1
|
Kemp MT, Lewandowski EM, Chen Y. Low barrier hydrogen bonds in protein structure and function. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140557. [PMID: 33148530 PMCID: PMC7736181 DOI: 10.1016/j.bbapap.2020.140557] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Low-barrier hydrogen bonds (LBHBs) are a special type of short hydrogen bond (HB) that is characterized by the equal sharing of a hydrogen atom. The existence and catalytic role of LBHBs in proteins has been intensely contested. Advancements in X-ray and neutron diffraction methods has revealed delocalized hydrogen atoms involved in potential LBHBs in a number of proteins, while also demonstrating that short HBs are not necessarily LBHBs. More importantly, a series of experiments on ketosteroid isomerase (KSI) have suggested that LBHBs are significantly stronger than standard HBs in the protein microenvironment in terms of enthalpy, but not free energy. The discrepancy between the enthalpy and free energy of LBHBs offers clues to the challenges, and potential solutions, of the LBHB debate, where the unique strength of LBHBs plays a special role in the kinetic processes of enzyme function and structure, together with other molecular forces in a pre-organized environment.
Collapse
Affiliation(s)
- M Trent Kemp
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States.
| |
Collapse
|
2
|
Guo Y, Tu T, Zheng J, Ren Y, Wang Y, Bai Y, Su X, Wang Y, Yao B, Huang H, Luo H. A novel thermostable aspartic protease from Talaromyces leycettanus and its specific autocatalytic activation through an intermediate transition state. Appl Microbiol Biotechnol 2020; 104:4915-4926. [DOI: 10.1007/s00253-020-10569-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 01/19/2023]
|
3
|
Paul DS, Gautham N. iMOLSDOCK: Induced-fit docking using mutually orthogonal Latin squares (MOLS). J Mol Graph Model 2017; 74:89-99. [PMID: 28365533 DOI: 10.1016/j.jmgm.2017.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
We have earlier reported the MOLSDOCK technique to perform rigid receptor/flexible ligand docking. The method uses the MOLS method, developed in our laboratory. In this paper we report iMOLSDOCK, the 'flexible receptor' extension we have carried out to the algorithm MOLSDOCK. iMOLSDOCK uses mutually orthogonal Latin squares (MOLS) to sample the conformation and the docking pose of the ligand and also the flexible residues of the receptor protein. The method then uses a variant of the mean field technique to analyze the sample to arrive at the optimum. We have benchmarked and validated iMOLSDOCK with a dataset of 44 peptide-protein complexes with peptides. We have also compared iMOLSDOCK with other flexible receptor docking tools GOLD v5.2.1 and AutoDock Vina. The results obtained show that the method works better than these two algorithms, though it consumes more computer time.
Collapse
Affiliation(s)
- D Sam Paul
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - N Gautham
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600025, India.
| |
Collapse
|
4
|
Revuelta MV, van Kan JAL, Kay J, Ten Have A. Extensive expansion of A1 family aspartic proteinases in fungi revealed by evolutionary analyses of 107 complete eukaryotic proteomes. Genome Biol Evol 2015; 6:1480-94. [PMID: 24869856 PMCID: PMC4079213 DOI: 10.1093/gbe/evu110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The A1 family of eukaryotic aspartic proteinases (APs) forms one of the 16 AP families. Although one of the best characterized families, the recent increase in genome sequence data has revealed many fungal AP homologs with novel sequence characteristics. This study was performed to explore the fungal AP sequence space and to obtain an in-depth understanding of fungal AP evolution. Using a comprehensive phylogeny of approximately 700 AP sequences from the complete proteomes of 87 fungi and 20 nonfungal eukaryotes, 11 major clades of APs were defined of which clade I largely corresponds to the A1A subfamily of pepsin-archetype APs. Clade II largely corresponds to the A1B subfamily of nepenthesin-archetype APs. Remarkably, the nine other clades contain only fungal APs, thus indicating that fungal APs have undergone a large sequence diversification. The topology of the tree indicates that fungal APs have been subject to both “birth and death” evolution and “functional redundancy and diversification.” This is substantiated by coclustering of certain functional sequence characteristics. A meta-analysis toward the identification of Cluster Determining Positions (CDPs) was performed in order to investigate the structural and biochemical basis for diversification. Seven CDPs contribute to the secondary structure of the enzyme. Three other CDPs are found in the vicinity of the substrate binding cleft. Tree topology, the large sequence variation among fungal APs, and the apparent functional diversification suggest that an amendment to update the current A1 AP classification based on a comprehensive phylogenetic clustering might contribute to refinement of the classification in the MEROPS peptidase database.
Collapse
Affiliation(s)
- María V Revuelta
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - John Kay
- School of Biosciences, Cardiff University, United Kingdom
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
5
|
Acharya C, Kufareva I, Ilatovskiy AV, Abagyan R. PeptiSite: a structural database of peptide binding sites in 4D. Biochem Biophys Res Commun 2014; 445:717-23. [PMID: 24406170 DOI: 10.1016/j.bbrc.2013.12.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/26/2013] [Indexed: 12/11/2022]
Abstract
We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include: (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a multimeric protein assembly with cofactors and metal ions and (3) analysis of consensus interaction motifs within the ensembles and identification of conserved determinants of these interactions. Currently the database contains 585 proteins with 650 peptide-binding sites. http://peptisite.ucsd.edu/ link allows searching for the sites of interest and interactive visualization of the ensembles using the ActiveICM web-browser plugin. This structural database for protein-peptide interactions enables understanding of structural principles of these interactions and may assist the development of an efficient peptide docking benchmark.
Collapse
Affiliation(s)
- Chayan Acharya
- UCSD, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA
| | - Irina Kufareva
- UCSD, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA
| | - Andrey V Ilatovskiy
- UCSD, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA; Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina 188300, Russia; Research and Education Center "Biophysics", PNPI and St. Petersburg State Polytechnical University, St. Petersburg 195251, Russia
| | - Ruben Abagyan
- UCSD, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
|
7
|
Carreño LF, Alba MP, Varela Y, Patarroyo ME, Lozano JM. A New Approach to Obtaining N α-t-Boc-Amino Acid Aldehydes from Asparagine and Glutamine for Reduced Amide Pseudopeptide Solid-Phase Synthesis. Chem Biol Drug Des 2011; 78:603-11. [DOI: 10.1111/j.1747-0285.2011.01182.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Kuemin M, van der Donk WA. Structure-activity relationships of the phosphonate antibiotic dehydrophos. Chem Commun (Camb) 2010; 46:7694-6. [PMID: 20871915 DOI: 10.1039/c0cc02958k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic derivatives of the phosphonate antibiotic dehydrophos were tested for antimicrobial activity. Both the phosphonate monomethyl ester and the vinyl phosphonate moiety proved to be important for bacteriocidal activity of the natural product.
Collapse
Affiliation(s)
- Michael Kuemin
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
9
|
Pícha J, Buděšínský M, Fiedler P, Sanda M, Jiráček J. Synthesis of α-carboxyphosphinopeptides derived from norleucine. Amino Acids 2010; 39:1265-80. [PMID: 20349321 DOI: 10.1007/s00726-010-0561-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/09/2010] [Indexed: 11/25/2022]
Abstract
In the present study, we describe in detail the synthesis of a relatively rare class of phosphorus compounds, α-carboxyphosphinopeptides. We prepared several norleucine-derived α-carboxyphosphinic pseudopeptides of the general formula Nle-Ψ[PO(OH)]-Gly. These compounds could have important applications as transition state-mimicking inhibitors for methionine or leucine aminopeptidases or other enzymes. For the preparation of the key α-carboxyphosphinate protected precursors, we investigated, compared and improved two different synthetic methods described in literature: the Arbuzov reaction of a silylated N-protected phosphinic acid with a bromoacetate ester and the nucleophilic addition of a mixed O-methyl S-phenyl N-protected phosphonic acid or a methyl N-protected phosphonochloridate with tert-butyl lithioacetate. We also prepared two N-Fmoc protected synthons, Fmoc-Nle-Ψ[PO(OH)]-Gly-COOH and Fmoc-Nle-Ψ[PO(OAd)]-Gly-COOH, and demonstrated that these precursors are suitable building blocks for the solid-phase synthesis of α-carboxyphosphinopeptides.
Collapse
Affiliation(s)
- Jan Pícha
- Institute of Organic Chemistry and Biochemistry, v. v. i., Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
10
|
Kwan JC, Eksioglu EA, Liu C, Paul VJ, Luesch H. Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 2009; 52:5732-47. [PMID: 19715320 DOI: 10.1021/jm9009394] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In our efforts to explore marine cyanobacteria as a source of novel bioactive compounds, we discovered a statine unit-containing linear decadepsipeptide, grassystatin A (1), which we screened against a diverse set of 59 proteases. We describe the structure determination of 1 and two natural analogues, grassystatins B (2) and C (3), using NMR, MS, and chiral HPLC techniques. Compound 1 selectively inhibited cathepsins D and E with IC(50)s of 26.5 nM and 886 pM, respectively. Compound 2 showed similar potency and selectivity against cathepsins D and E (IC(50)s of 7.27 nM and 354 pM, respectively), whereas the truncated peptide analogue grassystatin C (3), which consists of two fewer residues than 1 and 2, was less potent against both but still selective for cathepsin E. The selectivity of compounds 1-3 for cathepsin E over D (20-38-fold) suggests that these natural products may be useful tools to probe cathepsin E function. We investigated the structural basis of this selectivity using molecular docking. We also show that 1 can reduce antigen presentation by dendritic cells, a process thought to rely on cathepsin E.
Collapse
Affiliation(s)
- Jason C Kwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
11
|
Bateman R, Ashworth J, Witte J, Baker LJ, Bhanumoorthy P, Timm D, Hurley T, Grompe M, Mcclard R. Slow-onset inhibition of fumarylacetoacetate hydrolase by phosphinate mimics of the tetrahedral intermediate: kinetics, crystal structure and pharmacokinetics. Biochem J 2007; 402:251-60. [PMID: 17064256 PMCID: PMC1798426 DOI: 10.1042/bj20060961] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FAH (fumarylacetoacetate hydrolase) catalyses the final step of tyrosine catabolism to produce fumarate and acetoacetate. HT1 (hereditary tyrosinaemia type 1) results from deficiency of this enzyme. Previously, we prepared a partial mimic of the putative tetrahedral intermediate in the reaction catalysed by FAH co-crystallized with the enzyme to reveal details of the mechanism [Bateman, Bhanumoorthy, Witte, McClard, Grompe and Timm (2001) J. Biol. Chem. 276, 15284-15291]. We have now successfully synthesized complete mimics CEHPOBA {4-[(2-carboxyethyl)-hydroxyphosphinyl]-3-oxobutyrate} and COPHPAA {3-[(3-carboxy-2-oxopropyl)hydroxyphosphinyl]acrylate}, which inhibit FAH in slow-onset tight-binding mode with K(i) values of 41 and 12 nM respectively. A high-resolution (1.35 A; 1 A=0.1 nm) crystal structure of the FAH.CEHPOBA complex was solved to reveal the affinity determinants for these compounds and to provide further insight into the mechanism of FAH catalysis. These compounds are active in vivo, and CEHPOBA demonstrated a notable dose-dependent increase in SA (succinylacetone; a metabolite seen in patients with HT1) in mouse serum after repeated injections, and, following a single injection (1 mumol/g; intraperitoneal), only a modest regain of FAH enzyme activity was detected in liver protein isolates after 24 h. These potent inhibitors provide a means to chemically phenocopy the metabolic defects of either HT1 or FAH knockout mice and promise future pharmacological utility for hepatocyte transplantation.
Collapse
Affiliation(s)
- Raynard L. Bateman
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
- †Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR 97201, U.S.A
| | - Justin Ashworth
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
| | - John F. Witte
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
| | - L.-J. Baker
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - Pullooru Bhanumoorthy
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - David E. Timm
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - Thomas D. Hurley
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - Markus Grompe
- †Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR 97201, U.S.A
| | - Ronald W. Mcclard
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. J Mol Biol 2006; 358:289-309. [PMID: 16497327 DOI: 10.1016/j.jmb.2006.01.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 12/30/2005] [Accepted: 01/14/2006] [Indexed: 11/15/2022]
Abstract
The energetics and hydrogen bonding pattern of water molecules bound to proteins were mapped by analyzing structural data (resolution better than 2.3A) for sets of uncomplexed and ligand-complexed proteins. Water-protein and water-ligand interactions were evaluated using hydropatic interactions (HINT), a non-Newtonian forcefield based on experimentally determined logP(octanol/water) values. Potential water hydrogen bonding ability was assessed by a new Rank algorithm. The HINT-derived binding energies and Ranks for second shell water molecules were -0.04 kcal mol(-1) and 0.0, respectively, for first shell water molecules -0.38 kcal mol(-1) and 1.6, for active site water molecules -0.45 kcal mol(-1) and 2.3, for cavity water molecules -0.55 kcal mol(-1) and 3.3, and for buried water molecules -0.56 kcal mol(-1) and 4.4. For the last four classes, similar energies indicate that internal and external water molecules interact with protein almost equally, despite different degrees of hydrogen bonding. The binding energies and Ranks for water molecules bridging ligand-protein were -1.13 kcal mol(-1) and 4.5, respectively. This energetic contribution is shared equally between protein and ligand, whereas Rank favors the protein. Lastly, by comparing the uncomplexed and complexed forms of proteins, guidelines were developed for prediction of the roles played by active site water molecules in ligand binding. A water molecule with high Rank and HINT score is unlikely to make further interactions with the ligand and is largely irrelevant to the binding process, while a water molecule with moderate Rank and high HINT score is available for ligand interaction. Water molecule displaced for steric reasons were characterized by lower Rank and HINT score. These guidelines, tested by calculating HINT score and Rank for 50 water molecules bound in the active site of four uncomplexed proteins (for which the structures of the liganded forms were also available), correctly predicted the ultimate roles (in the complex) for 76% of water molecules. Some failures were likely due to ambiguities in the structural data.
Collapse
Affiliation(s)
- Alessio Amadasi
- Department of Biochemistry and Molecular Biology University of Parma, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Toulokhonova L, Metzler WJ, Witmer MR, Copeland RA, Marcinkeviciene J. Kinetic studies on beta-site amyloid precursor protein-cleaving enzyme (BACE). Confirmation of an iso mechanism. J Biol Chem 2003; 278:4582-9. [PMID: 12458195 DOI: 10.1074/jbc.m210471200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steady-state kinetic mechanism of beta-amyloid precursor protein-cleaving enzyme (BACE)-catalyzed proteolytic cleavage was evaluated using product and statine- (Stat(V)) or hydroxyethylene-containing (OM99-2) peptide inhibition data, solvent kinetic isotope effects, and proton NMR spectroscopy. The noncompetitive inhibition pattern observed for both cleavage products, together with the independence of Stat(V) inhibition on substrate concentration, suggests a uni-bi-iso kinetic mechanism. According to this mechanism, the enzyme undergoes multiple conformation changes during the catalytic cycle. If any of these steps are rate-limiting to turnover, an enzyme form preceding the rate-limiting conformational change should accumulate. An insignificant solvent kinetic isotope effect (SKIE) on k(cat)/K(m), a large inverse solvent kinetic isotope effect on k(cat), and the absence of any SKIE on the inhibition onset by Stat(V) during catalysis together indicate that the rate-limiting iso-step occurs after formation of a tetrahedral intermediate. A moderately short and strong hydrogen bond (at delta 13.0 ppm and phi of 0.6) has been observed by NMR spectroscopy in the enzyme-hydroxyethylene peptide (OM99-2) complex that presumably mimics the tetrahedral intermediate of catalysis. Collapse of this intermediate, involving multiple steps and interconversion of enzyme forms, has been suggested to impose a rate limitation, which is manifested in a significant SKIE on k(cat). Multiple enzyme forms and their distribution during catalysis were evaluated by measuring the SKIE on the noncompetitive (mixed) inhibition constants for the C-terminal reaction product. Large, normal SKIE values were observed for these inhibition constants, suggesting that both kinetic and thermodynamic components contribute to the K(ii) and K(is) expressions, as has been suggested for other iso-mechanism featuring enzymes. We propose that a conformational change related to the reprotonation of aspartates during or after the bond-breaking event is the rate-limiting segment in the catalytic reaction of beta-amyloid precursor protein-cleaving enzyme, and ligands binding to other than the ground-state forms of the enzyme might provide inhibitors of greater pharmacological relevance.
Collapse
Affiliation(s)
- Larisa Toulokhonova
- Department of Chemical Enzymology, Bristol-Myers Squibb Pharmaceutical Company, Wilmington, Delaware 19880-0400, USA
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, USA.
| |
Collapse
|
16
|
Coates L, Erskine PT, Crump MP, Wood SP, Cooper JB. Five atomic resolution structures of endothiapepsin inhibitor complexes: implications for the aspartic proteinase mechanism. J Mol Biol 2002; 318:1405-15. [PMID: 12083527 DOI: 10.1016/s0022-2836(02)00197-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothiapepsin is derived from the fungus Endothia parasitica and is a member of the aspartic proteinase class of enzymes. This class of enzyme is comprised of two structurally similar lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The three-dimensional structures of endothiapepsin bound to five transition state analogue inhibitors (H189, H256, CP-80,794, PD-129,541 and PD-130,328) have been solved at atomic resolution allowing full anisotropic modelling of each complex. The active sites of the five structures have been studied with a view to studying the catalytic mechanism of the aspartic proteinases by locating the active site protons by carboxyl bond length differences and electron density analysis. In the CP-80,794 structure there is excellent electron density for the hydrogen on the inhibitory statine hydroxyl group which forms a hydrogen bond with the inner oxygen of Asp32. The location of this proton has implications for the catalytic mechanism of the aspartic proteinases as it is consistent with the proposed mechanism in which Asp32 is the negatively charged aspartate. A number of short hydrogen bonds (approximately 2.6 A) with ESD values of around 0.01 A that may have a role in catalysis have been identified within the active site of each structure; the lengths of these bonds have been confirmed using NMR techniques. The possibility and implications of low barrier hydrogen bonds in the active site are considered.
Collapse
Affiliation(s)
- L Coates
- School of Biological Sciences, University of Southampton, UK.
| | | | | | | | | |
Collapse
|
17
|
Andreeva NS, Rumsh LD. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Sci 2001; 10:2439-50. [PMID: 11714911 PMCID: PMC2374050 DOI: 10.1110/ps.25801] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Revised: 08/22/2001] [Accepted: 08/29/2001] [Indexed: 10/21/2022]
Abstract
To elucidate the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes, we analyzed and compared the crystal structures of these enzymes, their complexes with inhibitors, and zymogens in the active site area (a total of 82 structures). In addition to the water molecule (W1) located between the active carboxyls and playing a role of the nucleophile during catalytic reaction, another water molecule (W2) at the vicinity of the active groups was found to be completely conserved. This water molecule plays an essential role in formation of a chain of hydrogen-bonded residues between the active site flap and the active carboxyls on ligand binding. These data suggest a new approach to understanding the role of residues around the catalytic site, which can assist the development of the catalytic reaction. The influence of groups adjacent to the active carboxyls is manifested by pepsin activity at pH 1.0. Some features of pepsin-like enzymes and their mutants are discussed in the framework of the approach.
Collapse
Affiliation(s)
- N S Andreeva
- W.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 117991, Russia.
| | | |
Collapse
|
18
|
Affiliation(s)
- Ben M. Dunn
- University of Florida College of Medicine Gainesville Florida
| |
Collapse
|
19
|
Bateman RL, Bhanumoorthy P, Witte JF, McClard RW, Grompe M, Timm DE. Mechanistic inferences from the crystal structure of fumarylacetoacetate hydrolase with a bound phosphorus-based inhibitor. J Biol Chem 2001; 276:15284-91. [PMID: 11154690 DOI: 10.1074/jbc.m007621200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate to yield fumarate and acetoacetate as the final step of Phe and Tyr degradation. This unusual reaction is an essential human metabolic function, with loss of FAH activity causing the fatal metabolic disease hereditary tyrosinemia type I (HT1). An enzymatic mechanism involving a catalytic metal ion, a Glu/His catalytic dyad, and a charged oxyanion hole was previously proposed based on recently determined FAH crystal structures. Here we report the development and characterization of an FAH inhibitor, 4-(hydroxymethylphosphinoyl)-3-oxo-butanoic acid (HMPOBA), that competes with the physiological substrate with a K(i) of 85 microM. The crystal structure of FAH complexed with HMPOBA refined at 1.3-A resolution reveals the molecular basis for the competitive inhibition, supports the proposed formation of a tetrahedral alkoxy transition state intermediate during the FAH catalyzed reaction, and reveals a Mg(2+) bound in the enzyme's active site. The analysis of FAH structures corresponding to different catalytic states reveals significant active site side-chain motions that may also be related to catalytic function. Thus, these results advance the understanding of an essential catabolic reaction associated with a fatal metabolic disease and provide insight into the structure-based development of FAH inhibitors.
Collapse
Affiliation(s)
- R L Bateman
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, and the Department of Chemistry, Reed College, Portland, Oregon, USA
| | | | | | | | | | | |
Collapse
|
20
|
Katz BA, Elrod K, Luong C, Rice MJ, Mackman RL, Sprengeler PA, Spencer J, Hataye J, Janc J, Link J, Litvak J, Rai R, Rice K, Sideris S, Verner E, Young W. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. J Mol Biol 2001; 307:1451-86. [PMID: 11292354 DOI: 10.1006/jmbi.2001.4516] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a new serine protease inhibition motif in which binding is mediated by a cluster of very short hydrogen bonds (<2.3 A) at the active site. This protease-inhibitor binding paradigm is observed at high resolution in a large set of crystal structures of trypsin, thrombin, and urokinase-type plasminogen activator (uPA) bound with a series of small molecule inhibitors (2-(2-phenol)indoles and 2-(2-phenol)benzimidazoles). In each complex there are eight enzyme-inhibitor or enzyme-water-inhibitor hydrogen bonds at the active site, three of which are very short. These short hydrogen bonds connect a triangle of oxygen atoms comprising O(gamma)(Ser195), a water molecule co-bound in the oxyanion hole (H(2)O(oxy)), and the phenolate oxygen atom of the inhibitor (O6'). Two of the other hydrogen bonds between the inhibitor and active site of the trypsin and uPA complexes become short in the thrombin counterparts, extending the three-centered short hydrogen-bonding array into a tetrahedral array of atoms (three oxygen and one nitrogen) involved in short hydrogen bonds. In the uPA complexes, the extensive hydrogen-bonding interactions at the active site prevent the inhibitor S1 amidine from forming direct hydrogen bonds with Asp189 because the S1 site is deeper in uPA than in trypsin or thrombin. Ionization equilibria at the active site associated with inhibitor binding are probed through determination and comparison of structures over a wide range of pH (3.5 to 11.4) of thrombin complexes and of trypsin complexes in three different crystal forms. The high-pH trypsin-inhibitor structures suggest that His57 is protonated at pH values as high as 9.5. The pH-dependent inhibition of trypsin, thrombin, uPA and factor Xa by 2-(2-phenol)benzimidazole analogs in which the pK(a) of the phenol group is modulated is shown to be consistent with a binding process involving ionization of both the inhibitor and the enzyme. These data further suggest that the pK(a) of His57 of each protease in the unbound state in solution is about the same, approximately 6.8. By comparing inhibition constants (K(i) values), inhibitor solubilities, inhibitor conformational energies and corresponding structures of short and normal hydrogen bond-mediated complexes, we have estimated the contribution of the short hydrogen bond networks to inhibitor affinity ( approximately 1.7 kcal/mol). The structures and K(i) values associated with the short hydrogen-bonding motif are compared with those corresponding to an alternate, Zn(2+)-mediated inhibition motif at the active site. Structural differences among apo-enzymes, enzyme-inhibitor and enzyme-inhibitor-Zn(2+) complexes are discussed in the context of affinity determinants, selectivity development, and structure-based inhibitor design.
Collapse
Affiliation(s)
- B A Katz
- Axys Pharmaceuticals Corporation, 385 Oyster Point Boulevard, Suite 3, South San Francisco, CA, 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bateman KS, Huang K, Anderson S, Lu W, Qasim MA, Laskowski M, James MN. Contribution of peptide bonds to inhibitor-protease binding: crystal structures of the turkey ovomucoid third domain backbone variants OMTKY3-Pro18I and OMTKY3-psi[COO]-Leu18I in complex with Streptomyces griseus proteinase B (SGPB) and the structure of the free inhibitor, OMTKY-3-psi[CH2NH2+]-Asp19I. J Mol Biol 2001; 305:839-49. [PMID: 11162096 DOI: 10.1006/jmbi.2000.4343] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-ray crystallography has been used to determine the 3D structures of two complexes between Streptomyces griseus proteinase B (SGPB), a bacterial serine proteinase, and backbone variants of turkey ovomucoid third domain (OMTKY3). The natural P1 residue (Leu18I) has been substituted by a proline residue (OMTKY3-Pro18I) and in the second variant, the peptide bond between Thr17I and Leu18I was replaced by an ester bond (OMTKY3-psi[COO]-Leu18I). Both variants lack the P1 NH group that donates a bifurcated hydrogen bond to the carbonyl O of Ser214 and O(gamma) of the catalytic Ser195, one of the common interactions between serine proteinases and their canonical inhibitors. The SGPB:OMTKY3-Pro18I complex has many structural differences in the vicinity of the S1 pocket when compared with the previously determined structure of SGPB:OMTKY3-Leu18I. The result is a huge difference in the DeltaG degrees of binding (8.3 kcal/mol), only part of which can be attributed to the missing hydrogen bond. In contrast, very little structural difference exists between the complexes of SGPB:OMTKY3-psi[COO]-Leu18I and SGPB:OMTKY3-Leu18I, aside from an ester O replacing the P1 NH group. Therefore, the difference in DeltaG degrees, 1.5 kcal/mol as calculated from the measured equilibrium association constants, can be attributed to the contribution of the P1 NH hydrogen bond toward binding. A crystal structure of OMTKY3 having a reduced peptide bond between P1 Leu18I and P'1 Asp19I, (OMTKY3-psi[CH2NH2+]-Asp19I) has also been determined by X-ray crystallography. This variant has very weak association equilibrium constants with SGPB and with chymotrypsin. The structure of the free inhibitor suggests that the reduced peptide bond has not introduced any major structural changes in the inhibitor. Therefore, its poor ability to inhibit serine proteinases is likely due to the disruptions of the canonical interactions at the oxyanion hole.
Collapse
Affiliation(s)
- K S Bateman
- Medical Research Council of Canada Group in Protein Structure and Function Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Fenesan I, Popescu R, Scozzafava A, Crucin V, Mateiciuc E, Bauer R, Ilies MA, Supuran CT. Carbonic anhydrase inhibitors; phosphoryl-sulfonamides--a new class of high affinity inhibitors of isozymes I and II. JOURNAL OF ENZYME INHIBITION 2000; 15:297-310. [PMID: 10811034 DOI: 10.3109/14756360009040690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A series of phosphorylated aromatic/heterocyclic sulfonamides with the general formula ArSO2NHPO3H2 have been prepared by condensing ArSO2NH2 with phosphorus pentachloride, followed by controlled hydrolysis in the presence of formic acid. The new derivatives generally act as stronger inhibitors of two carbonic anhydrase (CA) isozymes, CA I and CA II, as compared to the parent unsubstituted sulfonamides from which they were obtained. The inhibition mechanism by this new class of CA inhibitors, as well as structure activity correlations for the series of investigated derivatives, are also discussed.
Collapse
Affiliation(s)
- I Fenesan
- Laboratory of Element-Organic Compounds, Institute of Chemistry Raluca Ripan Cluj Napoca, Roumania
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.
Collapse
Affiliation(s)
- R Najmanovich
- Plant Sciences Department, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
24
|
Lozano JM, Espejo F, Diaz D, Salazar LM, Rodriguez J, Pinzón C, Calvo JC, Guzmán F, Patarroyo ME. Reduced amide pseudopeptide analogues of a malaria peptide possess secondary structural elements responsible for induction of functional antibodies which react with native proteins expressed in Plasmodium falciparum erythrocyte stages. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:457-69. [PMID: 9924990 DOI: 10.1111/j.1399-3011.1998.tb01250.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A psi[CH2NH] isoster bond was introduced by replacing one peptide bond at a time within the 1513 malaria peptide KEKMV motif to obtain a set of five pseudopeptides. The motif belongs to a Plasmodium falciparum malarial peptide coded 1513, derived from the MSP-1 protein. This high-binding motif included in the 1513 peptide is involved in the attachment of the malarial parasite to human erythrocytes. The novel malaria 1513 psi[CH2NH] surrogates were analyzed using RP-HPLC and MALDI-TOF mass spectrometry techniques. Nuclear magnetic resonance experiments allowed definition of the five pseudopeptide analogues' secondary structural features. Such structures are present in only a very few molecules in the 1513 parent peptide. A molecular model demonstrating the solution of the three-dimensional structure of the 1 513 peptide Pse-437 analogue was constructed on the basis of 1H-NMR spectral parameters. Monoclonal antibodies were generated to the five 1513 malaria peptide pseudopeptide analogues. These antibodies not only recognize the native MSP-1 (195 kDa) and its 83 kDa and 42 kDa proteolytic processing proteins but also different SPf(66)n malaria vaccine batches containing the native sequence. In addition, the mAbs were able to modify the kinetics of Plasmodium falciparum parasites' intraerythrocytic development and their ability to invade new RBCs. The presented evidence suggests that peptide bond-modified peptides could reproduce a transient state in 1513's native sequence and represent useful candidates in the development of a second generation of effective malarial vaccines.
Collapse
Affiliation(s)
- J M Lozano
- Instituto de Inmunología Hospital San Juan de Dios, Universidad Nacional de Colombia, Bogotá.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Smith WW, Bartlett PA. Macrocyclic Inhibitors of Penicillopepsin. 3. Design, Synthesis, and Evaluation of an Inhibitor Bridged between P2 and P1‘. J Am Chem Soc 1998. [DOI: 10.1021/ja973713z] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Whitney W. Smith
- Contribution from the Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Paul A. Bartlett
- Contribution from the Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
26
|
Meyer JH, Bartlett PA. Macrocyclic Inhibitors of Penicillopepsin. 1. Design, Synthesis, and Evaluation of an Inhibitor Bridged between P1 and P3. J Am Chem Soc 1998. [DOI: 10.1021/ja973715j] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Hoyt Meyer
- Contribution from the Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Paul A. Bartlett
- Contribution from the Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
27
|
Fraser ME, Meyer JH, Bartlett PA, James MN. Overcoming the unfavourable entropic contribution of ligand binding with a macrocyclic inhibitor bound to penicillopepsin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:355-9. [PMID: 9561242 DOI: 10.1007/978-1-4615-5373-1_50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M E Fraser
- MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
28
|
Abstract
Hydrogen bonds are a key feature of chemical structure and reactivity. Recently there has been much interest in a special class of hydrogen bonds called "strong" or "low-barrier" and characterized by great strength, short distances, a low or vanishing barrier to hydrogen transfer, and distinctive features in the NMR spectrum. Although the energy of an ordinary hydrogen bond is ca 5 kcal mol-1, the strength of these hydrogen bonds may be > or = 10 kcal mol-1. The properties of these hydrogen bonds have been investigated by many experimental techniques, as well as by calculation and by correlations among those properties. Although it has been proposed that strong, short, low-barrier hydrogen bonds are important in enzymatic reactions, it is concluded that the evidence for them in small molecules and in biomolecules is inconclusive.
Collapse
Affiliation(s)
- C L Perrin
- Department of Chemistry, University of California San Diego, La Jolla 92093-0358, USA.
| | | |
Collapse
|
29
|
Charbonnier JB, Gigant B, Golinelli-Pimpaneau B, Knossow M. Similarities of hydrolytic antibodies revealed by their X-ray structures: a review. Biochimie 1997; 79:653-60. [PMID: 9479447 DOI: 10.1016/s0300-9084(97)83498-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous antibodies have been programmed to catalyse the hydrolysis of esters as well as other acyl transfer reactions. They were raised against stable analogues that model the structure of the tetrahedral transition states of these reactions. The three-dimensional structures of four hydrolytic antibodies complexed to their respective phosphonate transition state analogues (TSAs) reveal a similar orientation of hapten relative to the antibody. Analysis of the four combining sites suggests that residues binding the phosphonate TSA stabilise the oxyanion intermediate of the reaction and play a preponderant role in catalysis. Comparison of catalytic antibodies selected from the same hybridoma fusion indicates a high similarity of the motifs that catalyse the hydrolysis of a given substrate.
Collapse
Affiliation(s)
- J B Charbonnier
- Laboratorie d'Enzymologie et Biochimie Structurales, UPR 9063 CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
30
|
Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 1997; 11:425-45. [PMID: 9385547 DOI: 10.1023/a:1007996124545] [Citation(s) in RCA: 1298] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes the development of a simple empirical scoring function designed to estimate the free energy of binding for a protein-ligand complex when the 3D structure of the complex is known or can be approximated. The function uses simple contact terms to estimate lipophilic and metal-ligand binding contributions, a simple explicit form for hydrogen bonds and a term which penalises flexibility. The coefficients of each term are obtained using a regression based on 82 ligand-receptor complexes for which the binding affinity is known. The function reproduces the binding affinity of the complexes with a cross-validated error of 8.68 kJ/mol. Tests on internal consistency indicate that the coefficients obtained are stable to changes in the composition of the training set. The function is also tested on two test sets containing a further 20 and 10 complexes, respectively. The deficiencies of this type of function are discussed and it is compared to approaches by other workers.
Collapse
Affiliation(s)
- M D Eldridge
- Proteus Molecular Design Ltd., Macclesfield, Cheshire, U.K
| | | | | | | | | |
Collapse
|
31
|
Wang Z, Luecke H, Yao N, Quiocho FA. A low energy short hydrogen bond in very high resolution structures of protein receptor--phosphate complexes. NATURE STRUCTURAL BIOLOGY 1997; 4:519-22. [PMID: 9228942 DOI: 10.1038/nsb0797-519] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A very short hydrogen bond between an Asp and a phosphate is established in two high resolution structures (0.98 and 1.05 A). A mutant complex that changes the Asp to an Asn, which forms a normal hydrogen bond, has a similar free energy of binding to the wild type complex, suggesting that the contribution of the short hydrogen bond is not extraordinarily strong.
Collapse
|
32
|
Aguilar CF, Cronin NB, Badasso M, Dreyer T, Newman MP, Cooper JB, Hoover DJ, Wood SP, Johnson MS, Blundell TL. The three-dimensional structure at 2.4 A resolution of glycosylated proteinase A from the lysosome-like vacuole of Saccharomyces cerevisiae. J Mol Biol 1997; 267:899-915. [PMID: 9135120 DOI: 10.1006/jmbi.1996.0880] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The crystal structures of glycosylated native proteinase A, an aspartic proteinase found in the vacuole of Saccharomyces cerevisiae, and its complex with a difluorostatone-containing tripeptide have been determined by molecular replacement to 3.5 A and 2.4 A resolutions, respectively. Superposition of the bound and native forms gave an r.m.s. difference of 0.6 A largely reflecting the poor resolution of the native crystal structure. The secondary and tertiary structures are highly similar to those found in porcine pepsin and lysosomal cathepsin D; superposition of the structure of proteinase A bound to the difluorostatone inhibitor on those of pepsin and cathepsin D gave pairwise r.m.s. differences for C(alpha) atoms of 1.36 A and 0.88 A. Most differences occur in loop regions. Comparison of the structure of the proteinase A-difluorostatone complex with that of endothiapepsin bound with the same inhibitor shows that the conformation and hydrogen bond interactions of the inhibitor in the active site are very similar, even though the enzymes have only 27% sequence identity. Electron density for the crystal structure of the proteinase A complex reveals five residues of the oligosaccharide structure attached to Asn67: Man-(1 --> 2)-alpha-Man-(1 --> 3)-beta-Man-(1 --> 4)-beta-GlcNAc-(1 --> 4)-beta-GlcNAc-Asn-67. The first three residues of the oligosaccharide cover the same region of the protein surface as those of the oligosaccharide attached to the equivalent position in cathepsin D. The second carbohydrate attachment site is disordered beyond the first carbohydrate residue in both enzymes.
Collapse
Affiliation(s)
- C F Aguilar
- Department of Crystallography, Birkbeck College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Miller GP, Posner BA, Benkovic SJ. Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach. Bioorg Med Chem 1997; 5:581-90. [PMID: 9113336 DOI: 10.1016/s0968-0896(96)00271-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We employed a chain-shuffling technique to determine if the light chain of the catalytic antibody, 43C9, provides the best partner for the 43C9 heavy chain. Previously, we reported construction and screening of a 43C9 HC CROSS library, where the 43C9 heavy-chain gene was crossed with a library of light-chain genes in a lambda bacteriophage system. The library contained a high frequency of reconstituted antibodies recognizing the transition-state analogue. Here, we report the isolation and characterization of four of these clones. Recovered light-chain proteins share 92-96% sequence identity to the 43C9 light-chain protein. Somatic mutations of these light chains occur randomly at positions distant from the active site. Residues required for binding and catalysis were conserved. Mutations affected the topology of the binding site. Nevertheless, catalysis was not affected. Isolation of these light chains suggests the best partner for the 43C9 heavy chain is the original light chain. These clones attempt to broaden a class of 43C9-like antibodies, where the catalytic residues, His91 and Arg96, have been reproducibly selected. Similar catalytic properties between the 43C9-like antibodies suggests binding has been optimized, thus further maturation of the light chain would not lead to a better catalyst. To improve catalysis, other approaches must be considered.
Collapse
Affiliation(s)
- G P Miller
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
34
|
Abstract
A method is described to dock a ligand into a binding site in a protein on the basis of the complementarity of the intermolecular atomic contacts. Docking is performed by maximization of a complementarity function that is dependent on atomic contact surface area and the chemical properties of the contacting atoms. The generality and simplicity of the complementarity function ensure that a wide range of chemical structures can be handled. The ligand and the protein are treated as rigid bodies, but displacement of a small number of residues lining the ligand binding site can be taken into account. The method can assist in the design of improved ligands by indicating what changes in complementarity may occur as a result of the substitution of an atom in the ligand. The capabilities of the method are demonstrated by application to 14 protein-ligand complexes of known crystal structure.
Collapse
Affiliation(s)
- V Sobolev
- Department of Plant Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
35
|
Andreeva NS, Bochkarev A, Pechik I. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 362:19-32. [PMID: 8540318 DOI: 10.1007/978-1-4615-1871-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N S Andreeva
- V. Enhelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
36
|
Mosimann SC, Ardelt W, James MN. Refined 1.7 A X-ray crystallographic structure of P-30 protein, an amphibian ribonuclease with anti-tumor activity. J Mol Biol 1994; 236:1141-53. [PMID: 8120892 DOI: 10.1016/0022-2836(94)90017-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The X-ray crystallographic structure of P-30 protein (Onconase) has been solved by multiple isomorphous replacement and the structure has been refined at 1.7 A resolution to a conventional R-factor of 0.178. The molecular model comprises all 826 non-hydrogen protein atoms, 96 solvent molecules and a sulfate anion that is bound at the active site. The molecular structure is similar to that of ribonuclease A. The active site cleft is located at the junction of two three-stranded beta-sheets and the N-terminal helix. A sulfate anion is non-covalently bound by Lys9, His10, His97, Phe98 and an intermolecular contact involving Lys55' from a neighboring molecule. The N-terminal pyroglutamyl (Pyr) residue is part of the active site and its O epsilon 1 atom forms a hydrogen bond with the Lys9 N zeta. The previously constructed comparative molecular model of P-30 based on ribonuclease A correctly predicted the overall fold of P-30 and the conformation of its active site residues. The model failed to predict the conformation of Pyr1 and the conformation of the two loops following helix alpha 3 and strand beta 3.
Collapse
Affiliation(s)
- S C Mosimann
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
37
|
Meek TD, Rodriguez EJ, Angeles TS. Use of steady state kinetic methods to elucidate the kinetic and chemical mechanisms of retroviral proteases. Methods Enzymol 1994; 241:127-56. [PMID: 7854175 DOI: 10.1016/0076-6879(94)41063-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite the current plethora of structural data of HIV-1 protease and the availability of potent inhibitors, whose structures are based in part on the presumed mechanism of action of this enzyme, our actual understanding of its chemical mechanism has been until now based largely on the precedents of the mammalian and fungal aspartic proteases and static three-dimensional data. The available steady state kinetic data of the protease, as reviewed here, constitute a first step in a detailed description of the mechanism of the enzyme to complement the structural data.
Collapse
Affiliation(s)
- T D Meek
- Department of Cardiovascular Biochemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08540
| | | | | |
Collapse
|
38
|
Rodriguez EJ, Angeles TS, Meek TD. Use of nitrogen-15 kinetic isotope effects to elucidate details of the chemical mechanism of human immunodeficiency virus 1 protease. Biochemistry 1993; 32:12380-5. [PMID: 8241126 DOI: 10.1021/bi00097a015] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used 15N kinetic isotope effects of the HIV-1 protease-catalyzed peptidolysis of Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 to characterize the chemical mechanism of this enzyme. In addition, the multiple isotope effects have been determined by measuring the 15N kinetic isotope effects in both H2O and D2O. The isotope effects, measured on values of V/K, were determined by the incorporation of a radiolabel (tritium and 14C in peptides bearing the heavy and light isotopes, respectively) at a position remote from the isotopically labeled scissile peptide bond, such that the isotope effect was determined by measurement of the change in the 14C/3H ratio in recovered substrates at various fractions of reaction. At pH = 6.0 (37 degrees C), the nitrogen isotope effects were slightly, but significantly, inverse in both solvents: 15(V/K)H2O = 0.995 +/- 0.002, and 15(V/K)D2O = 0.992 +/- 0.003. The observation of an inverse nitrogen kinetic isotope effect implies that bonding to the nitrogen atom is becoming stiffened in a reaction transition state, and since this inverse isotope effect is enhanced in D2O, this isotope effect likely arises from protonation of the proline nitrogen atom.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E J Rodriguez
- Department of Pharmaceutical Technologies, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406
| | | | | |
Collapse
|
39
|
Affiliation(s)
- S S Abdel-Meguid
- Department of Macromolecular Sciences, SmithKline Beecham, King of Prussia, Pennsylvania 19406
| |
Collapse
|
40
|
Ciarkowski J, Oŀdziej S. AMI and PM3 study of a low molecular weight structural mimic of hydrogen exchange within the catalytic center of aspartic proteases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 1993. [DOI: 10.1007/bf00185782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|