1
|
Herceg Z. Epigenetic Mechanisms as an Interface Between the Environment and Genome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:3-15. [PMID: 27343085 DOI: 10.1007/978-1-4899-7678-9_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in epigenetics have had tremendous impact on our thinking and understanding of biological phenomena and the impact of environmental stressors on complex diseases, notably cancer. Environmental and lifestyle factors are thought to be implicated in the development of a wide range of human cancers by eliciting epigenetic changes, however, the underlying mechanisms remain poorly understood. Epigenetic mechanisms can be viewed as an interface between the genome and environmental influence, therefore aberrant epigenetic events associated with environmental stressors and factors in the cell microenvironment are likely to play an important role in the onset and progression of different human malignancies. At the cellular level, aberrant epigenetic events influence critical cellular events (such as gene expression, carcinogen detoxification, DNA repair, and cell cycle), which are further modulated by risk factor exposures and thus may define the severity/subtype of cancer. This review summarizes recent progress in our understanding of the epigenetic mechanisms through which environmental stressors and endogenous factors may promote tumor development and progression.
Collapse
Affiliation(s)
- Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France.
| |
Collapse
|
2
|
Vaissière T, Miller CA. DNA methylation: dynamic and stable regulation of memory. Biomol Concepts 2015; 2:459-67. [PMID: 25962048 DOI: 10.1515/bmc.2011.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/17/2011] [Indexed: 12/26/2022] Open
Abstract
Epigenetic mechanisms have emerged as a central process in learning and memory. Histone modifications and DNA methy-lation are epigenetic events that can mediate gene transcription. Interesting features of these epigenetic changes are their transient and long lasting potential. Recent advances in neuroscience suggest that DNA methylation is both dynamic and stable, mediating the formation and maintenance of memory. In this review, we will further illustrate the recent hypothesis that DNA methylation participates in the transcriptional regulation necessary for memory.
Collapse
|
3
|
Stier I, Kiss A. Cytosine-to-uracil deamination by SssI DNA methyltransferase. PLoS One 2013; 8:e79003. [PMID: 24205358 PMCID: PMC3804486 DOI: 10.1371/journal.pone.0079003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5'-amino-5'-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine ((m5)C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of (m5)C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung (+) host proficient in uracil excision repair.
Collapse
Affiliation(s)
- Ildikó Stier
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Antal Kiss
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
4
|
Natural history of eukaryotic DNA methylation systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:25-104. [PMID: 21507349 DOI: 10.1016/b978-0-12-387685-0.00002-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not a terminal DNA modification, with enzymes of the Tet/JBP family of 2-oxoglutarate- and iron-dependent dioxygenases further hydroxylating it to form 5-hydroxymethylcytosine (5hmC). These enzymes emerged first in bacteriophages and appear to have been transferred to eukaryotes on one or more occasions. Eukaryotes appear to have recruited three major types of DNA-binding domains (SRA/SAD, TAM/MBD, and CXXC) in discriminating DNA with methylated or unmethylated cytosines. Analysis of the domain architectures of these domains and the DNA methylases suggests that early in eukaryotic evolution they developed a close functional link with SET-domain methylases and Jumonji-related demethylases that operate on peptides in chromatin proteins. In several eukaryotes, other functional connections were elaborated in the form of various combinations between domains related to DNA methylation and those involved in ATP-dependent chromatin remodeling and RNAi. In certain eukaryotes, such as mammals and angiosperms, novel dependencies on the DNA methylation system emerged, which resulted in it affecting unexpected aspects of the biology of these organisms such as parent-offspring interactions. In genomic terms, this was reflected in the emergence of new proteins related to methylation, such as Stella. The well-developed methylation systems of certain heteroloboseans, stramenopiles, chlorophytes, and haptophyte indicate that these might be new model systems to explore the relevance of DNA modifications in eukaryotes.
Collapse
|
5
|
Epigenetics and chemical safety assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2010; 705:83-95. [DOI: 10.1016/j.mrrev.2010.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 01/01/2023]
|
6
|
Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L, Xu Z. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 2010; 17:4052-71. [PMID: 20939822 PMCID: PMC3003592 DOI: 10.2174/092986710793205372] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/20/2010] [Indexed: 12/29/2022]
Abstract
DNA methylation is an epigenetic event involved in a variety array of processes that may be the foundation of genetic phenomena and diseases. DNA methyltransferase is a key enzyme for cytosine methylation in DNA, and can be divided into two functional families (Dnmt1 and Dnmt3) in mammals. All mammalian DNA methyltransferases are encoded by their own single gene, and consisted of catalytic and regulatory regions (except Dnmt2). Via interactions between functional domains in the regulatory or catalytic regions and other adaptors or cofactors, DNA methyltransferases can be localized at selective areas (specific DNA/nucleotide sequence) and linked to specific chromosome status (euchromatin/heterochromatin, various histone modification status). With assistance from UHRF1 and Dnmt3L or other factors in Dnmt1 and Dnmt3a/Dnmt3b, mammalian DNA methyltransferases can be recruited, and then specifically bind to hemimethylated and unmethylated double-stranded DNA sequence to maintain and de novo setup patterns for DNA methylation. Complicated enzymatic steps catalyzed by DNA methyltransferases include methyl group transferred from cofactor Ado-Met to C5 position of the flipped-out cytosine in targeted DNA duplex. In the light of the fact that different DNA methyltransferases are divergent in both structures and functions, and use unique reprogrammed or distorted routines in development of diseases, design of new drugs targeting specific mammalian DNA methyltransferases or their adaptors in the control of key steps in either maintenance or de novo DNA methylation processes will contribute to individually treating diseases related to DNA methyltransferases.
Collapse
Affiliation(s)
- F. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Mao
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - Y. Ding
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Rui
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Wu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - A. Shi
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - H. Zhang
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Zhang
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| | - Z. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| |
Collapse
|
7
|
Mazin AL. Suicidal function of DNA methylation in age-related genome disintegration. Ageing Res Rev 2009; 8:314-27. [PMID: 19464391 DOI: 10.1016/j.arr.2009.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
This article is dedicated to the 60th anniversary of 5-methylcytosine discovery in DNA. Cytosine methylation can affect genetic and epigenetic processes, works as a part of the genome-defense system and has mutagenic activity; however, the biological functions of this enzymatic modification are not well understood. This review will put forward the hypothesis that the host-defense role of DNA methylation in silencing and mutational destroying of retroviruses and other intragenomic parasites was extended during evolution to most host genes that have to be inactivated in differentiated somatic cells, where it acquired a new function in age-related self-destruction of the genome. The proposed model considers DNA methylation as the generator of 5mC>T transitions that induce 40-70% of all spontaneous somatic mutations of the multiple classes at CpG and CpNpG sites and flanking nucleotides in the p53, FIX, hprt, gpt human genes and some transgenes. The accumulation of 5mC-dependent mutations explains: global changes in the structure of the vertebrate genome throughout evolution; the loss of most 5mC from the DNA of various species over their lifespan and the Hayflick limit of normal cells; the polymorphism of methylation sites, including asymmetric mCpNpN sites; cyclical changes of methylation and demethylation in genes. The suicidal function of methylation may be a special genetic mechanism for increasing DNA damage and the programmed genome disintegration responsible for cell apoptosis and organism aging and death.
Collapse
|
8
|
Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008; 452:45-50. [PMID: 18322525 DOI: 10.1038/nature06544] [Citation(s) in RCA: 646] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/12/2007] [Indexed: 12/12/2022]
Abstract
Processes that regulate gene transcription are directly under the influence of the genome organization. The epigenome contains additional information that is not brought by DNA sequence, and generates spatial and functional constraints that complement genetic instructions. DNA methylation on CpGs constitutes an epigenetic mark generally correlated with transcriptionally silent condensed chromatin. Replication of methylation patterns by DNA methyltransferases maintains genome stability through cell division. Here we present evidence of an unanticipated dynamic role for DNA methylation in gene regulation in human cells. Periodic, strand-specific methylation/demethylation occurs during transcriptional cycling of the pS2/TFF1 gene promoter on activation by oestrogens. DNA methyltransferases exhibit dual actions during these cycles, being involved in CpG methylation and active demethylation of 5mCpGs through deamination. Inhibition of this process precludes demethylation of the pS2 gene promoter and its subsequent transcriptional activation. Cyclical changes in the methylation status of promoter CpGs may thus represent a critical event in transcriptional achievement.
Collapse
|
9
|
Carpenter M, Divvela P, Pingoud V, Bujnicki J, Bhagwat AS. Sequence-dependent enhancement of hydrolytic deamination of cytosines in DNA by the restriction enzyme PspGI. Nucleic Acids Res 2006; 34:3762-70. [PMID: 16893959 PMCID: PMC1557792 DOI: 10.1093/nar/gkl545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrolytic deamination of cytosines in DNA creates uracil and, if unrepaired, these lesions result in C to T mutations. We have suggested previously that a possible way in which cells may prevent or reduce this chemical reaction is through the binding of proteins to DNA. We use a genetic reversion assay to show that a restriction enzyme, PspGI, protects cytosines within its cognate site, 5'-CCWGG (W is A or T), against deamination under conditions where no DNA cleavage can occur. It decreases the rate of cytosine deamination to uracil by 7-fold. However, the same protein dramatically increases the rate of deaminations within the site 5'-CCSGG (S is C or G) by approximately 15-fold. Furthermore, a similar increase in cytosine deaminations is also seen with a catalytically inactive mutant of the enzyme showing that endonucleolytic ability of the protein is dispensable for its mutagenic action. The sequences of the mutants generated in the presence of PspGI show that only one of the cytosines in CCSGG is predominantly converted to thymine. Our results are consistent with PspGI 'sensitizing' the cytosine in the central base pair in CCSGG for deamination. Remarkably, PspGI sensitizes this base for damage despite its inability to form stable complexes at CCSGG sites. These results can be explained if the enzyme has a transient interaction with this sequence during which it flips the central cytosine out of the helix. This prediction was validated by modeling the structure of PspGI-DNA complex based on the structure of the related enzyme Ecl18kI which is known to cause base-flipping.
Collapse
Affiliation(s)
| | | | - Vera Pingoud
- Institute of Biochemistry, Justus-Liebig-UniversityHeinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Janusz Bujnicki
- International Institute of Molecular and Cell BiologyTrojdena 4, PL-02-109 Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityUmultowska 89, PL-61-614 Poznan, Poland
| | - Ashok S. Bhagwat
- To whom correspondence should be addressed. Tel: +1 313 577 2547; Fax: +1 313 577 8822;
| |
Collapse
|
10
|
Glaser R, Wu H, von Saint Paul F. Chemical carcinogens in non-enzymatic cytosine deamination: 3-isocyanatoacrylonitrile. J Mol Model 2006; 12:731-7. [PMID: 16411080 PMCID: PMC2441498 DOI: 10.1007/s00894-005-0048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 09/29/2005] [Indexed: 10/27/2022]
Abstract
Uracil has long been known as the main product of nitrosative cytosine deamination in aqueous solution. Recent mechanistic studies of cytosinediazonium ion suggest that the cation formed by its dediazoniation can ring-open to N-protonated (Z,s-cis)-3-isocyanatoacrylonitrile 7. Stereochemical preferences are discussed of the 3-isocyanatoacrylonitriles (Z,s-cis)-10, (E,s-cis)-11, (Z,s-trans)-12, and (E,s-trans)-13. The electronic structures of 7 and 10-13 have been analyzed and a rationale is provided for the thermodynamic preference for (Z,s-cis)-10. It is shown that s-cis/s-trans-interconversion occurs via C-N rotation-inversion paths with barriers below 3 kcal mol(-1). The proton affinities of 3-isocyanatoacrylonitrile 10 and water are nearly identical and, thus, 3-isocyanatoacrylonitriles can and should be formed in aqueous media from 7 along with 3-aminoacrylonitriles 9. The results highlight the relevance of the chemistry of 3-isocyanatoacrylonitriles for the understanding of the chemical toxicology of nitrosation of the nucleobase cytosine.
Collapse
Affiliation(s)
- Rainer Glaser
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
11
|
Rayat S, Qian M, Glaser R. Nitrosative cytosine deamination. An exploration of the chemistry emanating from deamination with pyrimidine ring-opening. Chem Res Toxicol 2005; 18:1211-8. [PMID: 16097794 PMCID: PMC2546522 DOI: 10.1021/tx050082a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A discussion of nitrosative deamination of cytosine 1 is presented that argues for the formation of 6 by diazotization of 1 to cytosinediazonium ion 2 and its electrostatic complex 3, dediazoniation to 4 <--> 5, and amide-bond cleavage to 6. The reaction channels available to 6 include hydrolytic deglycation to 3-isocyanatoacrylonitrile 7, water addition to carbamic acid 9 with the possibility for re-closure to uracil 13, water addition to carbamic acid 9, and decarboxylation to 3-aminoacrylonitrile 10. With a view to the instability of the carbamic acid 9, the carbamate models ethyl (Z)-2-cyanovinylcarbamate 14 and (Z)-2-cyano-1-tert-butylvinylcarbamate 20 were studied. Acid-catalyzed hydrolysis of 14 leads to 2-amino-carbonylphenylcarbamate 15, and its cyclization yields the benzo-fused uracil quinazoline-2,4-dione 16. In contrast to the aromatic system 14, acid-catalyzed cyclization cannot compete with oligomerization in the case of 20, and 5-tert-butyluracil 22 is accessible only with base-catalysis. It is shown that 23, the parent of 10, also easily polymerizes. The experimental results provide a rationale as to why 9, 10, and 12 would have escaped detection in in vitro studies: they would have oligomerized. In contrast to the in vitro experiments, the oligomerizations of 9, 10, or 12 clearly are not relevant in vivo because of low monomer concentrations. With the exclusion of recyclization and of oligomerization in vivo, attention thus needs to focus on (Z)-3-aminoacrylonitrile 10 as the most likely deamination product of cytosine aside from uracil.
Collapse
Affiliation(s)
| | | | - Rainer Glaser
- *To whom correspondence should be addressed. . Fax: (573) 882-2754
| |
Collapse
|
12
|
Maas R. Prereplicative Purine Methylation and Postreplicative Demethylation in Each DNA Duplication of the Escherichia coli Replication Cycle. J Biol Chem 2004; 279:51568-73. [PMID: 15448156 DOI: 10.1074/jbc.m407394200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli plasmid DNA activated for initiation of duplication is in a stable low linking number supercoiled conformation. Low linking number DNA is methylated at the internal purines of a frequent 5'-Pyr-Pyr-Pur-Pur tetramer with a 5'-Pyr-Pur-3' axis of symmetry and is cut at the axis of symmetry by pneumococcal restriction enzyme DpnI when methylated in both strands. Purine methylation is of adenine in one strand and guanine in the other. Methylation of one of the two purines is removed during the cell cycle, presumably before the reverse shift to the B-supercoiled conformation. The topological transition was reconstituted in vitro only with DNA unmethylated at purines. Methylation-restriction analyses coupled with the chemical properties of low-linking number DNA and B-DNA respectively, suggest that removal of guanine methylation is essential for the low-linking number to B-DNA transition and hence for the deactivation of replication. Demethylation of methylguanine could explain the presence in E. coli of the two-member inducible operon known as ada. Characteristics of ada suggest a cascade of chemical DNA modifications that reverse prereplicative guanine methylation. Guanine demethylation could provide a model for the pivotal role played by de novo methylation in replication and for the essential role of "repair" enzyme ExoIII in demethylation leading to the reversal of replicative DNA activation and other processes that affect DNA function.
Collapse
Affiliation(s)
- Renata Maas
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
13
|
Subach OM, Khoroshaev AV, Gerasimov DN, Baskunov VB, Shchyolkina AK, Gromova ES. 2-Pyrimidinone as a probe for studying the EcoRII DNA methyltransferase-substrate interaction. ACTA ACUST UNITED AC 2004; 271:2391-9. [PMID: 15182354 DOI: 10.1111/j.1432-1033.2004.04158.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
EcoRII DNA methyltransferase (M.EcoRII) recognizes the 5' em leader CC*T/AGG em leader 3' DNA sequence and catalyzes the transfer of the methyl group from S-adenosyl-l-methionine to the C5 position of the inner cytosine residue (C*). Here, we study the mechanism of inhibition of M.EcoRII by DNA containing 2-pyrimidinone, a cytosine analogue lacking an NH(2) group at the C4 position of the pyrimidine ring. Also, DNA containing 2-pyrimidinone was used for probing contacts of M.EcoRII with functional groups of pyrimidine bases of the recognition sequence. 2-Pyrimidinone was incorporated into the 5' em leader CCT/AGG em leader 3' sequence replacing the target and nontarget cytosine and central thymine residues. Study of the DNA stability using thermal denaturation of 2-pyrimidinone containing duplexes pointed to the influence of the bases adjacent to 2-pyrimidinone and to a greater destabilizing influence of 2-pyrimidinone substitution for thymine than that for cytosine. Binding of M.EcoRII to 2-pyrimidinone containing DNA and methylation of these DNA demonstrate that the amino group of the outer cytosine in the EcoRII recognition sequence is not involved in the DNA-M.EcoRII interaction. It is probable that there are contacts between the functional groups of the central thymine exposed in the major groove and M.EcoRII. 2-Pyrimidinone replacing the target cytosine in the EcoRII recognition sequence forms covalent adducts with M.EcoRII. In the absence of the cofactor S-adenosyl-l-methionine, proton transfer to the C5 position of 2-pyrimidinone occurs and in the presence of S-adenosyl-l-methionine, methyl transfer to the C5 position of 2-pyrimidinone occurs.
Collapse
|
14
|
Zhou L, Cheng X, Connolly B, Dickman M, Hurd P, Hornby D. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 2002; 321:591-9. [PMID: 12206775 PMCID: PMC2713825 DOI: 10.1016/s0022-2836(02)00676-9] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway, have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here, we describe the interaction between the C5 MTase from Haemophilus haemolyticus (M.HhaI) and an oligodeoxynucleotide duplex containing 2-H pyrimidinone, an analogue often referred to as zebularine and known to give rise to high-affinity complexes with MTases. X-ray crystallography has demonstrated the formation of a covalent bond between M.HhaI and the 2-H pyrimidinone-containing oligodeoxynucleotide. This observation enables a comparison between the mechanisms of action of 2-H pyrimidinone with other mechanism-based inhibitors such as FdC. This novel complex provides a molecular explanation for the mechanism of action of the anti-cancer drug zebularine.
Collapse
Affiliation(s)
- L. Zhou
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - X. Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - B.A. Connolly
- Department of Biochemistry and Genetics, University of Newcastle, Newcastle-upon-Tyne NE2, 4HH, UK
| | - M.J. Dickman
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, P.O. Box 594, First Court, Western Bank, Sheffield, S10 2TN, UK
| | - P.J. Hurd
- Wellcome/CRC Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - D.P. Hornby
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, P.O. Box 594, First Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
15
|
Chan MF, van Amerongen R, Nijjar T, Cuppen E, Jones PA, Laird PW. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells. Mol Cell Biol 2001; 21:7587-600. [PMID: 11604495 PMCID: PMC99930 DOI: 10.1128/mcb.21.22.7587-7600.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by cancer type. The factors that influence the relative utilization of gene inactivation pathways are poorly understood. In this study, we describe a detailed quantitative analysis of the three major gene inactivation mechanisms for a model gene at two different genomic integration sites in mouse embryonic stem (ES) cells. In addition, we targeted the major DNA methyltransferase gene, Dnmt1, to investigate the relative contribution of DNA methylation to these various competing gene inactivation pathways. Our data show that gene loss is the predominant mode of inactivation of a herpes simplex virus thymidine kinase neomycin phosphotransferase reporter gene (HSV-TKNeo) at the two integration sites tested and that this event is significantly reduced in Dnmt1-deficient cells. Gene silencing by promoter methylation requires Dnmt1, suggesting that the expression of Dnmt3a and Dnmt3b alone in ES cells is insufficient to achieve effective gene silencing. We used a novel assay to show that missense mutation rates are also substantially reduced in Dnmt1-deficient cells. This is the first direct demonstration that DNA methylation affects point mutation rates in mammalian cells. Surprisingly, the fraction of CpG transition mutations was not reduced in Dnmt1-deficient cells. Finally, we show that methyl group-deficient growth conditions do not cause an increase in missense mutation rates in Dnmt1-proficient cells, as predicted by methyltransferase-mediated mutagenesis models. We conclude that Dnmt1 deficiency and the accompanying genomic DNA hypomethylation result in a reduction of three major pathways of gene inactivation in our model system.
Collapse
Affiliation(s)
- M F Chan
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089-9176, USA
| | | | | | | | | | | |
Collapse
|
16
|
Peracchi A. Enzyme catalysis: removing chemically 'essential' residues by site-directed mutagenesis. Trends Biochem Sci 2001; 26:497-503. [PMID: 11504626 DOI: 10.1016/s0968-0004(01)01911-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enzymatic catalysis relies on the action of the amino acid side chains arrayed in the enzyme active sites. Usually, only two or three 'essential' residues are directly involved in the bond making and breaking steps leading to product formation. For the past 20 years, enzymologists have been addressing the role of such residues by changing them into chemically inert side chains. Removal of an 'essential' group often does not abolish activity, but can significantly alter the catalytic mechanism. Such results underscore the sophistication of enzyme catalysis and the functional plasticity of enzyme active sites.
Collapse
Affiliation(s)
- A Peracchi
- Dept of Biochemistry and Molecular Biology, University of Parma, 43100, Parma, Italy.
| |
Collapse
|