1
|
C3d(g), iron nanoparticles, hemin and cytochrome c may induce oxidative cytotoxicity in tumors and reduce tumor-associated myeloid cells-mediated immunosuppression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
3
|
Girotti AW. Nitric Oxide-elicited Resistance to Antitumor Photodynamic Therapy via Inhibition of Membrane Free Radical-mediated Lipid Peroxidation. Photochem Photobiol 2021; 97:653-663. [PMID: 33369741 DOI: 10.1111/php.13373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
This review focuses on the ability of nitric oxide (NO) to antagonize antitumor photodynamic therapy (PDT). NO's anti-PDT effects were recognized relatively recently and require a better mechanistic understanding for developing new strategies to improve PDT efficacy. Many PDT sensitizers (PSs) are amphiphilic and tend to localize in membrane compartments of tumor cells. Unsaturated lipids in these compartments can undergo peroxidative degradation after PS photoactivation. Primary Type I (free radical) vs. Type II (singlet oxygen) photochemistry of lipid peroxidation is discussed, along with light-independent turnover of primary lipid hydroperoxides to free radical species. Chain lipid peroxidation mediated by the latter exacerbates membrane damage and cytotoxicity after a PDT challenge. Our studies have shown that NO from chemical donors can suppress chain peroxidation by intercepting lipid-derived free radical intermediates, thereby protecting cancer cells against photokilling. More recent evidence has revealed that inducible NO synthase (iNOS) is dramatically upregulated in several cancer cell types after a photodynamic challenge, and that iNOS-derived NO enhances resistance as well as growth and migratory aggressiveness of surviving cells. Chain breaking by NO and other possible NO-based resistance mechanisms are discussed, along with novel pharmacologic approaches for overcoming these negative effects.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
4
|
Nitric Oxide Inhibition of Chain Lipid Peroxidation Initiated by Photodynamic Action in Membrane Environments. Cell Biochem Biophys 2020; 78:149-156. [PMID: 32303898 DOI: 10.1007/s12013-020-00909-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Iron-catalyzed, free radical-mediated lipid peroxidation may play a major role in tumor cell killing by photodynamic therapy (PDT), particularly when membrane-localizing photosensitizers are employed. Many cancer cells exploit endogenous iNOS-generated NO for pro-survival/expansion purposes and for hyper-resistance to therapeutic modalities, including PDT. In addition to inhibiting the pro-oxidant activity of Fe(II) via nitrosylation, NO may intercept downstream lipid oxyl and peroxyl radicals, thereby acting as a chain-breaking antioxidant. We investigated this for the first time in the context of PDT by using POPC/Ch/PpIX (100:80:0.2 by mol) liposomes (LUVs) as a model system. Cholesterol (Ch or [14C]Ch) served as an in-situ peroxidation probe and protoporphyrin IX (PpIX) as photosensitizer. PpIX-sensitized lipid peroxidation was monitored by two analytical methods that we developed: HPLC-EC(Hg) and HPTLC-PI. 5α-hydroperoxy-Ch (5α-OOH) accumulated rapidly and linearly with irradiation time, indicating singlet oxygen (1O2) intermediacy. When ascorbate (AH-) and trace lipophilic iron [Fe(HQ)3] were included, 7α/7β-hydroperoxy-Ch (7-OOH) accumulated exponentially, indicating progressively greater membrane-damaging chain lipid peroxidation. With AH-/Fe(HQ)3 present, the NO donor SPNO had no effect on 5α-OOH formation, but dose-dependently inhibited 7-OOH formation due to NO interception of chain-carrying oxyl and peroxyl radicals. Similar results were obtained when cancer cells were PpIX/light-treated, using SPNO or activated macrophages as the NO source. These findings implicate chain lipid peroxidation in PDT-induced cytotoxicity and NO as a potent antagonist thereof by acting as a chain-breaking antioxidant. Thus, unless NO formation in aggressive tumors is suppressed, it can clearly compromise PDT efficacy.
Collapse
|
5
|
Girotti AW. Modulation of the Anti-Tumor Efficacy of Photodynamic Therapy by Nitric Oxide. Cancers (Basel) 2016; 8:E96. [PMID: 27775600 PMCID: PMC5082386 DOI: 10.3390/cancers8100096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) produced by nitric oxide synthase (NOS) enzymes is a free radical molecule involved in a wide variety of normophysiologic and pathophysiologic processes. Included in the latter category are cancer promotion, progression, and resistance to therapeutic intervention. Animal tumor photodynamic therapy (PDT) studies several years ago revealed that endogenous NO can reduce PDT efficacy and that NOS inhibitors can alleviate this. Until relatively recently, little else was known about this anti-PDT effect of NO, including: (a) the underlying mechanisms; (b) type(s) of NOS involved; and (c) whether active NO was generated in vascular cells, tumor cells, or both. In addressing these questions for various cancer cell lines exposed to PDT-like conditions, the author's group has made several novel findings, including: (i) exogenous NO can scavenge lipid-derived free radicals arising from photostress, thereby protecting cells from membrane-damaging chain peroxidation; (ii) cancer cells can upregulate inducible NOS (iNOS) after a PDT-like challenge and the resulting NO can signal for resistance to photokilling; (iii) photostress-surviving cells with elevated iNOS/NO proliferate and migrate/invade more aggressively; and (iv) NO produced by photostress-targeted cells can induce greater aggressiveness in non-targeted bystander cells. In this article, the author briefly discusses these various means by which NO can interfere with PDT and how this may be mitigated by use of NOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
6
|
Girotti AW. Role of Endogenous Nitric Oxide in Hyperaggressiveness of Tumor Cells that Survive a Photodynamic Therapy Challenge. Crit Rev Oncog 2016; 21:353-363. [PMID: 29431083 DOI: 10.1615/critrevoncog.2017020909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many malignant tumors exploit nitric oxide (NO) for a survival, growth, and migration/invasion advantage, and also to withstand the cytotoxic effects of chemo- and radiotherapies. Endogenous NO has also been shown to antagonize photodynamic therapy (PDT), a unique minimally invasive modality involving a photosensitizing (PS) agent, PS-exciting light in the visible- to near-infrared range, and molecular oxygen. The anti-PDT effects of NO were discovered about 20 years ago, but the underlying mechanisms are still not fully understood. More recent studies in the author's laboratory using breast, prostate, and brain cancer cell lines have shown that inducible NO synthase (iNOS/NOS2) is dramatically upregulated after a PDT challenge using 5-aminolevulinic acid (ALA-) -induced protoporphyrin IX as the PS. The parallel increase in NO resulted not only in a greater resistance to cell killing but also in a striking increase in the growth and migration/invasion rate of surviving cells. These in vitro findings and their recent recapitulation at the in vivo level are discussed in this article, along with how iNOS/NO's negative effects on PDT can be attenuated by the use of select iNOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| |
Collapse
|
7
|
Cholesterol as a natural probe for free radical-mediated lipid peroxidation in biological membranes and lipoproteins. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1019:202-9. [PMID: 26778710 DOI: 10.1016/j.jchromb.2015.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Abstract
We describe a relatively convenient and reliable procedure for assessing the magnitude of free radical-mediated (chain) lipid peroxidation in biological systems. The approach is based on use of radiolabeled cholesterol ([(14)C]Ch) as a probe and determination of well-resolved oxidation intermediates/products ([(14)C]ChOX species), using high performance thin layer chromatography with phorphorimaging detection (HPTLC-PI). In a lipid hydroperoxide-primed liposomal test system treated with ascorbate and a lipophilic iron chelate, the following well-resolved [(14)C]ChOX are detected and quantified: 7α/7β-OOH, 7α/7β-OH, and 5,6-epoxide, their levels increasing with incubation time at 37°C. [(14)C]Ch also serves as an excellent probe for lipid peroxidation in lipoproteins and plasma membranes of mammalian cells. Because this approach utilizes Ch as a natural in situ probe, it eliminates potential artifacts associated with artificial probes such as spin traps and fluorophores.
Collapse
|
8
|
The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol 2015; 53:4638-58. [PMID: 26310971 DOI: 10.1007/s12035-015-9392-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.
Collapse
|
9
|
Girotti AW. Tumor-generated nitric oxide as an antagonist of photodynamic therapy. Photochem Photobiol Sci 2015; 14:1425-32. [PMID: 25706541 DOI: 10.1039/c4pp00470a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitric oxide (NO) is a multifunctional free radical molecule produced naturally by nitric oxide synthase (NOS) enzymes. Many tumors exploit NO for survival and growth signaling, and also to thwart the effects of therapeutic treatments, including PDT. The anti-PDT effects of NO were discovered using animal tumor models, but the mechanisms involved are still not fully understood. Recent in vitro studies on breast and prostate cancer cells have shown that inducible NOS (iNOS) along with NO is dramatically upregulated after an ALA-PDT-like challenge. Cells were more resistant to apoptosis after a photochallenge and survivors grew, migrated, and invaded more rapidly, iNOS/NO playing a key role in all these effects. This perspective briefly reviews what is currently known about NO's negative effects on PDT and some of the signaling mechanisms involved. It also provides insights into how these effects may be attenuated by pharmacologic use of iNOS inhibitors.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
10
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 2014; 91:140-55. [PMID: 25327445 DOI: 10.1111/php.12368] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2-deoxyribose moieties of DNA in isolated cells and skin. The UVA-induced generation of 8-oxo-7,8-dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal-catalyzed Haber-Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single-strand breaks at the exclusion, however, of direct double-strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA-induced DNA damage could include single and more complex lesions arising from one-electron oxidation of the guanine base together with aldehyde adducts to amino-substituted nucleobases.
Collapse
Affiliation(s)
- Jean Cadet
- University Grenoble Alpes, INAC, Grenoble, France; CEA, INAC, Grenoble, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
11
|
Poirot M, Silvente-Poirot S. Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer. Biochimie 2013; 95:622-31. [DOI: 10.1016/j.biochi.2012.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/08/2012] [Indexed: 12/02/2022]
|
12
|
Pannuru P, Vaddi DR, Kindinti RR, Varadacharyulu N. Increased erythrocyte antioxidant status protects against smoking induced hemolysis in moderate smokers. Hum Exp Toxicol 2011; 30:1475-81. [DOI: 10.1177/0960327110396527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cigarette smoking is common in societies worldwide and has been identified as injurious to human health. Human red blood cells are important targets for electrophilic and oxidant foreign compounds. In the present study, the possible role of antioxidant status on smoking-induced erythrocyte hemolysis of smokers was studied. Erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, reduced glutathione (GSH) level, erythrocyte membrane lipid peroxidation, total cholesterol and phospholipids were determined. Further, nitrite/nitrate levels (NO2/NO3) in both plasma and erythrocyte lysate were measured. Results showed increased plasma and erythrocyte membrane lipid peroxidation and nitrite/nitrate levels in smokers. The activities of SOD, CAT and GPx were also increased with reduced glutathione (GSH) level in smokers. No significant change was observed in smokers red cell hemolysis and cholesterol/phospholipid (C/P) ratio compared to controls. Erythrocyte membrane lipid peroxidation was positively correlated with SOD ( r = 0.482, p < 0.01) and GPx ( r = 0.368, p < 0.018) in smokers. Increased levels of nitrite/nitrate and antioxidant status of erythrocytes might be playing a crucial role in protecting red cell from free radical damage induced by cigarette smoke.
Collapse
Affiliation(s)
- Padmavathi Pannuru
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, AP, India
| | - Damodara Reddy Vaddi
- Department of Medicine, Pritzker School of Medicine, University of Chicago, IL, USA
| | | | | |
Collapse
|
13
|
Girotti AW, Giacomoni PU. Lipid and Protein Damage Provoked by Ultraviolet Radiation: Mechanisms of Indirect Photooxidative Damage. BIOPHYSICAL AND PHYSIOLOGICAL EFFECTS OF SOLAR RADIATION ON HUMAN SKIN 2007. [DOI: 10.1039/9781847557957-00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry Medical College of Wisconsin Milwaukee WI USA
| | | |
Collapse
|
14
|
Niziolek M, Korytowski W, Girotti AW. Chain-breaking Antioxidant and Cytoprotective Action of Nitric Oxide on Photodynamically Stressed Tumor Cells ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780262caacao2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Niziolek M, Korytowski W, Girotti AW. Self-sensitized Photodegradation of Membrane-bound Protoporphyrin Mediated by Chain Lipid Peroxidation: Inhibition by Nitric Oxide with Sustained Singlet Oxygen Damage. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00187.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Abstract
NO(*) alone is a poorly reactive species; however, it is able to undergo secondary reactions to form highly oxidizing and nitrating species, NO(2)(*), N(2)O(3), and ONOO(-). These secondary reactive nitrogen species (RNS) are capable of modifying a diversity of biomolecular structures in the cell. The chemical properties of individual RNS will be discussed, along with their ability to react with amino acids, metal cofactors, lipids, cholesterol, and DNA bases and sugars. Many of the identified RNS-induced modifications have been observed both in vitro and in vivo. Several of these chemical modifications have been attributed with a functional role in the cell, such as the modulation of enzyme activity. Other areas in the field will be discussed, including the ability of RNS to react with metabolites, RNA, and substrates in the mitochondrion, and the cellular removal/repair of RNS-modified structures.
Collapse
Affiliation(s)
- Tiffany A Reiter
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
17
|
Niziolek M, Korytowski W, Girotti AW. Nitric oxide-induced resistance to lethal photooxidative damage in a breast tumor cell line. Free Radic Biol Med 2006; 40:1323-31. [PMID: 16631522 DOI: 10.1016/j.freeradbiomed.2005.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/18/2005] [Accepted: 11/29/2005] [Indexed: 12/23/2022]
Abstract
The long-term effects of nitric oxide (NO) on cell susceptibility to photodynamic killing have been studied, using a human breast tumor line (COH-BR1). Subconfluent cells were exposed to a nonlethal dose of spermine NONOate (SPNO, 0.2 mM) and 20 h later were metabolically sensitized with protoporphyrin IX (PpIX) by incubating with 5-aminolevulinic acid. PpIX overproduced in mitochondria was allowed to diffuse to peripheral sites, including plasma membrane, after which a photooxidative challenge was imposed. Active (but not decomposed) SPNO made cells substantially more resistant to necrotic photokilling than non-SPNO-treated controls. A similar response to a tert-butyl hydroperoxide challenge was observed. Hyperresistance was detected approximately 8 h post-SPNO, maximized after approximately 20 h, and reflected diminished oxidant accumulation, as determined with 2',7'-dichlorofluorescein. Intracellular free iron determined with the fluorescent probe calcein rose to approximately 160% of the control level 6 h after SPNO, but declined to approximately 70% after 24 h. Immunoblot analyses revealed a rapid early (approximately 2 h post-NO) increase in heme oxygenase-1 level, followed by a gradual (4-20 h post-NO) increase in ferritin. Upregulation of these proteins is consistent with a cytoprotective mechanism involving mobilization of "signaling" iron. Preactivated RAW 264.7 macrophages on microporous inserts also induced a long-term photoresistance in underlying PpIX-sensitized COH-BR1 cells. This response was abolished by L-NAME, indicating that NO from induced nitric oxide synthase was involved. The NO effects described are entirely novel in the context of photooxidative stress and provide new insights into how NO might affect antitumor photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Magdalena Niziolek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | |
Collapse
|
18
|
Abstract
This review will focus on the therapeutic uses of antioxidant liposomes. Antioxidant liposomes have a unique ability to deliver both lipid- and water-soluble antioxidants to tissues. This review will detail the varieties of antioxidants which have been incorporated into liposomes, their modes of administration, and the clinical conditions in which antioxidant liposomes could play an important therapeutic role. Antioxidant liposomes should be particularly useful for treating diseases or conditions in which oxidative stress plays a significant pathophysiological role because this technology has been shown to suppress oxidative stress. These diseases and conditions include cancer, trauma, irradiation, retinotherapy or prematurity, respiratory distress syndrome, chemical weapon exposure, and pulmonary infections.
Collapse
Affiliation(s)
- William L Stone
- Department of Pediatrics, East Tennessee State University, Johnson City, TN 37614, USA.
| | | |
Collapse
|
19
|
Zareba M, Niziolek M, Korytowski W, Girotti AW. Merocyanine 540-sensitized photokilling of leukemia cells: role of post-irradiation chain peroxidation of plasma membrane lipids as revealed by nitric oxide protection. Biochim Biophys Acta Gen Subj 2005; 1722:51-9. [PMID: 15716134 DOI: 10.1016/j.bbagen.2004.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 11/13/2004] [Accepted: 11/15/2004] [Indexed: 11/15/2022]
Abstract
The lipophilic dye merocyanine 540 (MC540) localizes primarily in the plasma membrane (PM) of tumor cells, where it can sensitize lethal photoperoxidative damage of potential therapeutic importance. We postulated (i) that chain peroxidation triggered by iron-catalyzed turnover of nascent hydroperoxides (LOOHs) generated by singlet oxygen ((1)O(2)) attack on PM lipids contributes significantly to overall cytolethality, and (ii) that nitric oxide (NO), a known scavenger of organic free radicals, would suppress this and, thus, act cytoprotectively. In accordance, irradiation of MC540-sensitized L1210 cells produced 5alpha-OOH, a definitive (1)O(2) adduct of PM cholesterol, which decayed during subsequent dark incubation with appearance of other signature peroxides, viz. free-radical-derived 7alpha/beta-OOH. Whereas chemical donor (SPNO or SNAP)-derived NO had little or no effect on post-irradiation 5alpha-OOH disappearance, it dose-dependently inhibited 7alpha/beta-OOH accumulation, consistent with interception of chain-carrying radicals arising from one-electron reduction of primary LOOHs. Using [(14)C]cholesterol as an L1210 PM probe, we detected additional after-light products of chain peroxidation, including diols (7alpha-OH, 7beta-OH) and 5,6-epoxides, the yields of which were enhanced by iron supplementation, but strongly suppressed by NO. Correspondingly, photoinitiated cell killing was significantly inhibited by NO introduced either immediately before or after light exposure. These findings indicate that prooxidant LOOH turnover plays an important role in photokilling and that NO, by intercepting propagating radicals, can significantly enhance cellular resistance.
Collapse
Affiliation(s)
- Mariusz Zareba
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
20
|
Niziolek M, Korytowski W, Girotti AW. Self-sensitized Photodegradation of Membrane-bound Protoporphyrin Mediated by Chain Lipid Peroxidation: Inhibition by Nitric Oxide with Sustained Singlet Oxygen Damage. Photochem Photobiol 2005. [DOI: 10.1562/2004-10-25-ra-351.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Abstract
The molecular order of fatty acyl chains in oriented lipid bilayers on solid support (SPB), made of either natural or synthetic phospholipids oxidized by Fenton reagent and probed with spin labeled lecithin (5-DSPC) was studied by means of EPR spectrometry. Phospholipids (ASPC, EYPC, mitochondrial extract) were oxidized as either aqueous buffer/methanol dispersions or reverse-phase evaporation vesicles (REV) suspensions. Oxidation was preliminarily revealed both by assaying MDA and by detecting conjugated dienes. Oxidized phospholipid species was quantified by preparative TLC. The degree of order in oriented lipid bilayers of samples containing oxidized phospholipids was estimated by the loss of EPR spectral anisotropy, and an empirical index of the related bilayer disorder was calculated from the second derivative spectra. Bilayers made of each non-oxidized phospholipid species from either ethanol solutions or REV suspensions showed the highest anisotropy, while the increasing presence of oxidized lipids in the samples resulted in progressive loss of EPR spectral anisotropy. In contrast, vesicles containing 40% of the oxidized species maintained an unaltered fluidity gradient, while REV formation was hindered by oxidized phospholipid percentages higher than 45% for ASPC and EYPC, and 35% for Mitochondrial lipids (MtL). It is concluded that the early stages of lipoperoxidation bring about disordering of the phospholipid bilayer interior rather than fluidity alterations, and that prolonged oxidation may result in loss of structural and chemical properties of the bilayer until the structure no longer holds.
Collapse
Affiliation(s)
- Francesco M Megli
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| | | |
Collapse
|
22
|
Niziolek M, Korytowski W, Girotti AW. Chain-breaking Antioxidant and Cytoprotective Action of Nitric Oxide on Photodynamically Stressed Tumor Cells¶. Photochem Photobiol 2003; 78:262-70. [PMID: 14556313 DOI: 10.1562/0031-8655(2003)078<0262:caacao>2.0.co;2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitric oxide (.NO) has a multitude of physiological roles, including the ability to protect cells against oxidant-induced killing, e.g. by inhibiting caspase-mediated apoptosis or by intercepting damaging free radicals derived from membrane lipids. The purpose of this study was to test the hypothesis that low flux .NO acting in the latter fashion can enhance tumor-cell resistance to photodynamic killing, specifically that sensitized by 5-aminolevulinic acid (ALA)-derived protoporphyrin IX (PpIX). Preliminary model experiments with iron-ascorbate-treated, PpIX-sensitized liposomes showed that spermine NONOate (SPER/NO)-derived .NO had no effect on photoinduced accumulation of primary singlet oxygen adducts, e.g. the cholesterol hydroperoxide 5 alpha-OOH, but dose-dependently inhibited the buildup of free radical-generated oxidation products arising from one-electron turnover of primary peroxides. In subsequent studies, breast tumor COH-BR1 cells in serum-free medium were treated with 1 mM ALA for 15 min and then without ALA for 3.75 h, allowing biogenerated PpIX to diffuse to extramitochondrial sites, including plasma membrane. Cells were irradiated in the absence or presence of SPER/NO and compared for peroxidative damage and Hoechst-assessed viability after 5 h in the dark. Iron-stimulated necrotic photo-killing and accumulation of chain lipid peroxidation products were observed, and this was inhibited strongly by SPER/NO, but not by decomposed SPER/NO, confirming that .NO was the active agent. When introduced after irradiation, .NO became progressively less inhibitory, consistent with ongoing but waning free-radical activity. These findings provide new insights into the possible role of .NO in tumor resistance to ALA-photodynamic therapy and other photo-dynamic treatments.
Collapse
Affiliation(s)
- Magdalena Niziolek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
23
|
Abstract
Reactive oxygen species (ROS) are involved in the damage and response of cyanobacteria to UV-B irradiation. In cyanobacteria, there are several targets for the potentially toxic ROS such as lipids, DNA and protein. The damage to photosynthetic apparatus induces the inhibition of photosynthesis that is mediated partially by ROS. UV-B-induced oxidative stress and oxidative damage increases with irradiation time and can be reversed after long-term irradiation. This raises the interesting question of whether cyanobacteria can acclimatize to the present UV-B stress. On one hand, ROS may also act as signal molecules and mediate the genetic regulation of photosynthetic genes and the induction of antioxidant enzymes. On the other hand, the efficient defense and repair system allows cyanobacteria to recover from the oxidative damage under moderate UV-B irradiation. In addition, the following methods are discussed: the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), used to detect oxidative stress induced by UV-B; thiobarbituric acid reactive substances (TBARS), used to determine lipid peroxidation in cyanobacteria; fluorimetric analysis of DNA unwinding (FADU), used to quantify DNA strand breaks induced by ROS formation under UV-B stress.
Collapse
Affiliation(s)
- Yu-Ying He
- Institut für Botanik und Pharmazeutische Biologie, Friedrich-Alexander-Universität, Staudtstr. 5, D-91058 Erlangen, Germany
| | | |
Collapse
|
24
|
Kagan VE, Kozlov AV, Tyurina YY, Shvedova AA, Yalowich JC. Antioxidant mechanisms of nitric oxide against iron-catalyzed oxidative stress in cells. Antioxid Redox Signal 2001; 3:189-202. [PMID: 11396475 DOI: 10.1089/152308601300185160] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three distinct antioxidant pathways are considered through which iron-catalyzed oxidative stress may be regulated by nitric oxide (NO). The first two pathways involve direct redox interactions of NO with iron catalytic sites and represent a fast response that may be considered an emergency mechanism to protect cells from the consequences of acute and intensive oxidative stress. These are (i) NO-induced nitrosylation at heme and non-heme iron catalytic sites that is capable of directly reducing oxoferryl-associated radicals, (ii) formation of nitrosyl complexes with intracellular "loosely" bound redox-active iron, and (iii) an indirect regulatory pathway that may function as an adaptive mechanism that becomes operational upon long-term exposure of cells to NO. In the latter pathway, NO down-regulates expression of iron-containing proteins to prevent their catalytic prooxidant reactions.
Collapse
Affiliation(s)
- V E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15238, USA.
| | | | | | | | | |
Collapse
|