it is still challenging to get preclinical successes to clinical effectiveness because of things like differences in how the disease starts, drug specificity, and the complexity of the AR's structure. Addressing these challenges is crucial for developing targeted and efficient ARIs. Continued research into AR's structural features and specific ARIs is essential. Overcoming these challenges could revolutionize diabetic complication treatment, enhance patient outcomes, and reduce the global burden of diabetes-related mortality and morbidity.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | | | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Science, University of Hail, 2440, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il-55473, Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia.
| |
Collapse
|
2
|
Misra R, Barman P, Bhabak KP. Esterase-Responsive Fluorogenic Prodrugs of Aldose Reductase Inhibitor Epalrestat: An Innovative Strategy toward Enhanced Anticancer Activity. ACS APPLIED BIO MATERIALS 2024; 7:6542-6553. [PMID: 39146213 DOI: 10.1021/acsabm.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In addition to the conventional chemotherapeutic drugs, potent inhibitors of key enzymes that are differentially overexpressed in cancer cells and associated with its progression are often considered as the drugs of choice for treating cancer. Aldose reductase (AR), which is primarily associated with complications of diabetes, is known to be closely related to the development of cancer and drug resistance. Epalrestat (EPA), an FDA-approved drug, is a potent inhibitor of AR and exhibits anticancer activity. However, its poor pharmacokinetic properties limit its bioavailability and therapeutic benefits. We report herein the first examples of esterase-responsive turn-on fluorogenic prodrugs for the sustained release of EPA to cancer cells with a turn-on fluorescence readout. Carboxylesterases are known to be overexpressed in several organ-specific cancer cells and help in selective uncaging of drug from the prodrugs. The prodrugs were synthesized using a multistep organic synthesis and successfully characterized. Absorption and emission spectroscopic studies indicated successful activation of the prodrugs in the presence of porcine liver esterase (PLE) under physiological condition. HPLC studies revealed a simultaneous release of both the drug and the fluorophore from the prodrugs over time with mechanistic insights. While the inhibitory potential of EPA released from the prodrugs toward the enzyme AR was validated in the aqueous medium, the anticancer activity of the prodrugs was studied in a representative cervical cancer cell line. Interestingly, our results revealed that the development of the prodrugs can significantly enhance the anticancer potential of EPA. Finally, the drug uncaging process from the prodrugs by the intracellular esterases was studied in the cellular medium by measuring the turn-on fluorescence using fluorescence microscopy. Therefore, the present study highlights the rational development of the fluorogenic prodrugs of EPA, which will help enhance its anticancer potential with better therapeutic potential.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Said GE, Metwally HM, Abdel-Latif E, Elnagar MR, Ibrahim HS, Ibrahim MA. Development of non-acidic 4-methylbenzenesulfonate-based aldose reductase inhibitors; Design, Synthesis, Biological evaluation and in-silicostudies. Bioorg Chem 2024; 151:107666. [PMID: 39067420 DOI: 10.1016/j.bioorg.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Design and virtual screening of a set of non-acidic 4-methyl-4-phenyl-benzenesulfonate-based aldose reductase 2 inhibitors had been developed followed by chemical synthesis. Based on the results, the synthesized compounds 2, 4a,b, 7a-c, 9a-c, 10a-c, 11b,c and 14a-c inhibited the ALR2 enzymatic activity in a submicromolar range (99.29-417 nM) and among them, the derivatives 2, 9b, 10a and 14b were able to inhibit ALR2 by IC50 of 160.40, 165.20, 99.29 and 120.6 nM, respectively. Moreover, kinetic analyses using Lineweaver-Burk plot revealed that the most active candidate 10a inhibited ALR2 potently via a non-competitive mechanism. In vivo studies showed that 10 mg/kg of compound 10a significantly lowered blood glucose levels in alloxan-induced diabetic mice by 46.10 %. Moreover, compound 10a showed no toxicity up to a concentration of 50 mg/kg and had no adverse effects on liver and kidney functions. It significantly increased levels of GSH and SOD while decreasing MDA levels, thereby mitigating oxidative stress associated with diabetes and potentially attenuating diabetic complications. Furthermore, the binding mode of compound 10a was confirmed through MD simulation. Noteworthy, compounds 2 and 14b showed moderate antimicrobial activity against the two fungi Aspergillus fumigatus and Aspergillus niger. Finally, we report the thiazole derivative 10a as a new promising non-acidic aldose reductase inhibitor that may be beneficial in treating diabetic complications.
Collapse
Affiliation(s)
- Gehad E Said
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Heba M Metwally
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed R Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Marwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
4
|
Jangra A, Chaturvedi S, Sihag S, Sharma G, Tiwari S, Chhokar V. Identification and functional characterization of a novel aldo-keto reductase from Aloe vera. PLANTA 2023; 258:107. [PMID: 37897513 DOI: 10.1007/s00425-023-04256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
MAIN CONCLUSION The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.
Collapse
Affiliation(s)
- Alka Jangra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Siddhant Chaturvedi
- Plant Tissue Culture and Genetic Engineering Lab, Department of Biotechnology, Ministry of Science and Technology (Government of India), National Agri-Food Biotechnology Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
- Goswami Tulsidas Government Post Graduate College (Bundelkhand University, Jhansi), Karwi, Chitrakoot, Uttar Pradesh, 210205, India
| | - Sonia Sihag
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Garima Sharma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, Department of Biotechnology, Ministry of Science and Technology (Government of India), National Agri-Food Biotechnology Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
5
|
Samandari-Bahraseman MR, Khorsand B, Zareei S, Amanlou M, Rostamabadi H. Various concentrations of hesperetin induce different types of programmed cell death in human breast cancerous and normal cell lines in a ROS-dependent manner. Chem Biol Interact 2023; 382:110642. [PMID: 37487865 DOI: 10.1016/j.cbi.2023.110642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The polyphenolic component of citrus fruits, hesperetin (Hst), is a metabolite of hesperidin. In this study, we examined the effect of varying doses and exposure times of hesperetin on MCF-7 and MDA-MB-231 cancer cells, as well as MCF-10A normal cells. By using MTT assay, real-time PCR, western blot, and flow cytometry, we determined the effects of Hst on cell viability, ROS levels, and markers of cell death. Furthermore, molecular docking was used to identify Hst targets that might be involved in ROS-dependent cell death. According to the results, different concentrations of Hst induced different modes of cell death at specific ROS levels. Paraptosis occurred in all cell lines at concentration ranges of IC35 to IC60, and apoptosis occurred at concentrations greater than IC65. In addition, MDA-MB-231 cells were subjected to senescence at sub-toxic doses when treated for a long period of time. When Hst levels were higher, N-acetylcysteine (NAC)'s effect on neutralizing ROS was more pronounced. According to the docking results, Hst may interact with several proteins involved in the regulation of ROS. As an example, the interaction of CCS (Copper chaperone for superoxide dismutase) with Hst might interfere with its chaperone function in folding SOD-1 (superoxide dismutase enzyme), contributing to an increase in cytoplasmic ROS levels. Finally, depending on the ROS level, Hst induces various modes of cell death.
Collapse
Affiliation(s)
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran; Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Rostamabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
7
|
Oaks Z, Patel A, Huang N, Choudhary G, Winans T, Faludi T, Krakko D, Duarte M, Lewis J, Beckford M, Blair S, Kelly R, Landas SK, Middleton FA, Asara JM, Chung SK, Fernandez DR, Banki K, Perl A. Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis. Nat Metab 2023; 5:41-60. [PMID: 36658399 PMCID: PMC9892301 DOI: 10.1038/s42255-022-00711-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2022] [Indexed: 01/21/2023]
Abstract
Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC.
Collapse
Affiliation(s)
- Z Oaks
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
- Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - A Patel
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
- Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - N Huang
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
- Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - G Choudhary
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
- Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - T Winans
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
- Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - T Faludi
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - D Krakko
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - M Duarte
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - J Lewis
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - M Beckford
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - S Blair
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - R Kelly
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - S K Landas
- Departments of Pathology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - F A Middleton
- Departments of Neuroscience, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - J M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S K Chung
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - D R Fernandez
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA
- Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - K Banki
- Departments of Pathology, State University of New York, Norton College of Medicine, Syracuse, NY, USA
| | - A Perl
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, USA.
- Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, USA.
- Departments of Microbiology and Immunology, State University of New York, Norton College of Medicine, Syracuse, NY, USA.
| |
Collapse
|
8
|
Stomberski CT, Venetos NM, Zhou HL, Qian Z, Collison BR, Field SJ, Premont RT, Stamler JS. A multienzyme S-nitrosylation cascade regulates cholesterol homeostasis. Cell Rep 2022; 41:111538. [PMID: 36288700 PMCID: PMC9667709 DOI: 10.1016/j.celrep.2022.111538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022] Open
Abstract
Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.
Collapse
Affiliation(s)
- Colin T Stomberski
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas M Venetos
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Bryce R Collison
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Seth J Field
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA.
| |
Collapse
|
9
|
Grewal AS, Thapa K, Kanojia N, Sharma N, Singh S. Natural Compounds as Source of Aldose Reductase (AR) Inhibitors for the Treatment of Diabetic Complications: A Mini Review. Curr Drug Metab 2021; 21:1091-1116. [PMID: 33069193 DOI: 10.2174/1389200221666201016124125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldol reductase (AR) is the polyol pathway's main enzyme that portrays a crucial part in developing 'complications of diabetes' involving cataract, retinopathy, nephropathy, and neuropathy. These diabetic abnormalities are triggered tremendously via aggregation of sorbitol formation (catalyzed by AR) in the polyol pathway. Consequently, it represents an admirable therapeutic target and vast research was done for the discovery of novel molecules as potential AR inhibitors for diabetic complications. OBJECTIVE This review article has been planned to discuss an outline of diabetic complications, AR and its role in diabetic complications, natural compounds reported as AR inhibitors, and benefits of natural/plant derived AR inhibitors for the management of diabetic abnormalities. RESULTS The goal of AR inhibition remedy is to stabilize the increased flux of blood glucose and sorbitol via the 'polyol pathway' in the affected tissues. A variety of synthetic inhibitors of AR have been established such as tolrestat and sorbinil, but both of these face limitations including low permeability and health problems. Pharmaceutical industries and other scientists were also undertaking work to develop newer, active, and 'safe' AR inhibitors from natural sources. Therefore, several naturally found molecules were documented to possess a potent inhibitory action on AR activity. CONCLUSION Natural inhibitors of AR appeared as harmless pharmacological agents for controlling diabetic complications. The detailed literature throughout this article shows the significance of herbal extracts and phytochemicals as prospective useful AR inhibitors in treating diabetic complications.
Collapse
Affiliation(s)
- Ajmer Singh Grewal
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Komal Thapa
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Liu W, Chen H, Zhang X, Zhang X, Xu L, Lei Y, Zhu C, Ma B. Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02751-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Characterization and Catalytic-Site-Analysis of an Aldo-Keto Reductase with Excellent Solvent Tolerance. Catalysts 2020. [DOI: 10.3390/catal10101121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aldo-keto reductases (AKRs) mediated stereoselective reduction of prochiral carbonyl compounds is an efficient way of preparing single enantiomers of chiral alcohols due to their high chemo-, enantio-, and regio-selectivity. To date, the application of AKRs in the asymmetric synthesis of chiral alcohols has been limited, due to the challenges of cloning and purifying. In this work, the aldo-keto reductase (AKR3-2-9) from Bacillus sp. was obtained, purified and proved to be NADPH-dependent. It exhibits good bioactivity and stability at 37 °C, pH 6.0. AKR3-2-9 is catalytically active on 11 pairs of substrates such as 3-methylcyclohexanone and methyl pyruvate, among which it showed the highest catalytic activity for acetylacetone. In addition, AKR3-2-9 was able to be resistant to five common organic solvents such as methanol and ethanol, it retained high catalytic activity even in a reaction system containing 10% v/v organic solvent for 6 h, which indicates its broad substrate spectrum and exceptional organic solvent tolerance. Furthermore, its three-dimensional structure was constructed and catalytic-site-analysis of the enzyme was conducted. Notably, it was capable of catalyzing the reaction of the key intermediates of duloxetine. The extensive substrate spectrum and predominant organic solvents resistance makes AK3-2-9 a promising enzyme which can be potentially applied in medicine synthesis.
Collapse
|
12
|
Sun Z, Wang X, Zhao Q, Zhu T. Understanding Aldose Reductase-Inhibitors interactions with free energy simulation. J Mol Graph Model 2019; 91:10-21. [PMID: 31128525 DOI: 10.1016/j.jmgm.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Aldose Reductase (AR) reduces a variety of substrates, such as aldehydes, aldoses and corticosteroids. It is the first and rate-limiting enzyme of the polyol pathway and is an important target enzyme for diabetes-associated complications, including retinopathy, neuropathy, and nephropathy. Inhibitors targeting this enzyme are structurally different and some of them have side effects. In existing publications, computational techniques are applied to investigate the binding affinities of existing inhibitors and predicting the affinities of newly designed ligands. However, these calculations only employ coarse and approximated methods such as docking and MM/PBSA. Brute force simulations are employed to study the dynamics of the system but no converged statistics is obtained. As a result, these computations provide results not consistent with experimental values and large discrepancies exist. In the current work, we employ the enhanced sampling technique of alchemical free energy simulation to calculate the binding affinities of several ligands targeting AR. The statistical error is defined with care and the correlation in the time-series data is fully considered. The statistically optimal estimators are used to extract the free energy estimates and the predicted results are in agreement with the experimental values. Less computationally demanding end-point free energy methods are also performed to compare their efficiency with the alchemical methods. As is expected, the end-point methods are of less accuracy and reliability compared with the alchemical free energy methods. The decomposition of the free energy difference in each alchemical transformation into the enthalpic and entropic components gives further insights on the thermodynamics. The enthalpy-entropy compensation is observed in this case. As the structural data obtained from experiments are only snapshots and more details are needed to understand the dynamics of the protein-ligand system, the conformational ensemble is analyzed. We identify important residues involved in the protein-ligand binding case and short-lived interactions formed due to fluctuations in the conformational ensemble. The current work shed light on the atomic detailed understanding of the dynamics of AR-inhibitors interactions.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, 52425, Germany.
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - Qianqian Zhao
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, 52425, Germany; College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Tong Zhu
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
13
|
Cheng P, Wang J, Wu Y, Jiang X, Pei X, Su W. Recombinant expression and molecular insights into the catalytic mechanism of an NADPH-dependent conjugated polyketone reductase for the asymmetric synthesis of (R)-pantolactone. Enzyme Microb Technol 2019; 126:77-85. [PMID: 31000167 DOI: 10.1016/j.enzmictec.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 11/27/2022]
Abstract
(R)-pantolactone is a key chiral intermediate for synthesizing calcium (R)-pantothenate. The commercial synthesis of (R)-pantolactone is performed through the resolution of racemic pantolactone using lactonase-catalyzed enantioselective hydrolysis. The process needs highly toxic hydrogen cyanide and a tedious dynamic kinetic resolution. In this study, we investigated an alternative method to prepare (R)-pantolactone through asymmetric reduction of ketopantolactone (KPL). An NADPH-dependent conjugated polyketone reductase gene from Candida dubliniensis CD36 (CduCPR) was functionally overexpressed in Escherichia coli BL21 (DE3). Recombinant CduCPR belonged to the aldo-keto reductase superfamily, and showed high catalytic activity and stereoselectivity using KPL as the substrate. In a continuous feeding reaction, 200 mM ketopantolactone was reduced to (R)-pantolactone with 98% conversion and 99% enantiomeric excess (e.e.) within 2.0 h. The catalytic mechanism was further investigated. Tyr66 functions as a proton donor following hydrogen transfer from NADPH. Thr30 and His128 are critical residues to bind and orient KPL. Therefore, the recombinant CduCPR from C. dubliniensis exhibited potential application in the asymmetric synthesis of (R)-pantolactone.
Collapse
Affiliation(s)
- Pengfei Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jiapao Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Yifeng Wu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Xinpeng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiaolin Pei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, PR China; College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China.
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
14
|
Stomberski CT, Hess DT, Stamler JS. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid Redox Signal 2019; 30:1331-1351. [PMID: 29130312 PMCID: PMC6391618 DOI: 10.1089/ars.2017.7403] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Protein S-nitrosylation, the oxidative modification of cysteine by nitric oxide (NO) to form protein S-nitrosothiols (SNOs), mediates redox-based signaling that conveys, in large part, the ubiquitous influence of NO on cellular function. S-nitrosylation regulates protein activity, stability, localization, and protein-protein interactions across myriad physiological processes, and aberrant S-nitrosylation is associated with diverse pathophysiologies. Recent Advances: It is recently recognized that S-nitrosylation endows S-nitroso-protein (SNO-proteins) with S-nitrosylase activity, that is, the potential to trans-S-nitrosylate additional proteins, thereby propagating SNO-based signals, analogous to kinase-mediated signaling cascades. In addition, it is increasingly appreciated that cellular S-nitrosylation is governed by dynamically coupled equilibria between SNO-proteins and low-molecular-weight SNOs, which are controlled by a growing set of enzymatic denitrosylases comprising two main classes (high and low molecular weight). S-nitrosylases and denitrosylases, which together control steady-state SNO levels, may be identified with distinct physiology and pathophysiology ranging from cardiovascular and respiratory disorders to neurodegeneration and cancer. CRITICAL ISSUES The target specificity of protein S-nitrosylation and the stability and reactivity of protein SNOs are determined substantially by enzymatic machinery comprising highly conserved transnitrosylases and denitrosylases. Understanding the differential functionality of SNO-regulatory enzymes is essential, and is amenable to genetic and pharmacological analyses, read out as perturbation of specific equilibria within the SNO circuitry. FUTURE DIRECTIONS The emerging picture of NO biology entails equilibria among potentially thousands of different SNOs, governed by denitrosylases and nitrosylases. Thus, to elucidate the operation and consequences of S-nitrosylation in cellular contexts, studies should consider the roles of SNO-proteins as both targets and transducers of S-nitrosylation, functioning according to enzymatically governed equilibria.
Collapse
Affiliation(s)
- Colin T Stomberski
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Douglas T Hess
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan S Stamler
- 2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio.,4 Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
15
|
Stomberski CT, Zhou HL, Wang L, van den Akker F, Stamler JS. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J Biol Chem 2018; 294:1568-1578. [PMID: 30538128 DOI: 10.1074/jbc.ra118.004947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-Nitroso-CoA (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Because SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127A versus SCoRWT HEK293 cells, we identified a SNO-CoA-dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA-mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.
Collapse
Affiliation(s)
- Colin T Stomberski
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hua-Lin Zhou
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106.
| |
Collapse
|
16
|
Gopinath G, Sankeshi V, perugu S, Alaparthi MD, Bandaru S, Pasala VK, Chittineni PR, Krupadanam G, Sagurthi SR. Design and synthesis of chiral 2 H -chromene- N -imidazolo-amino acid conjugates as aldose reductase inhibitors. Eur J Med Chem 2016; 124:750-762. [DOI: 10.1016/j.ejmech.2016.08.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/31/2023]
|
17
|
A series of pyrido[2,3-b]pyrazin-3(4H)-one derivatives as aldose reductase inhibitors with antioxidant activity. Eur J Med Chem 2016; 121:308-317. [DOI: 10.1016/j.ejmech.2016.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 01/05/2023]
|
18
|
Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design. J Biotechnol 2016; 224:20-6. [DOI: 10.1016/j.jbiotec.2016.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 01/02/2023]
|
19
|
Hao X, Han Z, Zhu C. Topical composition for treating diabetic cataracts: a patent evaluation (WO2015026380A1). Expert Opin Ther Pat 2016; 26:731-5. [DOI: 10.1517/13543776.2016.1163339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Ruiz FX, Cousido-Siah A, Porté S, Domínguez M, Crespo I, Rechlin C, Mitschler A, de Lera ÁR, Martín MJ, de la Fuente JÁ, Klebe G, Parés X, Farrés J, Podjarny A. Structural Determinants of the Selectivity of 3-Benzyluracil-1-acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10. ChemMedChem 2015; 10:1989-2003. [PMID: 26549844 DOI: 10.1002/cmdc.201500393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/15/2022]
Abstract
The human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2-(3-(4-chloro-3-nitrobenzyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0048, 3) and 2-(2,4-dioxo-3-(2,3,4,5-tetrabromo-6-methoxybenzyl)-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (JF0049, 4), which selectively target these enzymes. Although 3 and 4 share the 3-benzyluracil-1-acetic acid scaffold, they have different substituents in their aryl moieties. Inhibition studies along with thermodynamic and structural characterizations of both enzymes revealed that the chloronitrobenzyl moiety of compound 3 can open the AR specificity pocket but not that of the AKR1B10 cognate. In contrast, the larger atoms at the ortho and/or meta positions of compound 4 prevent the AR specificity pocket from opening due to steric hindrance and provide a tighter fit to the AKR1B10 inhibitor binding pocket, probably enhanced by the displacement of a disordered water molecule trapped in a hydrophobic subpocket, creating an enthalpic signature. Furthermore, this selectivity also occurs in the cell, which enables the development of a more efficient drug design strategy: compound 3 prevents sorbitol accumulation in human retinal ARPE-19 cells, whereas 4 stops proliferation in human lung cancer NCI-H460 cells.
Collapse
Affiliation(s)
- Francesc X Ruiz
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France. .,Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 08854-5627, Piscataway, NJ, (USA).
| | - Alexandra Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marta Domínguez
- Departmento de Química Orgánica and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 363100, Vigo, Spain
| | - Isidro Crespo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Chris Rechlin
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - André Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Ángel R de Lera
- Departmento de Química Orgánica and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 363100, Vigo, Spain
| | - María Jesús Martín
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009, León, Spain
| | | | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Alberto Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, rue Laurent Fries, 67404, Illkirch CEDEX, France.
| |
Collapse
|
21
|
Luo X, Wang YJ, Zheng YG. Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolated Kluyveromyces lactis XP1461. Enzyme Microb Technol 2015; 77:68-77. [PMID: 26138402 DOI: 10.1016/j.enzmictec.2015.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
Abstract
An aldo-keto reductase gene (klakr) from Kluyveromyces lactis XP1461 was cloned and heterologously expressed in Escherichia coli. The aldo-keto reductase KlAKR was purified and found to be NADH-dependent with a molecular weight of approximately 36 kDa. It is active and stable at 30 °C and pH 7.0. The maximal reaction rate (vmax), apparent Michaelis-Menten constant (Km) for NADH and t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a) and catalytic number (kcat) were calculated as 7.63 U mg(-1), 0.204 mM, 4.42 mM and 697.4 min(-1), respectively. Moreover, the KlAKR has broad substrate specificity to a range of aldehydes, ketones and keto-esters, producing chiral alcohol with e.e. or d.e. >99% for the majority of test substrates.
Collapse
Affiliation(s)
- Xi Luo
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Ya-Jun Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
22
|
Qin X, Hao X, Han H, Zhu S, Yang Y, Wu B, Hussain S, Parveen S, Jing C, Ma B, Zhu C. Design and Synthesis of Potent and Multifunctional Aldose Reductase Inhibitors Based on Quinoxalinones. J Med Chem 2015; 58:1254-67. [DOI: 10.1021/jm501484b] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangyu Qin
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Hao
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Hui Han
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Shaojuan Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Yanchun Yang
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Bobin Wu
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Saghir Hussain
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Shagufta Parveen
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Chaojun Jing
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Bing Ma
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| |
Collapse
|
23
|
Weber S, Salabei JK, Möller G, Kremmer E, Bhatnagar A, Adamski J, Barski OA. Aldo-keto Reductase 1B15 (AKR1B15): a mitochondrial human aldo-keto reductase with activity toward steroids and 3-keto-acyl-CoA conjugates. J Biol Chem 2015; 290:6531-45. [PMID: 25577493 DOI: 10.1074/jbc.m114.610121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues.
Collapse
Affiliation(s)
- Susanne Weber
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Joshua K Salabei
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Gabriele Möller
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Elisabeth Kremmer
- the Institute of Molecular Immunology, German Research Center for Environmental Health, Helmholtz Zentrum Muenchen, 81377 Muenchen, Germany
| | - Aruni Bhatnagar
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Jerzy Adamski
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany, the Lehrstuhl für Experimentelle Genetik, Technische Universitaet Muenchen, 85356 Freising-Weihenstephan, Germany, and the German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Oleg A Barski
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202,
| |
Collapse
|
24
|
Liu X, Wang C, Zhang L, Yao Z, Cui D, Wu L, Lin J, Yuan YRA, Wei D. Structural and mutational studies on an aldo-keto reductase AKR5C3 from Gluconobacter oxydans. Protein Sci 2014; 23:1540-9. [PMID: 25131535 DOI: 10.1002/pro.2531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/09/2022]
Abstract
An aldo-keto reductase AKR5C3 from Gluconobacter oxydans (designated as Gox0644) is a useful enzyme with various substrates, including aldehydes, diacetyl, keto esters, and α-ketocarbonyl compounds. The crystal structures of AKR5C3 in apoform in complex with NADPH and the D53A mutant (AKR5C3(-D53A) ) in complex with NADPH are presented herein. Structure comparison and site-directed mutagenesis combined with biochemical kinetics analysis reveal that the conserved Asp53 in the AKR5C3 catalytic tetrad has a crucial role in securing active pocket conformation. The gain-of-function Asp53 to Ala mutation triggers conformational changes on the Trp30 and Trp191 side chains, improving NADPH affinity to AKR5C3, which helps increase catalytic efficiency. The highly conserved Trp30 and Trp191 residues interact with the nicotinamide moiety of NADPH and help form the NADPH-binding pocket. The AKR5C3(-W30A) and AKR5C3(-W191Y) mutants show decreased activities, confirming that both residues facilitate catalysis. Residue Trp191 is in the loop structure, and the AKR5C3(-W191Y) mutant does not react with benzaldehyde, which might also determine substrate recognition. Arg192, which is involved in the substrate binding, is another important residue. The introduction of R192G increases substrate-binding affinity by improving hydrophobicity in the substrate-binding pocket. These results not only supplement the AKRs superfamily with crystal structures but also provide useful information for understanding the catalytic properties of AKR5C3 and guiding further engineering of this enzyme.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cousido-Siah A, Ruiz FX, Mitschler A, Porté S, de Lera ÁR, Martín MJ, Manzanaro S, de la Fuente JA, Terwesten F, Betz M, Klebe G, Farrés J, Parés X, Podjarny A. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. ACTA ACUST UNITED AC 2014; 70:889-903. [PMID: 24598757 DOI: 10.1107/s1399004713033452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/10/2013] [Indexed: 01/09/2023]
Abstract
Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.
Collapse
Affiliation(s)
- Alexandra Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Francesc X Ruiz
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - André Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ángel R de Lera
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| | - María J Martín
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Sonia Manzanaro
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Jesús A de la Fuente
- Biomar Microbial Technologies S.A., Parque Tecnológico de León, 24009 León, Spain
| | - Felix Terwesten
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Michael Betz
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alberto Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSER/UdS, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France
| |
Collapse
|
26
|
Parveen S, Hussain S, Zhu S, Qin X, Hao X, Zhang S, Lu J, Zhu C. Selective synthesis and comparative activity of olefinic isomers of 1,2-benzothiazine-1,1-dioxide carboxylates as aldose reductase inhibitors. RSC Adv 2014. [DOI: 10.1039/c4ra01016g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Wang L, Gu Q, Zheng X, Ye J, Liu Z, Li J, Hu X, Hagler A, Xu J. Discovery of new selective human aldose reductase inhibitors through virtual screening multiple binding pocket conformations. J Chem Inf Model 2013; 53:2409-22. [PMID: 23901876 DOI: 10.1021/ci400322j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aldose reductase reduces glucose to sorbitol. It plays a key role in many of the complications arising from diabetes. Thus, aldose reductase inhibitors (ARI) have been identified as promising therapeutic agents for treating such complications of diabetes, as neuropathy, nephropathy, retinopathy, and cataracts. In this paper, a virtual screening protocol applied to a library of compounds in house has been utilized to discover novel ARIs. IC50's were determined for 15 hits that inhibited ALR2 to greater than 50% at 50 μM, and ten of these have an IC50 of 10 μM or less, corresponding to a rather substantial hit rate of 14% at this level. The specificity of these compounds relative to their cross-reactivity with human ALR1 was also assessed by inhibition assays. This resulted in identification of novel inhibitors with IC50's comparable to the commercially available drug, epalrestat, and greater than an order of magnitude better selectivity.
Collapse
Affiliation(s)
- Ling Wang
- Research Center for Drug Discovery & Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang S, Chen X, Parveen S, Hussain S, Yang Y, Jing C, Zhu C. Effect of C7 Modifications on Benzothiadiazine-1,1-dioxide Derivatives on Their Inhibitory Activity and Selectivity toward Aldose Reductase. ChemMedChem 2012; 8:603-13. [DOI: 10.1002/cmdc.201200386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/11/2012] [Indexed: 01/08/2023]
|
29
|
Abstract
In medicinal chemistry, carbaboranes can be employed either as boron carriers for boron neutron capture therapy (BNCT) or as scaffolds for radiodiagnostic or therapeutic agents. We have developed a suitable synthesis employing the phosphoramidite method to connect meta-carbaboranyl bis-phosphonites with the 6'-OH group of isopropylidene-protected galactose, followed by oxidation or sulfurization to give the corresponding bis-phosphonates. Deprotection yielded water-soluble compounds. The corresponding disodium salts exhibit especially low cytotoxicity. Preliminary results on the in vivo toxicity and biodistribution of two compounds in mice indicated a lack of selectivity for the cotton rat lung (CRL) tumor chosen for the experiment. For the incorporation of carbaboranes into breast tumor-selective modified neuropeptide Y, [F7, P34]-NPY, a synthesis of a carbaborane-modified lysine derivative was developed. Linkage of the lysine to the boron cluster was achieved by using a propionic acid spacer. Incorporation of the amino acid derivatives into NPY and [F7, P34]-NPY by solid-phase peptide synthesis was successful. Preliminary studies showed that the receptor binding affinity and signal transduction of the boron-modified peptides were very well retained. Asborin, the carbaborane analogue of aspirin, is a rather weak inhibitor of cyclooxygenase-1 (COX-1) and COX-2, but a highly potent aldo/keto reductase 1A1 (AKR1A1) inhibitor. Modification either at the carboxyl group or at the chlorophenyl ring in indomethacin with ortho- and meta-carbaboranyl derivatives gave active derivatives only for the ortho-carbaborane directly attached to the carboxyl group, while the corresponding adamantyl and meta-carbaboranyl derivatives were inactive.
Collapse
|
30
|
Scholz M, Steinhagen M, Heiker JT, Beck-Sickinger AG, Hey-Hawkins E. Asborin inhibits Aldo/Keto reductase 1A1. ChemMedChem 2011; 6:89-93. [PMID: 20967818 DOI: 10.1002/cmdc.201000368] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Asborin is the carbaborane analogue of aspirin. Replacement of the phenyl ring in aspirin by ortho-carbaborane was found to change the pharmacological profile of the compound remarkably. Unlike aspirin, asborin cannot selectively acetylate a single serine residue in the active site of cyclooxygenase, and as a result inhibitory potency is reduced. Activation of the acetyl group and the presence of the hydrophobic and bulky cluster therefore did not meet the requirements for cyclooxygenase inhibition. Both features, however, match perfectly for inhibition of the aldo/keto reductase family. Herein, we describe the identification of aldo/keto reductase (AKR) 1A1 as an enzymatic target of asborin, which is inhibited in the low micromolar range. The detailed mode of inhibition was studied and is discussed with respect to the cluster properties. The results shed light on how ortho-carbaborane can be used as a drug synthon, as well as on the development of carbaborane-based inhibitors of other aldo/keto reductases.
Collapse
Affiliation(s)
- Matthias Scholz
- Institut für Anorganische Chemie der Universität Leipzig, Germany
| | | | | | | | | |
Collapse
|
31
|
Liu H, Luo Y, Zhang T, Zhang Y, Wu Q, Yuan L, Chung SSM, Oates PJ, Yang JY. Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice. Diabetologia 2011; 54:1242-51. [PMID: 21267539 PMCID: PMC3071933 DOI: 10.1007/s00125-011-2045-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/10/2010] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS The aim of the study was to investigate the effects of genetic deficiency of aldose reductase in mice on the development of key endpoints of diabetic nephropathy. METHODS A line of Ar (also known as Akr1b3)-knockout (KO) mice, a line of Ar-bitransgenic mice and control C57BL/6 mice were used in the study. The KO and bitransgenic mice were deficient for Ar in the renal glomeruli and all other tissues, with the exception of, in the bitransgenic mice, a human AR cDNA knockin-transgene that directed collecting-tubule epithelial-cell-specific AR expression. Diabetes was induced in 8-week-old male mice with streptozotocin. Mice were further maintained for 17 weeks then killed. A number of serum and urinary variables were determined for these 25-week-old mice. Periodic acid-Schiff staining, western blots, immunohistochemistry and protein kinase C (PKC) activity assays were performed for histological analyses, and to determine the levels of collagen IV and TGF-β1 and PKC activities in renal cortical tissues. RESULTS Diabetes-induced extracellular matrix accumulation and collagen IV overproduction were completely prevented in diabetic Ar-KO and bitransgenic mice. Ar deficiency also completely or partially prevented diabetes-induced activation of renal cortical PKC, TGF-β1 and glomerular hypertrophy. Loss of Ar results in a 43% reduction in urine albumin excretion in the diabetic Ar-KO mice and a 48% reduction in the diabetic bitransgenic mice (p < 0.01). CONCLUSIONS/INTERPRETATION Genetic deficiency of Ar significantly ameliorated development of key endpoints linked with early diabetic nephropathy in vivo. Robust and specific inhibition of aldose reductase might be an effective strategy for the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- H. Liu
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Y. Luo
- School of Nursing, The Third Military Medical University, Chongqing, People’s Republic of China
| | - T. Zhang
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Y. Zhang
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Q. Wu
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - L. Yuan
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - S. S. M. Chung
- Division of Life Sciences, Graduate School in Shenzhen, Tsinghua University, The University Town, Shenzhen, People’s Republic of China
| | - P. J. Oates
- Oates Biomedical Consulting, Gales Ferry, CT USA
| | - J. Y. Yang
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
- Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Centre, Xiamen, People’s Republic of China
| |
Collapse
|
32
|
Alzeer S, Ellis EM. The role of aldehyde reductase AKR1A1 in the metabolism of γ-hydroxybutyrate in 1321N1 human astrocytoma cells. Chem Biol Interact 2011; 191:303-7. [PMID: 21276435 DOI: 10.1016/j.cbi.2011.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/18/2022]
Abstract
The role of the aldehyde reductase AKR1A1 in the biosynthesis of gamma-hydroxybutyrate (GHB) has been investigated in cell lines using a specific double stranded siRNA designed to knock down expression of the enzyme. This enzyme, along with the aldo-keto reductase AKR7A2, has been proposed previously to be one of the major succinic semialdehyde reductases in brain. The AKR1A1 siRNA was introduced into the human astrocytoma cell line (1321N1) and AKR1A1 expression was monitored using quantitative reverse-transcriptase PCR and Western blots. Results show an 88% reduction in mRNA levels and a 94% reduction in AKR1A1 protein expression 72 h after transfection with the siRNA. Aldehyde reductase activity was examined in silenced cells by following the aldehyde-dependent conversion of NADPH to NADP at 340 nm. This revealed a 30% decrease in pNBA reductase activity in cell extracts after AKR1A1 silencing. Succinic semialdehyde reductase activity was significantly lower in silenced cells when measured using high concentrations (1mM) of succinic semialdehyde, but not with low concentrations (10 μM). The effect of silencing on intracellular and extracellular GHB levels was measured using gas chromatography-mass spectrometry. Results show that AKR1A1 has little effect on the production of GHB, indicating that in this cell line alternative enzymes such as the AKR7A2 are likely to play a more significant role in GHB biosynthesis.
Collapse
Affiliation(s)
- Samar Alzeer
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
33
|
Endo S, Matsunaga T, Soda M, Tajima K, Zhao HT, El-Kabbani O, Hara A. Selective inhibition of the tumor marker AKR1B10 by antiinflammatory N-phenylanthranilic acids and glycyrrhetic acid. Biol Pharm Bull 2010; 33:886-90. [PMID: 20460771 DOI: 10.1248/bpb.33.886] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A human aldose reductase-like protein, AKR1B10 in the aldo-keto reductase (AKR) superfamily, was recently identified as a tumor marker of several types of cancer. Tolrestat, an aldose reductase inhibitor (ARI), is known to be the most potent inhibitor of the enzyme. In this study, we compared the inhibitory effects of other ARIs including flavonoids on AKR1B10 and aldose reductase to evaluate their specificity. However, ARIs showed lower inhibitory potency for AKR1B10 than for aldose reductase. In the search for potent and selective inhibitors of AKR1B10 from other drugs used clinically, we found that non-steroidal antiinflammatory N-phenylanthranilic acids, diclofenac and glycyrrhetic acid competitively inhibited AKR1B10, showing K(i) values of 0.35-2.9 microM and high selectivity to this enzyme (43-57 fold versus aldose reductase). Molecular docking studies of mefenamic acid and glycyrrhetic acid in the AKR1B10-nicotinamide adenine dinucleotide phosphate (NADP(+)) complex and site-directed mutagenesis of the putative binding residues suggest that the side chain of Val301 and a hydrogen-bonding network among residues Val301, Gln114 and Ser304 are important for determining the inhibitory potency and selectivity of the non-steroidal antiinflammatory drugs. Thus, the potent and selective inhibition may be related to the cancer chemopreventive roles of the drugs, and their structural features may facilitate the design of new anti-cancer agents targeting AKR1B10.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501-1196, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Endo S, Matsunaga T, Kuwata K, Zhao HT, El-Kabbani O, Kitade Y, Hara A. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. Bioorg Med Chem 2010; 18:2485-90. [DOI: 10.1016/j.bmc.2010.02.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 01/25/2023]
|
35
|
Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg Med Chem 2010; 18:2107-2114. [DOI: 10.1016/j.bmc.2010.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/02/2010] [Accepted: 02/05/2010] [Indexed: 11/21/2022]
|
36
|
Khoury GA, Fazelinia H, Chin JW, Pantazes RJ, Cirino PC, Maranas CD. Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci 2009; 18:2125-38. [PMID: 19693930 DOI: 10.1002/pro.227] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study we introduce a computationally-driven enzyme redesign workflow for altering cofactor specificity from NADPH to NADH. By compiling and comparing data from previous studies involving cofactor switching mutations, we show that their effect cannot be explained as straightforward changes in volume, hydrophobicity, charge, or BLOSUM62 scores of the residues populating the cofactor binding site. Instead, we find that the use of a detailed cofactor binding energy approximation is needed to adequately capture the relative affinity towards different cofactors. The implicit solvation models Generalized Born with molecular volume integration and Generalized Born with simple switching were integrated in the iterative protein redesign and optimization (IPRO) framework to drive the redesign of Candida boidinii xylose reductase (CbXR) to function using the non-native cofactor NADH. We identified 10 variants, out of the 8,000 possible combinations of mutations, that improve the computationally assessed binding affinity for NADH by introducing mutations in the CbXR binding pocket. Experimental testing revealed that seven out of ten possessed significant xylose reductase activity utilizing NADH, with the best experimental design (CbXR-GGD) being 27-fold more active on NADH. The NADPH-dependent activity for eight out of ten predicted designs was either completely abolished or significantly diminished by at least 90%, yielding a greater than 10(4)-fold change in specificity to NADH (CbXR-REG). The remaining two variants (CbXR-RTT and CBXR-EQR) had dual cofactor specificity for both nicotinamide cofactors.
Collapse
Affiliation(s)
- George A Khoury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | |
Collapse
|
37
|
Salvatorelli E, Menna P, Lusini M, Covino E, Minotti G. Doxorubicinolone formation and efflux: a salvage pathway against epirubicin accumulation in human heart. J Pharmacol Exp Ther 2009; 329:175-84. [PMID: 19144686 DOI: 10.1124/jpet.108.149260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Secondary alcohol metabolites and reactive oxygen species mediate cardiomyopathy induced by cumulative doses of antitumor anthracyclines, such as doxorubicin and epirubicin. Epirubicin exhibits a defective conversion to both toxic species, thereby inducing cardiotoxicity at doses higher than equiactive to doxorubicin; however, the gain in cardiac tolerability seems to be marginal compared with the magnitude of the metabolic defects of epirubicin. Cardiomyopathy may occur independent of toxic metabolites if a given anthracycline tends to accumulate in the heart; therefore, we characterized whether epirubicin showed an unusual accumulation in human myocardial strips incubated in plasma. Epirubicin exhibited a higher uptake and reached myocardial levels 2 times higher than those of doxorubicin. Epirubicin also showed a unique metabolization to doxorubicinolone, the product of epirubicin deglycosidation and carbonyl reduction. In diffusing from the strips to plasma, doxorubicinolone caused membrane permeation effects that augmented epirubicin elimination. Experiments with purified doxorubicinolone showed that the efflux of 1 mol doxorubicinolone promoted the concomitant elimination of as many as approximately 40 mol epirubicin. Doxorubicinolone could also diffuse from plasma back to the strips, causing a permeation effect that promoted epirubicin reuptake; however, this reverse process was slower and less potent. On balance, doxorubicinolone efflux diminished the epirubicin to doxorubicin accumulation ratio to approximately 1.5. These results suggest that the cardiac tolerability of epirubicin is limited by its accumulation in the heart and that such accumulation would be even higher in the absence of doxorubicinolone formation and efflux. These results may also serve guidelines for developing noncardiotoxic anthracyclines.
Collapse
Affiliation(s)
- Emanuela Salvatorelli
- Center for Integrated Research, Drug Sciences, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | |
Collapse
|
38
|
Li J, Zhang L, Feng M, Zhang Z, Pan Y. Identification of the proteome composition occurring during the course of embryonic development of bees (Apis mellifera). INSECT MOLECULAR BIOLOGY 2009; 18:1-9. [PMID: 19040427 DOI: 10.1111/j.1365-2583.2008.00849.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To investigate the proteome during embryonic development of honeybees, Apis mellifera, proteins were identified by two-dimensional gel electrophoresis, mass spectrometry and protein engine identification tools that were applied to MASCOT and Xproteo search engines. 312, 320, 315 proteins were detected in 24, 48 and 72 h embryos. Thirty-eight highly abundant proteins were identified at the three time points by MS fingerprinting. All 21 proteins could be identified as products of annotated genes of the honeybee. Identified proteins included six proteins related to the metabolism of carbohydrates and energy production, six proteins belonging to the heat shock protein family, three cytoskeletal proteins, four proteins related to the antioxidant system of the embryo and two proteins related to growth regulation of the embryo. Quantitative proteomics was applied to analyze differences in amounts of these proteins during the three above mentioned developmental stages. Our data present an initial molecular picture of honeybee embryos, and will hopefully pave the way for future research on this animal.
Collapse
Affiliation(s)
- J Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | | | | | | | | |
Collapse
|
39
|
Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5). FEBS Lett 2008; 582:4095-9. [PMID: 19026644 DOI: 10.1016/j.febslet.2008.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/09/2008] [Accepted: 11/04/2008] [Indexed: 11/22/2022]
Abstract
Substitution of active-site Tyr-51 by Ala (Y51A) disrupted the activity of Candida tenuis xylose reductase by six orders of magnitude. External bromide brought about unidirectional rate enhancement ( approximately 2x10(3)-fold at 300mM) for NAD(+)-dependent xylitol oxidation by Y51A. Activity of the wild-type reductase was dependent on a single ionizable protein group exhibiting a pK of 9.2+/-0.1 and 7.3+/-0.3 in the holo-enzyme bound with NADH and NAD(+), respectively. This group which had to be protonated for xylose reduction and unprotonated for xylitol oxidation was eliminated in Y51A, consistent with a catalytic acid-base function of Tyr-51. Bromide may complement the xylitol dehydrogenase activity of Y51A by partly restoring the original hydrogen bond between the reactive alcohol and the phenolate of Tyr-51.
Collapse
|
40
|
Barski OA, Tipparaju SM, Bhatnagar A. Kinetics of nucleotide binding to the beta-subunit (AKR6A2) of the voltage-gated potassium (Kv) channel. Chem Biol Interact 2008; 178:165-70. [PMID: 19013139 DOI: 10.1016/j.cbi.2008.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/12/2008] [Accepted: 10/13/2008] [Indexed: 11/18/2022]
Abstract
The beta-subunits of the voltage-gated potassium (Kv) channels modulate the kinetics and the gating of Kv channels and assists in channel trafficking and membrane localization. These proteins are members of the AKR6 family. They share a common (alpha/beta)(8) barrel structural fold and avidly bind pyridine nucleotides. Low catalytic activity has been reported for these proteins. Kinetic studies with rat Kvbeta2 revealed that the chemical step is largely responsible for the rate-limitation but nucleotide exchange could also contribute to the overall rate. Herein we report our investigations on the kinetics of cofactor exchange using nucleotide-free preparations of Kvbeta2. Kinetic traces measuring quenching of Kvbeta2 fluorescence by NADP(+) were consistent with a two-step binding mechanism which includes rapid formation of a loose enzyme:cofactor complex followed by a slow conformational rearrangement to form a tight final complex. Closing of the nucleotide enfolding loop, which in the crystal structure folds over the bound cofactor, provides the structural basis for this rearrangement. The rate of the loop opening required to release the cofactor is similar for NADPH and NADP(+) (0.9 min(-1)) and is of the same order of magnitude as the rate of the chemical step estimated previously from kinetic studies with 4-nitrobenzaldehyde (0.3-0.8 min(-1), [S.M. Tipparaju, O.A. Barski, S. Srivastava, A. Bhatnagar, Catalytic mechanism and substrate specificity of the beta-subunit of the voltage-gated potassium channel, Biochemistry 47 (2008) 8840-8854]). Binding of NADPH is accompanied by a second conformational change that might be responsible for a 4-fold higher affinity observed with the reduced cofactor and the resulting difficulty in removing bound NADPH from the protein. These data provide evidence that nucleotide exchange occurs on a seconds-to-minutes time scale and set the upper limit for the maximal possible rate of catalysis by Kvbeta2. Slow cofactor exchange is consistent with the role of the beta-subunit as a metabolic sensor implicated in tonic regulation of potassium currents.
Collapse
Affiliation(s)
- Oleg A Barski
- Department of Medicine, Division of Cardiology, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, United States.
| | | | | |
Collapse
|
41
|
Engineering of NADPH-dependent aldo-keto reductase from Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity. Appl Microbiol Biotechnol 2008; 80:805-12. [DOI: 10.1007/s00253-008-1594-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
42
|
Tang WH, Wu S, Wong TM, Chung SK, Chung SSM. Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic Biol Med 2008; 45:602-10. [PMID: 18549825 DOI: 10.1016/j.freeradbiomed.2008.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 12/20/2022]
Abstract
Recent studies have shown that the polyol pathway is involved in ischemia-reperfusion (I/R)-induced myocardial infarction, but the mechanism is unclear. We previously found that lack of aldose reductase (AR), the first enzyme of the polyol pathway, attenuated the increase in transferrin (Tf) level in I/R brain, suggesting that AR contributes to iron-catalyzed free radical-induced damage. We therefore investigated if this mechanism occurs in I/R hearts. We found that inhibition of AR or sorbitol dehydrogenase (SDH), the second enzyme of the polyol pathway, both attenuated the I/R-mediated increases in HIF-1alpha, Tf, TfR, and intracellular iron content and reduced the I/R-induced infarct area of the heart. Further, administration of niacin, which replenishes NAD+, the cofactor for SDH, also normalized TfR and HIF-1alpha levels in I/R hearts. These results suggest that during I/R polyol pathway activity increases the cytosolic NADH/NAD+ ratio. This activates HIF-1alpha that induces the expression of TfR, which in turn increases Tf uptake and iron accumulation and exacerbates oxidative damage that increases the lipid peroxidation. This was confirmed by the fact that administration of the iron chelator deferoxamine attenuated the I/R-induced myocardial infarction.
Collapse
Affiliation(s)
- Wai Ho Tang
- Department of Physiology, Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
43
|
Tipparaju SM, Barski OA, Srivastava S, Bhatnagar A. Catalytic mechanism and substrate specificity of the beta-subunit of the voltage-gated potassium channel. Biochemistry 2008; 47:8840-54. [PMID: 18672894 DOI: 10.1021/bi800301b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The beta-subunits of voltage-gated potassium (Kv) channels are members of the aldo-keto reductase (AKR) superfamily. These proteins regulate inactivation and membrane localization of Kv1 and Kv4 channels. The Kvbeta proteins bind to pyridine nucleotides with high affinity; however, their catalytic properties remain unclear. Here we report that recombinant rat Kvbeta2 catalyzes the reduction of a wide range of aldehydes and ketones. The rate of catalysis was slower (0.06-0.2 min(-1)) than those of most other AKRs but displayed the expected hyperbolic dependence on substrate concentration, with no evidence of allosteric cooperativity. Catalysis was prevented by site-directed substitution of Tyr-90 with phenylalanine, indicating that the acid-base catalytic residue, identified in other AKRs, has a conserved function in Kvbeta2. The protein catalyzed the reduction of a broad range of carbonyls, including aromatic carbonyls, electrophilic aldehydes and prostaglandins, phospholipids, and sugar aldehydes. Little or no activity was detected with carbonyl steroids. Initial velocity profiles were consistent with an ordered bi-bi rapid equilibrium mechanism in which NADPH binding precedes carbonyl binding. Significant primary kinetic isotope effects (2.0-3.1) were observed under single- and multiple-turnover conditions, indicating that the bond-breaking chemical step is rate-limiting. Structure-activity relationships with a series of para-substituted benzaldehydes indicated that the electronic interactions predominate during substrate binding and that no significant charge develops during the transition state. These data strengthen the view that Kvbeta proteins are catalytically active AKRs that impart redox sensitivity to Kv channels.
Collapse
Affiliation(s)
- Srinivas M Tipparaju
- Division of Cardiology, Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
44
|
Stefek M, Snirc V, Djoubissie PO, Majekova M, Demopoulos V, Rackova L, Bezakova Z, Karasu C, Carbone V, El-Kabbani O. Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling. Bioorg Med Chem 2008; 16:4908-20. [DOI: 10.1016/j.bmc.2008.03.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/05/2008] [Accepted: 03/14/2008] [Indexed: 01/25/2023]
|
45
|
Steuber H, Heine A, Podjarny A, Klebe G. Merging the binding sites of aldose and aldehyde reductase for detection of inhibitor selectivity-determining features. J Mol Biol 2008; 379:991-1016. [PMID: 18495158 DOI: 10.1016/j.jmb.2008.03.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/01/2008] [Accepted: 03/25/2008] [Indexed: 11/18/2022]
Abstract
Inhibition of human aldose reductase (ALR2) evolved as a promising therapeutic concept to prevent late complications of diabetes. As well as appropriate affinity and bioavailability, putative inhibitors should possess a high level of selectivity for ALR2 over the related aldehyde reductase (ALR1). We investigated the selectivity-determining features by gradually mapping the residues deviating between the binding pockets of ALR1 and ALR2 into the ALR2 binding pocket. The resulting mutational constructs of ALR2 (eight point mutations and one double mutant) were probed for their influence towards ligand selectivity by X-ray structure analysis of the corresponding complexes and isothermal titration calorimetry (ITC). The binding properties of these mutants were evaluated using a ligand set of zopolrestat, a related uracil derivative, IDD388, IDD393, sorbinil, fidarestat and tolrestat. Our study revealed induced-fit adaptations within the mutated binding site as an essential prerequisite for ligand accommodation related to the selectivity discrimination of the ligands. However, our study also highlights the limits of the present understanding of protein-ligand interactions. Interestingly, binding site mutations not involved in any direct interaction to the ligands in various cases show significant effects towards their binding thermodynamics. Furthermore, our results suggest the binding site residues deviating between ALR1 and ALR2 influence ligand affinity in a complex interplay, presumably involving changes of dynamic properties and differences of the solvation/desolvation balance upon ligand binding.
Collapse
Affiliation(s)
- Holger Steuber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
46
|
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008; 40:553-624. [PMID: 18949601 PMCID: PMC2663408 DOI: 10.1080/03602530802431439] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. Substrates of AKRs include glucose, steroids, glycosylation end-products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (beta/alpha)(8) barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics.
Collapse
Affiliation(s)
- Oleg A Barski
- Division of Cardiology, Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | |
Collapse
|
47
|
Shukla S, Govekar RB, Sirdeshmukh R, Sundaram CS, D'Cruz AK, Pathak KA, Kane SV, Zingde SM. Tumor antigens eliciting autoantibody response in cancer of gingivo-buccal complex. Proteomics Clin Appl 2007; 1:1592-604. [DOI: 10.1002/prca.200700206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Ferrari AM, Degliesposti G, Sgobba M, Rastelli G. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorg Med Chem 2007; 15:7865-77. [PMID: 17870536 DOI: 10.1016/j.bmc.2007.08.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 11/22/2022]
Abstract
Among the available methods for predicting free energies of binding of ligands to a protein, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) approaches have been validated for a relatively limited number of targets and compounds in the training set. Here, we report the results of an extensive study on a series of 28 inhibitors of aldose reductase with experimentally determined crystal structures and inhibitory activities, in which we evaluate the ability of MM-PBSA and MM-GBSA methods in predicting binding free energies using a number of different simulation conditions. While none of the methods proved able to predict absolute free energies of binding in quantitative agreement with the experimental values, calculated and experimental free energies of binding were significantly correlated. Comparing the predicted and experimental DeltaG of binding, MM-PBSA proved to perform better than MM-GBSA, and within the MM-PBSA methods, the PBSA of Amber performed similarly to Delphi. In particular, significant relationships between experimental and computed free energies of binding were obtained using Amber PBSA and structures minimized with a distance-dependent dielectric function. Importantly, while free energy predictions are usually made on large collections of equilibrated structures sampled during molecular dynamics in water, we have found that a single minimized structure is a reasonable approximation if relative free energies of binding are to be calculated. This finding is particularly relevant, considering that the generation of equilibrated MD ensembles and the subsequent free energy analysis on multiple snapshots is computationally intensive, while the generation and analysis of a single minimized structure of a protein-ligand complex is relatively fast, and therefore suited for high-throughput virtual screening studies. At this aim, we have developed an automated workflow that integrates all the necessary steps required to generate structures and calculate free energies of binding. The procedure is relatively fast and able to screen automatically and iteratively molecules contained in databases and libraries of compounds. Taken altogether, our results suggest that the workflow can be a valuable tool for ligand identification and optimization, being able to automatically and efficiently refine docking poses, which sometimes may not be accurate, and rank the compounds based on more accurate scoring functions.
Collapse
Affiliation(s)
- Anna Maria Ferrari
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | | | | | | |
Collapse
|
49
|
Spite M, Baba S, Ahmed Y, Barski O, Nijhawan K, Petrash J, Bhatnagar A, Srivastava S. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes. Biochem J 2007; 405:95-105. [PMID: 17381426 PMCID: PMC1925154 DOI: 10.1042/bj20061743] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone ('core' aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte-endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C(16:0-20:4) phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C(16:0-20:4) phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are efficient phospholipid aldehyde reductases, with non-overlapping substrate specificity, and may be involved in tissue-specific metabolism of endogenous or dietary phospholipid aldehydes.
Collapse
Affiliation(s)
- Matthew Spite
- *Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, U.S.A
| | - Shahid P. Baba
- *Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, U.S.A
| | - Yonis Ahmed
- *Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, U.S.A
| | - Oleg A. Barski
- *Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, U.S.A
| | - Kanchan Nijhawan
- *Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, U.S.A
| | - J. Mark Petrash
- †Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - Aruni Bhatnagar
- *Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, U.S.A
| | - Sanjay Srivastava
- *Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, U.S.A
- To whom correspondence should be addressed, at Division of Cardiology, Department of Medicine, Delia Baxter Building, 580 S. Preston St., Room 421B, University of Louisville, Louisville, KY 40202, U.S.A. (email )
| |
Collapse
|
50
|
Salvatorelli E, Menna P, Gianni L, Minotti G. Defective taxane stimulation of epirubicinol formation in the human heart: insight into the cardiac tolerability of epirubicin-taxane chemotherapies. J Pharmacol Exp Ther 2007; 320:790-800. [PMID: 17135345 DOI: 10.1124/jpet.106.116160] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antitumor anthracycline doxorubicin induces a dose-related cardiotoxicity that correlates with the myocardial levels of its secondary alcohol metabolite doxorubicinol. Combining doxorubicin with taxanes such as paclitaxel or docetaxel may aggravate cardiotoxicity, presumably because the taxanes cause an allosteric-like stimulation of cytoplasmic aldehyde reductases that convert doxorubicin to doxorubicinol in the heart. A less severe aggravation of cardiotoxicity was observed on combining taxanes with epirubicin, a closely related analog of doxorubicin; therefore, we characterized whether the cardiac tolerability of epirubicin-taxane therapies could be due to a defective taxane stimulation of the conversion of epirubicin to its secondary alcohol metabolite epirubicinol. Comparisons between doxorubicin and epirubicin in isolated human heart cytosol showed that epirubicin exhibited a lower V(max)/K(m) value for reaction with aldehyde reductases and a defective stimulation of epirubicinol formation by paclitaxel or docetaxel. A similar pattern occurred in the soluble fraction of human myocardial strips incubated in plasma with anthracyclines and paclitaxel or docetaxel, formulated in their clinical vehicles Cremophor EL or polysorbate 80. Doxorubicin, but not epirubicin, was also able to generate reactive oxygen species in the membrane fraction of myocardial strips; however, the levels of doxorubicin-derived reactive oxygen species were not further augmented by paclitaxel. These results support the notion that taxanes might aggravate the cardiotoxicity of doxorubicin through a specific stimulation of doxorubicinol formation. The failure of paclitaxel or docetaxel to stimulate epirubicinol formation therefore uncovers an important determinant of the improved cardiac tolerability of epirubicin-taxane combinations.
Collapse
Affiliation(s)
- Emanuela Salvatorelli
- Department of Drug Sciences and Center of Excellence on Aging, G. d'Annunzio University School of Medicine, Via dei Vestini, 66013 Chieti, Italy
| | | | | | | |
Collapse
|