1
|
Imlay JA, Sethu R, Rohaun SK. Evolutionary adaptations that enable enzymes to tolerate oxidative stress. Free Radic Biol Med 2019; 140:4-13. [PMID: 30735836 PMCID: PMC6684875 DOI: 10.1016/j.freeradbiomed.2019.01.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Biochemical mechanisms emerged and were integrated into the metabolic plan of cellular life long before molecular oxygen accumulated in the biosphere. When oxygen levels finaly rose, they threatened specific types of enzymes: those that use organic radicals as catalysts, and those that depend upon iron centers. Nature has found ways to ensure that such enzymes are still used by contemporary organisms. In some cases they are restricted to microbes that reside in anoxic habitats, but in others they manage to function inside aerobic cells. In the latter case, it is frequently true that the ancestral enzyme has been modified to fend off poisoning. In this review we survey a range of protein adaptations that permit radical-based and low-potential iron chemistry to succeed in oxic environments. In many cases, accessory domains shield the vulnerable radical or metal center from oxygen. In others, the structures of iron cofactors evolved to less oxidizable forms, or alternative metals replaced iron altogether. The overarching view is that some classes of biochemical mechanism are intrinsically incompatible with the presence of oxygen. The structural modification of target enzymes is an under-recognized response to this problem.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA.
| | - Ramakrishnan Sethu
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Sanjay Kumar Rohaun
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Takahashi-Iñiguez T, González-Noriega A, Michalak C, Flores ME. Human MMAA induces the release of inactive cofactor and restores methylmalonyl-CoA mutase activity through their complex formation. Biochimie 2017; 142:191-196. [DOI: 10.1016/j.biochi.2017.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
|
3
|
Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea. Metab Eng 2016; 38:446-463. [PMID: 27771364 DOI: 10.1016/j.ymben.2016.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/07/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
The 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35-65% split of carbon flux through the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxypropionate.
Collapse
|
4
|
Jost M, Born DA, Cracan V, Banerjee R, Drennan CL. Structural Basis for Substrate Specificity in Adenosylcobalamin-dependent Isobutyryl-CoA Mutase and Related Acyl-CoA Mutases. J Biol Chem 2015; 290:26882-26898. [PMID: 26318610 DOI: 10.1074/jbc.m115.676890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA mutases are a growing class of adenosylcobalamin-dependent radical enzymes that perform challenging carbon skeleton rearrangements in primary and secondary metabolism. Members of this class of enzymes must precisely control substrate positioning to prevent oxidative interception of radical intermediates during catalysis. Our understanding of substrate specificity and catalysis in acyl-CoA mutases, however, is incomplete. Here, we present crystal structures of IcmF, a natural fusion protein variant of isobutyryl-CoA mutase, in complex with the adenosylcobalamin cofactor and four different acyl-CoA substrates. These structures demonstrate how the active site is designed to accommodate the aliphatic acyl chains of each substrate. The structures suggest that a conformational change of the 5'-deoxyadenosyl group from C2'-endo to C3'-endo could contribute to initiation of catalysis. Furthermore, detailed bioinformatic analyses guided by our structural findings identify critical determinants of acyl-CoA mutase substrate specificity and predict new acyl-CoA mutase-catalyzed reactions. These results expand our understanding of the substrate specificity and the catalytic scope of acyl-CoA mutases and could benefit engineering efforts for biotechnological applications ranging from production of biofuels and commercial products to hydrocarbon remediation.
Collapse
Affiliation(s)
- Marco Jost
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David A Born
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; the Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138
| | - Valentin Cracan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - Catherine L Drennan
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Departments of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,.
| |
Collapse
|
5
|
Maity AN, Chen YH, Ke SC. Large-scale domain motions and pyridoxal-5'-phosphate assisted radical catalysis in coenzyme B12-dependent aminomutases. Int J Mol Sci 2014; 15:3064-87. [PMID: 24562332 PMCID: PMC3958899 DOI: 10.3390/ijms15023064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/25/2013] [Accepted: 01/22/2014] [Indexed: 12/31/2022] Open
Abstract
Lysine 5,6-aminomutase (5,6-LAM) and ornithine 4,5-aminomutase (4,5-OAM) are two of the rare enzymes that use assistance of two vitamins as cofactors. These enzymes employ radical generating capability of coenzyme B12 (5'-deoxyadenosylcobalamin, dAdoCbl) and ability of pyridoxal-5'-phosphate (PLP, vitamin B6) to stabilize high-energy intermediates for performing challenging 1,2-amino rearrangements between adjacent carbons. A large-scale domain movement is required for interconversion between the catalytically inactive open form and the catalytically active closed form. In spite of all the similarities, these enzymes differ in substrate specificities. 4,5-OAM is highly specific for D-ornithine as a substrate while 5,6-LAM can accept D-lysine and L-β-lysine. This review focuses on recent computational, spectroscopic and structural studies of these enzymes and their implications on the related enzymes. Additionally, we also discuss the potential biosynthetic application of 5,6-LAM.
Collapse
Affiliation(s)
| | - Yung-Han Chen
- Physics Department, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Shyue-Chu Ke
- Physics Department, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
6
|
Park K, Brunold TC. Combined spectroscopic and computational analysis of the vibrational properties of vitamin B12 in its Co3+, Co2+, and Co1+ oxidation states. J Phys Chem B 2013; 117:5397-410. [PMID: 23477417 DOI: 10.1021/jp309392u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the geometric and electronic structures of vitamin B12 (cyanocobalamin, CNCbl) and its reduced derivatives Co(2+)cobalamin (Co(2+)Cbl) and Co(1+)cobalamin (Co(1+)Cbl(-)) are now reasonably well established, their vibrational properties, in particular their resonance Raman (rR) spectra, have remained quite poorly understood. The goal of this study was to establish definitive assignments of the corrin-based vibrational modes that dominate the rR spectra of vitamin B12 in its Co(3+), Co(2+), and Co(1+) oxidation states. rR spectra were collected for all three species with laser excitation in resonance with the most intense corrin-based π → π* transitions. These experimental data were used to validate the computed vibrational frequencies, eigenvector compositions, and relative rR intensities of the normal modes of interest as obtained by density functional theory (DFT) calculations. Importantly, the computational methodology employed in this study successfully reproduces the experimental observation that the frequencies and rR excitation profiles of the corrin-based vibrational modes vary significantly as a function of the cobalt oxidation state. Our DFT results suggest that this variation reflects large differences in the degree of mixing between the occupied Co 3d orbitals and empty corrin π* orbitals in CNCbl, Co(2+)Cbl, and Co(1+)Cbl(-). As a result, vibrations mainly involving stretching of conjugated C-C and C-N bonds oriented along one axis of the corrin ring may, in fact, couple to a perpendicularly polarized electronic transition. This unusual coupling between electronic transitions and vibrational motions of corrinoids greatly complicates an assignment of the corrin-based normal modes of vibrations on the basis of their rR excitation profiles.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
7
|
Dowling DP, Croft AK, Drennan CL. Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry. Annu Rev Biophys 2013; 41:403-27. [PMID: 22577824 DOI: 10.1146/annurev-biophys-050511-102225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of enzymes to harness free-radical chemistry allows for some of the most amazing transformations in nature, including reduction of ribonucleotides and carbon skeleton rearrangements. Enzyme cofactors involved in this chemistry can be large and complex, such as adenosylcobalamin (coenzyme B(12)), simpler, such as S-adenosylmethionine and an iron-sulfur cluster (i.e., poor man's B(12)), or very small, such as one nonheme iron atom coordinated by protein ligands. Although the chemistry catalyzed by these enzyme-bound cofactors is unparalleled, it does come at a price. The enzyme must be able to control these radical reactions, preventing unwanted chemistry and protecting the enzyme active site from damage. Here, we consider a set of radical folds: the (β/α)(8) or TIM barrel, combined with a Rossmann domain for coenzyme B(12)-dependent chemistry. Using specific enzyme examples, we consider how nature employs the common TIM barrel fold and its Rossmann domain partner for radical-based chemistry.
Collapse
Affiliation(s)
- Daniel P Dowling
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
8
|
Takahashi-Iñiguez T, García-Hernandez E, Arreguín-Espinosa R, Flores ME. Role of vitamin B12 on methylmalonyl-CoA mutase activity. J Zhejiang Univ Sci B 2012; 13:423-37. [PMID: 22661206 DOI: 10.1631/jzus.b1100329] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vitamin B(12) is an organometallic compound with important metabolic derivatives that act as cofactors of certain enzymes, which have been grouped into three subfamilies depending on their cofactors. Among them, methylmalonyl-CoA mutase (MCM) has been extensively studied. This enzyme catalyzes the reversible isomerization of L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (AdoCbl) as a cofactor participating in the generation of radicals that allow isomerization of the substrate. The crystal structure of MCM determined in Propionibacterium freudenreichii var. shermanii has helped to elucidate the role of this cofactor AdoCbl in the reaction to specify the mechanism by which radicals are generated from the coenzyme and to clarify the interactions between the enzyme, coenzyme, and substrate. The existence of human methylmalonic acidemia (MMA) due to the presence of mutations in MCM shows the importance of its role in metabolism. The recent crystallization of the human MCM has shown that despite being similar to the bacterial protein, there are significant differences in the structural organization of the two proteins. Recent studies have identified the involvement of an accessory protein called MMAA, which interacts with MCM to prevent MCM's inactivation or acts as a chaperone to promote regeneration of inactivated enzyme. The interdisciplinary studies using this protein as a model in different organisms have helped to elucidate the mechanism of action of this isomerase, the impact of mutations at a functional level and their repercussion in the development and progression of MMA in humans. It is still necessary to study the mechanisms involved in more detail using new methods.
Collapse
Affiliation(s)
- Tóshiko Takahashi-Iñiguez
- Department of Molecular Biology and Biotechnology, Institute of Biomedical Research, National Autonomous University of Mexico, D.F. 04510, Mexico.
| | | | | | | |
Collapse
|
9
|
Park K, Mera PE, Escalante-Semerena JC, Brunold TC. Spectroscopic characterization of active-site variants of the PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri: insights into the mechanism of four-coordinate Co(II)corrinoid formation. Inorg Chem 2012; 51:4482-94. [PMID: 22480351 DOI: 10.1021/ic202096x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PduO-type adenosine 5'-triphosphate (ATP):corrinoid adenosyltransferase from Lactobacillus reuteri (LrPduO) catalyzes the transfer of the adenosyl-group of ATP to Co(1+)cobalamin (Cbl) and Co(1+)cobinamide (Cbi) substrates to synthesize adenosylcobalamin (AdoCbl) and adenosylcobinamide (AdoCbi(+)), respectively. Previous studies revealed that to overcome the thermodynamically challenging Co(2+) → Co(1+) reduction, the enzyme drastically weakens the axial ligand-Co(2+) bond so as to generate effectively four-coordinate (4c) Co(2+)corrinoid species. To explore how LrPduO generates these unusual 4c species, we have used magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectroscopic techniques. The effects of active-site amino acid substitutions on the relative yield of formation of 4c Co(2+)corrinoid species were examined by performing eight single-amino acid substitutions at seven residues that are involved in ATP-binding, an intersubunit salt bridge, and the hydrophobic region surrounding the bound corrin ring. A quantitative analysis of our MCD and EPR spectra indicates that the entire hydrophobic pocket below the corrin ring, and not just residue F112, is critical for the removal of the axial ligand from the cobalt center of the Co(2+)corrinoids. Our data also show that a higher level of coordination among several LrPduO amino acid residues is required to exclude the dimethylbenzimidazole moiety of Co(II)Cbl from the active site than to remove the water molecule from Co(II)Cbi(+). Thus, the hydrophilic interactions around and above the corrin ring are more critical to form 4c Co(II)Cbl than 4c Co(II)Cbi(+). Finally, when ATP analogues were used as cosubstrate, only "unactivated" five-coordinate (5c) Co(II)Cbl was observed, disclosing an unexpectedly large role of the ATP-induced active-site conformational changes with respect to the formation of 4c Co(II)Cbl. Collectively, our results indicate that the level of control exerted by LrPduO over the timing for the formation of the 4c Co(2+)corrinoid intermediates is even more exquisite than previously anticipated.
Collapse
Affiliation(s)
- Kiyoung Park
- University of Wisconsin-Madison, Department of Chemistry, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
10
|
Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U. Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnol Bioeng 2011; 109:572-82. [PMID: 21928337 DOI: 10.1002/bit.23334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 11/07/2022]
Abstract
Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate.
Collapse
Affiliation(s)
- Elizabeth Brunk
- Laboratory of Computational Chemistry and Biochemistry, EPFL, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Conrad KS, Brunold TC. Spectroscopic and computational studies of glutathionylcobalamin: nature of Co-S bonding and comparison to Co-C bonding in coenzyme B12. Inorg Chem 2011; 50:8755-66. [PMID: 21859072 DOI: 10.1021/ic200428r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glutathionylcobalamin (GSCbl) is a unique, biologically relevant cobalamin featuring an axial Co-S bond that distinguishes it from the enzymatically active forms of vitamin B(12), which possess axial Co-C bonds. GSCbl has been proposed to serve as an intermediate in cobalamin processing and, more recently, as a therapeutic for neurological disorders associated with oxidative stress. In this study, GSCbl and its close relative cysteinylcobalamin (CysCbl) were investigated using electronic absorption, circular dichroism, magnetic circular dichroism, and resonance Raman spectroscopies. The spectroscopic data were analyzed in the framework of density functional theory (DFT) and time-dependent DFT computations to generate experimentally validated electronic structure descriptions. Although the change in the upper axial ligand from an alkyl to a thiol group represents a major perturbation in terms of the size, basicity, and polarizability of the coordinating atom, our spectroscopic and computational results reveal striking similarities in electronic structure between methylcobalamin (MeCbl) and GSCbl, especially with regard to the σ donation from the alkyl/thiol ligand and the extent of mixing between the cobalt 3d and the ligand frontier orbitals. A detailed comparison of Co-C and Co-S bonding in MeCbl and GSCbl, respectively, is presented, and the implications of our results with respect to the proposed biological roles of GSCbl are discussed.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
12
|
Sandala GM, Smith DM, Radom L. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes. Acc Chem Res 2010; 43:642-51. [PMID: 20136160 DOI: 10.1021/ar900260c] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained catalysis depends on a delicate energy balance. Radical-based enzyme reactions are often difficult to probe experimentally, so theoretical investigations have a particularly valuable role to play in their study. Our research demonstrates that a small-model approach can provide important and revealing insights into the mechanism of action of AdoCbl-dependent enzymes.
Collapse
Affiliation(s)
- Gregory M. Sandala
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
- Centre for Computational Solutions in the Life Sciences, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - David M. Smith
- Centre for Computational Solutions in the Life Sciences, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - Leo Radom
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Li X, Chung LW, Paneth P, Morokuma K. DFT and ONIOM(DFT:MM) studies on Co-C bond cleavage and hydrogen transfer in B12-dependent methylmalonyl-CoA mutase. Stepwise or concerted mechanism? J Am Chem Soc 2009; 131:5115-25. [PMID: 19309090 DOI: 10.1021/ja807677z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The considerable protein effect on the homolytic Co-C bond cleavage to form the 5'-deoxyadenosyl (Ado) radical and cob(II)alamin and the subsequent hydrogen transfer from the methylmalonyl-CoA substrate to the Ado radical in the methylmalonyl-CoA mutase (MMCM) have been extensively studied by DFT and ONIOM(DFT/MM) methods. Several quantum models have been used to systematically study the protein effect. The calculations have shown that the Co-C bond dissociation energy is very much reduced in the protein, compared to that in the gas phase. The large protein effect can be decomposed into the cage effect, the effect of coenzyme geometrical distortion, and the protein MM effect. The largest contributor is the MM effect, which mainly consists of the interaction of the QM part of the coenzyme with the MM part of the coenzyme and the surrounding residues. In particular, Glu370 plays an important role in the Co-C bond cleavage process. These effects tremendously enhance the stability of the Co-C bond cleavage state in the protein. The initial Co-C bond cleavage and the subsequent hydrogen transfer were found to occur in a stepwise manner in the protein, although the concerted pathway for the Co-C bond cleavage coupled with the hydrogen transfer is more favored in the gas phase. The assumed concerted transition state in the protein has more deformation of the coenzyme and the substrate and has less interaction with the protein than the stepwise route. Key factors and residues in promoting the enzymatic reaction rate have been discussed in detail.
Collapse
Affiliation(s)
- Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | | | | | | |
Collapse
|
14
|
Park K, Mera PE, Escalante-Semerena JC, Brunold TC. Kinetic and spectroscopic studies of the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri: substrate specificity and insights into the mechanism of Co(II)corrinoid reduction. Biochemistry 2008; 47:9007-15. [PMID: 18672897 DOI: 10.1021/bi800419e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri ( LrPduO) catalyzes the formation of the essential Co-C bond of adenosylcobalamin (coenzyme B 12) by transferring the adenosyl group from cosubstrate ATP to a transient Co (1+)corrinoid species generated in the enzyme active site. While PduO-type enzymes have previously been believed to be capable of adenosylating only Co (1+)cobalamin (Co (1+)Cbl (-)), our kinetic data obtained in this study provide in vitro evidence that LrPduO can in fact also utilize the incomplete corrinoid Co (1+)cobinamide (Co (1+)Cbi) as an alternative substrate. To explore the mechanism by which LrPduO overcomes the thermodynamically challenging reduction of its Co (2+)corrinoid substrates, we have examined how the enzyme active site alters the geometric and electronic properties of Co (2+)Cbl and Co (2+)Cbi (+) by using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopic techniques. Our data reveal that upon binding to LrPduO that was preincubated with ATP, both Co (2+)corrinoids undergo a partial ( approximately 40-50%) conversion to distinct paramagnetic Co (2+) species. The spectroscopic signatures of these species are consistent with essentially four-coordinate, square-planar Co (2+) complexes, based on a comparison with the results obtained in our previous studies of related enzymes. Consequently, it appears that the general strategy employed by adenosyltransferases for effecting Co (2+) --> Co (1+) reduction involves the formation of an "activated" Co (2+)corrinoid intermediate that lacks any significant axial bonding interactions, to stabilize the redox-active, Co 3d z (2) -based molecular orbital.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
15
|
Kinoshita K, Kawata M, Ogura KI, Yamasaki A, Watanabe T, Komoto N, Hieda N, Yamanishi M, Tobimatsu T, Toraya T. Histidine-α143 Assists 1,2-Hydroxyl Group Migration and Protects Radical Intermediates in Coenzyme B12-Dependent Diol Dehydratase. Biochemistry 2008; 47:3162-73. [DOI: 10.1021/bi7018095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koichiro Kinoshita
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Masahiro Kawata
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Ken-ichi Ogura
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Ai Yamasaki
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Takeshi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Noriaki Komoto
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Naoki Hieda
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Mamoru Yamanishi
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Takamasa Tobimatsu
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Patwardhan A, Marsh ENG. Changes in the free energy profile of glutamate mutase imparted by the mutation of an active site arginine residue to lysine. Arch Biochem Biophys 2007; 461:194-9. [PMID: 17306212 PMCID: PMC1995565 DOI: 10.1016/j.abb.2007.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 01/04/2007] [Indexed: 11/23/2022]
Abstract
Arginine 100 plays an important role in substrate recognition in adenosylcobalamin-dependent glutamate mutase. We have examined how the mutation of this residue to lysine affects the partitioning of tritium, incorporated at the exchangeable position of the coenzyme, between substrate and product. We find that partitioning of tritium back to the substrate predominates in the mutant enzyme, regardless of whether the reaction is run in the forward or reverse direction. This contrasts with the behavior of the wild-type enzyme in which tritium partitions equally between substrate and product, independent of the direction of the reaction. From this we conclude that the mutation significantly impairs the ability of the enzyme to catalyze the rearrangement of substrate radical to product radical. The results illustrate the importance of electrostatic interactions in stabilizing free radical intermediates in this class of enzymes.
Collapse
|
17
|
Padovani D, Banerjee R. Alternative pathways for radical dissipation in an active site mutant of B12-dependent methylmalonyl-CoA mutase. Biochemistry 2006; 45:2951-9. [PMID: 16503649 PMCID: PMC3190604 DOI: 10.1021/bi051742d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylmalonyl-CoA mutase catalyzes the adenosylcobalamin-dependent rearrangement of (2R)-methylmalonyl-CoA to succinyl-CoA. The crystal structure of the enzyme reveals that Y243 is in van der Waals contact with the methyl group of the substrate and suggests a possible role for it in the stereochemical control of the reaction. This hypothesis was tested by designing a molecular hole by replacing the phenolic side chain of Y243 with the methyl group of alanine. The Y243A mutation lowered the catalytic efficiency >(4 x 10(4))-fold compared to wild-type enzyme, the K(M)app for the cofactor approximately 4-fold, and the cob(II)alamin concentration under steady-state turnover conditions approximately 2-fold. However, the mutation did not appear to lead to loss of the stereochemical preference for the substrate. The Y243A mutation is expected to create a cavity and should, in principle, allow accommodation of bulkier substrates. To test this, we used ethylmalonyl-CoA and allylmalonyl-CoA as alternate substrates. Surprisingly, both analogues resulted in suicidal inactivation, albeit in an O(2)-dependent and O(2)-independent fashion, respectively. The inactivation by allylmalonyl-CoA was further investigated, and revealed formation of cob(II)alamin at an approximately 1.5-fold higher rate than with wild-type mutase under single-turnover conditions. Product analysis revealed a stoichiometric mixture of 5'-deoxyadenosine, aquocobalamin, and allylmalonyl-CoA. Taken together, these results are consistent with an internal electron transfer from cob(II)alamin to the substrate analogue radical. These studies serve to emphasize the fine control exerted by Y243 in the vicinity of the substrate to minimize radical extinction in side reactions.
Collapse
Affiliation(s)
| | - Ruma Banerjee
- Corresponding Author: , Telephone: (402)-472-2941, fax: (402)-472-4961
| |
Collapse
|
18
|
Yamanishi M, Vlasie M, Banerjee R. Adenosyltransferase: an enzyme and an escort for coenzyme B12? Trends Biochem Sci 2005; 30:304-8. [PMID: 15950874 DOI: 10.1016/j.tibs.2005.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 03/23/2005] [Accepted: 04/22/2005] [Indexed: 11/20/2022]
Abstract
Many organic cofactors are both rare and reactive. They are usually in low abundance, which poses problems for efficient collision-based targeting to dependent enzymes, whereas their reactivity is problematic for side reactions. Sequestration and escorted delivery presents one solution to this conundrum, but such porters, if they exist, are mostly unknown. In humans, the mitochondrial enzyme methylmalonyl-coenzyme A mutase uses coenzyme B(12) (adenosylcobalamin) but would be inactive if bound to the cofactor precursor that is delivered to the mitochondrion. Adenosyltransferase converts cob(II)alamin to coenzyme B(12). Based on kinetic evidence for interaction between the two enzymes, the 40-fold greater affinity for coenzyme B(12) and the higher coordination number for cobalt in the mutase, we propose that the adenosyltransferase is a dual-function protein: an enzyme that synthesizes coenzyme B(12) and a chaperone that delivers it.
Collapse
Affiliation(s)
- Mamoru Yamanishi
- Biochemistry Department, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
19
|
Chan B, Del Bene JE, Elguero J, Radom L. On the Relationship between the Preferred Site of Hydrogen Bonding and Protonation. J Phys Chem A 2005; 109:5509-17. [PMID: 16839079 DOI: 10.1021/jp0516994] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ab initio molecular orbital calculations have been employed to investigate the interactions between a set of basic substrates (B) with H+ and HF, and the interaction between acids of varying strength (AH+) with two bases, vinylamine and furan. The preferred site for protonation of the substrates appears to be determined primarily by the ability of the protonated species (BH+) to delocalize the acquired positive charge. On the other hand, localization of a pair of electrons at a proton-acceptor site of B tends to be more important in determining the preferred site for hydrogen bonding with HF. The behavior of acids stronger than HF lies between these extremes. Consistent with a previously proposed Hammond postulate for complexes, when a substrate (B) interacts with a range of acids (AH+), proton transfer is generally found to occur when the proton affinity of A is significantly less than that of B. When the proton affinity of A is greater than that of B, a hydrogen-bonded complex is generally formed without proton transfer. Strongest binding (relative to the lowest energy components) occurs when the proton affinities of A and B are comparable. Proton transfer from AH+ is found to take place in some cases when this would not be predicted on the basis of protonation energies alone, because of specific interactions in the resulting complexes.
Collapse
Affiliation(s)
- Bun Chan
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
20
|
Kambo A, Sharma VS, Casteel DE, Woods VL, Pilz RB, Boss GR. Nitric oxide inhibits mammalian methylmalonyl-CoA mutase. J Biol Chem 2005; 280:10073-82. [PMID: 15647267 DOI: 10.1074/jbc.m411842200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylmalonyl-CoA mutase is a key enzyme in intermediary metabolism, and children deficient in enzyme activity have severe metabolic acidosis. We found that nitric oxide (NO) inhibits methylmalonyl-CoA mutase activity in rodent cell extracts. The inhibition of enzyme activity occurred within minutes and was not prevented by thiols, suggesting that enzyme inhibition was not occurring via NO reaction with cysteine residues to form nitrosothiol groups. Enzyme inhibition was dependent on the presence of substrate, implying that NO was reacting with cobalamin(II) (Cbl(II)) and/or the deoxyadenosyl radical (.CH(2)-Ado), both of which are generated from the co-factor of the enzyme, 5'-deoxyadenosyl-cobalamin (AdoCbl), on substrate binding. Consistent with this hypothesis was the finding that high micromolar concentrations (> or =600 microm) of oxygen also inhibited enzyme activity. To study the mechanism of NO reaction with AdoCbl, we simulated the enzymatic reaction by photolyzing AdoCbl, and found that even at low NO concentrations, NO reacted with both the generated Cbl(II) and .CH(2)-Ado indicating that NO could effectively compete with the back formation of AdoCbl. Thus, NO inhibition of methylmalonyl-CoA mutase appeared to be from the reaction of NO with both AdoCbl intermediates (Cbl(II) and .CH(2)-Ado) generated during the enzymatic reaction. The inhibition of methylmalonyl-CoA mutase by NO was likely of physiological relevance because a NO donor inhibited enzyme activity in intact cells, and scavenging NO from cells or inhibiting cellular NO synthesis increased methylmalonyl-CoA mutase activity when measured subsequently in cell extracts.
Collapse
Affiliation(s)
- Amanpreet Kambo
- Department of Medicine, and Cancer Center, University of California, 9500 Gilman Dr., La Jolla, California 92093-0652, USA
| | | | | | | | | | | |
Collapse
|
21
|
Gschösser S, Hannak RB, Konrat R, Gruber K, Mikl C, Kratky C, Kräutler B. Homocoenzyme B12and Bishomocoenzyme B12: Covalent Structural Mimics for Homolyzed, Enzyme-Bound Coenzyme B12. Chemistry 2004; 11:81-93. [PMID: 15540236 DOI: 10.1002/chem.200400701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Efficient electrochemical syntheses of "homocoenzyme B(12)" (2, Co(beta)-(5'-deoxy-5'-adenosyl-methyl)-cob(III)alamin) and "bishomocoenzyme B(12)" (3, Co(beta)-[2-(5'-deoxy-5'-adenosyl)-ethyl]-cob(III)alamin) are reported here. These syntheses have provided crystalline samples of 2 and 3 in 94 and 77 % yield, respectively. In addition, in-depth investigations of the structures of 2 and 3 in solution were carried out and a high-resolution crystal structure of 2 was obtained. The two homologues of coenzyme B(12) (2 and 3) are suggested to function as covalent structural mimics of the hypothetical enzyme-bound "activated" (that is, "stretched" or even homolytically cleaved) states of the B(12) cofactor. From crude molecular models, the crucial distances from the corrin-bound cobalt center to the C5' atom of the (homo)adenosine moieties in 2 and 3 were estimated to be about 3.0 and 4.4 A, respectively. These values are roughly the same as those found in the two "activated" forms of coenzyme B(12) in the crystal structure of glutamate mutase. Indeed, in the crystal structure of 2, the cobalt center was observed to be at a distance of 2.99 A from the C5' atom of the homoadenosine moiety and the latter was found to be present in the unusual syn conformation. In solution, the organometallic moieties of 2 and 3 were shown to be rather flexible and to be considerably more dynamic than the equivalent group in coenzyme B(12). The homoadenosine moiety of 2 was indicated to occur in both the syn and the anti conformations.
Collapse
Affiliation(s)
- Sigrid Gschösser
- Institut für Organische Chemie, Universität Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
22
|
Korotkova N, Lidstrom ME. MeaB is a component of the methylmalonyl-CoA mutase complex required for protection of the enzyme from inactivation. J Biol Chem 2004; 279:13652-8. [PMID: 14734568 DOI: 10.1074/jbc.m312852200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosylcobalamin-dependent methylmalonyl-CoA mutase catalyzes the interconversion of methylmalonyl-CoA and succinyl-CoA. In humans, deficiencies in the mutase lead to methylmalonic aciduria, a rare disease that is fatal in the first year of life. Such inherited deficiencies can result from mutations in the mutase structural gene or from mutations that impair the acquisition of cobalamins. Recently, a human gene of unknown function, MMAA, has been implicated in methylmalonic aciduria (Dobson, C. M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Dore, C., Hudson, T., Rosenblatt, D. S., and Gravel, R. A. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15554-15559). MMAA orthologs are widespread in bacteria, archaea, and eukaryotes. In Methylobacterium extorquens AM1, a mutant defective in the MMAA homolog meaB was unable to grow on C(1) and C(2) compounds because of the inability to convert methylmalonyl-CoA to succinyl-CoA (Korotkova N., Chistoserdova, L., Kuksa, V., and Lidstrom, M. E. (2002) J. Bacteriol. 184, 1750-1758). Here we demonstrate that this defect is not due to the absence of adenosylcobalamin but due to an inactive form of methylmalonyl-CoA mutase. The presence of active mutase in double mutants defective in MeaB and in the synthesis of either R-methylmalonyl-CoA or adenosylcobalamin indicates that MeaB is necessary for protection of mutase from inactivation during catalysis. MeaB and methylmalonyl-CoA mutase from M. extorquens were cloned and purified in their active forms. We demonstrated that MeaB forms a complex with methylmalonyl-CoA mutase and stimulates in vitro mutase activity. These results support the hypothesis that MeaB functions to protect methylmalonyl-CoA mutase from irreversible inactivation.
Collapse
Affiliation(s)
- Natalia Korotkova
- Departments of Chemical Engineering and Microbiology, University of Washington, Seattle, Washington 98195-1750, USA
| | | |
Collapse
|
23
|
Abstract
Vitamin B12 is a complex organometallic cofactor associated with three subfamilies of enzymes: the adenosylcobalamin-dependent isomerases, the methylcobalamin-dependent methyltransferases, and the dehalogenases. Different chemical aspects of the cofactor are exploited during catalysis by the isomerases and the methyltransferases. Thus, the cobalt-carbon bond ruptures homolytically in the isomerases, whereas it is cleaved heterolytically in the methyltransferases. The reaction mechanism of the dehalogenases, the most recently discovered class of B12 enzymes, is poorly understood. Over the past decade our understanding of the reaction mechanisms of B12 enzymes has been greatly enhanced by the availability of large amounts of enzyme that have afforded detailed structure-function studies, and these recent advances are the subject of this review.
Collapse
Affiliation(s)
- Ruma Banerjee
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA. ;
| | | |
Collapse
|
24
|
Dölker N, Maseras F, Lledós A. Density Functional Study on the Effect of the trans Axial Ligand of B12 Cofactors on the Heterolytic Cleavage of the Co−C Bond. J Phys Chem B 2002. [DOI: 10.1021/jp026233p] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole Dölker
- Unitat de Química Física, Edifici C.n, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Feliu Maseras
- Unitat de Química Física, Edifici C.n, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Agustí Lledós
- Unitat de Química Física, Edifici C.n, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
25
|
Pierik AJ, Ciceri D, Bröker G, Edwards CH, McFarlane W, Winter J, Buckel W, Golding BT. Rotation of the exo-methylene group of (R)-3-methylitaconate catalyzed by coenzyme B(12)-dependent 2-methyleneglutarate mutase from Eubacterium barkeri. J Am Chem Soc 2002; 124:14039-48. [PMID: 12440902 DOI: 10.1021/ja020340f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Methyleneglutarate mutase from the anaerobe Eubacterium (Clostridium) barkeri is an adenosylcobalamin (coenzyme B(12))-dependent enzyme that catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Two possibilities for the mechanism of the carbon skeleton rearrangement of the substrate-derived radical to the product-related radical are considered. In both mechanisms an acrylate group migrates from C-3 of 2-methyleneglutarate to C-4. In the "addition-elimination" mechanism this 1,2-shift occurs via an intermediate, a 1-methylenecyclopropane-1,2-dicarboxylate radical, in which the migrating acrylate is simultaneously attached to both C-3 and C-4. In the "fragmentation-recombination" mechanism the migrating group, a 2-acrylyl radical, becomes detached from C-3 before it starts bonding to C-4. In an attempt to distinguish between these two possibilities we have investigated the action of 2-methyleneglutarate mutase on the stereospecifically deuterated substrates (Z)-3-methyl[2'-(2)H(1)]itaconate and (Z)-3-[2'-(2)H(1),methyl-(2)H(3)]methylitaconate. The enzyme catalyzes the equilibration of both compounds with their corresponding E-isomers and with a 1:1 mixture of the corresponding (E)- and (Z)-2-methylene[2'-(2)H(1)]glutarates, as shown by monitoring of the reactions with (1)H and (2)H NMR. In the initial phase of the enzyme-catalyzed equilibration a significant excess (8-11%) of (E)-3-methyl[2'-(2)H(1)]itaconate over its equilibrium value was observed ("E-overshoot"). The E-overshoot was only 3-4% with (Z)-3-[2'-(2)H(1),methyl-(2)H(3)]methylitaconate because the presence of the deuterated methyl group raises the energy barrier from 3-methylitaconate to the corresponding radical. The overshoot is explained by postulating that the migrating acrylate group has to overcome an additional energy barrier from the state leading back to the substrate-derived radical to the state leading forward to the product-related radical. It is concluded that the fragmentation-recombination mechanism can provide an explanation for the results in terms of an additional energy barrier, despite the higher calculated activation energy for this pathway.
Collapse
Affiliation(s)
- Antonio J Pierik
- Department of Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jensen KP, Ryde U. The axial N -base has minor influence on Co–C bond cleavage in cobalamins. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00049-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Abstract
Two classes of enzymatic mechanisms that proceed by free radical chemistry initiated by the 5'-deoxyadenosyl radical are discussed. In the first class, the mechanism of the interconversion of L-lysine and L-beta-lysine catalyzed by lysine 2,3-aminomutase (LAM) involves four radicals, three of which have been spectroscopically characterized. The reversible formation of the 5'-deoxyadenosyl radical takes place by the chemical cleavage of S-adenosylmethionine (SAM) reacting with the [4Fe-4S]+ center in LAM. In other reactions of SAM with iron-sulfur proteins, SAM is irreversibly consumed to generate the 5'-deoxyadenosyl radical, which activates an enzyme by abstracting a hydrogen atom from an enzymatic glycyl residue to form a glycyl radical. The glycyl radical enzymes include pyruvate formate-lyase, anaerobic ribonucleotide reductase from Escherichia coli, and benzylsuccinate synthase. Biotin synthase and lipoate synthase are SAM-dependent [4Fe-4S] proteins that catalyze the insertion of sulfur into unactivated C-H bonds, which are cleaved by the 5'-deoxyadenosyl radical from SAM. In the second class of enzymatic mechanisms using free radicals, adenosylcobalamin-dependent reactions, the 5'-deoxyadenosyl radical arises from homolytic cleavage of the cobalt-carbon bond, and it initiates radical reactions by abstracting hydrogen atoms from substrates. Three examples are described of suicide inactivation through the formation of exceptionally stable free radicals at enzymatic active sites.
Collapse
Affiliation(s)
- P A Frey
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53705, USA.
| |
Collapse
|
28
|
|
29
|
Wetmore SD, Smith DM, Radom L. Catalysis by mutants of methylmalonyl-CoA mutase: a theoretical rationalization for a change in the rate-determining step. Chembiochem 2001; 2:919-22. [PMID: 11948881 DOI: 10.1002/1439-7633(20011203)2:12<919::aid-cbic919>3.0.co;2-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S D Wetmore
- Research School of Chemistry, Australian National University, Canberra, ACT 0200 Australia
| | | | | |
Collapse
|
30
|
Madhavapeddi P, Marsh EN. The role of the active site glutamate in the rearrangement of glutamate to 3-methylaspartate catalyzed by adenosylcobalamin-dependent glutamate mutase. CHEMISTRY & BIOLOGY 2001; 8:1143-9. [PMID: 11755393 DOI: 10.1016/s1074-5521(01)00081-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Adenosylcobalamin (coenzyme B(12))-dependent enzymes catalyze a variety of chemically difficult reactions that proceed through the generation of free radical intermediates. A long-standing question is how proteins stabilize what are normally regarded as highly reactive organic radicals and direct them towards productive reactions. In glutamate mutase the carboxylate of Glu171 hydrogen bonds with the amino group of the substrate. We have investigated the role of this residue in the enzyme mechanism. RESULTS Several sterically and functionally conservative mutations were introduced at position 171. In the most impaired mutant, Glu171Gln, k(cat) is reduced 50-fold, although the K(m) for glutamate is little affected. In the wild-type enzyme activity was pH-dependent and the acidic limb of the activity curve titrated with an apparent pK(a) of 6.6 on V(max), whereas for the sluggish Glu171Gln mutant activity is independent of pH. The steady state deuterium kinetic isotope effect is reduced in the mutant enzyme, but the steady state concentration of free radical species on the enzyme (as measured by the steady state concentration of cob(II)alamin) is unaffected by the mutation. CONCLUSIONS The properties of the mutant proteins are consistent with the hypothesis that Glu171 acts as a general base that serves to deprotonate the amino group of the substrate during catalysis. Deprotonation is expected to facilitate the formation of the glycyl radical intermediate formed during the inter-conversion of substrate and product radicals, but to have little effect on the stability of product or substrate radicals themselves.
Collapse
Affiliation(s)
- P Madhavapeddi
- Department of Chemistry and Division of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
31
|
Marsh EN, Drennan CL. Adenosylcobalamin-dependent isomerases: new insights into structure and mechanism. Curr Opin Chem Biol 2001; 5:499-505. [PMID: 11578922 DOI: 10.1016/s1367-5931(00)00238-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosylcobalamin-dependent isomerases catalyze a variety of chemically difficult 1,2-rearrangements that proceed through a mechanism involving free radical intermediates. These radicals are initially generated by homolysis of the cobalt-carbon bond of the coenzyme. Recently, the crystal structures of several of these enzymes have been solved, revealing two modes of coenzyme binding and highlighting the role of the protein in controlling the rearrangement of reactive substrate radical intermediates. Complementary data from kinetic, spectroscopic and theoretical studies have produced insights into the mechanism by which substrate radicals are generated at the active site, and the pathways by which they rearrange.
Collapse
Affiliation(s)
- E N Marsh
- Department of Chemistry and Division of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|