1
|
The Multifaceted Gene 275 Embedded in the PKS-PTS Gene Cluster Was Involved in the Regulation of Arthrobotrisin Biosynthesis, TCA Cycle, and Septa Formation in Nematode-Trapping Fungus Arthrobotrys oligospora. J Fungi (Basel) 2022; 8:jof8121261. [PMID: 36547594 PMCID: PMC9780802 DOI: 10.3390/jof8121261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The predominant nematode-trapping fungus Arthrobotrys oligospora harbors a unique polyketide synthase-prenyltransferase (PKS-PTS) gene cluster AOL_s00215g responsible for the biosynthesis of sesquiterpenyl epoxy-cyclohexenoids (SECs) that are involved in the regulation of fungal growth, adhesive trap formation, antibacterial activity, and soil colonization. However, the function of one rare gene (AOL_s00215g275 (275)) embedded in the cluster has remained cryptic. Here, we constructed two mutants with the disruption of 275 and the overexpression of 275, respectively, and compared their fungal growth, morphology, resistance to chemical stress, nematicidal activity, transcriptomic and metabolic profiles, and infrastructures, together with binding affinity analysis. Both mutants displayed distinct differences in their TCA cycles, SEC biosynthesis, and endocytosis, combined with abnormal mitochondria, vacuoles, septa formation, and decreased nematicidal activity. Our results suggest that gene 275 might function as a separator and as an integrated gene with multiple potential functions related to three distinct genes encoding the retinoic acid induced-1, cortactin, and vacuolar iron transporter 1 proteins in this nematode-trapping fungus. Our unexpected findings provide insight into the intriguing organization and functions of a rare non-biosynthetic gene in a biosynthetic gene cluster.
Collapse
|
2
|
Comparative proteomic analysis of the brain and colon in three rat models of irritable bowel syndrome. Proteome Sci 2020; 18:1. [PMID: 32123521 PMCID: PMC7041085 DOI: 10.1186/s12953-020-0157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) has been gradually recognized as a disorder of the brain-gut interaction, but the molecular changes in the brain and colon that occur in disease development remain poorly understood. We employed proteomic analysis to identify differentially expressed proteins in both the brain and colon of three IBS models. Methods To explore the relevant protein abundance changes in the brain and colon, isobaric tags for relative and absolute quantitation (iTRAQ), liquid chromatography and tandem mass spectrometry (LC-MS) and Western blotting methods were used in three IBS models, including maternal separation (MS, group B), chronic wrap restraint stress (CWRS, group C) and a combination of MS and CWRS (group D). Results We identified 153, 280, and 239 proteins that were common and differentially expressed in the two tissue types of groups B, C and D, respectively; 43 differentially expressed proteins showed the same expression changes among the three groups, including 25 proteins upregulated in the colon and downregulated in the brain, 7 proteins downregulated in the colon and upregulated in the brain, and 3 proteins upregulated and 8 downregulated in both tissues. Gene ontology analysis showed that the differentially expressed proteins were mainly associated with cellular assembly and organization and cellular function and maintenance. Protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions Taken together, the data presented represent a comprehensive and quantitative proteomic analysis of the brain and colon in IBS models, providing new evidence of an abnormal brain-gut interaction in IBS. These data may be useful for further investigation of potential targets in the diagnosis and treatment of IBS.
Collapse
|
3
|
Koob AO, Shaked GM, Bender A, Bisquertt A, Rockenstein E, Masliah E. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson's disease. Brain Res 2014; 1591:102-10. [PMID: 25446004 DOI: 10.1016/j.brainres.2014.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022]
Abstract
Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson's disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson's disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson's disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson's disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory.
Collapse
Affiliation(s)
- Andrew O Koob
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States; Departments of Psychiatry, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States.
| | - Gideon M Shaked
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Andreas Bender
- Department of Neurology, University of Munich, Klinikum der Universität München-Großhadern, 81377 München, Germany
| | - Alejandro Bisquertt
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Edward Rockenstein
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Eliezer Masliah
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States; Departments of Pathology, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States.
| |
Collapse
|
4
|
Xie YY, Sun MM, Lou XF, Zhang C, Han F, Zhang BY, Wang P, Lu YM. Overexpression of PEP-19 Suppresses Angiotensin II–Induced Cardiomyocyte Hypertrophy. J Pharmacol Sci 2014; 125:274-82. [DOI: 10.1254/jphs.13208fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
5
|
Zhabotinsky AM, Camp RN, Epstein IR, Lisman JE. Role of the neurogranin concentrated in spines in the induction of long-term potentiation. J Neurosci 2006; 26:7337-47. [PMID: 16837580 PMCID: PMC6674191 DOI: 10.1523/jneurosci.0729-06.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Synaptic plasticity in CA1 hippocampal neurons depends on Ca2+ elevation and the resulting activation of calmodulin-dependent enzymes. Induction of long-term depression (LTD) depends on calcineurin, whereas long-term potentiation (LTP) depends on Ca2+/calmodulin-dependent protein kinase II (CaMKII). The concentration of calmodulin in neurons is considerably less than the total concentration of the apocalmodulin-binding proteins neurogranin and GAP-43, resulting in a low level of free calmodulin in the resting state. Neurogranin is highly concentrated in dendritic spines. To elucidate the role of neurogranin in synaptic plasticity, we constructed a computational model with emphasis on the interaction of calmodulin with neurogranin, calcineurin, and CaMKII. The model shows how the Ca2+ transients that occur during LTD or LTP induction affect calmodulin and how the resulting activation of calcineurin and CaMKII affects AMPA receptor-mediated transmission. In the model, knockout of neurogranin strongly diminishes the LTP induced by a single 100 Hz, 1 s tetanus and slightly enhances LTD, in accord with experimental data. Our simulations show that exchange of calmodulin between a spine and its parent dendrite is limited. Therefore, inducing LTP with a short tetanus requires calmodulin stored in spines in the form of rapidly dissociating calmodulin-neurogranin complexes.
Collapse
Affiliation(s)
- Anatol M Zhabotinsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | | | |
Collapse
|
6
|
Cortese MS, Baird JP, Uversky VN, Dunker AK. Uncovering the Unfoldome: Enriching Cell Extracts for Unstructured Proteins by Acid Treatment. J Proteome Res 2005; 4:1610-8. [PMID: 16212413 DOI: 10.1021/pr050119c] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method to enrich cell extracts in totally unfolded proteins was investigated. A literature search revealed that 14 of 29 proteins isolated by their failure to precipitate during perchloric acid (PCA) or trichloroacetic acid (TCA) treatment where also shown experimentally to be totally disordered. A near 100 000-fold reduction in yield was observed after 5% or 9% PCA treatment of total soluble E. coli protein. Despite this huge reduction, 158 and 142 spots were observed from the 5% and the 9% treated samples, respectively, on silver-stained 2-D SDS-PAGE gels loaded with 10 microg of protein. Treatment with 1% PCA was less selective with more visible spots and a greater than 3-fold higher yield. A substantial yield of unprecipitated protein was obtained after 3% TCA treatment, suggesting that the common use of TCA precipitation prior to 2-D gel analysis may result in loss of unstructured protein due to their failure to precipitate. Our preliminary analysis suggests that treating total protein extracts with 3-5% PCA and determining the identities of soluble proteins could be the starting point for uncovering unfoldomes (the complement of unstructured proteins in a given proteome). The 100 000-fold reduction in yield and concomitant reduction in number of proteins achieved by 5% PCA treatment produced a fraction suitable for analysis in its entirety using standard proteomic techniques. In this way, large numbers of totally unstructured proteins could be identified with minimal effort.
Collapse
Affiliation(s)
- Marc S Cortese
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
7
|
Mosevitsky MI. Nerve Ending “Signal” Proteins GAP‐43, MARCKS, and BASP1. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:245-325. [PMID: 16125549 DOI: 10.1016/s0074-7696(05)45007-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanisms of growth cone pathfinding in the course of neuronal net formation as well as mechanisms of learning and memory have been under intense investigation for the past 20 years, but many aspects of these phenomena remain unresolved and even mysterious. "Signal" proteins accumulated mainly in the axon endings (growth cones and the presynaptic area of synapses) participate in the main brain processes. These proteins are similar in several essential structural and functional properties. The most prominent similarities are N-terminal fatty acylation and the presence of an "effector domain" (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interactions. However, together with similarities, there are significant differences among the proteins, such as different conditions (Ca2+ contents) for calmodulin binding and different modes of interaction with the actin cytoskeleton. In light of these facts, we consider GAP-43, MARCKS, and BASP1 both separately and in conjunction. Special attention is devoted to a discussion of apparent inconsistencies in results and opinions of different authors concerning specific questions about the structure of proteins and their interactions.
Collapse
Affiliation(s)
- Mark I Mosevitsky
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina Leningrad District, Russian Federation
| |
Collapse
|
8
|
Mons N, Enderlin V, Jaffard R, Higueret P. Selective age-related changes in the PKC-sensitive, calmodulin-binding protein, neurogranin, in the mouse brain. J Neurochem 2001; 79:859-67. [PMID: 11723178 DOI: 10.1046/j.1471-4159.2001.00646.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain ageing is associated with a dysregulation of intracellular calcium (Ca(2+)) homeostasis which leads to deficits in Ca(2+)-dependent signalling pathways and altered neuronal functions. Given the crucial role of neurogranin/RC3 (Ng) in the post-synaptic regulation of Ca(2+) and calmodulin levels, age-dependent changes in the levels of Ng mRNA and protein expression were analysed in 3, 12, 24 and 31-month-old mouse brains. Ageing produced significant decreases in Ng mRNA expression in the dorsal hippocampal subfields, retrosplenial and primary motor cortices, whereas no reliable changes were seen in any other cortical regions examined. Western blot indicated that Ng protein expression was also down-regulated in the ageing mouse brain. Analysis of Ng immunoreactivity in both hippocampal CA1 and retrosplenial areas indicated that Ng protein in aged mice decreased predominantly in the dendritic segments of pyramidal neurones. These data suggest that age-related changes of post-synaptic Ng in selected brain areas, and particularly in hippocampus, may contribute to altered Ca(2+)/calmodulin-signalling pathways and to region-specific impairments of synaptic plasticity and cognitive decline.
Collapse
Affiliation(s)
- N Mons
- Laboratoire de Neurosciences Cognitives UMR CNRS 5106, Université de Bordeaux, Talence, France.
| | | | | | | |
Collapse
|
9
|
Slemmon JR, Feng B, Erhardt JA. Small proteins that modulate calmodulin-dependent signal transduction: effects of PEP-19, neuromodulin, and neurogranin on enzyme activation and cellular homeostasis. Mol Neurobiol 2000; 22:99-113. [PMID: 11414283 DOI: 10.1385/mn:22:1-3:099] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuromodulin (GAP-43), neurogranin (RC3), and PEP-19 are small acid-stable proteins that bind calcium-poor calmodulin through a loosely conserved IQ-motif. Even though these proteins have been known for many years, much about their function in cells is not understood. It has recently become appreciated that calmodulin activity in cells is tightly controlled and that pools of otherwise free calmodulin are sequestered so as to restrict its availability for activating calcium/calmodulin-dependent enzymes. Neuromodulin, neurogranin, and PEP-19 appear to be major participants in this type of regulation. One way in which they do this is by providing localized increases in the concentration of calmodulin in cells so that the maximal level of target activation is increased. Additionally, they can function as calmodulin antagonists by directly inhibiting the association of calcium/calmodulin with enzymes and other proteins. Although neuromodulin, neurogranin, and PEP-19 were early representatives of the small IQ-motif-containing protein family, newer examples have come to light that expand the number of cellular systems through which the IQ-peptide/calmodulin interaction could regulate biological processes including gene transcription. It is the purpose of this review to examine the behavior of neuromodulin, neurogranin, and PEP-19 in paradigms that include both in vitro and in situ systems in order to summarize possible biological consequences that are linked to the expression of this type of protein. The use of protein:protein interaction chromatography is also examined in the recovery of a new calmodulin-binding peptide, CAP-19 (ratMBF1). Consistent with earlier predictions, at least one function of small IQ-motif proteins appears to be that they lessen the extent to which calcium-calmodulin-dependent enzymes become or stay activated. It also appears that these polypeptides can function to selectively inhibit activation of intracellular targets by some agonists while simultaneously permitting activation of these same targets by other agonists. Much of the mechanism for how this occurs is unknown, and possible explanations are examined. One of the biological consequences for a cell that expresses a calmodulin-regulatory protein could be an increased resistance to calcium-mediated toxicity. This possibility is examined for cells expressing PEP-19 and both anatomical and cell-biological data is described. The study of IQ-motif-containing small proteins has stimulated considerable thought as to how calcium signaling is refined in neurons. Current evidence suggests that signaling through calmodulin is not a fulminating and homogenous process but a spatially limited and highly regulated one. Data from studies on neuromodulin, neurogranin, and PEP-19 suggest that they play an important role in establishing some of the processes by which this regulation is accomplished.
Collapse
Affiliation(s)
- J R Slemmon
- Department of Protein Biochemistry, SmithKline Beecham Pharmaceuticals Research and Development, King of Prussia, PA 19406, USA.
| | | | | |
Collapse
|
10
|
Abstract
The use of a method to follow changes in endogenous peptide production, as they occur in biological studies, is an excellent complement to other molecular techniques. It has the unique ability to characterize peptides that have been produced from protein precursors, and instrumentation is available that provides high resolution peptide separations that are quantitative, sensitive, and amenable to automation. All tissues express a large number of peptide species that can be visualized, or profiled, on chromatographic separations using reverse-phase high-performance liquid chromatography. This large number of peptides offers many potential molecules that can be used to identify biological mechanisms associated with experimental paradigms. Peptide analysis has been used successfully in many types of studies. In this review, we outline our experience in using peptides as biological markers and provide a description of the evolution of peptide profiling in our laboratories. Peptide expression has been used in studies ranging from how brain regions develop to identifying changes in disease processes including Alzheimer's disease and models of stroke. Some of the findings provided by these studies have been new pathways of peptide processing and the identification of accelerated proteolysis on proteins such as hemoglobin as a function of Alzheimer's disease and brain insult. Peptide profiling has also proven to be an excellent technique for studying many well-known nervous system proteins including calmodulin, PEP-19, myelin basic protein, cytoskeletal proteins, and others. It is the purpose of this review to describe our experience using the technique and to highlight improvements that have added to the power of the approach. Peptide analysis and the expansion in the instrumentation that can detect peptides will no doubt make these types of studies a powerful addition to our molecular armamentarium for conducting biological studies.
Collapse
Affiliation(s)
- J R Slemmon
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | | | |
Collapse
|
11
|
Abstract
PEP-19 is a 6 kDa polypeptide that is highly expressed in select populations of neurons that sometimes demonstrate resistance to degeneration. These include the granule cells of the hippocampus and the Purkinje cells of the cerebellum. Its only identified activity to date is that of binding apo-calmodulin. As a consequence, it has been demonstrated to act as an inhibitor of calmodulin-dependent neuronal nitric oxide synthase in vitro, although PEP-19 regulation of calmodulin-dependent enzymes has never been characterized in intact cells. The activation of the calmodulin-dependent enzyme calmodulin kinase II (CaM kinase II) was studied in PC12 cells that had been transfected so as to express physiological levels of PEP-19. The expression of PEP-19 yielded a stable phenotype that failed to activate CaM kinase II upon depolarization in high K(+). However, CaM kinase II could be fully activated when calcium influx was achieved with ATP. The effect of PEP-19 on CaM kinase II activation was not attributable to changes in the cellular expression of calmodulin. The cellular permeability of the transfected cells to calcium ions also appeared essentially unchanged. The results of this study demonstrated that PEP-19 can regulate CaM kinase II in situ in a manner that was dependent on the stimulus used to mobilize calcium. The selective nature of the regulation by PEP-19 suggests that its function is not to globally suppress calmodulin activity but rather change the manner in which different stimuli can access this activity.
Collapse
|
12
|
|
13
|
Morioka M, Hamada J, Ushio Y, Miyamoto E. Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol 1999; 58:1-30. [PMID: 10321795 DOI: 10.1016/s0301-0082(98)00073-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Calcineurin belongs to the family of Ca2+/calmodulin-dependent protein phosphatase, protein phosphatase 2B. Calcineurin is the only protein phosphatase which is regulated by a second messenger, Ca2+. Furthermore, calcineurin is highly localized in the central nervous system, especially in those neurons vulnerable to ischemic and traumatic insults. For these reasons, calcineurin is considered to play important roles in neuron-specific functions. Recently, on the basis of the finding that FK506 and cyclosporin A serve as calcineurin-specific inhibitors, this enzyme has become the subject of much study. It is clear that calcineurin is involved in many neuronal (or non-neuronal) functions such as neurotransmitter release, regulation of receptor functions, signal transduction systems, neurite outgrowth, gene expression and neuronal cell death. In this review, we describe the calcineurin functions, functions of the substrates, and the pathogenesis of traumatic and ischemic insults, and we discuss the potential role of calcineurin. There are many similarities in traumatic and ischemic pathogenesis of the brain in which the release of excessive glutamate is followed by an intracellular Ca2+ increase. However, the intracellular cascade which leads to neuronal cell death after the release of excess Ca2+ is unclear. Although calcineurin is thought to be a key toxic enzyme on the basis of studies using immunosuppressants (FK506 or cyclosporin A), many of the functions of the substrates for calcineurin protect against neuronal cell death. We concluded that calcineurin is a bi-directional enzyme for neuronal cell death, having protective and toxic actions, and the balance of the bi-directional effects may be important in ischemic and traumatic pathogenesis.
Collapse
Affiliation(s)
- M Morioka
- Department of Neurosurgery, Kumamoto University School of Medicine, Japan.
| | | | | | | |
Collapse
|
14
|
Prichard L, Deloulme JC, Storm DR. Interactions between neurogranin and calmodulin in vivo. J Biol Chem 1999; 274:7689-94. [PMID: 10075657 DOI: 10.1074/jbc.274.12.7689] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurogranin is a neural-specific, calmodulin (CaM)-binding protein that is phosphorylated by protein kinase C (PKC) within its IQ domain at serine 36. Since CaM binds to neurogranin through the IQ domain, PKC phosphorylation and CaM binding are mutually exclusive. Consequently, we hypothesize that neurogranin may function to concentrate CaM at specific sites in neurons and release free CaM in response to increased Ca2+ and PKC activation. However, it has not been established that neurogranin interacts with CaM in vivo. In this study, we examined this question using yeast two-hybrid methodology. We also searched for additional proteins that might interact with neurogranin by screening brain cDNA libraries. Our data illustrate that CaM binds to neurogranin in vivo and that CaM is the only neurogranin-interacting protein isolated from brain cDNA libraries. Single amino acid mutagenesis indicated that residues within the IQ domain are important for CaM binding to neurogranin in vivo. The Ile-33 --> Gln point mutant completely inhibited and Arg-38 --> Gln and Ser-36 --> Asp point mutants reduced neurogranin/CaM interactions. These data demonstrate that CaM is the major protein that interacts with neurogranin in vivo and support the hypothesis that phosphorylation of neurogranin at Ser-36 regulates its binding to CaM.
Collapse
Affiliation(s)
- L Prichard
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
15
|
Aarts LH, Schotman P, Verhaagen J, Schrama LH, Gispen WH. The role of the neural growth associated protein B-50/GAP-43 in morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:85-106. [PMID: 10079839 DOI: 10.1007/978-1-4615-4869-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L H Aarts
- Rudolf Magnus Institute for Neurosciences, Laboratory of Physiological Chemistry, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Smith ML, Johanson RA, Rogers KE, Coleman PD, Slemmon JR. Identification of a neuronal calmodulin-binding peptide, CAP-19, containing an IQ motif. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 62:12-24. [PMID: 9795107 DOI: 10.1016/s0169-328x(98)00207-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neurons produce polypeptides which can bind the calcium-poor or pre-activated form of calmodulin. It is expected that this class of peptide will serve an important role in maintaining cellular homeostasis since it would modulate calcium-dependent target regulation and redirect intracellular signaling. The lack of conserved sequence has made the identification of these peptides difficult, consequently leading us to exploit their property of binding calcium-poor calmodulin as a means of finding new species. A new peptide termed Calmodulin-Associated Peptide-19 (CAP-19) was purified and characterized. The protein-sequence information was employed in order to recover a cDNA clone from rat which included the entire reading frame for the peptide. Like its counterparts, neuromodulin (GAP-43), neurogranin (RC3) and PEP-19, it contains an IQ motif although the remainder of the peptide is quite different. Northern blot analysis of ribonucleic acid (RNA) from animals of differing ages indicated that the message appears at birth and then persists into adulthood. Antibodies to synthetic peptide were employed for localizing CAP-19. The results indicated that the peptide was localized to neurons in several brain regions. CAP-19 is similar to other calmodulin-binding proteins in that the domain spanning the IQ motif was demonstrated to participate in binding to calmodulin. Database searching showed CAP-19 to be homologous to the silkworm protein, multiprotein bridging factor 1 (MBF1). This homology suggests a potential new role for calmodulin-associated proteins in cellular homeostasis.
Collapse
Affiliation(s)
- M L Smith
- Department of Biochemistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
17
|
Utal AK, Stopka AL, Roy M, Coleman PD. PEP-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain, and is dramatically reduced in Huntington's disease. Neuroscience 1998; 86:1055-63. [PMID: 9697113 DOI: 10.1016/s0306-4522(98)00130-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have investigated the distribution of PEP-19, a neuron-specific protein, in the adult human brain. Immunohistochemistry for PEP-19 appears to define the basal ganglia and related structures. The strongest immunoreactivity is seen in the caudate nucleus and putamen, each of which showed both cell body and neuropil PEP-19 immunoreactivity. The substantia nigra and both segments of the globus pallidus showed PEP-19 immunoreactivity only in the neuropil. Cell bodies and dendrites of the thalamic nuclei ventralis lateralis and ventralis anterioralis were less strongly immunoreactive. Cerebellar Purkinje cells and their dendrites were immunoreactive, as were the presubiculum/subiculum regions and dentate gyrus granule cells of the hippocampus. The CA zones of the hippocampus were not immunoreactive. Preliminary data from immunoblotting experiments indicate that PEP-19 immunoreactivity is significantly reduced in cerebellum in Alzheimer's disease. While there were no apparent alterations of immunoreactivity in Down's syndrome or in Parkinson's disease, immunohistochemical analysis showed a massive loss of PEP-19 immunoreactivity in the caudate nucleus, putamen, globus pallidus and substantia nigra in Huntington's disease. These results show that PEP-19, a neuron-specific, calmodulin-binding protein, is distributed in specific areas of the adult human brain. The reduction in PEP-19 immunoreactivity in Alzheimer's disease and Huntington's disease suggests that PEP-19 may play a role in the pathophysiology of these diseases through a mechanism of calcium/calmodulin disregulation. This may be especially apparent in Huntington's disease where the distribution of the product of the abnormal gene, huntingtin, alone is not sufficient to explain the pattern of pathology. Abnormal huntingtin associates more strongly with calmodulin than does normal huntingtin [Bao et al. (1996) Proc. natn. Acad. Sci. U.S.A., 93, 5037-5042] suggesting a disruption of calmodulin-mediated intracellular mechanism(s), very likely involving PEP-19.
Collapse
Affiliation(s)
- A K Utal
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | |
Collapse
|
18
|
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627-86. [PMID: 9447616 DOI: 10.1016/s0301-0082(97)00043-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly conserved during evolution. The B-50 gene contains two promoters and three exons which specify functional domains of the protein. The first exon encoding the 1-10 sequence, harbors the palmitoylation site for attachment to the axolemma and the minimal domain for interaction with G0 protein. The second exon contains the "GAP module", including the calmodulin binding and the protein kinase C phosphorylation domain which is shared by the family of IQ proteins. Downstream sequences of the second and non-coding sequences in the third exon encode species variability. The third exon also contains a conserved domain for phosphorylation by casein kinase II. Functional interference experiments using antisense oligonucleotides or antibodies, have shown inhibition of neurite outgrowth and neurotransmitter release. Overexpression of B-50 in cells or transgenic mice results in excessive sprouting. The various interactions, specified by the structural domains, are thought to underlie the role of B-50 in synaptic plasticity, participating in membrane extension during neuritogenesis, in neurotransmitter release and long-term potentiation. Apparently, B-50 null-mutant mice do not display gross phenotypic changes of the nervous system, although the B-50 deletion affects neuronal pathfinding and reduces postnatal survival. The experimental evidence suggests that neuronal morphology and communication are critically modulated by, but not absolutely dependent on, (enhanced) B-50 presence.
Collapse
Affiliation(s)
- A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Gerendasy DD, Sutcliffe JG. RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 1997; 15:131-63. [PMID: 9396008 DOI: 10.1007/bf02740632] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review, we attempt to cover the descriptive, biochemical and molecular biological work that has contributed to our current knowledge about RC3/neurogranin function and its role in dendritic spine development, long-term potentiation, long-term depression, learning, and memory. Based on the data reviewed here, we propose that RC3, GAP-43, and the small cerebellum-enriched peptide, PEP-19, belong to a protein family that we have named the calpacitins. Membership in this family is based on sequence homology and, we believe, a common biochemical function. We propose a model wherein RC3 and GAP-43 regulate calmodulin availability in dendritic spines and axons, respectively, and calmodulin regulates their ability to amplify the mobilization of Ca2+ in response to metabotropic glutamate receptor stimulation. PEP-19 may serve a similar function in the cerebellum, although biochemical characterization of this molecule has lagged behind that of RC3 and GAP-43. We suggest that these molecules release CaM rapidly in response to large influxes of Ca2+ and slowly in response to small increases. This nonlinear response is analogous to the behavior of a capacitor, hence the name calpacitin. Since CaM regulates the ability of RC3 to amplify the effects of metabotropic glutamate receptor agonists, this activity must, necessarily, exhibit nonlinear kinetics as well. The capacitance of the system is regulated by phosphorylation by protein kinase C, which abrogates interactions between calmodulin and RC3 or GAP-43. We further propose that the ratio of phosphorylated to unphosphorylated RC3 determines the sliding LTP/LTD threshold in concept with Ca2+/ calmodulin-dependent kinase II. Finally, we suggest that the close association between RC3 and a subset of mitochondria serves to couple energy production with the synthetic events that accompany dendritic spine development and remodeling.
Collapse
Affiliation(s)
- D D Gerendasy
- Department of Molecular Biology, Scripps Research Institute
| | | |
Collapse
|
20
|
Verkade P, Schrama LH, Verkleij AJ, Gispen WH, Oestreicher AB. Ultrastructural co-localization of calmodulin and B-50/growth-associated protein-43 at the plasma membrane of proximal unmyelinated axon shafts studied in the model of the regenerating rat sciatic nerve. Neuroscience 1997; 79:1207-18. [PMID: 9219979 DOI: 10.1016/s0306-4522(97)00041-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calmodulin and de-phosphorylated B-50/growth-associated protein-43 (GAP-43) have been shown to bind in vitro in a molecular complex, but evidence for an in situ association in the nervous system does not exist. Previously, we have reported that, in the model of the regenerating rat sciatic nerve, the B-50/GAP-43 immunoreactivity is increased and concentrated at the axolemma of unmyelinated axons located proximal to the site of injury and axon outgrowth. To explore a putative function of B-50/GAP-43, namely, the capacity of binding calmodulin to the plasma membrane, we examined the ultrastructural distribution of calmodulin in the proximal unmyelinated axon shafts of this model, using double immunolabelling and detection by fluorescent or gold probes conjugated to second antibodies. Immunofluorescence showed that seven days post-sciatic nerve crush the calmodulin immunoreactivity, similar to B-50/GAP-43 immunoreactivity, was intense in unmyelinated axon shafts located proximal to the site of injury of the regenerating nerve. Ultrastructurally, calmodulin was located at the axolemma of these regenerating unmyelinated axon shafts and inside the axoplasm, where it was associated with vesicles and microtubules. The plasma membrane labelling (approximately 69%) was significantly higher than the axoplasmic labelling. Over 60% of the plasma membrane-associated calmodulin co-localized with B-50/GAP-43 in a non-random distribution. Since normally calmodulin is largely present in the cytoplasm, these data suggest that calmodulin has been concentrated at the plasma membrane of unmyelinated axons, most probably by B-50/GAP-43. If the concentrating effect is due to B-50/GAP-43, then there is a possibility that these proteins may be present as a molecular complex in situ. The physiological significance could be that this association regulates the local availability of both B-50/GAP-43 and calmodulin for other interactions.
Collapse
Affiliation(s)
- P Verkade
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Tan SE, Chen SS. The activation of calcium/calmodulin-dependent protein kinase II after glutamate or potassium stimulation in hippocampal slices. Brain Res Bull 1997; 43:269-73. [PMID: 9227836 DOI: 10.1016/s0361-9230(97)00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two forms of long-term potentiation (LTP), N-methyl-D-aspartate receptor (NMDAR) dependent and non-NMDAR dependent, have been reported in hippocampal CA1 and CA3, respectively. The present study examined the activation of CaM-kinase II (calcium/calmodulin-dependent protein kinase II) in CA1 and CA3 areas after glutamate or potassium stimulation. Rat hippocampal slices were preincubated with one of the drugs (EGTA, DL-APV, CNQX, AP3, nitrendipine, KN-62, staurosporin, and H-89) before they were stimulated with either glutamate/glycine (100 microM/1 microM) or KCl (60 mM). Hippocampal CA1 area and CA3 area were then dissected and CaM-kinase II activities were assayed in vitro. Glutamate and KCl stimulations enhanced the percentage of Ca(2+)-independent CaM-kinase II activity in CA1 area. This enhancement was suppressed by EGTA, DL-APV, CNQX, or KN-62, suggesting that the neuronal stimulation effect in CA1 area was mediating through NMDA receptors. Conversely, there was no significant enhancement of CaM-kinase II activity in the CA3 area after glutamate or KCl stimulation. Nevertheless, the percentage of calcium-independent CaM-kinase II activity in the CA3 area was suppressed by EGTA, nitrendipine, KN-62, staurosporin, or H-89, indicating that the activity of CaM-kinase II in the CA3 area was independent of NMDA receptor activation.
Collapse
Affiliation(s)
- S E Tan
- Department of Psychology, Kaohsiung Medical College, Taiwan, R.O.C
| | | |
Collapse
|
22
|
Sheu FS, Mahoney CW, Seki K, Huang KP. Nitric oxide modification of rat brain neurogranin affects its phosphorylation by protein kinase C and affinity for calmodulin. J Biol Chem 1996; 271:22407-13. [PMID: 8798403 DOI: 10.1074/jbc.271.37.22407] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neurogranin (Ng) is a prominent protein kinase C (PKC) substrate which binds calmodulin (CaM) in the absence of Ca2+. Rat brain Ng contains four cysteine residues that were readily oxidized by nitric oxide (NO) donors, 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEANO) and sodium nitroprusside, and by oxidants, H2O2 and o-iodosobenzoic acid. NO oxidation of Ng resulted in a conformational change detectable by increased electrophoretic mobility upon SDS-polyacrylamide gel electrophoresis. The NO-mediated mobility shift was reversed by treatment with dithiothreitol and was blocked by modification of Ng sulfhydryl groups with 4-vinylpyridine. Both the nonphosphorylated and PKC-phosphorylated Ng were susceptible to NO oxidation. Modification of Ng by DEANO was blocked by CaM in the absence of Ca2+; while in the presence of Ca2+, CaM did not protect Ng from oxidation by DEANO. CaM also failed to protect DEANO-mediated oxidation of PKC-phosphorylated Ng with or without Ca2+. Oxidation of Ng by the various oxidants apparently resulted in the formation of intramolecular disulfide bond(s) as judged by a reduction of apparent Mr on SDS-polyacrylamide gel electrophoresis; this oxidized form, unlike the reduced form, did not bind to CaM-affinity column. The oxidized Ng was also a poorer substrate for PKC; both the reduced and oxidized forms had similar Km values, but the Vmax of the oxidized form was about one-fourth of the reduced one. When comparing the rate of DEANO-mediated nitrosation of Ng with other sulfhydryl-containing compounds, it became evident that Ng ranked as one of the best NO acceptors among those tested, including serum albumin, glutathione, and dithiothreitol. Ng present in the rat brain synaptosomal preparations was also oxidized by DEANO in a dose-dependent manner when analyzed by immunoblot with a polyclonal antibody against this protein. These results suggest that Ng is a likely target of NO and other oxidants and that oxidation/reduction may serve as a mechanism for controlling both the PKC phosphorylation and the CaM-binding affinity of this protein.
Collapse
Affiliation(s)
- F S Sheu
- Section on Metabolic Regulation, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
23
|
Chao S, Benowitz LI, Krainc D, Irwin N. Use of a two-hybrid system to investigate molecular interactions of GAP-43. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 40:195-202. [PMID: 8872303 DOI: 10.1016/0169-328x(96)00049-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We used the 'interaction trap' (two-hybrid system) to identify polypeptides that interact with the neuronal phosphoprotein, GAP-43, in an intracellular environment. GAP-43 (neuromodulin, B-50, F1), a protein kinase C (PKC) substrate important for the growth and plasticity of neuronal connections, has been implicated in vitro in several signal transduction pathways. In the yeast-based cloning system, the only strong interaction that was detected between GAP-43 and the calcium effector protein, calmodulin (CaM). PKC phosphorylates GAP-43 on serine 41. When we changed this serine to an aspartate residue to mimic constitutive phosphorylation, the interaction with CaM was blocked. Surprisingly, the N-terminal third of GAP-43 alone bound CaM more strongly than did intact GAP-43, suggesting that the protein's C-terminus may play a role in modulating the interaction with CaM. These results, along with other recent findings, suggest a novel role for the interaction between GAP-43 and CaM.
Collapse
Affiliation(s)
- S Chao
- Department of Neurosurgery, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Slemmon JR, Morgan JI, Fullerton SM, Danho W, Hilbush BS, Wengenack TM. Camstatins are peptide antagonists of calmodulin based upon a conserved structural motif in PEP-19, neurogranin, and neuromodulin. J Biol Chem 1996; 271:15911-7. [PMID: 8663125 DOI: 10.1074/jbc.271.27.15911] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Unbridled increases in intracellular ionized calcium can result in neuronal damage and death. Since many of the deleterious effects of calcium are mediated by calmodulin, we have sought to identify neuronal proteins that inhibit activation of this ubiquitous protein. PEP-19 is a 7.6-kDa neuron-specific protein, which contains a motif similar to the calmodulin binding domains of neuromodulin (GAP-43) and neurogranin (RC3). Here we show that PEP-19 binds calmodulin in an analogous calcium-independent manner with an apparent Kd near 1.2 microM. Furthermore, using the calmodulin-dependent enzyme neuronal nitric oxide synthase, we demonstrate that native PEP-19 is also an antagonist of enzyme activity. Based on the PEP-19 sequence, a series of peptide calmodulin antagonists termed camstatins were synthesized. These analogs define the minimally active domain of PEP-19 and provide a structure/activity relationship for calmodulin antagonism. There was a positive correlation between the binding affinities of the camstatins for calmodulin and their potencies as neuronal nitric oxide synthase inhibitors. Despite the similar IQ motif in PEP-19 and neuromodulin or neurogranin, PEP-19 was not a substrate for protein kinase C. The properties of PEP-19 suggest that it could fulfill a role in neuroprotection.
Collapse
Affiliation(s)
- J R Slemmon
- Department of Biochemistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
There is little doubt that nitric oxide (NO) is one of the most important second messengers yet to be discovered, particularly in relation to its diverse roles in the regulation of neuronal function. As expected, synthesis of such a multifunctional molecule has to be under very tight control. For example, there is evidence that the rate of production of NO in neurons is regulated by several second messengers and their related protein kinases. NO by itself is also able to elicit negative feedback on the activity NO synthase (NOS) to attenuate its own rate of synthesis. Furthermore, NO modulates the release of neurotransmitters and alters the sensitivity of receptors that are coupled to stimulation of its synthesis. In healthy neurons, all of these intricate mechanisms are expected to cross-talk in harmony to result in the generation of optimal amounts of NO.
Collapse
Affiliation(s)
- J Hu
- Department of Cell and Molecular Biology, Northwestern, University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- J P Liu
- Department of Medical Oncology, Newcastle Mater Misericordiae Hospital, New South Wales, Australia
| |
Collapse
|
27
|
Flood JF, Morley JE, Roberts E. Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive. Proc Natl Acad Sci U S A 1995; 92:10806-10. [PMID: 7479888 PMCID: PMC40701 DOI: 10.1073/pnas.92.23.10806] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Immediate post-training, stereotactically guided, intraparenchymal administration of pregnenolone sulfate (PS) into the amygdala, septum, mammillary bodies, or caudate nucleus and of PS, dehydroepiandrosterone sulfate, and corticosterone into the hippocampus was performed in mice that had been weakly trained in a foot-shock active avoidance paradigm. Intrahippocampal injection of PS resulted in memory enhancement (ME) at a lower dose than was found with dehydroepiandrosterone sulfate and corticosterone. Intraamygdally administered PS was approximately 10(4) times more potent on a molar basis in producing ME than when PS was injected into the hippocampus and approximately 10(5) times more potent than when injected into the septum or mammillary bodies. ME did not occur on injection of PS into the caudate nucleus over the range of doses tested in the other brain structures. The finding that fewer than 150 molecules of PS significantly enhanced post-training memory processes when injected into the amygdala establishes PS as the most potent memory enhancer yet reported and the amygdala as the most sensitive brain region for ME by any substance yet tested.
Collapse
Affiliation(s)
- J F Flood
- Geriatric Research Education and Clinical Center, Veterans Administration Medical Center, St. Louis, MO 63106, USA
| | | | | |
Collapse
|
28
|
DiLoreto DA, Martzen MR, del Cerro C, Coleman PD, del Cerro M. Müller cell changes precede photoreceptor cell degeneration in the age-related retinal degeneration of the Fischer 344 rat. Brain Res 1995; 698:1-14. [PMID: 8581466 DOI: 10.1016/0006-8993(95)00647-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we have used descriptive pathology and histomorphometry, as well as functional testing to characterize the age-related retinal degeneration in the Fischer 344 rat. These studies suggested an association between Müller cells and photoreceptor cells in this process. The purpose of the present study was to further investigate the respective roles of these cell types in the development and progression of the retinal degeneration. Retinas from male Fischer 344 rats aged 3-24 months were first studied by light and electron microscopy. Since Müller cells abundantly express GFAP during pathological states, GFAP content was studied by immunocytochemistry and by immunoblotting following one- and two-dimensional gel electrophoresis. Microscopically, at 12 months, Müller cells showed a gradient of immunoreactivity for GFAP that was minimal in the central retina, positive for their radial processes in the equator, and abundantly expressed in the periphery. At this age, the photoreceptor cells were just beginning to degenerate in the far periphery, while they appeared healthy in the equatorial and central regions. By 24 months, Müller cell hypertrophy was seen in the peripheral regions where photoreceptor cell degeneration was most severe, while the immunoreactivity of the Müller cell processes spread further toward the central regions, ahead of the degeneration of the photoreceptor cells. Thus, Müller cell changes actually preceded photoreceptor degeneration in time and location. This phenomenon was confirmed by measurement of GFAP after one- and two-dimensional PAGE. These findings show that Müller cell changes precede chronic photoreceptor cell degeneration in the aging Fischer 344 rat and are consistent with the hypothesis that Müller cell alteration may be the primary mechanism of this age-related retinal degeneration.
Collapse
Affiliation(s)
- D A DiLoreto
- Department of Neurobiology, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | |
Collapse
|
29
|
Philibert K, Zwiers H. Evidence for multisite ADP-ribosylation of neuronal phosphoprotein B-50/GAP-43. Mol Cell Biochem 1995; 149-150:183-90. [PMID: 8569728 DOI: 10.1007/bf01076576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neuronal phosphoprotein B-50/GAP-43 is associated with neuronal growth and regeneration and is involved in the calcium/CaM and G(o) signal transduction systems. In particular, B-50 interacts uniquely with CaM by binding in the absence of Ca2+. Previously identified as a major neuronal substrate for protein kinase C, which releases CaM via phosphorylation, B-50 has more recently been shown to be a substrate for endogenous ADP-ribosyltransferases. In the present study, we utilized amino acid modification with iodoacetamide and chemical stability to mercury and neutral hydroxylamine to demonstrate that the predominant site of ADP-ribosylation is Cys 3 and/or Cys 4. Chymotryptic peptide mapping further revealed a second, less labelled site of ribosylation in the C-terminal region. The results also demonstrate that, in contrast to PKC phosphorylation, ADP-ribosylation of B-50 does not mediate CaM binding. Since Cys 3 and Cys 4, by palmitoylation, are important for membrane anchoring, our findings suggest that ADP-ribosylation of B-50 may have a role in directing the intracellular localization of the protein. Hence, ribosylation of B-50 may mediate where B-50 interacts with signal transduction pathways.
Collapse
Affiliation(s)
- K Philibert
- Department of Medical Physiology, University of Calgary, Health Sciences Centre, Alberta, Canada
| | | |
Collapse
|
30
|
Guerrini R, Menegazzi P, Anacardio R, Marastoni M, Tomatis R, Zorzato F, Treves S. Calmodulin binding sites of the skeletal, cardiac, and brain ryanodine receptor Ca2+ channels: modulation by the catalytic subunit of cAMP-dependent protein kinase? Biochemistry 1995; 34:5120-9. [PMID: 7711031 DOI: 10.1021/bi00015a024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we define calmodulin binding sites of skeletal, cardiac, and brain ryanodine receptor (RYR) Ca2+ channels. Cardiac and brain RYR peptides corresponding to the calmodulin binding sites present in the skeletal RYR [Menegazzi, P., et al. (1994) Biochemistry 33, 9078-9084] were synthesized, and their interaction with calmodulin was monitored by fluorescent techniques. The central portions of the skeletal, cardiac, and brain RYR protomers display one high (CaM1; Kd ranging between 2.7 and 10.2 nM) and one low affinity (CaM2; Kd ranging between 116 and 142 nM) calmodulin binding site. Depending on the RYR model having 4 or 12 transmembrane segments, a third calmodulin binding site (CaM3) was identified a few residues upstream from the putative transmembrane segment M1 or M5. Its affinity for calmodulin varied between the RYR isoforms: the cardiac RYR CaM3 displays a high affinity (9.09 +/- 1.0 nM, n = 5), while the skeletal and brain RYR CaM3 have low affinity, the lowest affinity being displayed by the brain isoform (234 +/- 39 nM, n = 3). The RYRs calmodulin binding site CaM1 encompasses the sequence Arg-His-Arg-Val(Ile)-Ser-Leu, which is phosphorylated in vitro by the catalytic subunit of the cAMP-dependent protein kinase. Phosphorylation of RYR PM1 peptides occurs on the Ser, corresponding to amino acid number 2919, 3020, and 3055 of the brain, cardiac, and skeletal RYR protomers, respectively. We found that phosphorylation of the RYR PM1 peptides was inhibited by calmodulin binding and that the formation of the PM1 peptide-calmodulin complex was inhibited by peptide phosphorylation. These data indicate that the effect of calmodulin binding to RYR CaM1 may be regulated by the phosphorylation state of the Ser residue localized within the sequence Arg-His-Arg-Val(Ile)-Ser-Leu.
Collapse
Affiliation(s)
- R Guerrini
- Dipartimento di Scienze Farmaceutiche, Universitá degli Studi di Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Gnegy ME. Calmodulin: effects of cell stimuli and drugs on cellular activation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1995; 45:33-65. [PMID: 8545541 DOI: 10.1007/978-3-0348-7164-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The activity, localization and cellular content of CaM can be regulated by drugs, hormones and neurotransmitters. Regulation of physiological responses of CaM can depend upon local Ca(2+)-entry domains in the cells and phosphorylation of CaM target proteins, which would either decrease responsiveness of CaM target enzymes or increase CaM availability for binding to other target proteins. Despite the abundance of CaM in many cells, persistent cellular activation by a variety of substances can lead to an increase in CaM, reflected both in the nucleus and other cellular compartments. Increases in CaM-binding proteins can accompany stimuli-induced increases in CaM. A role for CaM in vesicular or protein transport, cell morphology, secretion and other cytoskeletal processes is emerging through its binding to cytoskeletal proteins and myosins in addition to the more often investigated activation of target enzymes. More complete knowledge of the physiological regulation of CaM can lead to a greater understanding of its role in physiological processes and ways to alter its actions through pharmacology.
Collapse
Affiliation(s)
- M E Gnegy
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48103-0632, USA
| |
Collapse
|
32
|
Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31806-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|