1
|
Taylor JM, Conboy JC. Issues with lipid probes in flip-flop measurements: A comparative study using sum-frequency vibrational spectroscopy and second-harmonic generation. J Chem Phys 2024; 161:085104. [PMID: 39185850 DOI: 10.1063/5.0226075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Fluorescent lipid probes such as 1-palmitoyl-2-(6-[7-nitro-2-1,3-benzoxadiazol-4-yl]amino-hexanoyl)-sn-glycero-3-phosphocholine (C6 NBD-PC) have been used extensively to study the kinetics of lipid flip-flop. However, the efficacy of these probes as reliable reporters of native lipid translocation has never been tested. In this study, sum-frequency vibrational spectroscopy (SFVS) was used to measure the kinetics of C6 NBD-PC lipid flip-flop and the flip-flop of native lipids in planar supported lipid bilayers. C6 NBD-PC was investigated at concentrations of 1 and 3 mol. % in both chain-matched 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chain-mismatched 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) to assess the ability of C6 NBD-PC to mimic the behavior of the surrounding matrix lipids. It was observed that C6 NBD-PC exhibited faster flip-flop kinetics compared to the native lipids in both DPPC and DSPC matrices, with notably accelerated rates in the chain-mismatched DSPC system. SFVS was also used to measure the acyl chain orientation and gauche content of C6 NBD-PC in both DPPC and DSPC membranes. In the DSPC matrix (chain mismatched), C6 NBD-PC was more disordered in terms of both gauche content and acyl tilt, whereas it maintained an orientation similar to that of the native lipids in the DPPC matrix (chain matched). In addition, the flip-flop kinetics of C6 NBD-PC were also measured using second-harmonic generation (SHG) spectroscopy, by probing the motion of the NBD chromophore directly. The flip-flop kinetics measured by SHG were consistent with those obtained from SFVS. This study also marks the first instance of phospholipid flip-flop kinetics being measured via SHG. The results of this study clearly demonstrate that C6 NBD-PC does not adequately mimic the behavior of native lipids within a membrane. These findings also highlight the significant impact of the lipid matrix on the flip-flop behavior of the fluorescently labeled lipid, C6 NBD-PC.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
2
|
De Mel JU, Klisch S, Gupta S, Schneider GJ. Ion-Mediated Structural Discontinuities in Phospholipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14990-15000. [PMID: 38978402 PMCID: PMC11270981 DOI: 10.1021/acs.langmuir.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Despite intense research, methods for controlling soft matter's spontaneous self-assembly into well-defined layers remain a significant challenge. We observed ion-induced structural discontinuities of phospholipid vesicles that can be exploited for controlled self-assembly of soft materials, using DOPC and NaCl as a model system. The observations were made for the 0.25 wt % lipid concentration. We used dynamic light scattering, zeta-potential measurement, cryo-electron microscopy, small-angle X-ray, and small-angle neutron scattering to understand the reason for the discontinuities. For salt concentrations below 8 mM, we observed a decrease in the liposome diameter with increased NaCl concentration. Above 8 mM, we measured a discontinuity; the radius increases within a very narrow salt concentration range within less than 0.1 mM and then decreases for values greater than 8 mM. At 75 mM, the radius becomes constant until it grows again at around 500 mM. Microscopy and scattering experiments show a transition from unilamellar to bilamellar at 8 mM and to trilamellar at 75 mM. At 500 mM, we found a heterogeneous liposome system with many different bilayer numbers. All the experimental observations indicate that declining solvent quality and increasing osmotic pressure direct lipids to expel preferentially to the inner compartment. Upon reaching a critical concentration, excess lipids can form a new bilayer. This spontaneous self-assembly process causes simultaneous shrinkage of the aqueous core and expansion of the vesicle. This approach opens an intriguing path for controlling the self-assembly of bioinspired colloids.
Collapse
Affiliation(s)
- Judith U. De Mel
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Stefanie Klisch
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudipta Gupta
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Taylor JM, Conboy JC. Sum-frequency vibrational spectroscopy, a tutorial: Applications for the study of lipid membrane structure and dynamics. Biointerphases 2024; 19:031201. [PMID: 38738942 DOI: 10.1116/6.0003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| |
Collapse
|
4
|
Mallikarjunaiah KJ, Kinnun JJ, Petrache HI, Brown MF. Flexible lipid nanomaterials studied by NMR spectroscopy. Phys Chem Chem Phys 2019; 21:18422-18457. [DOI: 10.1039/c8cp06179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in solid-state nuclear magnetic resonance spectroscopy inform the emergence of material properties from atomistic-level interactions in membrane lipid nanostructures.
Collapse
Affiliation(s)
- K. J. Mallikarjunaiah
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| | - Jacob J. Kinnun
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Horia I. Petrache
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| |
Collapse
|
5
|
Kowalik B, Schlaich A, Kanduč M, Schneck E, Netz RR. Hydration Repulsion Difference between Ordered and Disordered Membranes Due to Cancellation of Membrane-Membrane and Water-Mediated Interactions. J Phys Chem Lett 2017; 8:2869-2874. [PMID: 28590133 DOI: 10.1021/acs.jpclett.7b00977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydration repulsion acts between all sufficiently polar surfaces in water at small separations and prevents dry adhesion up to kilobar pressures. Yet it remained unclear whether this ubiquitous force depends on surface structure or is a sole water property. We demonstrate that previous deviations among different experimental measurements of hydration pressures in phospholipid bilayer stacks disappear when plotting data consistently as a function of repeat distance or membrane surface distance. The resulting pressure versus distance curves agree quantitatively with our atomistic simulation results and exhibit different decay lengths in the ordered gel and the disordered fluid states. This suggests that hydration forces are not caused by water ordering effects alone. Splitting the simulated total pressure into membrane-membrane and water-mediated parts shows that these contributions are opposite in sign and of similar magnitude, thus they are equally important. The resulting net hydration pressure between membranes is what remains from the near-cancellation of these ambivalent contributions.
Collapse
Affiliation(s)
- Bartosz Kowalik
- Department of Physics, Freie Universität Berlin , 14195 Berlin, Germany
| | | | - Matej Kanduč
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , 14109 Berlin, Germany
| | - Emanuel Schneck
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
6
|
Lu BS, Gupta SP, Belička M, Podgornik R, Pabst G. Modulation of Elasticity and Interactions in Charged Lipid Multibilayers: Monovalent Salt Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13546-13555. [PMID: 27993014 PMCID: PMC5180256 DOI: 10.1021/acs.langmuir.6b03614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/22/2016] [Indexed: 05/18/2023]
Abstract
We have studied the electrostatic screening effect of NaCl solutions on the interactions between anionic lipid bilayers in the fluid lamellar phase using a Poisson-Boltzmann-based mean-field approach with constant charge and constant potential limiting charge regulation boundary conditions. The full DLVO potential, including the electrostatic, hydration and van der Waals interactions, was coupled to thermal bending fluctuations of the membranes via a variational Gaussian Ansatz. This allowed us to analyze the coupling between the osmotic pressure and the fluctuation amplitudes and compare them both simultaneously with their measured dependence on the bilayer separation, determined by the small-angle X-ray scattering experiments. High-structural resolution analysis of the scattering data revealed no significant changes of membrane structure as a function of salt concentration. Parsimonious description of our results is consistent with the constant charge limit of the general charge regulation phenomenology, with fully dissociated lipid charge groups, together with a 6-fold reduction of the membranes' bending rigidity upon increasing NaCl concentration.
Collapse
Affiliation(s)
- Bing-Sui Lu
- Department
of Theoretical Physics, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
- School
of Physical and Mathematical Sciences, Nanyang
Technological University, 21 Nanyang Link, 637371 Singapore
- E-mail:
| | - Santosh Prasad Gupta
- Institute
of Molecular Biosciences, Biophysics Division,University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010 Graz, Austria
- BioTechMed-Graz, A-8010 Graz, Austria
| | - Michal Belička
- Institute
of Molecular Biosciences, Biophysics Division,University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010 Graz, Austria
- BioTechMed-Graz, A-8010 Graz, Austria
| | - Rudolf Podgornik
- Department
of Theoretical Physics, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
- E-mail:
| | - Georg Pabst
- Institute
of Molecular Biosciences, Biophysics Division,University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010 Graz, Austria
- BioTechMed-Graz, A-8010 Graz, Austria
- E-mail: . Phone: +43 316 380 4989
| |
Collapse
|
7
|
Kollmitzer B, Heftberger P, Podgornik R, Nagle JF, Pabst G. Bending Rigidities and Interdomain Forces in Membranes with Coexisting Lipid Domains. Biophys J 2016; 108:2833-42. [PMID: 26083923 PMCID: PMC4472082 DOI: 10.1016/j.bpj.2015.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/13/2015] [Accepted: 05/03/2015] [Indexed: 11/29/2022] Open
Abstract
To precisely quantify the fundamental interactions between heterogeneous lipid membranes with coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed detailed osmotic stress small-angle x-ray scattering experiments by exploiting the domain alignment in raft-mimicking lipid multibilayers. Performing a Monte Carlo-based analysis allowed us to determine with high reliability the magnitude and functional dependence of interdomain forces concurrently with the bending elasticity moduli. In contrast to previous methodologies, this approach enabled us to consider the entropic undulation repulsions on a fundamental level, without having to take recourse to crudely justified mean-field-like additivity assumptions. Our detailed Hamaker-coefficient calculations indicated only small differences in the van der Waals attractions of coexisting Lo and Ld phases. In contrast, the repulsive hydration and undulation interactions differed significantly, with the latter dominating the overall repulsions in the Ld phase. Thus, alignment of like domains in multibilayers appears to originate from both, hydration and undulation repulsions.
Collapse
Affiliation(s)
- Benjamin Kollmitzer
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Peter Heftberger
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Department of Physics, University of Massachusetts, Amherst, Massachusetts
| | - John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
8
|
|
9
|
Marquardt D, Heberle FA, Nickels JD, Pabst G, Katsaras J. On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. SOFT MATTER 2015; 11:9055-72. [PMID: 26428538 PMCID: PMC4719199 DOI: 10.1039/c5sm01807b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/21/2015] [Indexed: 05/28/2023]
Abstract
In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.
Collapse
Affiliation(s)
- Drew Marquardt
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, Graz, Austria. and BioTechMed-Graz, Graz, Austria
| | - Frederick A Heberle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| | - Jonathan D Nickels
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, Graz, Austria. and BioTechMed-Graz, Graz, Austria
| | - John Katsaras
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
10
|
Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid-DMSO-H2O system. Proc Natl Acad Sci U S A 2015; 112:10708-13. [PMID: 26261313 DOI: 10.1073/pnas.1512325112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO-lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO-water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems.
Collapse
|
11
|
Johnson M, Seifert S, Petrache HI, Kimble-Hill AC. Phase coexistence in single-lipid membranes induced by buffering agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9880-9885. [PMID: 25102340 PMCID: PMC4148158 DOI: 10.1021/la5018938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/29/2014] [Indexed: 05/28/2023]
Abstract
Recent literature has shown that buffers affect the interaction between lipid bilayers through a mechanism that involves van der Waals forces, electrostatics, hydration forces and membrane bending rigidity. This letter shows an additional peculiar effect of buffers on the mixed chain 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers, namely phase coexistence similar to what was reported by Rappolt et al. for alkali chlorides. The data presented suggest that one phase appears to dehydrate below the value in pure water, while the other phase swells as the concentration of buffer is increased. However, since the two phases must be in osmotic equilibrium with one another, this behavior challenges theoretical models of lipid interactions.
Collapse
Affiliation(s)
- Merrell
A. Johnson
- Department
of Physics, Indiana University−Purdue
University Indianapolis, LD 154, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Soenke Seifert
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Horia I. Petrache
- Department
of Physics, Indiana University−Purdue
University Indianapolis, LD 154, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Ann C. Kimble-Hill
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| |
Collapse
|
12
|
Kanduč M, Schlaich A, Schneck E, Netz RR. Hydration repulsion between membranes and polar surfaces: simulation approaches versus continuum theories. Adv Colloid Interface Sci 2014; 208:142-52. [PMID: 24612664 DOI: 10.1016/j.cis.2014.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/28/2022]
Abstract
A review of various computer simulation approaches for the study of the hydration repulsion between lipid membranes and polar surfaces is presented. We discuss different methods and compare their advantages and limitations. We consider interaction pressures, interaction thermodynamics, and interaction mechanisms. We take a close look at the influence of the experimental boundary conditions and at repulsion mechanisms due to the unfavorable overlap of interfacial water layers. To this end, we analyze several distinct water order parameters in simulations of interacting polar surfaces and compare the results to the predictions of simple continuum theories.
Collapse
Affiliation(s)
- Matej Kanduč
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany; Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia.
| | - Alexander Schlaich
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Emanuel Schneck
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France.
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
13
|
Kanduč M, Schneck E, Netz RR. Hydration interaction between phospholipid membranes: insight into different measurement ensembles from atomistic molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9126-9137. [PMID: 23848998 DOI: 10.1021/la401147b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using the novel thermodynamic extrapolation technique in molecular dynamics simulations, we investigate the interaction between phospholipid bilayers subject to various boundary conditions that correspond to established experimental methods for the determination of pressure-distance curves: the osmotic stress method, the hydrostatic method, and the surface force apparatus method. We discuss the roles of van der Waals and Helfrich undulation pressures in the force balance and find that they do not play a major role in the distance range below 28 water molecules per lipid as considered by us. We address the influence of experimental boundary conditions on bilayer structural changes as well as the consequences on interaction pressures. Significant discrepancies are observed between pressures obtained in osmotic stress and hydration methods on one hand and the surface force apparatus method on the other hand. We quantify the contribution of lipid volume compressibility to the total work of dehydration and find it to be substantial for high pressures. In a wide hydration range, the interaction pressure is mostly determined by the area per lipid molecule. This means that the influence of fatty acid chemistry on experimental pressure-distance curves is indirect and mediated by the area per lipid.
Collapse
Affiliation(s)
- Matej Kanduč
- Department of Physics, Free University Berlin, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
14
|
Water adsorption isotherms of lipids. Biophys J 2012; 101:2704-12. [PMID: 22261059 DOI: 10.1016/j.bpj.2011.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/26/2011] [Accepted: 10/12/2011] [Indexed: 11/21/2022] Open
Abstract
Hydration of bilayer lipids is a fundamental property of biological membranes. The available database of lipid hydration isotherms is fitted over the entire range of water activities by using a statistical mechanical approach that is an extension of the common Brunauer-Emmett-Teller model, to include differential energies of association for water molecules beyond the first strongly bound layer. Three-parameter fits are obtained that can be used to represent the experimental isotherms to a good degree of accuracy over the complete range of water-binding activities. Fits are also made in terms of the hydration pressure and correlation length of water ordering, by using the polarization theory of lipid hydration. The relationship of the latter approach to measurements of hydration forces between lipid bilayers is discussed.
Collapse
|
15
|
Raudino A, Pannuzzo M, Karttunen M. Combined depletion and electrostatic forces in polymer-induced membrane adhesion: A theoretical model. J Chem Phys 2012; 136:055101. [DOI: 10.1063/1.3678836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
16
|
Lateral order in gel, subgel and crystalline phases of lipid membranes: Wide-angle X-ray scattering. Chem Phys Lipids 2012; 165:59-76. [DOI: 10.1016/j.chemphyslip.2011.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/21/2022]
|
17
|
Wu FG, Jia Q, Wu RG, Yu ZW. Regional cooperativity in the phase transitions of dipalmitoylphosphatidylcholine bilayers: the lipid tail triggers the isothermal crystallization process. J Phys Chem B 2011; 115:8559-68. [PMID: 21634795 DOI: 10.1021/jp200733y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have a long-standing interest to explore the answer of the question: Which part of the amphiphilic molecule triggers the phase transition of the self-assembled aggregates consisting of these amphiphiles? This is an important issue regarding the phase transition kinetics of amphiphiles. To this end, we studied the phase transition behaviors of dipalmitoylphosphatidylcholine (DPPC) by differential scanning calorimetry, synchrotron X-ray scattering, Fourier transform infrared spectroscopy, and image analysis. We found that different parts (head, interface, and tail) of DPPC molecules all exhibit nonsynchronous changes during the sub-, pre-, and main transitions. Particular efforts have been devoted to studying the isothermal subgel (L(c')) formation process. It was found that only the lipid interface and tail regions change, and only when the rearrangement of the lipid hydrocarbon chain packing reaches a certain extent can the interfacial C═O groups be induced to undergo vibrational environment changes. The result means that the hydrocarbon tail is the part that triggers the gel (L(β')) to L(c') phase transition. The present work deepens our understanding on the phase transition mechanisms of DPPC and may shed light on those of other phospholipids and other types of amphiphiles.
Collapse
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, P R China
| | | | | | | |
Collapse
|
18
|
Eun C, Berkowitz ML. Molecular dynamics simulation study of interaction between model rough hydrophobic surfaces. J Phys Chem A 2011; 115:6059-67. [PMID: 21495665 DOI: 10.1021/jp110608p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study some aspects of hydrophobic interaction between molecular rough and flexible model surfaces. The model we use in this work is based on a model we used previously (Eun, C.; Berkowitz, M. L. J. Phys. Chem. B 2009, 113, 13222-13228), when we studied the interaction between model patches of lipid membranes. Our original model consisted of two graphene plates with attached polar headgroups; the plates were immersed in a water bath. The interaction between such plates can be considered as an example of a hydrophilic interaction. In the present work, we modify our previous model by removing the charge from the zwitterionic headgroups. As a result of this procedure, the plate character changes: it becomes hydrophobic. By separating the total interaction (or potential of mean force, PMF) between plates into the direct and the water-mediated interactions, we observe that the latter changes from repulsive to attractive, clearly emphasizing the important role of water as a medium. We also investigate the effect of roughness and flexibility of the headgroups on the interaction between plates and observe that roughness enhances the character of the hydrophobic interaction. The presence of a dewetting transition in a confined space between charge-removed plates confirms that the interaction between plates is strongly hydrophobic. In addition, we notice that there is a shallow local minimum in the PMF in the case of the charge-removed plates. We find that this minimum is associated with the configurational changes that flexible headgroups undergo as the two plates are brought together.
Collapse
Affiliation(s)
- Changsun Eun
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
19
|
Kabaso D, Gongadze E, Elter P, van Rienen U, Gimsa J, Kralj-Iglič V, Iglič A. Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev Med Chem 2011; 11:272-82. [PMID: 21428902 PMCID: PMC3343385 DOI: 10.2174/138955711795305353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 03/03/2011] [Accepted: 12/24/2010] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain.
Collapse
Affiliation(s)
- D Kabaso
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Raudino A, Pannuzzo M. Adhesion Kinetics between a Membrane and a Flat Substrate. An Ideal Upper Bound to the Spreading Rate of an Adhesive Patch. J Phys Chem B 2010; 114:15495-505. [DOI: 10.1021/jp106722w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio Raudino
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6-95125, Catania, Italy
| | - Martina Pannuzzo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6-95125, Catania, Italy
| |
Collapse
|
21
|
Kinoshita M, Ito K, Kato S. Kinetics for the subgel phase formation in DPPC/DOPC mixed bilayers. Chem Phys Lipids 2010; 163:712-9. [DOI: 10.1016/j.chemphyslip.2010.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
|
22
|
Raudino A, Pannuzzo M. Nucleation theory with delayed interactions: An application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles. J Chem Phys 2010; 132:045103. [DOI: 10.1063/1.3290823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Eun C, Berkowitz ML. Origin of the hydration force: water-mediated interaction between two hydrophilic plates. J Phys Chem B 2009; 113:13222-8. [PMID: 19518117 DOI: 10.1021/jp901747s] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed molecular dynamics simulations on systems containing phosphatidycholine headgroups attached to graphene plates (PC-headgroup plates) immersed in water to study the interaction between phosphatidylcholine bilayers in water. The potential of mean force (PMF) between PC-headgroup plates shows that the interaction is repulsive. We observed three distinct regimes in the PMF depending on the interplate distances: the small distance regime, intermediate distance regime, and large distance regime. We believe that the repulsive interaction in the intermediate interplate distance regime is associated with the hydration force due to the removal of water molecules adjacent to the headgroups.
Collapse
Affiliation(s)
- Changsun Eun
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
24
|
Devireddy RV. Statistical thermodynamics of biomembranes. Cryobiology 2009; 60:80-90. [PMID: 19460363 DOI: 10.1016/j.cryobiol.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/28/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
An overview of the major issues involved in the statistical thermodynamic treatment of phospholipid membranes at the atomistic level is summarized: thermodynamic ensembles, initial configuration (or the physical system being modeled), force field representation as well as the representation of long-range interactions. This is followed by a description of the various ways that the simulated ensembles can be analyzed: area of the lipid, mass density profiles, radial distribution functions (RDFs), water orientation profile, deuterium order parameter, free energy profiles and void (pore) formation; with particular focus on the results obtained from our recent molecular dynamic (MD) simulations of phospholipids interacting with dimethylsulfoxide (Me(2)SO), a commonly used cryoprotective agent (CPA).
Collapse
Affiliation(s)
- Ram V Devireddy
- Department of Mechanical Engineering, Louisiana State University, 2508 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
25
|
Caracciolo G, Pozzi D, Caminiti R, Marianecci C, Moglioni S, Carafa M, Amenitsch H. Effect of hydration on the structure of solid-supported Niosomal membranes investigated by in situ energy dispersive X-ray diffraction. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.07.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Pabst G, Danner S, Podgornik R, Katsaras J. Entropy-driven softening of fluid lipid bilayers by alamethicin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11705-11. [PMID: 17939689 DOI: 10.1021/la701586c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using dilatometry and small-angle X-ray diffraction, we have studied under bulk conditions the structural changes and elastic response of dioleoyl phosphatidylcholine bilayers to alamethicin. With increasing peptide concentration, we found a progressive thinning of the membrane. However, in contrast to previously published reports, this thinning exhibits exponential behavior. Furthermore, an increase in alamethicin content resulted in an increased lateral area per lipid and a swelling of the multibilayers which can be attributed to a decrease in the bilayer's bending rigidity by approximately 50%. At the same time, hydration and van der Waals forces remained unaffected by the presence of the peptide. Interestingly, all elastic and structural parameters followed the same exponential form found for the membrane thickness, implying a common underlying mechanism for all of these structural parameters. Our results can be understood by introducing an additional entropy term into the free-energy description of peptide incorporation, a term previously not considered. As a result, we have been able to reconcile recent controversies regarding the effect of peptides on membrane thinning.
Collapse
Affiliation(s)
- Georg Pabst
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria.
| | | | | | | |
Collapse
|
27
|
Lu L, Berkowitz ML. Hydration force between model hydrophilic surfaces: computer simulations. J Chem Phys 2007; 124:101101. [PMID: 16542060 DOI: 10.1063/1.2179789] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed molecular dynamics simulations to study the interactions between model hydrophilic plates made of carbon atoms distributed on a hexagonal lattice. Although neutral, the plates carry equal amounts of positive and negative charges to represent physical dipoles. Using the thermodynamic perturbation theory we calculated the potential of mean force (PMF) acting between the plates as a function of the distance between these plates. We observed that, at distances when more than one water layer can be found between the plates, the contribution of water into the PMF can be either attractive or repulsive depending on the correlation between the charges situated on the plates.
Collapse
Affiliation(s)
- L Lu
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
28
|
Leontidis E, Aroti A, Belloni L, Dubois M, Zemb T. Effects of monovalent anions of the hofmeister series on DPPC lipid bilayers Part II: modeling the perpendicular and lateral equation-of-state. Biophys J 2007; 93:1591-607. [PMID: 17496050 PMCID: PMC1948044 DOI: 10.1529/biophysj.107.109264] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of Hofmeister anions on the perpendicular and lateral equation-of-state (EOS) of the dipalmitoylphosphatidylcholine lamellar phase discussed in the companion article are here examined using appropriate free energy models for the intra- and interbilayer interactions. Minimizing the free energy with respect to the two basic geometrical parameters of the lamellar phase, which are the interbilayer water thickness, d(w), and the lipid headgroup area, a(L), provides the perpendicular (osmotic pressure balance) and lateral EOS. Standard models were used for the hydration, undulation, and Van der Waals attractive force between the bilayers in the presence of electrolytes whereas two alternative treatments of electrostatic interactions were used to obtain "binding" or "partitioning" constants of anions to the lipid bilayers both in the absence and in the presence of sodium binding. The computed binding constants depend on anion type and follow the Hofmeister series, but were found to increase with electrolyte concentration, implying that the local binding approximation cannot fit bilayer repulsion data. The partitioning model was also found inadequate at high electrolyte concentrations. The fitting attempts revealed two additional features worthy of future investigation. First, at maximum swelling in the presence of electrolytes the osmotic pressure of the bilayer system cannot be set equal to zero. Second, at high salt concentrations an additional repulsion appears to come into effect in the presence of strongly adsorbing anions such as I(-) or SCN(-). Both these phenomena may reflect an inconsistent treatment of the ion-surface interactions, which have an impact on the osmotic pressure. Alternatively, they may arise from bulk solution nonidealities that cannot be handled by the classical Poisson-Boltzmann formalism. The inability of current models to explain the "lateral" EOS by fitting the area per lipid headgroup as a function of salt type and concentration shows that current understanding of phospholipid-ion interactions is still very incomplete.
Collapse
Affiliation(s)
- E Leontidis
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus.
| | | | | | | | | |
Collapse
|
29
|
Petrache HI, Harries D, Parsegian VA. Measurement of lipid forces by X-ray diffraction and osmotic stress. Methods Mol Biol 2007; 400:405-419. [PMID: 17951749 DOI: 10.1007/978-1-59745-519-0_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid suspensions in aqueous solutions most often form multilamellar vesicles of uniformly spaced bilayers. Interlamellar spacing is determined by the balance of attractive van der Waals (charge fluctuation) and repulsive forces. This balance of forces, as well as membrane elasticity, can be probed by applied osmotic stress. We describe how osmotic stress can be imposed on multilamellar lipid samples to study lipid interactions.
Collapse
|
30
|
Lu L, Berkowitz ML. The effect of water structure and surface charge correlations on the hydration force acting between model hydrophilic surfaces. Mol Phys 2006. [DOI: 10.1080/00268970601017347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Miano F, Zhao X, Lu JR, Penfold J. Coadsorption of human milk lactoferrin into the dipalmitoylglycerolphosphatidylcholine phospholipid monolayer spread at the air/water interface. Biophys J 2006; 92:1254-62. [PMID: 17114223 PMCID: PMC1783875 DOI: 10.1529/biophysj.105.078592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coadsorption of human milk lactoferrin into a spread monolayer of dipalmitoylglycerol phosphatidylcholine (DPPC) at the air/water interface has been studied by neutron reflection. The system is a good model of the preocular tear film outer interface, which was the motivation for the study. The association of the protein with the surface was indicated by an increase of the surface pressure exerted by the DPPC monolayer. The extent of lactoferrin coadsorption was found to decrease with increasing surface pressure in the lipid monolayer, a trend consistent with the observation reported for other proteins, such as lysozyme and beta-lactoglobulin. The neutron reflectivity measurements were subsequently carried out at the three surface pressures of 8, 15, and 35 mN/m to examine the structure and composition of lactoferrin coadsorbed at the interface. Whereas the DPPC monolayer effectively prevented lactoferrin insertion at the high surface pressure, a measurable amount of lactoferrin was found at the air/water interface at the two lower surface pressures. At 15 mN/m it was difficult to identify the distribution of lactoferrin with respect to the DPPC monolayer, due to its relatively low adsorbed amount and much broader distribution. At the lowest surface pressure of 8 mN/m, the lactoferrin coadsorption was found to increase with time over the first few hours. After 5 h the distribution of the lactoferrin layer became similar to, though quantitatively lower than, that adsorbed in the absence of the DPPC monolayer. It is characterized by a top dense sublayer of 15 A with a bottom diffuse sublayer of 60 A, indicating structural unfolding induced by surface adsorption under these conditions.
Collapse
Affiliation(s)
- Fausto Miano
- Società Industria Farmaceutica Italiana SpA, Lavinaio (Catania), Italy
| | | | | | | |
Collapse
|
32
|
Petrache HI, Tristram-Nagle S, Harries D, Kucerka N, Nagle JF, Parsegian VA. Swelling of phospholipids by monovalent salt. J Lipid Res 2006; 47:302-9. [PMID: 16267342 PMCID: PMC2689361 DOI: 10.1194/jlr.m500401-jlr200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Critical to biological processes such as membrane fusion and secretion, ion-lipid interactions at the membrane-water interface still raise many unanswered questions. Using reconstituted phosphatidylcholine membranes, we confirm here that multilamellar vesicles swell in salt solutions, a direct indication that salt modifies the interactions between neighboring membranes. By varying sample histories, and by comparing with data from ion carrier-containing bilayers, we eliminate the possibility that swelling is an equilibration artifact. Although both attractive and repulsive forces could be modified by salt, we show experimentally that swelling is driven primarily by weakening of the van der Waals attraction. To isolate the effect of salt on van der Waals interactions, we focus on high salt concentrations at which any possible electrostatic interactions are screened. By analysis of X-ray diffraction data, we show that salt does not alter membrane structure or bending rigidity, eliminating the possibility that repulsive fluctuation forces change with salt. By measuring changes in interbilayer separation with applied osmotic stress, we have determined, using the standard paradigm for bilayer interactions, that 1 M concentrations of KBr or KCl decrease the van der Waals strength by 50%. By weakening van der Waals attractions, salt increases energy barriers to membrane contact, possibly affecting cellular communication and biological signaling.
Collapse
Affiliation(s)
- Horia I Petrache
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-0924, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Claesson PM, Kjellin M, Rojas OJ, Stubenrauch C. Short-range interactions between non-ionic surfactant layers. Phys Chem Chem Phys 2006; 8:5501-14. [PMID: 17136265 DOI: 10.1039/b610295f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Short-range interactions between surfactant and lipid layers are of great importance in technical applications in complex fluids such as foams, dispersions and emulsions, as well as in the formulation and performance of dispersants, detergents and flocculants. It is also of utmost importance in biological systems where interactions between biomembranes influence a range of processes. The field of short-range interactions has been thoroughly investigated during the past 30 years, following the emergence of a number of techniques to measure interaction forces. Thus, our understanding has increased considerably and it is timely to summarize relevant knowledge accumulated in this area. In this review we focus on the nature of short-range interactions between non-ionic and zwitterionic surfactant and lipid layers exposing their polar groups to the surrounding medium. We discuss the complex interplay of short-range (van der Waals, hydration, steric and other) forces based on recent theoretical and experimental results.
Collapse
Affiliation(s)
- Per M Claesson
- Royal Institute of Technology, Department of Chemistry, Surface Chemistry, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Caracciolo G, Petruccetti M, Caminiti R. A new experimental setup for the study of lipid hydration by energy dispersive X-ray diffraction. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.08.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Liu J, Conboy JC. Structure of a gel phase lipid bilayer prepared by the Langmuir-Blodgett/Langmuir-Schaefer method characterized by sum-frequency vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:9091-7. [PMID: 16171337 DOI: 10.1021/la051500e] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The structure of a planar supported lipid bilayer (PSLB) prepared by the Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS) method was investigated by sum-frequency vibrational spectroscopy (SFVS). By using asymmetric lipid bilayers composed of selectively deuterated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids, the orientation of the fatty acid chains and phosphocholine headgroups has been determined independently for both leaflets of the bilayer. The alkyl chains of the lipids were found to be orientated approximately 13 degrees +/- 4 degrees from the surface normal for both leaflets. The lipid chains in both leaflets also contain some gauche content, which is consistent with previous NMR and FTIR studies of similar lipid systems. More importantly, the relative number of gauche defects does not seem to be influenced by the deposition method, LB versus LS. The headgroup orientation for the lipid film in contact with the silica support was determined to be 69 degrees +/- 3 degrees , whereas that in contact with the aqueous phase was 66 degrees +/- 4 degrees from the surface normal. The SFVS results indicate that the structure of the DSPC lipid film in contact with the solid support and the film adjacent to the aqueous phase are nearly identical in structure. These results suggesting the LB/LS deposition method do indeed produce symmetric lipid bilayers. These studies further add to the growing information on the efficacy of PSLBs as suitable models for biological membrane studies.
Collapse
Affiliation(s)
- Jin Liu
- Department of Chemistry, University of Utah, 315 S. 1400 E. RM 2020, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
36
|
Chao CY, Hsieh WJ, Hsu MT, Ho JT, Lin IJB. A new hexatic phase observed in biomembrane‐like films. LIQUID CRYSTALS TODAY 2005. [DOI: 10.1080/14645180500358835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Petrov JG, Andreeva TD, Kurth DG, Möhwald H. Negative Dipole Potentials of Uncharged Langmuir Monolayers Due to Fluorination of the Hydrophilic Heads. J Phys Chem B 2005; 109:14102-11. [PMID: 16852771 DOI: 10.1021/jp0515028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dipole potential, affecting the structure, functions, and interactions of biomembranes, lipid bilayers, and Langmuir monolayers, is positive toward the hydrocarbon moieties. We show that uncharged Langmuir monolayers of docosyl trifluoroethyl ether (DFEE) exhibit large negative dipole potentials, while the nonfluorinated docosyl ethyl ether (DEE) forms films with positive dipole potentials. Comparison of the Delta V values for these ethers with those of the previously studied(37-39) monolayers of trifluoroethyl ester (TFEB) and ethyl ester of behenic acid (EB) shows that the reversal of the sign of Delta V causes the same change Delta(Delta V) = -706 +/- 16 mV due to fluorination of heads. The Delta V values of both TFEB and EB films differ by -122 +/- 16 mV from those of DFEE and DEE monolayers, respectively, with the same density. Such quantitative coincidence points to a common mechanism of reversal of the sign of the dipole potential for the ether and ester films despite the different structure of their heads. The mechanical properties and phase behaviors of these monolayers show that both fluorinated heads are less hydrated, suggesting that the change of the sign of Delta V could, at least partially, be related to different hydration water structure. The same negative contribution of the carbonyl bond in both TFEB and EB films contrasts with the generally accepted positive contribution of the C(delta+)=O(delta-) bond in condensed Langmuir monolayers of fatty acids, their alcohol esters, glycerides, and phospholipids but concurs with the theoretical analysis of Delta V of stearic acid monolayers. Both results question the literature values of the molecular dipole moments of these substances calculated via summation of bonds and atomic group contributions. Mixed monolayers of DFEE and DEE show smooth monotonic variation of Delta V from +450 to -235 mV, indicating a way for adjustment of the sign and magnitude of the dipole potential at the membrane-water boundary and regulation of such membrane behaviors as binding and translocation rate of hydrophobic ions and ion-carriers, adsorption and penetration of amphiphilic peptides, polarization of hydration water, and short-range repulsion. The interaction of the hydrophobic ions tetraphenylboron TPhB- and tetraphenylphosphonium TPhP+ with DFEE and DEE monolayers qualitatively follows the theory of binding of such ions to lipid bilayers, but the shifts Delta(Delta V) from the values obtained on water are much smaller than those for DPPC monolayers. This difference seems to be due to the solid (polycrystalline) character of the DFEE and DEE films that hampers the penetration of TPhB- and TPhP+ in the monolayers and reduces the attractive interaction with the hydrophobic moiety. This conclusion orients the future synthesis of amphiphiles with fluorinated heads to those which could form liquid-expanded Langmuir monolayers.
Collapse
Affiliation(s)
- Jordan G Petrov
- Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Golm/Potsdam, Germany.
| | | | | | | |
Collapse
|
38
|
Chao CY, Hsu MT, Hsieh WJ, Ho JT, Lin IJB. New hexatic liquid phase observed in lyotropic thin films. PHYSICAL REVIEW LETTERS 2004; 93:247801. [PMID: 15697859 DOI: 10.1103/physrevlett.93.247801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Indexed: 05/24/2023]
Abstract
An intermediate surface hexatic phase between the liquid and the crystalline phases has been found for the first time in a lyotropic lamellar liquid-crystal system. This phase is highly unusual in that it has long-range sixfold bond-orientational order but liquidlike nearest-neighbor positional correlations, and could represent a significant departure from our current understanding of defect-mediated melting in two dimensions.
Collapse
Affiliation(s)
- Chih-Yu Chao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
39
|
Sachs JN, Petrache HI, Woolf TB. Interpretation of small angle X-ray measurements guided by molecular dynamics simulations of lipid bilayers. Chem Phys Lipids 2004; 126:211-23. [PMID: 14623455 DOI: 10.1016/j.chemphyslip.2003.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reconstruction and interpretation of lipid bilayer structure from X-ray scattering often rely on assumptions regarding the molecular distributions across the bilayer. It is usually assumed that changes in head-head spacings across the bilayer, as measured from electron density profiles, equal the variations in hydrocarbon thicknesses. One can then determine the structure of a bilayer by comparison to the known structure of a lipid with the same headgroup. Here we examine this procedure using simulated electron density profiles for the benchmark lipids DMPC and DPPC. We compare simulation and experiment in both real and Fourier space to address two main aspects: (i) the measurement of head-head spacings from relative electron density profiles, and (ii) the determination of the absolute scale for these profiles. We find supporting evidence for the experimental procedure, thus explaining the robustness and consistency of experimental structural results derived from electron density profiles. However, we also expose potential pitfalls in the Fourier reconstruction that are due to the limited number of scattering peaks. Volumetric analysis of simulated bilayers allows us to propose an improved, yet simple method for scale determination. In this way we are able to remove some of the restrictions imposed by limited scattering data in constructing reliable electron density profiles.
Collapse
Affiliation(s)
- Jonathan N Sachs
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
40
|
Pozo-Navas B, Raghunathan VA, Katsaras J, Rappolt M, Lohner K, Pabst G. Discontinuous unbinding of lipid multibilayers. PHYSICAL REVIEW LETTERS 2003; 91:028101. [PMID: 12906511 DOI: 10.1103/physrevlett.91.028101] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Indexed: 05/24/2023]
Abstract
We have observed a discontinuous unbinding transition of lipid bilayer stacks composed of phosphatidylethanolamine and phosphatidylglycerol using x-ray diffraction. The unbinding is reversible and coincides with the main (L(beta)-->L(alpha)) transition of the lipid mixture. Interbilayer interaction potentials deduced from the diffraction data reveal that the bilayers in the L(beta) phase are only weakly bound. The unbinding transition appears to be driven by an abrupt increase in steric repulsion resulting from increased thermal undulations of the bilayers upon entering the fluid L(alpha) phase.
Collapse
Affiliation(s)
- B Pozo-Navas
- Institute of Biophysics and X-Ray Structure Research, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
| | | | | | | | | | | |
Collapse
|
41
|
Tristram-Nagle S, Liu Y, Legleiter J, Nagle JF. Structure of gel phase DMPC determined by X-ray diffraction. Biophys J 2002; 83:3324-35. [PMID: 12496100 PMCID: PMC1302408 DOI: 10.1016/s0006-3495(02)75333-2] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of fully hydrated gel phase dimyristoylphosphatidylcholine lipid bilayers was obtained at 10 degrees C. Oriented lipid multilayers were used to obtain high signal-to-noise intensity data. The chain tilt angle and an estimate of the methylene electron density were obtained from wide angle reflections. The chain tilt angle is measured to be 32.3 +/- 0.6 degrees near full hydration, and it does not change as the sample is mildly dehydrated from a repeat spacing of D = 59.9 A to D = 56.5 A. Low angle diffraction peaks were obtained up to the tenth order for 17 samples with variable D and prepared by three different methods with different geometries. In addition to the usual Fourier reconstructions of the electron density profiles, model electron density profiles were fit to all the low angle data simultaneously while constraining the model to include the wide-angle data and the measured lipid volume. Results are obtained for area/lipid (A = 47.2 +/- 0.5 A(2)), the compressibility modulus (K(A) = 500 +/- 100 dyn/cm), various thicknesses, such as the hydrocarbon thickness (2D(C) = 30.3 +/- 0.2 A), and the head-to-head spacing (D(HH) = 40.1 +/- 0.1 A).
Collapse
|
42
|
Gandhavadi M, Allende D, Vidal A, Simon SA, McIntosh TJ. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys J 2002; 82:1469-82. [PMID: 11867462 PMCID: PMC1301948 DOI: 10.1016/s0006-3495(02)75501-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lipid bilayers composed of unsaturated phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol are thought to contain microdomains that have similar detergent insolubility characteristics as rafts isolated from cell plasma membranes. We chemically characterized the fractions corresponding to detergent soluble membranes (DSMs) and detergent resistant membranes (DRMs) from 1:1:1 PC:SM:cholesterol, compared the binding properties of selected peptides to bilayers with the compositions of DSMs and DRMs, used differential scanning calorimetry to identify phase transitions, and determined the structure of DRMs with x-ray diffraction. Compared with the equimolar starting material, DRMs were enriched in both SM and cholesterol. Both transmembrane and interfacial peptides bound to a greater extent to DSM bilayers than to DRM bilayers, likely because of differences in the mechanical properties of the two bilayers. Thermograms from 1:1:1 PC:SM:cholesterol from 3 to 70 degrees C showed no evidence for a liquid-ordered to liquid-disordered phase transition. Over a wide range of osmotic stresses, each x-ray pattern from equimolar PC:SM:cholesterol or DRMs contained a broad wide-angle band at 4.5 A, indicating that the bilayers were in a liquid-crystalline phase, and several sharp low-angle reflections that indexed as orders of a single lamellar repeat period. Electron density profiles showed that the total bilayer thickness was 57 A for DRMs, which was approximately 5 A greater than that of 1:1:1 PC:SM:cholesterol and 10 A greater than the thickness of bilayers with the composition of DSMs. These x-ray data provide accurate values for the widths of raft and nonraft bilayers that should be important in understanding mechanisms of protein sorting by rafts.
Collapse
Affiliation(s)
- M Gandhavadi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
43
|
Maddox MW, Longo ML. A Monte Carlo study of peptide insertion into lipid bilayers: equilibrium conformations and insertion mechanisms. Biophys J 2002; 82:244-63. [PMID: 11751313 PMCID: PMC1302466 DOI: 10.1016/s0006-3495(02)75391-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The membrane insertion behavior of two peptides, Magainin2 and M2 delta, was investigated by applying the Monte Carlo simulation technique to a theoretical model. The model included many novel aspects, such as a new semi-empirical lipid bilayer model and a new set of semi-empirical transfer energies, which reproduced the experimental insertion behavior of Magainin2 and M2 delta without parameter fitting. Additionally, we have taken into account diminished internal (intramolecular) hydrogen bonding at the N- and C-termini of helical peptides. All simulations were carried out at 305 K, above the membrane thermal phase transition temperature, and at pH 7.0. The peptide equilibrium conformations are discussed for a range of bilayers with tail polarities varying from octanol-like to alkane-like. Probability distributions of the individual amino-acid-residue positions show the dynamic nature of these equilibrium conformations. Two different insertion mechanisms for M2 delta, and a translocation mechanism for Magainin2, are described. A study of the effect of bilayer thickness on M2 delta insertion suggests a critical thickness above which insertion is unfavorable. Additionally, we did not need to use an orientational potential or array of hard cylinders to persuade M2 delta to insert perpendicular to the membrane surface. Instead, we found that diminished internal hydrogen bonding in the helical conformation anchored the termini in the headgroups and resulted in a nearly perpendicular orientation.
Collapse
Affiliation(s)
- Michael W Maddox
- Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, USA
| | | |
Collapse
|
44
|
Lewis RN, Tristram-Nagle S, Nagle JF, McElhaney RN. The thermotropic phase behavior of cationic lipids: calorimetric, infrared spectroscopic and X-ray diffraction studies of lipid bilayer membranes composed of 1,2-di-O-myristoyl-3-N,N,N-trimethylaminopropane (DM-TAP). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:70-82. [PMID: 11342148 DOI: 10.1016/s0005-2736(00)00336-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thermotropic phase behavior of lipid bilayer model membranes composed of the cationic lipid 1,2-di-O-myristoyl-3-N,N,N-trimethylaminopropane (DM-TAP) was examined by differential scanning calorimetry, infrared spectroscopy and X-ray diffraction. Aqueous dispersions of this lipid exhibit a highly energetic endothermic transition at 38.4 degrees C upon heating and two exothermic transitions between 20 and 30 degrees C upon cooling. These transitions are accompanied by enthalpy changes that are considerably greater than normally observed with typical gel/liquid--crystalline phase transitions and have been assigned to interconversions between lamellar crystalline and lamellar liquid--crystalline forms of this lipid. Both infrared spectroscopy and X-ray diffraction indicate that the lamellar crystalline phase is a highly ordered, substantially dehydrated structure in which the hydrocarbon chains are essentially immobilized in a distorted orthorhombic subcell. Upon heating to temperatures near 38.4 degrees C, this structure converts to a liquid-crystalline phase in which there is excessive swelling of the aqueous interlamellar spaces owing to charge repulsion between, and undulations of, the positively charged lipid surfaces. The polar/apolar interfaces of liquid--crystalline DM-TAP bilayers are not as well hydrated as those formed by other classes of phospho- and glycolipids. Such differences are attributed to the relatively small size of the polar headgroup and its limited capacity for interaction with moieties in the bilayer polar/apolar interface.
Collapse
Affiliation(s)
- R N Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
45
|
Abstract
The quantitative experimental uncertainty in the structure of fully hydrated, biologically relevant, fluid (L(alpha)) phase lipid bilayers has been too large to provide a firm base for applications or for comparison with simulations. Many structural methods are reviewed including modern liquid crystallography of lipid bilayers that deals with the fully developed undulation fluctuations that occur in the L(alpha) phase. These fluctuations degrade the higher order diffraction data in a way that, if unrecognized, leads to erroneous conclusions regarding bilayer structure. Diffraction measurements at high instrumental resolution provide a measure of these fluctuations. In addition to providing better structural determination, this opens a new window on interactions between bilayers, so the experimental determination of interbilayer interaction parameters is reviewed briefly. We introduce a new structural correction based on fluctuations that has not been included in any previous studies. Updated measurements, such as for the area compressibility modulus, are used to provide adjustments to many of the literature values of structural quantities. Since the gel (L(beta)') phase is valuable as a stepping stone for obtaining fluid phase results, a brief review is given of the lower temperature phases. The uncertainty in structural results for lipid bilayers is being reduced and best current values are provided for bilayers of five lipids.
Collapse
Affiliation(s)
- J F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
46
|
Markova N, Sparr E, Wadsö L, Wennerström H. A Calorimetric Study of Phospholipid Hydration. Simultaneous Monitoring of Enthalpy and Free Energy. J Phys Chem B 2000. [DOI: 10.1021/jp001020q] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Abstract
Interactions between lipid bilayers are critical in many biological processes in which membrane surfaces come close together. Recent X-ray diffraction analyses of bilayers subjected to known osmotic pressures have provided critical information on the magnitude of both the repulsive and the attractive forces that exist between phospholipid and glycolipid membranes.
Collapse
Affiliation(s)
- T J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
48
|
McIntosh TJ, Pollastri MP, Porter NA, Simon SA. Polyphenols increase adhesion between lipid bilayers by forming interbilayer bridges. BASIC LIFE SCIENCES 2000; 66:451-70. [PMID: 10800456 DOI: 10.1007/978-1-4615-4139-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- T J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
49
|
Gutberlet T, Dietrich U, Bradaczek H, Pohlentz G, Leopold K, Fischer W. Cardiolipin, alpha-D-glucopyranosyl, and L-lysylcardiolipin from gram-positive bacteria: FAB MS, monofilm and X-ray powder diffraction studies. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:307-22. [PMID: 10675509 DOI: 10.1016/s0005-2736(99)00214-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cardiolipin preparations from Streptococcus B, Listeria welshimeri, Staphylococcus aureus, and a glucosyl and lysyl derivative of cardiolipin were analysed for fatty acid composition and fatty acid combinations. Three different fatty acid patterns are described and up to 17 molecular species were identified in Streptococcus B lipids by high resolution FAB MS. The physicochemical properties of these lipids were characterised in the sodium salt form by monofilm experiments and X-ray powder diffraction. All lipids formed stable monofilms. The minimal space requirement of unsubstituted cardiolipin was dictated by the fatty acid pattern. Substitution with L-lysine led to a decrease of the molecular area, substitution with D-glucopyranosyl to an increase. On self assembly at 100% relative humidity, all preparations adopted lamellar structures. They showed a high degree of order, in spite of the heterogeneous fatty acid compositions and numerous fatty acid combinations. The repeat distances in lamellar fluid phase varied between 4.99 and 5. 52 nm, the bilayer thickness between 3.70 and 4.46 nm. Surprising were the low values of sorbed water per molecule of the glucosyl and lysyl derivatives which were 58 and 60%, compared with those of the respective cardiolipin. When Na(+) was replaced as counterion by Ba(2+), the bilayer structure was retained, but the lipids were in the lamellar gel phase and the fatty acids were tilted between 32 and 53 degrees away from the bilayer normal. Wide angle X-ray diffraction studies and electron density profiles are also reported. Particular properties of glucosyl cardiolipin are discussed.
Collapse
Affiliation(s)
- T Gutberlet
- Institut für Kristallographie, Takustr. 6, D-14195, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Nagle JF, Liu Y, Tristram-Nagle S, Epand RM, Stark RE. Re-analysis of magic angle spinning nuclear magnetic resonance determination of interlamellar waters in lipid bilayer dispersions. Biophys J 1999; 77:2062-5. [PMID: 10512826 PMCID: PMC1300487 DOI: 10.1016/s0006-3495(99)77047-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A recent method to obtain the number of water molecules of hydration of multilamellar lipid vesicles using magic angle spinning nuclear magnetic resonance has been re-examined. The previous interpretation divided the water into bulk and interlamellar water and ignored water in defects (lakes) that are intrinsic to multilamellar lipid vesicles; the result was inconsistent with x-ray results for the lipid DOPC. The new interpretation takes advantage of the reduction of lake water with increased spinning and it uses osmotic pressure measurements to determine the loss of interlamellar water. The new result for DOPC from magic angle spinning is consistent with x-ray results.
Collapse
Affiliation(s)
- J F Nagle
- Departments of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|