1
|
Hibino M, Aiba Y, Shoji O. Cationic guanine: positively charged nucleobase with improved DNA affinity inhibits self-duplex formation. Chem Commun (Camb) 2020; 56:2546-2549. [PMID: 32040115 DOI: 10.1039/d0cc00169d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligonucleotides represent powerful DNA-recognition tools, but the formation of undesirable "self-duplexes" becomes more probable with increasing DNA affinity. Herein, we have developed a modified nucleobase with "self-avoiding" properties. Facile methylation of guanine yields a cationic N7-methylguanine, which suppresses the formation of self-duplexes whilst improving DNA affinity through electrostatic interaction.
Collapse
Affiliation(s)
- Masaki Hibino
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
2
|
Wynn JE, Santos WL. HIV-1 drug discovery: targeting folded RNA structures with branched peptides. Org Biomol Chem 2015; 13:5848-58. [PMID: 25958855 PMCID: PMC4511164 DOI: 10.1039/c5ob00589b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is an RNA virus that is prone to high rates of mutation. While the disease is managed with current antiretroviral therapies, drugs with a new mode of action are needed. A strategy towards this goal is aimed at targeting the native three-dimensional fold of conserved RNA structures. This perspective highlights medium-sized peptides and peptidomimetics used to target two conserved RNA structures of HIV-1. In particular, branched peptides have the capacity to bind in a multivalent fashion, utilizing a large surface area to achieve the necessary affinity and selectivity toward the target RNA.
Collapse
Affiliation(s)
- Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
3
|
Gupta P, Muse O, Rozners E. Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids. Biochemistry 2011; 51:63-73. [PMID: 22146072 DOI: 10.1021/bi201570a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double-helical RNA has become an attractive target for molecular recognition because many noncoding RNAs play important roles in the control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double-helical RNA via formation of a triple helix. Herein, we tested if the molecular recognition of RNA could be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple-helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double-helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from d-arginine recognized the transactivation response element of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNA and the purine-rich strand of the bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex noncoding RNAs.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | | | | |
Collapse
|
4
|
Pandey VN, Upadhyay A, Chaubey B. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther 2009; 9:975-89. [PMID: 19534584 DOI: 10.1517/14712590903052877] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the discovery and synthesis of a novel DNA mimic, peptide nucleic acid (PNA) in 1991, PNAs have attracted tremendous interest and have shown great promise as potential antisense drugs. They have been used extensively as tools for specific modulation of gene expression by targeting translation or transcription processes. This review discusses the present and future therapeutic potential of this class of compound as anti-HIV-1 drugs.
Collapse
Affiliation(s)
- Virendra N Pandey
- University of Medicine and Dentistry, New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
5
|
Ganguly S, Chaubey B, Tripathi S, Upadhyay A, Neti PVSV, Howell RW, Pandey VN. Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides 2009; 18:277-86. [PMID: 18729823 DOI: 10.1089/oli.2008.0140] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have demonstrated that polyamide nucleic acids complementary to the transactivation response (TAR) element of HIV-1 LTR inhibit HIV-1 production when transfected in HIV-1 infected cells. We have further shown that anti-TAR PNA (PNA(TAR)) conjugated with cell-penetrating peptide (CPP) is rapidly taken up by cells and exhibits strong antiviral and anti-HIV-1 virucidal activities. Here, we pharmacokinetically analyzed (125)I-labeled PNA(TAR) conjugated with two CPPs: a 16-mer penetratin derived from antennapedia and a 13-mer Tat peptide derived from HIV-1 Tat. We administered the (125)I-labeled PNA(TAR)-CPP conjugates to male Balb/C mice through intraperitoneal or gavage routes. The naked (125)I-labeled PNA(TAR) was used as a control. Following a single administration of the labeled compounds, their distribution and retention in various organs were monitored at various time points. Regardless of the administration route, a significant accumulation of each PNA(TAR)-CPP conjugate was found in different mouse organs and tissues. The clearance profile of the accumulated radioactivity from different organs displayed a biphasic exponential pathway whereby part of the radioactivity cleared rapidly, but a significant portion of it was slowly released over a prolonged period. The kinetics of clearance of individual PNA(TAR)-CPP conjugates slightly varied in different organs, while the overall biphasic clearance pattern remained unaltered regardless of the administration route. Surprisingly, unconjugated naked PNA(TAR) displayed a similar distribution and clearance profile in most organs studied although extent of its uptake was lower than the PNA(TAR)-CPP conjugates.
Collapse
Affiliation(s)
- Sabyasachi Ganguly
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Upadhyay A, Ponzio NM, Pandey VN. Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides 2009; 18:329-35. [PMID: 19006449 DOI: 10.1089/oli.2008.0152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anti-human immunodeficiency virus-1 (HIV-1) polyamide (peptide) nucleic acids (PNAs) conjugated with cell-penetrating peptides (CPPs) targeted to the viral genome are potent virucidal and antiviral agents. Earlier, we have shown that the anti-HIV-1 PNA(TAR)-penetratin conjugate is rapidly taken up by cells and is nontoxic to mice when administered at repeat doses of as high as 100 mg/kg body weight. In the present studies we demonstrate that naked PNA(TAR) is immunologically inert as judged by the proliferation responses of splenocytes and lymph node cells from PNA(TAR)-immunized mice challenged with the immunizing antigen. In contrast, PNA(TAR)-penetratin conjugate is moderately immunogenic mainly due to its penetratin peptide component. Cytokine secretion profiles of the lymph node cells from the conjugate-immunized mice showed marginally elevated levels of proinflammatory cytokines, which are known to promote proliferation of T lymphocytes. Since the candidate compound, PNA(TAR)-penetratin conjugate displays potent virucidal and antiviral activities against HIV-1, the favorable immunological response together with negligible toxicity suggest a strong therapeutic potential for this class of compounds.
Collapse
Affiliation(s)
- Alok Upadhyay
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
7
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
8
|
Chaubey B, Tripathi S, Pandey VN. Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides 2008; 18:9-20. [PMID: 18321159 DOI: 10.1089/oli.2007.0088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyamide (peptide) nucleic acids conjugated with membrane-penetrating peptide are potential antisense therapeutic agents because of their unique chemical properties, high target specificity, and efficient cellular uptake. However, studies of their potential toxicity in animal models are lacking. In this study, we evaluated the toxicity of the response of Balb/C mice to anti-HIV-1 PNA TAR-penetratin conjugate targeted against the transactivation response (TAR) element of HIV-1 LTR. A single i.p. dose of 600 mg/kg of body weight was lethal, killing all mice within 72 hours. However, death did not occur after single doses of 100 and 300 mg/kg, although all mice experienced initial and transitory diarrhea and loss of agility. Repeated daily doses of 10, 30, and 100 mg/kg were well tolerated by mice during 8 days of treatment, although daily doses of 100 mg/kg caused diarrhea during the first 4 days of treatment. During 8 weeks of follow-up, mice fully recuperated. Serositis was observed in the spleens, livers, and kidneys at the ninth day of treatment, but not after the follow-up period. Necropsies, clinical chemistry studies, and hematological parameters demonstrated normal function of the major organs and no irreversible damage to the mice. These observations indicate that the PNA-peptide conjugate would be nontoxic at probable therapeutic doses and thus support its therapeutic potential as an antisense drug.
Collapse
Affiliation(s)
- Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
9
|
Jakobsen MR, Haasnoot J, Wengel J, Berkhout B, Kjems J. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. Retrovirology 2007; 4:29. [PMID: 17459171 PMCID: PMC1866241 DOI: 10.1186/1742-4690-4-29] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/26/2007] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A primary concern when targeting HIV-1 RNA by means of antisense related technologies is the accessibility of the targets. Using a library selection approach to define the most accessible sites for 20-mer oligonucleotides annealing within the highly structured 5'-UTR of the HIV-1 genome we have shown that there are at least four optimal targets available. RESULTS The biological effect of antisense DNA and LNA oligonucleotides, DNA- and LNAzymes targeted to the four most accessible sites was tested for their abilities to block reverse transcription and dimerization of the HIV-1 RNA template in vitro, and to suppress HIV-1 production in cell culture. The neutralization of HIV-1 expression declined in the following order: antisense LNA > LNAzymes > DNAzymes and antisense DNA. The LNA modifications strongly enhanced the in vivo inhibitory activity of all the antisense constructs and some of the DNAzymes. Notably, two of the LNA modified antisense oligonucleotides inhibited HIV-1 production in cell culture very efficiently at concentration as low as 4 nM. CONCLUSION LNAs targeted to experimentally selected binding sites can function as very potent inhibitors of HIV-1 expression in cell culture and may potentially be developed as antiviral drug in patients.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Molecular Biology, University of Aarhus C.F. Møllers Allé, building 130, DK-8000 Århus C, Denmark
| | - Joost Haasnoot
- Department of Human Retrovirology Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Jesper Wengel
- Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ben Berkhout
- Department of Human Retrovirology Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Jørgen Kjems
- Department of Molecular Biology, University of Aarhus C.F. Møllers Allé, building 130, DK-8000 Århus C, Denmark
| |
Collapse
|
10
|
Ivanova G, Arzumanov AA, Turner JJ, Reigadas S, Toulmé JJ, Brown DE, Lever AML, Gait MJ. Anti-HIV activity of steric block oligonucleotides. Ann N Y Acad Sci 2007; 1082:103-15. [PMID: 17145931 DOI: 10.1196/annals.1348.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The unabated increase in spread of HIV infection worldwide has redoubled efforts to discover novel antiviral and virucidal agents that might be starting points for clinical development. Oligonucleotides and their analogs targeted to form complementary duplexes with highly conserved regions of the HIV RNA have shown significant antiviral activity, but to date clinical studies have been dominated by RNase H-inducing oligonucleotide analog phosphorothioates (GEM 91 and 92) that have specificity and efficacy limitations. However, they have proven the principle that oligonucleotides can be safe anti-HIV drugs. Newer oligonucleotide analogs are now available, which act as strong steric block agents of HIV RNA function. We describe our ongoing studies targeting the HIV-1 trans-activation responsive region (TAR) and the viral packaging signal (psi) with steric block oligonucleotides of varying chemistry and demonstrate their great potential for steric blocking of viral protein interactions in vitro and in cells and describe the first antiviral studies. Peptide nucleic acids (PNA) disulfide linked to cell-penetrating peptides (CPP) have been found to have particular promise for the lipid-free direct delivery into cultured cells and are excellent candidates for their development as antiviral and virucidal agents.
Collapse
Affiliation(s)
- Gabriela Ivanova
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhou L, Thakur CS, Molinaro RJ, Paranjape JM, Hoppes R, Jeang KT, Silverman RH, Torrence PF. Delivery of 2-5A cargo into living cells using the Tat cell penetrating peptide: 2-5A-tat. Bioorg Med Chem 2007; 14:7862-74. [PMID: 16908165 DOI: 10.1016/j.bmc.2006.07.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/27/2006] [Indexed: 11/22/2022]
Abstract
2',5'-Oligoadenylate tetramer (2-5A) has been chemically conjugated to short HIV-1 Tat peptides to provide 2-5A-tat chimeras. Two different convergent synthetic approaches have been employed to provide such 2-5A-tat bioconjugates. One involved generation of a bioconjugate through reaction of a cysteine terminated Tat peptide with a alpha-chloroacetyl derivative of 2-5A. The second synthetic strategy was based upon a cycloaddition reaction of an azide derivative of 2-5A with a Tat peptide bearing an alkyne function. Either bioconjugate of 2-5A-tat was able to activate human RNase L. The union of 2-5A and Tat peptide provided an RNase L-active chimeric nucleopeptide with the ability to be taken up by cells by virtue of the Tat peptide and to activate RNase L in intact cells. This strategy provides a valuable vehicle for the entry of the charged 2-5A molecule into cells and may provide a means for targeted destruction of HIV RNA in vivo.
Collapse
Affiliation(s)
- Longhu Zhou
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011-5698, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Stevens M, Pollicita M, Pannecouque C, Verbeken E, Tabarrini O, Cecchetti V, Aquaro S, Perno CF, Fravolini A, De Clercq E, Schols D, Balzarini J. Novel in vivo model for the study of human immunodeficiency virus type 1 transcription inhibitors: evaluation of new 6-desfluoroquinolone derivatives. Antimicrob Agents Chemother 2007; 51:1407-13. [PMID: 17242146 PMCID: PMC1855509 DOI: 10.1128/aac.01251-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two novel 6-desfluoroquinolone derivatives, HM-12 and HM-13, were evaluated for anti-human immunodeficiency virus (anti-HIV) activity in acutely, chronically, and latently HIV type 1 (HIV-1)-infected cell cultures and were found to behave as potent HIV-1 transcription inhibitors. In order to extend this result in vivo, we developed an artificial hu-SCID mouse model for HIV-1 latency based on SCID mice engrafted with latently HIV-1-infected promyelocytic OM-10.1 cells in which HIV-1 can be reactivated in vivo by the administration of human tumor necrosis factor alpha (hTNF-alpha). Treating these SCID mice with HM-12 or HM-13 prior to hTNF-alpha stimulation resulted in a pronounced suppressive effect on viral reactivation. Since both quinolone derivatives were able to inhibit the reactivation of HIV-1 from this artificial viral reservoir in vivo, we provide encouraging evidence for the use of quinolones in the control of HIV-1 infections.
Collapse
Affiliation(s)
- Miguel Stevens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, and Division of Histopathology, University Hospitals, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tyagi P, Banerjee R, Basu S, Yoshimura N, Chancellor M, Huang L. Intravesical antisense therapy for cystitis using TAT-peptide nucleic acid conjugates. Mol Pharm 2006; 3:398-406. [PMID: 16889433 DOI: 10.1021/mp050093x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study investigated the potential of intravesical instillation for localized reduction of NGF (nerve growth factor) expression in the urinary bladder. Overexpression of NGF has been linked to the pathogenesis of interstitial cystitis (IC). A minimum free energy algorithm was used to predict suitable regions in mRNA of rat betaNGF, which can be targeted for an antisense approach. The candidate antisense oligos were evaluated for their ability to reduce NGF expression in vitro by cotransfecting HEK293 cells with NGF cDNA. A single oligonucleotide ODN sequence was chosen for testing in an acute cystitis model in rat induced by cyclophosphamide. Overexpression of NGF is known to mediate inflammation of bladder in this model. For improved stability, antisense ODN was replaced with antisense peptide nucleic acid (PNA) and its penetration into bladder was facilitated by tethering TAT peptide sequence. Rat bladders were instilled with either antisense or its scrambled control prior to cystitis induction. Cystometrograms performed on rats under urethane anaesthesia exhibited bladder contraction frequency that was significantly decreased in the antisense treated rats than rats treated with the control. NGF immunoreactivity was also decreased in the urothelium of the antisense treated bladders. Our findings demonstrate the feasibility of using TAT-PNA conjugates for intravesical antisense therapy.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
14
|
Stevens M, De Clercq E, Balzarini J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med Res Rev 2006; 26:595-625. [PMID: 16838299 PMCID: PMC7168390 DOI: 10.1002/med.20081] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event that requires the cooperative action of both viral and cellular components. In latently infected resting CD4(+) T cells HIV-1 transcription seems to be repressed by deacetylation events mediated by histone deacetylases (HDACs). Upon reactivation of HIV-1 from latency, HDACs are displaced in response to the recruitment of histone acetyltransferases (HATs) by NF-kappaB or the viral transcriptional activator Tat and result in multiple acetylation events. Following chromatin remodeling of the viral promoter region, transcription is initiated and leads to the formation of the TAR element. The complex of Tat with p-TEFb then binds the loop structures of TAR RNA thereby positioning CDK9 to phosphorylate the cellular RNA polymerase II. The Tat-TAR-dependent phosphorylation of RNA polymerase II plays an important role in transcriptional elongation as well as in other post-transcriptional events. As such, targeting of Tat protein (and/or cellular cofactors) provide an interesting perspective for therapeutic intervention in the HIV replicative cycle and may afford lifetime control of the HIV infection.
Collapse
Affiliation(s)
- Miguel Stevens
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| |
Collapse
|
15
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
16
|
Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res 2005; 33:6837-49. [PMID: 16321967 PMCID: PMC1301599 DOI: 10.1093/nar/gki991] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The trans-activation response (TAR) RNA stem–loop that occurs at the 5′ end of HIV RNA transcripts is an important antiviral target and is the site of interaction of the HIV-1 Tat protein together with host cellular factors. Oligonucleotides and their analogues targeted to TAR are potential antiviral candidates. We have investigated a range of cell penetrating peptide (CPP) conjugates of a 16mer peptide nucleic acid (PNA) analogue targeted to the apical stem–loop of TAR and show that disulfide-linked PNA conjugates of two types of CPP (Transportan or a novel chimeric peptide R6-Penetratin) exhibit dose-dependent inhibition of Tat-dependent trans-activation in a HeLa cell assay when incubated for 24 h. Activity is reached within 6 h if the lysosomotropic reagent chloroquine is co-administered. Fluorescein-labelled stably-linked conjugates of Tat, Transportan or Transportan TP10 with PNA were inactive when delivered alone, but attained trans-activation inhibition in the presence of chloroquine. Confocal microscopy showed that such fluorescently labelled CPP–PNA conjugates were sequestered in endosomal or membrane-bound compartments of HeLa cells, which varied in appearance depending on the CPP type. Co-administration of chloroquine was seen in some cases to release fluorescence from such compartments into the nucleus, but with different patterns depending on the CPP. The results show that CPP–PNA conjugates of different types can inhibit Tat-dependent trans-activation in HeLa cells and have potential for development as antiviral agents. Endosomal or membrane release is a major factor limiting nuclear delivery and trans-activation inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Saïd Abes
- UMR 5124 CNRS, CC 086, Université Montpellier 2Place Eugène Bataillon, 34095 Montpellier, France
| | - Bernard Lebleu
- UMR 5124 CNRS, CC 086, Université Montpellier 2Place Eugène Bataillon, 34095 Montpellier, France
| | - Michael J. Gait
- To whom correspondence should be addressed. Tel: +44 1223 248011; Fax: +44 1223 402070;
| |
Collapse
|
17
|
Turner JJ, Fabani M, Arzumanov AA, Ivanova G, Gait MJ. Targeting the HIV-1 RNA leader sequence with synthetic oligonucleotides and siRNA: chemistry and cell delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1758:290-300. [PMID: 16337923 DOI: 10.1016/j.bbamem.2005.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/27/2005] [Accepted: 10/28/2005] [Indexed: 01/22/2023]
Abstract
New candidates for development as potential drugs or virucides against HIV-1 infection and AIDS continue to be needed. The HIV-1 RNA leader sequence has many essential functional sites for virus replication and regulation that includes several highly conserved sequences. The review describes the historical context of targeting the HIV-1 RNA leader sequence with antisense phosphorothioate oligonucleotides, such as GEM 91, and goes on to describe modern approaches to targeting this region with steric blocking oligonucleotide analogues having newer and more advantageous chemistries, as well as recent studies on siRNA, towards the attainment of antiviral activity. Recent attempts to obtain improved cell delivery are highlighted, including exciting new developments in the use of peptide conjugates of peptide nucleic acid (PNA) as potential virucides.
Collapse
Affiliation(s)
- John J Turner
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | |
Collapse
|
18
|
Tripathi S, Chaubey B, Ganguly S, Harris D, Casale RA, Pandey VN. Anti-HIV-1 activity of anti-TAR polyamide nucleic acid conjugated with various membrane transducing peptides. Nucleic Acids Res 2005; 33:4345-56. [PMID: 16077030 PMCID: PMC1182329 DOI: 10.1093/nar/gki743] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The transactivator responsive region (TAR) present in the 5′-NTR of the HIV-1 genome represents a potential target for antiretroviral intervention and a model system for the development of specific inhibitors of RNA–protein interaction. Earlier, we have shown that an anti-TAR polyamide nucleotide analog (PNATAR) conjugated to a membrane transducing (MTD) peptide, transportan, is efficiently taken up by the cells and displays potent antiviral and virucidal activity [B. Chaubey, S. Tripathi, S. Ganguly, D. Harris, R. A. Casale and V. N. Pandey (2005) Virology, 331, 418–428]. In the present communication, we have conjugated five different MTD peptides, penetratin, tat peptide, transportan-27, and two of its truncated derivatives, transportan-21 and transportan-22, to a 16mer PNA targeted to the TAR region of the HIV-1 genome. The individual conjugates were examined for their uptake efficiency as judged by FACScan analysis, uptake kinetics using radiolabeled conjugate, virucidal activity and antiviral efficacy assessed by inhibition of HIV-1 infection/replication. While FACScan analysis revealed concentration-dependent cellular uptake of all the PNATAR–peptide conjugates where uptake of the PNATAR–penetratin conjugate was most efficient as >90% MTD was observed within 1 min at a concentration of 200 nM. The conjugates with penetratin, transportan-21 and tat-peptides were most effective as an anti-HIV virucidal agents with IC50 values in the range of 28–37 nM while IC50 for inhibition of HIV-1 replication was lowest with PNATAR–transportan-27 (0.4 μM) followed by PNATAR–tat (0.72 μM) and PNATAR–penetratin (0.8 μM). These results indicate that anti-HIV-1 PNA conjugated with MTD peptides are not only inhibitory to HIV-1 replication in vitro but are also potent virucidal agents which render HIV-1 virions non-infectious upon brief exposure.
Collapse
Affiliation(s)
- Snehlata Tripathi
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Chaubey B, Tripathi S, Ganguly S, Harris D, Casale RA, Pandey VN. A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 2005; 331:418-28. [PMID: 15629784 DOI: 10.1016/j.virol.2004.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Revised: 09/03/2004] [Accepted: 10/19/2004] [Indexed: 01/12/2023]
Abstract
We have earlier reported that anti-TAR PNA conjugated with the membrane-transducing peptide transportan inhibits transactivation of the HIV-1 LTR resulting in decreased production of HIV-1 virions by chronically infected H9 cells (N., Kaushik, A., Basu, P., Palumbo, R.L., Myers, V.N., Pandey, 2002. Anti-TAR polyamide nucleotide analog conjugated with a membrane permeating peptide inhibits HIV-1 production. J. Virol. 76, 3881-3891). In this study, we have found that the PNA(TAR)-transportan conjugate is efficiently internalized by cells and kinetics analysis reveals a sigmoidal curve with a cooperativity index of 6, indicating very rapid cellular uptake. Additionally, analysis of uptake at varying temperatures or in the presence of phenylarsine oxide revealed that the mechanism of uptake is neither receptor-dependent nor occurs via endocytosis. We also found that the PNA(TAR)-transportan conjugate exhibits potent virucidal activity as HIV-1 virions pretreated with the conjugate were rendered noninfectious, suggesting that the conjugate may also permeate the virus envelope. The anti-HIV-1 virucidal activity of the conjugate may be useful either in topical formulations designed to block HIV-1 infection or as a prophylactic agent for inactivation of HIV-1 in the circulating plasma prior to attachment and entry.
Collapse
Affiliation(s)
- Binay Chaubey
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, MSB, A920K, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
21
|
Turner JJ, Arzumanov AA, Gait MJ. Synthesis, cellular uptake and HIV-1 Tat-dependent trans-activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating peptides. Nucleic Acids Res 2005; 33:27-42. [PMID: 15640444 PMCID: PMC546131 DOI: 10.1093/nar/gki142] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide.
Collapse
Affiliation(s)
| | | | - Michael J. Gait
- To whom correspondence should be addressed. Tel: +44 1223 248011; Fax: +44 1223 402070;
| |
Collapse
|
22
|
Bastide L, Lebleu B, Robbins I. Modulation of nucleic acid information processing by PNAs: Potential use in anti-viral therapeutics. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Nielsen PE. The many faces of PNA. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Abstract
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Center for Biomolecular Recognition, IMBG, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Copenhagen DK-2200N, Denmark.
| |
Collapse
|
26
|
Riguet E, Tripathi S, Chaubey B, Désiré J, Pandey VN, Décout JL. A peptide nucleic acid-neamine conjugate that targets and cleaves HIV-1 TAR RNA inhibits viral replication. J Med Chem 2004; 47:4806-9. [PMID: 15369382 DOI: 10.1021/jm049642d] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neamine part of the aminoglycoside antibiotic neomycin B was conjugated to a 16 mer peptide nucleic acid (PNA) targeting HIV-1 TAR RNA. Attachment of the neamine core allows cellular uptake of the PNA and results in potent inhibition of HIV-1 replication. The polycationic neamine moiety imparts greater solubility to the PNA and also confers a unique RNA cleavage property to the conjugate which is specific to its target site and functional at physiological concentrations of Mg(2+). These properties suggest a potential therapeutic application for this class of compounds.
Collapse
Affiliation(s)
- Emmanuel Riguet
- Laboratoire de Chimie Bio-Organique, Département de Pharmacochimie Moléculaire, UMR 5063 CNRS/Université Joseph Fourier-Grenoble I, FR CNRS 2607, BP 138, 5 Avenue de Verdun, F-38243 Meylan, France
| | | | | | | | | | | |
Collapse
|
27
|
Arzumanov A, Stetsenko DA, Malakhov AD, Reichelt S, Sørensen MD, Babu BR, Wengel J, Gait MJ. A structure-activity study of the inhibition of HIV-1 Tat-dependent trans-activation by mixmer 2'-O-methyl oligoribonucleotides containing locked nucleic acid (LNA), alpha-L-LNA, or 2'-thio-LNA residues. Oligonucleotides 2004; 13:435-53. [PMID: 15025911 DOI: 10.1089/154545703322860762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The HIV-1 trans-activation responsive element (TAR) RNA stem-loop interacts with the HIV trans-activator protein Tat and other cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR). Inhibitors of these interactions block full-length transcription and, hence, would potentially inhibit HIV replication. We have studied structure-activity relationships in inhibition of trans-activation by steric block 2'-O-methyl (OMe) oligonucleotides chimeras (mixmers) containing locked nucleic acid (LNA) units. Inhibition was measured both in Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract and in a robust HeLa cell reporter assay that involves use of stably integrated plasmids to express firefly luciferase Tat dependently and Renilla luciferase Tat-independently. OMe oligonucleotides with optimally 40%-50% LNA units and a minimum of 12 residues in length were active in the cellular assay when delivered with cationic gemini surfactant GS11 at 50% inhibitory concentrations of 230 +/- 40 nM, whereas activity in the in vitro transcription assay was observed down to 9 residues. No cellular activity was observed for OMe oligonucleotides of 12 or 16 residues, which was shown to be due to poor cellular uptake. Both 12-mer mixmers containing alpha -L-LNA or 2'-thio-LNA (S-LNA) were also active in in vitro transcription and the former in cellular reporter inhibition assays, demonstrating that the property of promotion of cellular uptake by LNA is not due to specific sugar conformational effects. Covalent conjugates of OMe/LNA chimeras with Kaposi-fibroblast growth factor (K-FGF) or Transportan peptides failed to enter HeLa cells without a delivery agent but were fully active when delivered by cationic gemini surfactant, showing that in principle, peptide conjugation does not interfere with cellular activity. Thus, OMe/LNA mixmers are powerful reagents for use as steric block inhibitors of gene expression regulated by protein-RNA interactions within HeLa cell nuclei.
Collapse
Affiliation(s)
- Andrey Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bradrick TD, Marino JP. Ligand-induced changes in 2-aminopurine fluorescence as a probe for small molecule binding to HIV-1 TAR RNA. RNA (NEW YORK, N.Y.) 2004; 10:1459-68. [PMID: 15273324 PMCID: PMC1370632 DOI: 10.1261/rna.7620304] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 05/28/2004] [Indexed: 05/22/2023]
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) is regulated in part through an interaction between the virally encoded trans-activator protein Tat and the trans-activator responsive region (TAR) of the viral RNA genome. Because TAR is highly conserved and its interaction with Tat is required for efficient viral replication, it has received much attention as an antiviral drug target. Here, we report a 2-aminopurine (2-AP) fluorescence-based assay for evaluating potential TAR inhibitors. Through selective incorporation of 2-AP within the bulge (C23 or U24) of a truncated form of the TAR sequence (delta TAR-ap23 and delta TAR-ap24), binding of argininamide, a 24-residue arginine-rich peptide derived from Tat, and Neomycin has been characterized using steady-state fluorescence. Binding of argininamide to the 2-AP deltaTAR constructs results in a four- to 11-fold increase in fluorescence intensity, thus providing a sensitive reporter of that interaction (KD approximately 1 mM). Similarly, binding of the Tat peptide results in an initial 14-fold increase in fluorescence (KD approximately 25 nM), but is then followed by a slight decrease that is attributed to an additional, lower-affinity association(s). Using the deltaTAR-ap23 and TAR-ap24 constructs, two classes of Neomycin binding sites are detected; the first molecule of antibiotic binds as a noncompetitive inhibitor of Tat/argininamide (KD approximately 200 nM), whereas the second, more weakly bound molecule(s) becomes associated in a presumably nonspecific manner (KD approximately 4 microM). Taken together, the results demonstrate that the 2-AP fluorescence-detected binding assays provide accurate and general methods for quantitatively assessing TAR interactions.
Collapse
Affiliation(s)
- Thomas D Bradrick
- Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, Rockville, Maryland 20850, USA
| | | |
Collapse
|
29
|
Zhao H, Li J, Xi F, Jiang L. Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett 2004; 563:241-5. [PMID: 15063756 DOI: 10.1016/s0014-5793(04)00284-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/20/2004] [Accepted: 03/10/2004] [Indexed: 11/16/2022]
Abstract
The binding of polyamidoamine (PAMAM) dendrimer or Tat peptide to trans-acting responsive element (TAR) RNA has been studied using microgravimetric quartz crystal microbalance (QCM). Experimental results showed that PAMAM dendrimer could form complexes with TAR RNA. Especially, PAMAM dendrimer could disrupt the interaction of Tat peptide with TAR RNA, which is essential for HIV-1 virus replication, suggesting that QCM is a powerful tool for studying the binding processes of Tat peptide-TAR RNA and drug-TAR RNA and has great significance for the design of new drugs. An equation to measure the binding ability between TAR RNA and other species has been proposed.
Collapse
Affiliation(s)
- Hong Zhao
- Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | | |
Collapse
|
31
|
Synthesis of precursors of poly(acryl amides) by copper mediated living radical polymerization in DMSO. Eur Polym J 2004. [DOI: 10.1016/j.eurpolymj.2003.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Zhao H, Dai D, Li J, Chen Y, Jiang L. Quantitative study of HIV-1 Tat peptide and TAR RNA interaction inhibited by poly(allylamine hydrochloride). Biochem Biophys Res Commun 2003; 312:351-4. [PMID: 14637144 DOI: 10.1016/j.bbrc.2003.10.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The interaction of poly(allylamine hydrochloride) (PAH) with TAR RNA has been studied by quartz crystal microbalance (QCM) cooperating with capillary electrophoresis (CE). Experimental results showed that PAH had high affinity for TAR RNA. In particular, PAH could disrupt the interaction of Tat peptide with TAR RNA, which is critical for HIV-1 virus replication. The approaches described here indicate that they are powerful for studying the binding processes of Tat peptide-TAR RNA and drug-TAR RNA, having great significance for the design of new drug.
Collapse
Affiliation(s)
- Hong Zhao
- Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Bajramovic JJ, Münter S, Syan S, Nehrbass U, Brahic M, Gonzalez-Dunia D. Borna disease virus glycoprotein is required for viral dissemination in neurons. J Virol 2003; 77:12222-31. [PMID: 14581559 PMCID: PMC254271 DOI: 10.1128/jvi.77.22.12222-12231.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 08/12/2003] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus with a tropism for neurons. Infection with BDV causes neurological diseases in a wide variety of animal species. Although it is known that the virus spreads from neuron to neuron, assembled viral particles have never been visualized in the brains of infected animals. This has led to the hypothesis that BDV spreads as nonenveloped ribonucleoproteins (RNP) rather than as enveloped viral particles. We assessed whether the viral envelope glycoprotein (GP) is required for neuronal dissemination of BDV by using primary cultures of rat hippocampal neurons. We show that upon in vitro infection, BDV replicated and spread efficiently in this system. Despite rapid virus dissemination, very few infectious viral particles were detectable in the culture. However, neutralizing antibodies directed against BDV-GP inhibited BDV spread. In addition, interference with BDV-GP processing by inhibiting furin-mediated cleavage of the glycoprotein blocked virus spread. Finally, antisense treatment with peptide nucleic acids directed against BDV-GP mRNA inhibited BDV dissemination, marking BDV-GP as an attractive target for antiviral therapy against BDV. Together, our results demonstrate that the expression and correct processing of BDV-GP are necessary for BDV dissemination in primary cultures of rat hippocampal neurons, arguing against the hypothesis that the virus spreads from neuron to neuron in the form of nonenveloped RNP.
Collapse
Affiliation(s)
- Jeffrey J Bajramovic
- Unité des Virus Lents, CNRS URA 1930, Département de Virologie, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Hamma T, Saleh A, Huq I, Rana TM, Miller PS. Inhibition of HIV tat-TAR interactions by an antisense oligo-2'-O-methylribonucleoside methylphosphonate. Bioorg Med Chem Lett 2003; 13:1845-8. [PMID: 12749881 DOI: 10.1016/s0960-894x(03)00323-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An antisense oligo-2'-O-methylribonucleotide having alternating methylphosphonate/phosphodiester linkages, 1676, whose sequence is complementary to the apical stem-loop of HIV-1 TAR RNA, was prepared to determine its effects on Tat protein-TAR interaction and Tat-mediated gene transactivation in cell culture. This oligomer and its all-phosphodiester analogue, 1707, were shown to: (1) bind to TAR at 37 degrees C with K(d)'s in the low nM concentration range; (2) inhibit Tat-TAR complex formation; and (3) inhibit expression of a chloramphenicol reporter gene under control of the HIV LTR in HeLa HL3T1 cells in culture.
Collapse
MESH Headings
- Base Sequence
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Gene Expression Regulation, Viral/drug effects
- Gene Products, tat/antagonists & inhibitors
- Gene Products, tat/chemistry
- Gene Products, tat/metabolism
- HIV Long Terminal Repeat/drug effects
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Humans
- Kinetics
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/metabolism
- Oligodeoxyribonucleotides/pharmacology
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Organophosphorus Compounds/chemistry
- Organophosphorus Compounds/metabolism
- Organophosphorus Compounds/pharmacology
- RNA, Complementary/chemistry
- RNA, Complementary/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Tomoko Hamma
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
35
|
Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Modulation of nucleic acid information processing by PNAs: potential use in anti-viral therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4923-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
PNAs as novel cancer therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
|
39
|
Holmes SC, Arzumanov AA, Gait MJ. Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2'-O-methyl G-clamp ribonucleoside analogues. Nucleic Acids Res 2003; 31:2759-68. [PMID: 12771202 PMCID: PMC156719 DOI: 10.1093/nar/gkg384] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report the synthesis of a novel 2'-O-methyl (OMe) riboside phosphoramidite derivative of the G-clamp tricyclic base and incorporation into a series of small steric blocking OMe oligonucleotides targeting the apical stem-loop region of human immunodeficiency virus type 1 (HIV-1) trans- activation-responsive (TAR) RNA. Binding to TAR RNA is substantially enhanced for certain single site substitutions in the centre of the oligonucleotide, and doubly substituted anti-TAR OMe 9mers or 12mers exhibit remarkably low binding constants of <0.1 nM. G-clamp-containing oligomers achieved 50% inhibition of Tat-dependent in vitro transcription at approximately 25 nM, 4-fold lower than for a TAR 12mer OMe oligonucleotide and better than found for any other oligonucleotide tested to date. Addition of one or two OMe G-clamps did not impart cellular trans-activation inhibition activity to cellularly inactive OMe oligonucleotides. Addition of an OMe G-clamp to a 12mer OMe-locked nucleic acid chimera maintained, but did not enhance, inhibition of Tat-dependent in vitro transcription and cellular trans-activation in HeLa cells. The results demonstrate clearly that an OMe G-clamp has remarkable RNA-binding enhancement ability, but that oligonucleotide effectiveness in steric block inhibition of Tat-dependent trans-activation both in vitro and in cells is governed by factors more complex than RNA-binding strength alone.
Collapse
Affiliation(s)
- Stephen C Holmes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
40
|
|
41
|
|
42
|
Modulation of nucleic acid information processing by PNAs: potential use in anti-viral therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/bf02484556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Kaushik N, Pandey VN. PNA targeting the PBS and A-loop sequences of HIV-1 genome destabilizes packaged tRNA3(Lys) in the virions and inhibits HIV-1 replication. Virology 2002; 303:297-308. [PMID: 12490391 DOI: 10.1006/viro.2002.1630] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During assembly of the HIV-1 virions, cellular tRNA(Lys)(3) is packaged into the virion particles and is utilized as a primer for the initiation of reverse transcription. The 3'-terminal 18 nucleotides of the cellular tRNA(Lys)(3) are complementary to nucleotides 183-201 of the viral RNA genome, referred to as the primer binding sequence (PBS). Additional sequences (A-Loop) upstream of the PBS are essential for tRNA primer selection. We report here that a PNA targeted to PBS and A-Loop sequence (PNA(PBS)) exhibits high specificity for its target sequence and prevents tRNA(Lys)(3) priming on the viral genome. We also demonstrate that PNA(PBS) is able to invade the duplex region of the tRNA(Lys)(3)-viral RNA complex and destabilize the priming process, thereby inhibiting the in vitro initiation of reverse transcription. The endogenously packaged tRNA(Lys)(3) bound to the PBS region of the viral RNA genome in the HIV-1 virion is efficiently competed out by PNA(PBS), resulting in near complete inhibition of initiation of endogenous reverse transcription. Examination of the effect of PNA(PBS) on HIV-1 production in CEM cells infected with pseudotyped HIV-1 virions carrying luciferase reporter exhibited dramatic reduction of HIV-1 replication by nearly 99%. Analysis of the mechanism of PNA(PBS)-mediated inhibition indicated that PNA(PBS) interferes at the step of reverse transcription. These findings suggest the antiviral efficacy of PNA(PBS) in blocking the process of HIV-1 replication.
Collapse
Affiliation(s)
- Neerja Kaushik
- Center for the Study of Emerging and Re-Emerging Pathogens, Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
44
|
Kaushik N, Basu A, Pandey VN. Inhibition of HIV-1 replication by anti-trans-activation responsive polyamide nucleotide analog. Antiviral Res 2002; 56:13-27. [PMID: 12323396 DOI: 10.1016/s0166-3542(02)00024-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Efficient replication and gene expression of human immunodeficiency virus-1 (HIV-1) involves specific interaction of the viral protein Tat, with its trans-activation responsive element (TAR) which forms a highly stable stem-loop structure. We have earlier shown that a 15-mer polyamide nucleotide analog (PNA) targeted to the loop and bulge region of TAR blocks Tat-mediated transactivation of the HIV-1 LTR both in vitro and in cell culture (Mayhood et al., Biochemistry 39 (2000) 11532). In this communication, we have designed four anti-TAR PNAs of different length such that they either complement the entire loop and bulge region (PNA(TAR-16) and PNA(TAR-15)) or are short of few sequences in the loop (PNA(TAR-13)) or in both the loop and bulge (PNA(TAR-12)), and examined their functional efficacy in vitro as well as in HIV-1 infected cell cultures. All four anti-TAR PNAs showed strong affinity for TAR RNA, while their ability to block in vitro reverse transcription was influenced by their length. In marked contrast to PNA(TAR-12) and PNA(TAR-13), the two longer PNA(TARs) were able to efficiently sequester the targeted site on TAR RNA, thereby substantially inhibiting Tat-mediated transactivation of the HIV-1 LTR. Further, a substantial inhibition of virus production was noted with all the four anti-TAR PNA, with PNA(TAR-16) exhibiting a dramatic reduction of HIV-1 production by nearly 99%. These results point to PNA(TAR-16) as a potential anti-HIV agent.
Collapse
Affiliation(s)
- Neerja Kaushik
- Department of Biochemistry and Molecular Biology, Center for the Study of Emerging and Re-Emerging Pathogens, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
45
|
Piva R, Gambari R. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol Cancer Res Treat 2002; 1:405-16. [PMID: 12625767 DOI: 10.1177/153303460200100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthetic oligonucleotides have recently been the object of many investigations aimed to develop sequence-selective compounds able to modulate, either positively or negatively, transcription of eukaryotic and viral genes. Alteration of transcription could be obtained by using synthetic oligonucleotides mimicking target sites of transcription factors (the transcription factor decoy -TFD- approach). This could lead to either inhibition or activation of gene expression, depending on the biological functions of the target transcription factors. Since several transcription factors are involved in tumor onset and progression, this issue is of great interest in order to design anti-tumor compounds. In addition to oligonucleotides, peptide nucleic acids (PNA) can be proposed for the modulation of gene expression. In this respect, double-stranded PNA-DNA chimeras have been shown to be capable to exhibit strong decoy activity. In the case of treatment of breast cancer cells, decoy oligonucleotides mimicking CRE binding sites, promoter region of estrogen receptor alpha gene, NF-kB binding sites have been used with promising results. Therefore, the transcription factor decoy approach could be object of further studies to develop protocols for the treatment of breast cancer. In the future, transcription factors regulating cell cycle, hormone-dependent differentiation, tumor invasion and metastasis are expected to be suitable targets for transcription factor decoy.
Collapse
Affiliation(s)
- Roberta Piva
- Department of Biochemistry and Molecular Biology, Ferrara University, Via Luigi Borsari, 46, 44100 Ferrara, Italy
| | | |
Collapse
|
46
|
Darfeuille F, Arzumanov A, Gryaznov S, Gait MJ, Di Primo C, Toulmé JJ. Loop-loop interaction of HIV-1 TAR RNA with N3'-->P5' deoxyphosphoramidate aptamers inhibits in vitro Tat-mediated transcription. Proc Natl Acad Sci U S A 2002; 99:9709-14. [PMID: 12105271 PMCID: PMC124987 DOI: 10.1073/pnas.122247199] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hairpin RNA aptamer has been identified by in vitro selection against the transactivation-responsive element (TAR) of HIV-1. A nuclease-resistant N3' --> P5' phosphoramidate isosequential analog of this aptamer also folds as a hairpin and forms with TAR a loop-loop "kissing" complex with a binding constant in the low nanomolar range as demonstrated by electrophoretic mobility-shift assays and surface plasmon resonance experiments. The key structural determinants, which contribute to the stability of the RNA aptamer-TAR complex, loop complementarity and the GA residues closing the aptamer loop, remain crucial for the N3' --> P5' aptamer-TAR complex. Moreover, the N3' --> P5' phosphoramidate aptamer specifically interferes with the binding of a peptide derived from the transactivator protein (Tat) peptide to TAR and selectively inhibits the Tat-mediated transcription in an in vitro assay, which marks this nuclease-resistant aptamer as a relevant candidate for experiments in cells.
Collapse
Affiliation(s)
- Fabien Darfeuille
- Institut National de la Santé et de la Recherche Médicale U386, Université Victor Segalen, 33076 Bordeaux Cédex, France
| | | | | | | | | | | |
Collapse
|
47
|
Dias N, Sénamaud-Beaufort C, Forestier El EL, Auvin C, Hélène C, Ester Saison-Behmoaras T. RNA hairpin invasion and ribosome elongation arrest by mixed base PNA oligomer. J Mol Biol 2002; 320:489-501. [PMID: 12096905 DOI: 10.1016/s0022-2836(02)00474-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recently, we have shown that peptide nucleic acid (PNA) tridecamers targeted to the codon 74, 128 and 149 regions of Ha-ras mRNA arrested translation elongation in vitro. Our data demonstrated for the first time that PNAs with mixed base sequence targeted to the coding region of a messenger RNA could arrest the translation machinery and polypeptide chain elongation. The peculiarity of the complexes formed with PNA tridecamers and Ha-ras mRNA rests upon the stability of PNA-mRNA hybrids, which are not dissociated by cellular proteins or multiple denaturing conditions. In the present study, we show that shorter PNAs such as a dodecamer or an undecamer targeted to the codon 74 region arrest translation elongation in vitro. The 13, 12, and 11-mer PNAs contain eight and the 10-mer PNA seven contiguous pyrimidine residues. Upon binding with parallel Hoogsteen base-pairing to the PNA-RNA duplex, six of the cytosine bases and one thymine base of a second PNA can form C.G*C(+) and T.A*T triplets. Melting experiments show two well-resolved transitions corresponding to the dissociation of the third strand from the core duplex and to melting of duplex at higher temperature. The enzymatic structure mapping of a target 27-mer RNA revealed a hairpin structure that is disrupted upon binding of tri-, dodeca-, undeca- and decamer PNAs. We show that the non-bonded nucleobase overhangs on the RNA stabilize the PNA-RNA hybrids and probably assist the PNA in overcoming the stable secondary structure of the RNA target. The great stability of PNA-RNA duplex and triplex structures allowed us to identify both 1:1 and 2:1 PNA-RNA complexes using matrix-assisted laser desorption/ionization time-of -flight mass spectrometry. Therefore, it is possible to successfully target mixed sequences in structured regions of messenger RNA with short PNA oligonucleotides that form duplex and triplex structures that can arrest elongating ribosomes.
Collapse
Affiliation(s)
- Nathalie Dias
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U201 CNRS UMR, 8646, 43 rue Cuvier 75231, Paris Cédex 05, France
| | | | | | | | | | | |
Collapse
|
48
|
Kaushik N, Basu A, Palumbo P, Myers RL, Pandey VN. Anti-TAR polyamide nucleotide analog conjugated with a membrane-permeating peptide inhibits human immunodeficiency virus type 1 production. J Virol 2002; 76:3881-91. [PMID: 11907228 PMCID: PMC136084 DOI: 10.1128/jvi.76.8.3881-3891.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The emergence of drug-resistant variants has posed a significant setback against effective antiviral treatment for human immunodeficiency virus (HIV) infections. The choice of a nonmutable region of the viral genome such as the conserved transactivation response element (TAR element) in the 5' long terminal repeat (LTR) may potentially be an effective target for drug development. We have earlier demonstrated that a polyamide nucleotide analog (PNA) targeted to the TAR hairpin element, when transfected into cells, can effectively inhibit Tat-mediated transactivation of HIV type 1 (HIV-1) LTR (T. Mayhood et al., Biochemistry 39:11532-11539, 2000). Here we show that this anti-TAR PNA (PNA(TAR)), upon conjugation with a membrane-permeating peptide vector (transportan) retained its affinity for TAR in vitro similar to the unconjugated analog. The conjugate was efficiently internalized into the cells when added to the culture medium. Examination of the functional efficacy of the PNA(TAR)-transportan conjugate in cell culture using luciferase reporter gene constructs resulted in a significant inhibition of Tat-mediated transactivation of HIV-1 LTR. Furthermore, PNA(TAR)-transportan conjugate substantially inhibited HIV-1 production in chronically HIV-1-infected H9 cells. The mechanism of this inhibition appeared to be regulated at the level of transcription. These results demonstrate the efficacy of PNA(TAR)-transportan as a potential anti-HIV agent.
Collapse
Affiliation(s)
- Neerja Kaushik
- Center for the Study of Emerging and Re-Emerging Pathogens, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
49
|
Kaushik N, Talele TT, Monel R, Palumbo P, Pandey VN. Destabilization of tRNA3(Lys) from the primer-binding site of HIV-1 genome by anti-A loop polyamide nucleotide analog. Nucleic Acids Res 2001; 29:5099-106. [PMID: 11812842 PMCID: PMC97570 DOI: 10.1093/nar/29.24.5099] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Initiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription occurs by extension of the cellular tRNA3(Lys) which anneals to the primer-binding site (PBS) on the 5' non-translated region of the viral RNA genome. The A-rich sequence (A-loop) upstream of the PBS interacts with the anticodon loop of tRNA3(Lys) and has been proposed to be essential for conferring specificity to tRNA3(Lys) for priming the initiation of HIV-1 reverse transcription. We observed that polyamide nucleic acid targeted to the A-loop sequence (PNAAL) exhibits high binding specificity for its target sequence. The PNAAL pre-bound to the A-loop sequence prevents tRNA3(Lys) priming on the viral RNA consequently blocking in vitro initiation of reverse transcription. Further, PNAAL can efficiently disrupt the preformed [tRNA3(Lys)--viral RNA] complex thereby rendering it non-functional for reverse transcription. The endogenous reverse transcription in disrupted HIV-1 virions containing packaged tRNA3(Lys) and its replicating enzyme RT was significantly inhibited by PNAAL, thus providing direct evidence of the involvement of the A-loop region of viral RNA genome in tRNA3(Lys) priming process. These findings suggest the potential of the A-loop region as a critical target for blocking HIV-1 replication.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- DNA, Antisense/chemistry
- DNA, Antisense/metabolism
- DNA, Antisense/pharmacology
- Dose-Response Relationship, Drug
- Genome, Viral
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nylons/chemistry
- Peptide Nucleic Acids/chemistry
- Peptide Nucleic Acids/metabolism
- Peptide Nucleic Acids/pharmacology
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/chemistry
- RNA, Viral/drug effects
- RNA, Viral/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- N Kaushik
- Department of Biochemistry and Molecular Biology, Center for the Study of Emerging and Re-Emerging Pathogens UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
50
|
Kushon SA, Jordan JP, Seifert JL, Nielsen H, Nielsen PE, Armitage BA. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins. J Am Chem Soc 2001; 123:10805-13. [PMID: 11686681 DOI: 10.1021/ja016310e] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA-DNA and DNA-DNA duplexes can be formed with these target hairpins, even when the melting temperatures for the resulting duplexes are up to 50 degrees C lower than that of the hairpin target. Both hairpin/single-stranded and hairpin/hairpin interactions are considered in the scope of these studies. Secondary structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic obstacles to hybridization imposed by both target and probe secondary structure are significant concerns for the continued development of antisense agents and especially diagnostic probes.
Collapse
Affiliation(s)
- S A Kushon
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA
| | | | | | | | | | | |
Collapse
|