1
|
Kaya MO, Demirci T, Musatat AB, Özdemir O, Sönmez F, Kaya Y, Arslan M. Rabbit muscle pyruvate kinase activators: Synthesis, molecular docking and theoretical studies of N-substituted sulfonamide derivatives. Int J Biol Macromol 2024; 274:133184. [PMID: 38925176 DOI: 10.1016/j.ijbiomac.2024.133184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Pyruvate kinase (PK) activators have potential therapeutic applications in diseases such as sickle cell anemia. In this study, N-Substituted sulfonamide derivatives of 1,4-dihydropyridines were synthesized and evaluated as PK activators in vitro and using molecular docking studies. The compounds were synthesized by reacting dicarbonyl compounds with ammonium acetate, 5-nitrobenzaldehyde, and alumina sulfuric acid (ASA), followed by reduction and sulfonylation. The structures of the compounds were analyzed using spectroscopic techniques. DFT calculations provided insights into the electronic properties. Molecular docking of the compounds into the active site of PK showed favorable binding interactions. ADME evaluation indicated suitable solubility, BBB permeation, and lack of CYP450 inhibition. Overall, this study demonstrates the potential of new hybrid 1,4-dihydropyridine substituted sulfonamides as PK activators for further development. According to AC50 values, the compound (DTSF7, 0.97μM) is about 100-fold higher affective than the clinically used sulfonamide compound (AC50 = 90μM) for PK.
Collapse
Affiliation(s)
- Mustafa Oğuzhan Kaya
- Chemistry, Faculty of Arts and Science, Kocaeli University, 41001 Kocaeli, Turkey.
| | - Tuna Demirci
- Scientific and Technological Research Laboratory, Düzce University, 81620 Düzce, Turkey
| | | | - Oğuzhan Özdemir
- Veterinary Science Department, Technical Sciences Vocational School, Batman University, 72000 Batman, Turkey
| | - Fatih Sönmez
- Pharmacy Services Department, Pamukova Vocational School, Sakarya University of Applied Sciences, 54900 Sakarya, Turkey
| | - Yeşim Kaya
- Chemistry, Faculty of Arts and Science, Kocaeli University, 41001 Kocaeli, Turkey
| | - Mustafa Arslan
- Chemistry, Faculty of Sciences, Sakarya University, 54050, Sakarya, Turkey
| |
Collapse
|
2
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
3
|
Martin TA, Fenton AW. Divalent cations in human liver pyruvate kinase exemplify the combined effects of complex-equilibrium and allosteric regulation. Sci Rep 2023; 13:10557. [PMID: 37386072 PMCID: PMC10310847 DOI: 10.1038/s41598-023-36943-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
There is growing recognition that the functional outcome of binding of an allosteric regulator to a protein/enzyme is influenced by the presence of other ligands. Here, this complexity is exemplified in the allosteric regulation of human liver pyruvate kinase (hLPYK) that is influenced by the presence of a range of divalent cation types and concentrations. For this system, fructose-1,6-bisphosphate (activator) and alanine (inhibitor) both influence the protein's affinity for the substrate, phosphoenolpyruvate (PEP). Mg2+, Mn2+, Ni2+, and Co2+ were the primary divalent cations evaluated, although Zn2+, Cd2+, V2+, Pb2+, Fe2+, and Cu2+also supported activity. Allosteric coupling between Fru-1,6-BP and PEP and between Ala and PEP varied depending on divalent cation type and concentration. Due to complicating interactions among small molecules, we did not attempt the fitting of response trends and instead we discuss a range of potential mechanisms that may explain those observed trends. Specifically, observed "substrate inhibition" may result from substrate A in one active site acting as an allosteric regulator for the affinity for substrate B in a second active site of a multimer. We also discuss apparent changes in allosteric coupling that can result from a sub-saturating concentration of a third allosteric ligand.
Collapse
Affiliation(s)
- Tyler A Martin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MS 3030, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MS 3030, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Swint-Kruse L, Dougherty LL, Page B, Wu T, O’Neil PT, Prasannan CB, Timmons C, Tang Q, Parente DJ, Sreenivasan S, Holyoak T, Fenton AW. PYK-SubstitutionOME: an integrated database containing allosteric coupling, ligand affinity and mutational, structural, pathological, bioinformatic and computational information about pyruvate kinase isozymes. Database (Oxford) 2023; 2023:baad030. [PMID: 37171062 PMCID: PMC10176505 DOI: 10.1093/database/baad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Interpreting changes in patient genomes, understanding how viruses evolve and engineering novel protein function all depend on accurately predicting the functional outcomes that arise from amino acid substitutions. To that end, the development of first-generation prediction algorithms was guided by historic experimental datasets. However, these datasets were heavily biased toward substitutions at positions that have not changed much throughout evolution (i.e. conserved). Although newer datasets include substitutions at positions that span a range of evolutionary conservation scores, these data are largely derived from assays that agglomerate multiple aspects of function. To facilitate predictions from the foundational chemical properties of proteins, large substitution databases with biochemical characterizations of function are needed. We report here a database derived from mutational, biochemical, bioinformatic, structural, pathological and computational studies of a highly studied protein family-pyruvate kinase (PYK). A centerpiece of this database is the biochemical characterization-including quantitative evaluation of allosteric regulation-of the changes that accompany substitutions at positions that sample the full conservation range observed in the PYK family. We have used these data to facilitate critical advances in the foundational studies of allosteric regulation and protein evolution and as rigorous benchmarks for testing protein predictions. We trust that the collected dataset will be useful for the broader scientific community in the further development of prediction algorithms. Database URL https://github.com/djparente/PYK-DB.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Larissa L Dougherty
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Braelyn Page
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Tiffany Wu
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Pierce T O’Neil
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Charulata B Prasannan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Cody Timmons
- Chemistry Department, Southwestern Oklahoma State University, 100 Campus Dr., Weatherford, OK 73096, USA
| | - Qingling Tang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Daniel J Parente
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Family Medicine and Community Health, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Todd Holyoak
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Wozniak K, Brzezinski K. Biological Catalysis and Information Storage Have Relied on N-Glycosyl Derivatives of β-D-Ribofuranose since the Origins of Life. Biomolecules 2023; 13:biom13050782. [PMID: 37238652 DOI: 10.3390/biom13050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Most naturally occurring nucleotides and nucleosides are N-glycosyl derivatives of β-d-ribose. These N-ribosides are involved in most metabolic processes that occur in cells. They are essential components of nucleic acids, forming the basis for genetic information storage and flow. Moreover, these compounds are involved in numerous catalytic processes, including chemical energy production and storage, in which they serve as cofactors or coribozymes. From a chemical point of view, the overall structure of nucleotides and nucleosides is very similar and simple. However, their unique chemical and structural features render these compounds versatile building blocks that are crucial for life processes in all known organisms. Notably, the universal function of these compounds in encoding genetic information and cellular catalysis strongly suggests their essential role in the origins of life. In this review, we summarize major issues related to the role of N-ribosides in biological systems, especially in the context of the origin of life and its further evolution, through the RNA-based World(s), toward the life we observe today. We also discuss possible reasons why life has arisen from derivatives of β-d-ribofuranose instead of compounds based on other sugar moieties.
Collapse
Affiliation(s)
- Katarzyna Wozniak
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| | - Krzysztof Brzezinski
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| |
Collapse
|
6
|
Jaroensuk J, Chuaboon L, Chaiyen P. Biochemical reactions for in vitro ATP production and their applications. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Dillenberger M, Rahlfs S, Becker K, Fritz-Wolf K. Prominent role of cysteine residues C49 and C343 in regulating Plasmodiumfalciparum pyruvate kinase activity. Structure 2022; 30:1452-1461.e3. [PMID: 35998635 DOI: 10.1016/j.str.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
The protozoan parasite Plasmodium falciparum causes the most severe form of malaria and is highly dependent on glycolysis. Glycolytic enzymes were shown to be massively redox regulated, inter alia via oxidative post-translational modifications (oxPTMs) of their cysteine residues. In this study, we identified P. falciparum pyruvate kinase (PfPK) C49 and C343 as amino acid residues essentially involved in maintaining structural and functional integrity of the enzyme. The mutation of these cysteines resulted in an altered substrate affinity, lower enzymatic activities, and, as studied by X-ray crystallography, conformational changes within the A-domain where the substrate binding site is located. Although the loss of a cysteine evoked an impaired catalysis in both mutants, the effects observed for mutant C49A were more severe: multiple conformational changes, caused by the loss of two hydrogen bonds, impeded proper substrate binding and thus the transfer of phosphate upon catalysis.
Collapse
Affiliation(s)
- Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany; Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Akunuri R, Unnissa T, Vadakattu M, Bujji S, Mahammad Ghouse S, Madhavi Yaddanapudi V, Chopra S, Nanduri S. Bacterial Pyruvate Kinase: A New Potential Target to Combat Drug‐Resistant
Staphylococcus aureus
Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202201403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Tanveer Unnissa
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031, Uttar Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| |
Collapse
|
9
|
Falak S, Saeed MS, Rashid N. Molecular cloning, expression in Escherichia coli and structural-functional analysis of a pyruvate kinase from Pyrobaculum calidifontis. Int J Biol Macromol 2022; 209:1410-1421. [PMID: 35472364 DOI: 10.1016/j.ijbiomac.2022.04.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
This manuscript describes recombinant production, characterization and structural analysis of wild-type and mutant Pcal_0029, a pyruvate kinase from Pyrobaculum calidifontis. Recombinant Pcal_0029 was produced in soluble and highly active form in Escherichia coli. Purified protein exhibited divalent metal-dependent activity which increased with the increase in temperature till 85 °C. Recombinant Pcal_0029 was highly thermostable with no significant loss in activity even after an incubation of 120 min at 100 °C. The enzyme exhibited apparent S0.5 and Vmax values of 0.44 ± 0.05 mM and 840 ± 39 units, respectively, towards phosphoenolpyruvate. These values towards adenosine-5'-diphosphate were 0.5 ± 0.07 mM and 870 ± 26 units, respectively. In silico structural analysis and comparison with the characterized enzymes revealed the presence of eight conserved regions. Two substitutions, K130E and S155G, resulted in a 10-fold decrease in activity. Secondary structure analysis indicated similar structures for the wild-type and the mutant enzymes. Bioinformatics analysis revealed disruption of interatomic interactions and hydrogen bond formation, leading to a decreased flexibility and solvent accessibility, which may have led to decrease in activity. To the best of our knowledge, Pcal_0029 is the most thermostable pyruvate kinase reported so far. Moreover, this is the first study on the role of non-catalytic residues in a pyruvate kinase.
Collapse
Affiliation(s)
- Samia Falak
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sulaiman Saeed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
10
|
Lin LL, Lu BY, Chi MC, Huang YF, Lin MG, Wang TF. Activation and thermal stabilization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis ATCC 27811 by monovalent cations. Appl Microbiol Biotechnol 2022; 106:1991-2006. [PMID: 35230495 DOI: 10.1007/s00253-022-11836-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/27/2022]
Abstract
The regulation of enzyme activity through complexation with certain metal ions plays an important role in many biological processes. In addition to divalent metals, monovalent cations (MVCs) frequently function as promoters for efficient biocatalysis. Here, we examined the effect of MVCs on the enzymatic catalysis of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis ATCC 27,811 and the application of a metal-activated enzyme to L-theanine synthesis. The transpeptidase activity of BlrGGT was enhanced by Cs+ and Na+ over a broad range of concentrations with a maximum of 200 mM. The activation was essentially independent of the ionic radius, but K+ contributed the least to enhancing the catalytic efficiency. The secondary structure of BlrGGT remained mostly unchanged in the presence of different concentrations of MVCs, but there was a significant change in its tertiary structure under the same conditions. Compared with the control, the half-life (t1/2) of the Cs+-enriched enzyme at 60 and 65 °C was shown to increase from 16.3 and 4.0 min to 74.5 and 14.3 min, respectively. The simultaneous addition of Cs+ and Mg2+ ions exerted a synergistic effect on the activation of BlrGGT. This was adequately reflected by an improvement in the conversion of substrates to L-theanine by 3.3-15.1% upon the addition of 200 mM MgCl2 into a reaction mixture comprising the freshly desalted enzyme (25 μg/mL), 250 mM L-glutamine, 600 mM ethylamine, 200 mM each of the MVCs, and 50 mM borate buffer (pH 10.5). Taken together, our results provide interesting insights into the complexation of MVCs with BlrGGT and can therefore be potentially useful to the biocatalytic production of naturally occurring γ-glutamyl compounds. KEY POINTS: • The transpeptidase activity of B. licheniformis γ-glutamyltranspeptidase can be activated by monovalent cations. • The thermal stability of the enzyme was profoundly increased in the presence of 200 mM Cs+. • The simultaneous addition of Cs+and Mg2+ions to the reaction mixture improves L-theanine production.
Collapse
Affiliation(s)
- Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Bo-Yuan Lu
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Yu-Fen Huang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei City, 11529, Taiwan
| | - Tzu-Fan Wang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan.
| |
Collapse
|
11
|
Killilea DW, Killilea AN. Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation. Free Radic Biol Med 2022; 182:182-191. [PMID: 35218912 DOI: 10.1016/j.freeradbiomed.2022.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
Professor Bruce Ames demonstrated that nutritional recommendations should be adjusted in order to 'tune-up' metabolism and reduce mitochondria decay, a hallmark of aging and many disease processes. A major subset of tunable nutrients are the minerals, which despite being integral to every aspect of metabolism are often deficient in the typical Western diet. Mitochondria are particularly rich in minerals, where they function as essential cofactors for mitochondrial physiology and overall cellular health. Yet substantial knowledge gaps remain in our understanding of the form and function of these minerals needed for metabolic harmony. Some of the minerals have known activities in the mitochondria but with incomplete regulatory detail, whereas other minerals have no established mitochondrial function at all. A comprehensive metallome of the mitochondria is needed to fully understand the patterns and relationships of minerals within metabolic processes and cellular development. This brief overview serves to highlight the current progress towards understanding mineral homeostasis in the mitochondria and to encourage more research activity in key areas. Future work may likely reveal that adjusting the amounts of specific nutritional minerals has longevity benefits for human health.
Collapse
Affiliation(s)
- David W Killilea
- Office of Research, University of California, San Francisco, CA, USA.
| | - Alison N Killilea
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
12
|
The K +-Dependent and -Independent Pyruvate Kinases Acquire the Active Conformation by Different Mechanisms. Int J Mol Sci 2022; 23:ijms23031347. [PMID: 35163274 PMCID: PMC8835810 DOI: 10.3390/ijms23031347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Eukarya pyruvate kinases possess glutamate at position 117 (numbering of rabbit muscle enzyme), whereas bacteria have either glutamate or lysine. Those with E117 are K+-dependent, whereas those with K117 are K+-independent. In a phylogenetic tree, 80% of the sequences with E117 are occupied by T113/K114/T120 and 77% of those with K117 possess L113/Q114/(L,I,V)120. This work aims to understand these residues’ contribution to the K+-independent pyruvate kinases using the K+-dependent rabbit muscle enzyme. Residues 117 and 120 are crucial in the differences between the K+-dependent and -independent mutants. K+-independent activity increased with L113 and Q114 to K117, but L120 induced structural differences that inactivated the enzyme. T120 appears to be key in folding the protein and closure of the lid of the active site to acquire its active conformation in the K+-dependent enzymes. E117K mutant was K+-independent and the enzyme acquired the active conformation by a different mechanism. In the K+-independent apoenzyme of Mycobacterium tuberculosis, K72 (K117) flips out of the active site; in the holoenzyme, K72 faces toward the active site bridging the substrates through water molecules. The results provide evidence that two different mechanisms have evolved for the catalysis of this reaction.
Collapse
|
13
|
McGee JP, Melani RD, Yip PF, Senko MW, Compton PD, Kafader JO, Kelleher NL. Isotopic Resolution of Protein Complexes up to 466 kDa Using Individual Ion Mass Spectrometry. Anal Chem 2020; 93:2723-2727. [PMID: 33322893 DOI: 10.1021/acs.analchem.0c03282] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Native mass spectrometry involves transferring large biomolecular complexes into the gas phase, enabling the characterization of their composition and stoichiometry. However, the overlap in distributions created by residual solvation, ionic adducts, and post-translational modifications creates a high degree of complexity that typically goes unresolved at masses above ∼150 kDa. Therefore, native mass spectrometry would greatly benefit from higher resolution approaches for intact proteins and their complexes. By recording mass spectra of individual ions via charge detection mass spectrometry, we report isotopic resolution for pyruvate kinase (232 kDa) and β-galactosidase (466 kDa), extending the limits of isotopic resolution for high mass and high m/z by >2.5-fold and >1.6-fold, respectively.
Collapse
Affiliation(s)
- John P McGee
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Ping F Yip
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael W Senko
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Philip D Compton
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jared O Kafader
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105:2218-2228. [PMID: 33054047 PMCID: PMC7556514 DOI: 10.3324/haematol.2019.241141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023] Open
Abstract
Red cell pyruvate kinase (PK) deficiency is the most common glycolytic defect associated with congenital non-spherocytic hemolytic anemia. The disease, transmitted as an autosomal recessive trait, is caused by mutations in the PKLR gene and is characterized by molecular and clinical heterogeneity; anemia ranges from mild or fully compensated hemolysis to life-threatening forms necessitating neonatal exchange transfusions and/or subsequent regular transfusion support; complications include gallstones, pulmonary hypertension, extramedullary hematopoiesis and iron overload. Since identification of the first pathogenic variants responsible for PK deficiency in 1991, more than 300 different variants have been reported, and the study of molecular mechanisms and the existence of genotype-phenotype correlations have been investigated in-depth. In recent years, during which progress in genetic analysis, next-generation sequencing technologies and personalized medicine have opened up important landscapes for diagnosis and study of molecular mechanisms of congenital hemolytic anemias, genotyping has become a prerequisite for accessing new treatments and for evaluating disease state and progression. This review examines the extensive molecular heterogeneity of PK deficiency, focusing on the diagnostic impact of genotypes and new acquisitions on pathogenic non-canonical variants. The recent progress and the weakness in understanding the genotype-phenotype correlation, and its practical usefulness in light of new therapeutic opportunities for PK deficiency are also discussed.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/therapy
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Humans
- Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy.
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy
| |
Collapse
|
15
|
Biochemical and biophysical characterization of the smallest pyruvate kinase from Entamoeba histolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140296. [PMID: 31676451 DOI: 10.1016/j.bbapap.2019.140296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
Entamoeba histolytica infection is highly prevalent in developing countries across the globe. The ATP synthesis in this pathogen is solely dependent on the glycolysis pathway where pyruvate kinase (Pyk) catalyzes the final reaction. Here, we have cloned, overexpressed and purified the pyruvate kinase (EhPyk) from E. histolytica. EhPyk is the shortest currently known Pyk till date as it contains only two of the three characterized domains when compared to the other homologues and our phylogenetic analysis places it on a distinct branch from the known type I/II Pyks. Our purification results suggested that it exists as a homodimer in solution. The kinetic characterization showed that EhPyk has maximum activity at pH 7.5 where it exhibited Michaelis-Menten's kinetics for phosphoenolpyruvate with a Km of 0.23 mM, and it lost its activity at both the acidic pH 4.0 and basic pH 10.0. We also determined the key secondary structural elements of EhPyk at different pH values. MD simulation of EhPyk structure at different pH values suggested that it is most stable at pH 7.0, while least stable at pH 10.0 followed by pH 4.0. Together, our computational simulations correlate well with the experimental studies. In summary, this study expands the current understanding of the EhPyk identified earlier in the amoebic genome and provides the first characterization of this bacterially expressed protein.
Collapse
|
16
|
Schormann N, Hayden KL, Lee P, Banerjee S, Chattopadhyay D. An overview of structure, function, and regulation of pyruvate kinases. Protein Sci 2019; 28:1771-1784. [PMID: 31342570 DOI: 10.1002/pro.3691] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
In the last step of glycolysis Pyruvate kinase catalyzes the irreversible conversion of ADP and phosphoenolpyruvate to ATP and pyruvic acid, both crucial for cellular metabolism. Thus pyruvate kinase plays a key role in controlling the metabolic flux and ATP production. The hallmark of the activity of different pyruvate kinases is their tight modulation by a variety of mechanisms including the use of a large number of physiological allosteric effectors in addition to their homotropic regulation by phosphoenolpyruvate. Binding of effectors signals precise and orchestrated movements in selected areas of the protein structure that alter the catalytic action of these evolutionarily conserved enzymes with remarkably conserved architecture and sequences. While the diverse nature of the allosteric effectors has been discussed in the literature, the structural basis of their regulatory effects is still not well understood because of the lack of data representing conformations in various activation states. Results of recent studies on pyruvate kinases of different families suggest that members of evolutionarily related families follow somewhat conserved allosteric strategies but evolutionarily distant members adopt different strategies. Here we review the structure and allosteric properties of pyruvate kinases of different families for which structural data are available.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama
| | - Paul Lee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois
| | | |
Collapse
|
17
|
Johnsen U, Reinhardt A, Landan G, Tria FDK, Turner JM, Davies C, Schönheit P. New views on an old enzyme: allosteric regulation and evolution of archaeal pyruvate kinases. FEBS J 2019; 286:2471-2489. [PMID: 30945446 DOI: 10.1111/febs.14837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/01/2019] [Accepted: 04/02/2019] [Indexed: 11/28/2022]
Abstract
Pyruvate kinases (PKs) synthesize ATP as the final step of glycolysis in the three domains of life. PKs from most bacteria and eukarya are allosteric enzymes that are activated by sugar phosphates; for example, the feed-forward regulator fructose-1,6-bisphosphate, or AMP as a sensor of energy charge. Archaea utilize unusual glycolytic pathways, but the allosteric properties of PKs from these species are largely unknown. Here, we present an analysis of 24 PKs from most archaeal clades with respect to allosteric properties, together with phylogenetic analyses constructed using a novel mode of rooting protein trees. We find that PKs from many Thermoproteales, an order of crenarchaeota, are allosterically activated by 3-phosphoglycerate (3PG). We also identify five conserved amino acids that form the binding pocket for 3PG. 3PG is generated via an irreversible reaction in the modified glycolytic pathway of these archaea and therefore functions as a feed-forward regulator. We also show that PKs from hyperthermophilic Methanococcales, an order of euryarchaeota, are activated by AMP. Phylogenetic analyses indicate that 3PG-activated PKs form an evolutionary lineage that is distinct from that of sugar-phosphate activated PKs, and that sugar phosphate-activated PKs originated as AMP-regulated PKs in hyperthermophilic Methanococcales. Since the phospho group of sugar phosphates and 3PG overlap in the allosteric site, our data indicate that the allostery in PKs first started from a progenitor phosphate-binding site that evolved in two spatially distinct directions: one direction generated the canonical site that responds to sugar phosphates and the other gave rise to the 3PG site present in Thermoproteales. Overall, our data suggest an intimate connection between the allosteric properties and evolution of PKs.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | - Andreas Reinhardt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | - Giddy Landan
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | - Fernando D K Tria
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | - Jonathan M Turner
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| |
Collapse
|
18
|
Metal-cation regulation of enzyme dynamics is a key factor influencing the activity of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa. Sci Rep 2018; 8:11334. [PMID: 30054521 PMCID: PMC6063907 DOI: 10.1038/s41598-018-29535-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/12/2018] [Indexed: 01/30/2023] Open
Abstract
S-adenosyl-l-homocysteine hydrolase from Pseudomonas aeruginosa (PaSAHase) coordinates one K+ ion and one Zn2+ ion in the substrate binding area. The cations affect the enzymatic activity and substrate binding but the molecular mechanisms of their action are unknown. Enzymatic and isothermal titration calorimetry studies demonstrated that the K+ ions stimulate the highest activity and strongest ligand binding in comparison to other alkali cations, while the Zn2+ ions inhibit the enzyme activity. PaSAHase was crystallized in the presence of adenine nucleosides and K+ or Rb+ ions. The crystal structures show that the alkali ion is coordinated in close proximity of the purine ring and a 23Na NMR study showed that the monovalent cation coordination site is formed upon ligand binding. The cation, bound in the area of a molecular hinge, orders and accurately positions the amide group of Q65 residue to allow its interaction with the ligand. Moreover, binding of potassium is required to enable unique dynamic properties of the enzyme that ensure its maximum catalytic activity. The Zn2+ ion is bound in the area of a molecular gate that regulates access to the active site. Zn2+ coordination switches the gate to a shut state and arrests the enzyme in its closed, inactive conformation.
Collapse
|
19
|
Bell RAV, Storey KB. Purification and characterization of skeletal muscle pyruvate kinase from the hibernating ground squirrel, Urocitellus richardsonii: potential regulation by posttranslational modification during torpor. Mol Cell Biochem 2017; 442:47-58. [DOI: 10.1007/s11010-017-3192-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
|
20
|
Tang Q, Alontaga AY, Holyoak T, Fenton AW. Exploring the limits of the usefulness of mutagenesis in studies of allosteric mechanisms. Hum Mutat 2017; 38:1144-1154. [PMID: 28459139 DOI: 10.1002/humu.23239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/12/2022]
Abstract
The outcome of structure-guided mutational analyses is often used in support of postulated mechanisms of protein allostery. However, the limits of how informative mutations can be in understanding allosteric mechanisms are not completely clear. Here, we report an exercise to evaluate whether mutational data can support a simplistic mechanistic model, developed with minimal data inputs. Due to the lack of a mechanism to explain how alanine allosterically modifies the affinity of human liver pyruvate kinase (approved symbol PKLR) for its substrate, phosphoenolpyruvate, we proposed a speculative allosteric mechanism for this system. Within the allosteric amino-acid-binding site (something in the effector site must, of necessity, contribute to the allosteric mechanism), we implemented multiple mutational strategies: (1) site-directed random mutagenesis at positions that contact bound alanine and (2) mutations to probe specific questions. Despite acknowledged inadequacies used to formulate the speculative mechanism, many mutations modified the allosteric coupling constant (Qax ) consistent with that mechanism. The observed support for this speculative mechanism leaves us to ponder the best use of mutational data in structure-function studies of allosteric mechanisms. The mutational databank derived from this exercise has an independent value for training and testing algorithms specific to allostery.
Collapse
Affiliation(s)
- Qingling Tang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Aileen Y Alontaga
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
21
|
Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep 2016; 17:1721-1730. [PMID: 27856534 PMCID: PMC5283597 DOI: 10.15252/embr.201643300] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
A major metabolic aberration associated with cancer is a change in glucose metabolism. Isoform selection of the glycolytic enzyme pyruvate kinase has been implicated in the metabolic phenotype of cancer cells, and specific pyruvate kinase isoforms have been suggested to support divergent energetic and biosynthetic requirements of cells in tumors and normal tissues. PKM2 isoform expression has been closely linked to embryogenesis, tissue repair, and cancer. In contrast, forced expression of the PKM1 isoform has been associated with reduced tumor cell proliferation. Here, we discuss the role that PKM2 plays in cells and provide a historical perspective for how the study of PKM2 has contributed to understanding cancer metabolism. We also review recent studies that raise important questions with regard to the role of PKM2 in both normal and cancer cell metabolism.
Collapse
Affiliation(s)
- Talya L Dayton
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
22
|
Gohara DW, Di Cera E. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 2016; 291:20840-20848. [PMID: 27462078 DOI: 10.1074/jbc.r116.737833] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Regulation of enzymes through metal ion complexation is widespread in biology and underscores a physiological need for stability and high catalytic activity that likely predated proteins in the RNA world. In addition to divalent metals such as Ca2+, Mg2+, and Zn2+, monovalent cations often function as efficient and selective promoters of catalysis. Advances in structural biology unravel a rich repertoire of molecular mechanisms for enzyme activation by Na+ and K+ Strategies range from short-range effects mediated by direct participation in substrate binding, to more distributed effects that propagate long-range to catalytic residues. This review addresses general considerations and examples.
Collapse
Affiliation(s)
- David W Gohara
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
23
|
Wheatley RW, Juers DH, Lev BB, Huber RE, Noskov SY. Elucidating factors important for monovalent cation selectivity in enzymes: E. coli β-galactosidase as a model. Phys Chem Chem Phys 2016; 17:10899-909. [PMID: 25820412 DOI: 10.1039/c4cp04952g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many enzymes require a specific monovalent cation (M(+)), that is either Na(+) or K(+), for optimal activity. While high selectivity M(+) sites in transport proteins have been extensively studied, enzyme M(+) binding sites generally have lower selectivity and are less characterized. Here we study the M(+) binding site of the model enzyme E. coli β-galactosidase, which is about 10 fold selective for Na(+) over K(+). Combining data from X-ray crystallography and computational models, we find the electrostatic environment predominates in defining the Na(+) selectivity. In this lower selectivity site rather subtle influences on the electrostatic environment become significant, including the induced polarization effects of the M(+) on the coordinating ligands and the effect of second coordination shell residues on the charge distribution of the primary ligands. This work expands the knowledge of ion selectivity in proteins to denote novel mechanisms important for the selectivity of M(+) sites in enzymes.
Collapse
Affiliation(s)
- Robert W Wheatley
- Division of Biochemistry, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
24
|
Donovan KA, Atkinson SC, Kessans SA, Peng F, Cooper TF, Griffin MDW, Jameson GB, Dobson RCJ. Grappling with anisotropic data, pseudo-merohedral twinning and pseudo-translational noncrystallographic symmetry: a case study involving pyruvate kinase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:512-9. [DOI: 10.1107/s205979831600142x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 01/22/2016] [Indexed: 11/10/2022]
Abstract
Pyruvate kinase is a key regulatory enzyme involved in the glycolytic pathway. The crystal structure ofEscherichia colitype I pyruvate kinase was first solved in 1995 at 2.5 Å resolution. However, the space group was ambiguous, being either primitive orthorhombic (P212121) orC-centred orthorhombic (C2221). Here, the structure determination and refinement ofE. colitype I pyruvate kinase to 2.28 Å resolution are presented. Using the same crystallization conditions as reported previously, the enzyme was found to crystallize in space groupP21. Determination of the space group was complicated owing to anisotropic data, pseudo-translational noncrystallographic symmetry and the pseudo-merohedrally twinned nature of the crystal, which was found to have very close to 50% twinning, leading to apparent orthorhombic symmetry and absences that were not inconsistent withP212121. The unit cell contained two tetramers in the asymmetric unit (3720 residues) and, when compared with the orthorhombic structure, virtually all of the residues could be easily modelled into the density. Averaging of reflections into the lower symmetry space group with twinning provided tidier electron density that allowed ∼30 missing residues of the lid domain to be modelled for the first time. Moreover, residues in a flexible loop could be modelled and sulfate molecules are found in the allosteric binding domain, identifying the pocket that binds the allosteric activator fructose 1,6-bisphosphate in this isozyme for the first time. Lastly, we note the pedagogical benefits of difficult structures to emerging crystallographers.
Collapse
|
25
|
Baldassarre M, Barth A. Pushing the detection limit of infrared spectroscopy for structural analysis of dilute protein samples. Analyst 2015; 139:5393-9. [PMID: 25163493 DOI: 10.1039/c4an00918e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fourier-transform infrared spectroscopy is a powerful and versatile tool to investigate the structure and dynamics of proteins in solution. The intrinsically low extinction coefficient of the amide I mode, the main structure-related oscillator, together with the high infrared absorptivity of aqueous media, requires that proteins are studied at high concentrations (>10 mg L(-1)). This may represent a challenge in the study of aggregation-prone proteins and peptides, and questions the significance of structural data obtained for proteins physiologically existing at much lower concentrations. Here we describe the development of a simple experimental approach that increases the detection limit of protein structure analysis by infrared spectroscopy. Our approach relies on custom-made filters to isolate the amide I region (1700-1600 cm(-1)) from irrelevant spectral regions. The sensitivity of the instrument is then increased by background attenuation, an approach consisting in the use of a neutral density filter, such as a non-scattering metal grid, to attentuate the intensity of the background spectrum. When the filters and grid are combined, a 2.4-fold improvement in the noise level can be obtained. We have successfully tested this approach using a highly diluted solution of pyruvate kinase in deuterated medium (0.2% w/v), and found that it provides spectra of a quality comparable to those recorded with a 10-fold higher protein concentration.
Collapse
Affiliation(s)
- Maurizio Baldassarre
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
26
|
Baldassarre M, Li C, Eremina N, Goormaghtigh E, Barth A. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra. Molecules 2015; 20:12599-622. [PMID: 26184143 PMCID: PMC6331840 DOI: 10.3390/molecules200712599] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 02/06/2023] Open
Abstract
Infrared spectroscopy is a powerful tool in protein science due to its sensitivity to changes in secondary structure or conformation. In order to take advantage of the full power of infrared spectroscopy in structural studies of proteins, complex band contours, such as the amide I band, have to be decomposed into their main component bands, a process referred to as curve fitting. In this paper, we report on an improved curve fitting approach in which absorption spectra and second derivative spectra are fitted simultaneously. Our approach, which we name co-fitting, leads to a more reliable modelling of the experimental data because it uses more spectral information than the standard approach of fitting only the absorption spectrum. It also avoids that the fitting routine becomes trapped in local minima. We have tested the proposed approach using infrared absorption spectra of three mixed α/β proteins with different degrees of spectral overlap in the amide I region: ribonuclease A, pyruvate kinase, and aconitase.
Collapse
Affiliation(s)
- Maurizio Baldassarre
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| | - Chenge Li
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| | - Nadejda Eremina
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium.
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
27
|
Kim HM, Park YH, Yoon CK, Seok YJ. Histidine phosphocarrier protein regulates pyruvate kinase A activity in response to glucose in Vibrio vulnificus. Mol Microbiol 2015; 96:293-305. [PMID: 25598011 DOI: 10.1111/mmi.12936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 11/29/2022]
Abstract
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) consists of two general energy-coupling proteins [enzyme I and histidine phosphocarrier protein (HPr)] and several sugar-specific enzyme IIs. Although, in addition to the phosphorylation-coupled transport of sugars, various regulatory roles of PTS components have been identified in Escherichia coli, much less is known about the PTS in the opportunistic human pathogen Vibrio vulnificus. In this study, we have identified pyruvate kinase A (PykA) as a binding partner of HPr in V. vulnificus. The interaction between HPr and PykA was strictly dependent on the presence of inorganic phosphate, and only dephosphorylated HPr interacted with PykA. Experiments involving domain swapping between the PykAs of V. vulnificus and E. coli revealed the requirement for the C-terminal domain of V. vulnificus PykA for a specific interaction with V. vulnificus HPr. Dephosphorylated HPr decreased the Km of PykA for phosphoenolpyruvate by approximately fourfold without affecting Vmax . Taken together, these findings indicate that the V. vulnificus PTS catalyzing the first step of glycolysis stimulates the final step of glycolysis in the presence of glucose through the direct interaction of dephospho-HPr with the C-terminal domain of PykA.
Collapse
Affiliation(s)
- Hey-Min Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 151-742, South Korea
| | | | | | | |
Collapse
|
28
|
Ramírez-Silva L, Guerrero-Mendiola C, Cabrera N. The importance of polarity in the evolution of the K+ binding site of pyruvate kinase. Int J Mol Sci 2014; 15:22214-26. [PMID: 25474090 PMCID: PMC4284704 DOI: 10.3390/ijms151222214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/25/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022] Open
Abstract
In a previous phylogenetic study of the family of pyruvate kinase, we found one cluster with Glu117 and another with Lys117. Those sequences with Glu117 have Thr113 and are K+-dependent, whereas those with Lys117 have Leu113 and are K+-independent. The carbonyl oxygen of Thr113 is one of the residues that coordinate K+ in the active site. Even though the side chain of Thr113 does not participate in binding K+, the strict co-evolution between position 117 and 113 suggests that T113 may be the result of the evolutionary pressure to maintain the selectivity of pyruvate kinase activity for K+. Thus, we explored if the replacement of Thr113 by Leu alters the characteristics of the K+ binding site. We found that the polarity of the residue 113 is central in the partition of K+ into its site and that the substitution of Thr for Leu changes the ion selectivity for the monovalent cation with minor changes in the binding of the substrates. Therefore, Thr113 is instrumental in the selectivity of pyruvate kinase for K+.
Collapse
Affiliation(s)
- Leticia Ramírez-Silva
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Distrito Federal, Mexico.
| | - Carlos Guerrero-Mendiola
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Distrito Federal, Mexico.
| | - Nallely Cabrera
- Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Distrito Federal, Mexico.
| |
Collapse
|
29
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
30
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 544] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
31
|
Li F, Yu T, Jiang H, Yu S. Effects of activating cations and inhibitor on the allosteric regulation of rabbit muscle pyruvate kinase. Int J Biol Macromol 2013; 60:219-25. [DOI: 10.1016/j.ijbiomac.2013.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
32
|
Zhong W, Morgan HP, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. `In crystallo' substrate binding triggers major domain movements and reveals magnesium as a co-activator of Trypanosoma brucei pyruvate kinase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1768-79. [PMID: 23999300 DOI: 10.1107/s0907444913013875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/20/2013] [Indexed: 11/10/2022]
Abstract
The active site of pyruvate kinase (PYK) is located between the AC core of the enzyme and a mobile lid corresponding to domain B. Many PYK structures have already been determined, but the first `effector-only' structure and the first with PEP (the true natural substrate) are now reported for the enzyme from Trypanosoma brucei. PEP soaked into crystals of the enzyme with bound allosteric activator fructose 2,6-bisphosphate (F26BP) and Mg(2+) triggers a substantial 23° rotation of the B domain `in crystallo', resulting in a partially closed active site. The interplay of side chains with Mg(2+) and PEP may explain the mechanism of the domain movement. Furthermore, it is apparent that when F26BP is present but PEP is absent Mg(2+) occupies a position that is distinct from the two canonical Mg(2+)-binding sites at the active site. This third site is adjacent to the active site and involves the same amino-acid side chains as in canonical site 1 but in altered orientations. Site 3 acts to sequester Mg(2+) in a `priming' position such that the enzyme is maintained in its R-state conformation. In this way, Mg(2+) cooperates with F26BP to ensure that the enzyme is in a conformation that has a high affinity for the substrate.
Collapse
Affiliation(s)
- Wenhe Zhong
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | | | | | | | | | | |
Collapse
|
33
|
Solomons JTG, Johnsen U, Schönheit P, Davies C. 3-Phosphoglycerate Is an Allosteric Activator of Pyruvate Kinase from the Hyperthermophilic Archaeon Pyrobaculum aerophilum. Biochemistry 2013; 52:5865-75. [DOI: 10.1021/bi400761b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. T. Graham Solomons
- Department of Biochemistry and
Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Ulrike Johnsen
- Institut für Allgemeine
Mikrobiologie, Christian-Albrechts Universität Kiel, Am Botanischen Garten 1-9, Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine
Mikrobiologie, Christian-Albrechts Universität Kiel, Am Botanischen Garten 1-9, Kiel, Germany
| | - Christopher Davies
- Department of Biochemistry and
Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
34
|
Prasannan CB, Villar MT, Artigues A, Fenton AW. Identification of regions of rabbit muscle pyruvate kinase important for allosteric regulation by phenylalanine, detected by H/D exchange mass spectrometry. Biochemistry 2013; 52:1998-2006. [PMID: 23418858 DOI: 10.1021/bi400117q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry has been used to determine the number of exchangeable backbone amide protons and the associated rate constants that are altered when rabbit muscle pyruvate kinase (rM1-PYK) binds either the allosteric inhibitor (phenylalanine) or a nonallosteric analogue of the inhibitor. Alanine is used as the nonallosteric analogue because it binds competitively with phenylalanine but elicits a negligible allosteric inhibition, i.e., a negligible reduction in the affinity of rM1-PYK for the substrate, phosphoenolpyruvate. This experimental design is expected to distinguish changes in the protein caused by effector binding (i.e., those changes common upon the addition of alanine vs phenylalanine) from changes associated with allosteric regulation (i.e., those elicited by the addition of phenylalanine binding, but not alanine binding). High-quality peptic fragments covering 98% of the protein were identified. Changes in both the number of exchangeable protons per peptide and in the rate constant associated with exchange highlight regions of the protein with allosteric roles. The set of allosterically relevant peptides identified by this technique includes residues previously identified by mutagenesis to have roles in allosteric regulation by phenylalanine.
Collapse
Affiliation(s)
- Charulata B Prasannan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MS 3030, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | | | | | | |
Collapse
|
35
|
Urness JM, Clapp KM, Timmons JC, Bai X, Chandrasoma N, Buszek KR, Fenton AW. Distinguishing the chemical moiety of phosphoenolpyruvate that contributes to allostery in muscle pyruvate kinase. Biochemistry 2012; 52:1-3. [PMID: 23256782 DOI: 10.1021/bi301628k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of substrate analogues has been used to determine which chemical moieties of the substrate phosphoenolpyruvate (PEP) contribute to the allosteric inhibition of rabbit muscle pyruvate kinase by phenylalanine. Replacing the carboxyl group of the substrate with a methyl alcohol or removing the phosphate altogether greatly reduces substrate affinity. However, removal of the carboxyl group is the only modification tested that removes the ability to allosterically reduce the level of Phe binding. From this, it can be concluded that the carboxyl group of PEP is responsible for energetic coupling with Phe binding in the allosteric sites.
Collapse
Affiliation(s)
- James M Urness
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Juers DH, Matthews BW, Huber RE. LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 2012; 21:1792-807. [PMID: 23011886 PMCID: PMC3575911 DOI: 10.1002/pro.2165] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/18/2012] [Indexed: 12/25/2022]
Abstract
This review provides an overview of the structure, function, and catalytic mechanism of lacZ β-galactosidase. The protein played a central role in Jacob and Monod's development of the operon model for the regulation of gene expression. Determination of the crystal structure made it possible to understand why deletion of certain residues toward the amino-terminus not only caused the full enzyme tetramer to dissociate into dimers but also abolished activity. It was also possible to rationalize α-complementation, in which addition to the inactive dimers of peptides containing the "missing" N-terminal residues restored catalytic activity. The enzyme is well known to signal its presence by hydrolyzing X-gal to produce a blue product. That this reaction takes place in crystals of the protein confirms that the X-ray structure represents an active conformation. Individual tetramers of β-galactosidase have been measured to catalyze 38,500 ± 900 reactions per minute. Extensive kinetic, biochemical, mutagenic, and crystallographic analyses have made it possible to develop a presumed mechanism of action. Substrate initially binds near the top of the active site but then moves deeper for reaction. The first catalytic step (called galactosylation) is a nucleophilic displacement by Glu537 to form a covalent bond with galactose. This is initiated by proton donation by Glu461. The second displacement (degalactosylation) by water or an acceptor is initiated by proton abstraction by Glu461. Both of these displacements occur via planar oxocarbenium ion-like transition states. The acceptor reaction with glucose is important for the formation of allolactose, the natural inducer of the lac operon.
Collapse
Affiliation(s)
- Douglas H Juers
- Department of Physics, Whitman CollegeWalla Walla, Washington 99362
| | - Brian W Matthews
- Institute of Molecular Biology, 1229 University of OregonEugene, Oregon 97403-1229
| | - Reuben E Huber
- Department of Biological Sciences, University of Calgary, 2500 University DriveNW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
37
|
Minde DP, Maurice MM, Rüdiger SGD. Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp. PLoS One 2012; 7:e46147. [PMID: 23056252 PMCID: PMC3463568 DOI: 10.1371/journal.pone.0046147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022] Open
Abstract
The biophysical stability is an important parameter for protein activity both in vivo and in vitro. Here we propose a method to analyse thermal melting of protein domains in lysates: Fast parallel proteolysis (FASTpp). Combining unfolding by a temperature gradient in a thermal cycler with simultaneous proteolytic cleavage of the unfolded state, we probed stability of single domains in lysates. We validated FASTpp on proteins from 10 kDa to 240 kDa and monitored stabilisation and coupled folding and binding upon interaction with small-molecule ligands. Within a total reaction time of approximately 1 min, we probed subtle stability differences of point mutations with high sensitivity and in agreement with data obtained by intrinsic protein fluorescence. We anticipate a wide range of applications of FASTpp in biomedicine and protein engineering as it requires only standard laboratory equipment.
Collapse
Affiliation(s)
- David P. Minde
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Madelon M. Maurice
- Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- * E-mail: (SGDR); (MMM)
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- * E-mail: (SGDR); (MMM)
| |
Collapse
|
38
|
Probing the catalytic allosteric mechanism of rabbit muscle pyruvate kinase by tryptophan fluorescence quenching. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:607-14. [PMID: 22790415 DOI: 10.1007/s00249-012-0828-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Pyruvate kinase acts as an allosteric enzyme, playing a crucial role in the catalysis of the final step of the glycolytic pathway. In this study, site-specific mutagenesis and tryptophan fluorescence quenching were used to probe the catalytic allosteric mechanism of rabbit muscle pyruvate kinase. Movement of the B domain was found to be essential for the catalytic reaction. Rotation of the B domain in the opening of the cleft between domains B and A induced by the binding of activating cations allows substrates to bind, whereas substrate binding shifts the rotation of the B domain in the closure of the cleft. Trp-157 accounts for the differences in tryptophan fluorescence signal with and without activating cations and substrates. Trp-481 and Trp-514 are brought into an aqueous environment after phenylalanine binding.
Collapse
|
39
|
Xiong J, Ellis HR. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:898-906. [DOI: 10.1016/j.bbapap.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
|
40
|
In silico-screening approaches for lead generation: identification of novel allosteric modulators of human-erythrocyte pyruvate kinase. Methods Mol Biol 2012; 796:351-67. [PMID: 22052500 DOI: 10.1007/978-1-61779-334-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Identification of allosteric binding site modulators have gained increased attention lately for their potential to be developed as selective agents with a novel chemotype and targeting perhaps a new and unique binding site with probable fewer side effects. Erythrocyte pyruvate kinase (R-PK) is an important glycolytic enzyme that can be pharmacologically modulated through its allosteric effectors for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction. An in-silico screening approach was applied to identify novel allosteric modulators of pyruvate kinase. A small-molecules database of the National Cancer Institute (NCI), was virtually screened based on structure/ligand-based pharmacophore. The virtual screening campaign led to the identification of several compounds with similar pharmacophoric features as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the kinase. The compounds were subsequently docked into the FBP-binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates were obtained from the NCI and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK).
Collapse
|
41
|
Abstract
In this chapter, we demonstrate the advantage of the simultaneous multicurve nonlinear least-squares analysis over that of the conventional single-curve analysis. Fitting results are subjected to thorough Monte Carlo analysis for rigorous assessment of confidence intervals and parameter correlations. The comparison is performed on a practical example of simulated steady-state reaction kinetics complemented with isothermal calorimetry (ITC) data resembling allosteric behavior of rabbit muscle pyruvate kinase (RMPK). Global analysis improves accuracy and confidence limits of model parameters. Cross-correlation between parameters is also reduced with accompanying enhancement of the model-testing power. This becomes especially important for validation of models with "difficult" highly cross-correlated parameters. We show how proper experimental design and critical evaluation of data can improve the chance of differentiating models.
Collapse
Affiliation(s)
- Petr Herman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| | | |
Collapse
|
42
|
Zoraghi R, Worrall L, See RH, Strangman W, Popplewell WL, Gong H, Samaai T, Swayze RD, Kaur S, Vuckovic M, Finlay BB, Brunham RC, McMaster WR, Davies-Coleman MT, Strynadka NC, Andersen RJ, Reiner NE. Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. J Biol Chem 2011; 286:44716-25. [PMID: 22030393 PMCID: PMC3248012 DOI: 10.1074/jbc.m111.289033] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/29/2011] [Indexed: 11/06/2022] Open
Abstract
Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139-1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042-2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC(50) values of 16-60 nM) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 μg/ml, respectively) with selectivity indices (CC(50)/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in "small" interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.
Collapse
Affiliation(s)
- Roya Zoraghi
- From the Division of Infectious Diseases, Department of Medicine
| | - Liam Worrall
- the Department of Biochemistry and Molecular Biology
| | - Raymond H. See
- From the Division of Infectious Diseases, Department of Medicine
- the Center for Disease Control, and
| | | | - Wendy L. Popplewell
- the Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa, and
| | - Huansheng Gong
- From the Division of Infectious Diseases, Department of Medicine
| | - Toufiek Samaai
- the Department of Environmental Affairs, Ocean & Coast, Biodiversity and Ecosystem Research, Cape Town, Private Bag X447, South Africa
| | | | - Sukhbir Kaur
- From the Division of Infectious Diseases, Department of Medicine
| | | | - B. Brett Finlay
- the Department of Biochemistry and Molecular Biology
- Microbiology and Immunology, University of British Columbia, British Columbia, Vancouver V5Z 3J5, Canada
| | - Robert C. Brunham
- From the Division of Infectious Diseases, Department of Medicine
- the Center for Disease Control, and
| | - William R. McMaster
- From the Division of Infectious Diseases, Department of Medicine
- Microbiology and Immunology, University of British Columbia, British Columbia, Vancouver V5Z 3J5, Canada
| | | | | | | | - Neil E. Reiner
- From the Division of Infectious Diseases, Department of Medicine
- Microbiology and Immunology, University of British Columbia, British Columbia, Vancouver V5Z 3J5, Canada
| |
Collapse
|
43
|
Kumar S, Barth A. The allosteric effect of fructose bisphosphate on muscle pyruvate kinase studied by infrared spectroscopy. J Phys Chem B 2011; 115:11501-5. [PMID: 21870844 DOI: 10.1021/jp206272x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pyruvate kinase exhibits allosteric properties. The allosteric effect of fructose 1,6-bisphosphate (FBP) on phosphoenolpyruvate (PEP) binding to rabbit muscle pyruvate kinase (PK) in the presence of various ions (Mg(2+), Mn(2+), K(+), Na(+)) was studied by attenuated total reflection infrared spectroscopy in combination with a dialysis accessory. The experiments indicated that FBP binding causes conformational changes of PK that are of the same order of magnitude as those of PEP binding. The conformational change of PEP binding to PK/Mg(2+)/K(+) in the presence of FBP was about twice as large as in its absence, which is tentatively ascribed to a higher occupancy of the closed state. The affinity for PEP increased in the presence of Mg(2+) and K(+). No such effects were observed with the other ion combinations Mn(2+)/K(+) and Mg(2+)/Na(+) or in D(2)O (with Mg(2+)/K(+)), and therefore we did not detect an allosteric effect on PEP binding under these conditions.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
44
|
Mohammadi S, Nikkhah M, Nazari M, Hosseinkhani S. Design of a coupled bioluminescent assay for a recombinant pyruvate kinase from a thermophilic Geobacillus. Photochem Photobiol 2011; 87:1338-45. [PMID: 21790618 DOI: 10.1111/j.1751-1097.2011.00973.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A simple and rapid method using coupled bioluminescent assay was developed to determine level of ADP. ADP is involved in many biological reactions and ADP assay can be used for assaying some reactions universally by monitoring ADP formation or depletion. ADP analysis involves incubation of ADP or extracts containing ADP with pyruvate kinase (PK) and PEP. The ATP formed by this reaction is determined by measuring the intensity of the initial light flash produced when luciferin-luciferase preparation injected into the reaction mixture. In regard to the main role of the PK in this assay, the gene of PK from a Geobacillus species has been cloned in expression vector pET28a (+), sequenced and overexpressed in Escherichia coli. Recombinant protein was purified using Ni-NTA column and then the purified PK was used in a coupled bioluminescent assay for ADP measurement. Kinetic properties of PK are determined according to a bioluminescent assay using firefly luciferase.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
45
|
Abstract
The understanding of the molecular mechanisms of allostery in rabbit muscle pyruvate kinase (RMPK) is still in its infancy. Although, there is a paucity of knowledge on the ground rules on how its functions are regulated, RMPK is an ideal system to address basic questions regarding the fundamental chemical principles governing the regulatory mechanisms about this enzyme which has a TIM (α/β)(8) barrel structural motif [Copley, R. R., and Bork, P. (2000). Homology among (βα)8 barrels: Implications for the evolution of metabolic pathways. J. Mol. Biol.303, 627-640; Farber, G. K., and Petsko, G. A. (1990). The evolution of α/ß barrel enzymes. Trends Biochem.15, 228-234; Gerlt, J. A., and Babbitt, P. C. (2001). Divergent evolution of enzymatic function: Mechanistically diverse superfamilies and functionally distinct superfamilies. Annu. Rev. Biochem.70, 209-246; Heggi, H., and Gerstein, M. (1999). The relationship between protein structure and function: A comprehensive survey with application to the yeast genome. J. Mol. Biol.288, 147-164; Wierenga, R. K. (2001). The TIM-barrel fold: A versatile framework for efficient enzymes. FEB Lett.492, 193-198]. RMPK is a homotetramer. Each subunit consists of 530 amino acids and multiple domains. The active site resides between the A and B domains. Besides the basic TIM-barrel motif, RMPK also exhibits looped-out regions in the α/β barrel of each monomer forming the B- and C-domains. The two isozymes of PK, namely, the kidney and muscle isozymes, exhibit very different allosteric behaviors under the same experimental condition. The only amino acid sequence differences between the mammalian kidney and muscle PK isozymes are located in the C-domain and are involved in intersubunit interactions. Thus, embedded in these two isozymes of PK are the rules involved in engineering the popular TIM (α/β)(8) motif to modulate its allosteric properties. The PK system exhibits a lot of the properties that will allow mining of the ground rules governing the correlative linkages between sequence-fold-function. In this chapter, we review the approaches to acquire the fundamental functional and structural energetics that establish the linkages among this intricate network of linked multiequilibria. Results from these diverse approaches are integrated to establish a working model to represent the complex network of multiple linked reactions which ultimately leads to the observation of allosteric regulation of PK.
Collapse
|
46
|
Kumar S, Barth A. Effects of ions on ligand binding to pyruvate kinase: mapping the binding site with infrared spectroscopy. J Phys Chem B 2011; 115:6784-9. [PMID: 21539324 DOI: 10.1021/jp201862a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of mono- and divalent ions (Li(+), K(+), Na(+), Cs(+), Mg(2+), Ca(2+), Mn(2+), Zn(2+)) on the binding of phosphoenolpyruvate (PEP) to rabbit muscle pyruvate kinase (PK) were studied by attenuated total reflection infrared spectroscopy in combination with a dialysis accessory. The experiments assessed the structural change of the protein as well as the binding mode of PEP. They indicated that a signal at 1638 cm(-1) assigned to a β sheet was perturbed differently with Na(+) as compared to the other monovalent ions. Otherwise, we obtained similar conformational changes in the presence of different monovalent cations, and therefore, it seems unlikely that the ion effects on activity are due to an ion effect on the structure of the PEP:PK complex. With different divalent cations, a particularly large conformational change was observed with Mn(2+) and attributed to a more closed conformation of the complex. The absorption of bound PEP was also detected. The antisymmetric stretching vibration of the carboxylate group of bound PEP indicates a more homogeneous binding mode for Mn(2+) compared to the other divalent ions. The symmetric stretching vibration depends on both monovalent and divalent ions, indicating that the dihedral angle O-C(1)-C(2)-O is affected by the ions in the catalytic site. Little change in the bond strengths of PEP is observed, indicating that the PEP:PK complex does not adopt a reactive conformation.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
47
|
Effect of regular hydration on gas phase structural stability of [zwitterionic alanine+M+] (M+=Li+, Na+, K+) complexes: A quantum chemical study. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2010.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Identification of pyruvate kinase in methicillin-resistant Staphylococcus aureus as a novel antimicrobial drug target. Antimicrob Agents Chemother 2011; 55:2042-53. [PMID: 21357306 DOI: 10.1128/aac.01250-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme. In silico library screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 μM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity and S. aureus growth in vitro (MIC of 1 to 5 μg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistant S. aureus (MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.
Collapse
|
49
|
Zoraghi R, See RH, Gong H, Lian T, Swayze R, Finlay BB, Brunham RC, McMaster WR, Reiner NE. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry 2010; 49:7733-47. [PMID: 20707314 DOI: 10.1021/bi100780t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Here we report the essentiality and kinetic properties of MRSA pyruvate kinase (PK). Targetron-mediated gene disruption demonstrated PK is essential for S. aureus growth and survival, suggesting that this protein may be a potential drug target. The presence of the pfk (6-phosphofructokinase)-pyk operon in MRSA252, and the nonessential nature of PFK shown by targetron, further emphasized the essential role of PK in cell viability. The importance of PK in bacterial growth was confirmed by showing that its enzymatic activity peaked during the logarithmic phase of S. aureus growth. PK from Staphylococcus and several other species of bacteria have an extra C-terminal domain (CT) containing a phosphoenolpyruvate (PEP) binding motif. To elucidate the possible structure and function of this sequence, the quaternary structures and kinetic properties of the full-length MRSA PK and truncated MRSA PK lacking the CT domain were characterized. Our results showed that (1) MRSA PK is an allosteric enzyme with homotetramer architecture activated by AMP or ribose 5-phosphate (R5P), but not by fructose 1,6-bisphosphate (FBP), which suggests a different mode of allosteric regulation when compared with human isozymes, (2) the CT domain is not required for the tetramerization of the enzyme; homotetramerization occurred in a truncated PK lacking the domain, (3) truncated enzyme exhibited high affinity toward both PEP and ADP and exhibited hyperbolic kinetics toward PEP in the presence of activators (AMP and R5P) consistent with kinetic properties of full-length enzyme, indicating that the CT domain is not required for substrate binding or allosteric regulation observed in the holoenzyme, (4) the kinetic efficiency (k(cat)/S(0.5)) of truncated enzyme was decreased by 24- and 16-fold, in ligand-free state, toward PEP and ADP, respectively, but was restored by 3-fold in AMP-bound state, suggesting that the sequence containing the CT domain (Gly(473)-Leu(585)) plays a substantial role in enzyme activity and comformational stability, and (5) full-length MRSA PK activity was stimulated at low concentrations of ATP (e.g., 1 mM) and inhibited by inorganic phosphate and high concentrations of FBP (10 mM) and ATP (e.g., >2.5 mM), whereas for truncated enzyme, stimulation at low concentrations of ATP was lost. These findings suggest that the CT domain is involved in maintaining the specificity of allosteric regulation of MRSA PK by AMP, R5P, and ATP. The CT extension also encodes a protein domain with homology to enzyme I of the Escherichia coli sugar-PTS system, suggesting that MRSA PK may also exert an important regulatory role in sugar transport metabolism. These findings yield new insights into MRSA PK function and mode of allosteric regulation which may aid in the development of clinically important drugs targeting this enzyme and further define the role of the extra C-terminal domain in modulating the enzyme's activity.
Collapse
Affiliation(s)
- Roya Zoraghi
- Division of Infectious Diseases, Department of Medicine, University of BritishColumbia, Vancouver,Britsih Columbia,CanadaV5Z3J5
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fenton AW, Williams R, Trewhella J. Changes in small-angle X-ray scattering parameters observed upon binding of ligand to rabbit muscle pyruvate kinase are not correlated with allosteric transitions. Biochemistry 2010; 49:7202-9. [PMID: 20712377 DOI: 10.1021/bi100147w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein fluorescence and small-angle X-ray scattering (SAXS) have been used to monitor effector affinity and conformational changes previously associated with allosteric regulation in rabbit muscle pyruvate kinase (M(1)-PYK). In the absence of substrate [phosphoenolpyruvate (PEP)], SAXS-monitored conformational changes in M(1)-PYK elicited by the binding of phenylalanine (an allosteric inhibitor that reduces the affinity of M(1)-PYK for PEP) are similar to those observed upon binding of alanine or 2-aminobutyric acid. Under our assay conditions, these small amino acids bind to the protein but elicit a minimal change in the affinity of the protein for PEP. Therefore, if changes in scattering signatures represent cleft closure via domain rotation as previously interpreted, we can conclude that these motions are not sufficient to elicit allosteric inhibition. Additionally, although PEP has similar affinities for the free enzyme and the M(1)-PYK-small amino acid complexes (i.e., the small amino acids have minimal allosteric effects), PEP binding elicits different changes in the SAXS signature of the free enzyme versus the M(1)-PYK-small amino acid complexes.
Collapse
Affiliation(s)
- Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MS 3030, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|