1
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Reddy PH, Kshirsagar S, Bose C, Pradeepkiran JA, Hindle A, Singh SP, Reddy AP. Rlip overexpression reduces oxidative stress and mitochondrial dysfunction in Alzheimer's disease: Mechanistic insights. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166759. [PMID: 37225106 DOI: 10.1016/j.bbadis.2023.166759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects a large proportion of the aging population. RalBP1 (Rlip) is a stress-activated protein that plays a crucial role in oxidative stress and mitochondrial dysfunction in aging and neurodegenerative diseases but its precise role in the progression of AD is unclear. The purpose of our study is to understand the role of Rlip in the progression and pathogenesis of AD in mutant APP/amyloid beta (Aβ)-expressed mouse primary hippocampal (HT22) hippocampal neurons. In the current study, we used HT22 neurons that express mAPP, transfected with Rlip-cDNA and/or RNA silenced, and studied cell survival, mitochondrial respiration, mitochondrial function, immunoblotting & immunofluorescence analysis of synaptic and mitophagy protein's and colocalization of Rlip and mutant APP/Aβ proteins and mitochondrial length and number. We also assessed Rlip levels in autopsy brains from AD patients and control subjects. We found cell survival was decreased in mAPP-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mAPP-HT22 cells. Oxygen consumption rate (OCR) was decreased in mAPP-HT22 cells and RNA-silenced Rlip-HT22 cells. OCR was increased in Rlip-overexpressed in mAPP-HT22 cells. Mitochondrial function was defective in mAPP-HT22 cells and RNA silenced Rlip in HT22 cells, however, it was rescued in Rlip overexpressed mAPP-HT22 cells. Synaptic and mitophagy proteins were decreased in mAPP-HT22 cells, further reducing RNA-silenced Rlip-HT22 cells. However, these were increased in mAPP+Rlip-HT22 cells. Colocalization analysis revealed Rlip is colocalized with mAPP/Aβ. An increased number of mitochondria and decreased mitochondrial length were found in mAPP-HT22 cells. These were rescued in Rlip overexpressed mAPP-HT22 cells. Reduced Rlip levels were found in autopsy brains from AD patients. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reduced these defects.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Reddy PH, Kshirsagar S, Bose C, Pradeepkiran JA, Hindle A, Singh SP, Reddy AP, Baig J. Rlip Reduction Induces Oxidative Stress and Mitochondrial Dysfunction in Mutant Tau-Expressed Immortalized Hippocampal Neurons: Mechanistic Insights. Cells 2023; 12:1646. [PMID: 37371116 PMCID: PMC10297078 DOI: 10.3390/cells12121646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
RalBP1 (Rlip) is a stress-activated protein that is believed to play a large role in aging and neurodegenerative diseases such as Alzheimer's disease (AD) and other tauopathies. The purpose of our study was to understand the role of Rlip in mutant Tau-expressed immortalized hippocampal HT22 cells. In the current study, we used mutant Tau (mTau)-expressed HT22 neurons and HT22 cells transfected with Rlip-cDNA and/or silenced RNA, and studied the cell survival, mitochondrial respiration, mitochondrial function, immunoblotting, and immunofluorescence analysis of synaptic and mitophagy proteins and the colocalization of Rlip and mTau proteins. We found Rlip protein levels were reduced in mTau-HT22 cells, Rlip silenced HT22 cells, and mTau + Rlip RNA silenced HT22 cells; on the other hand, increased Rlip levels were observed in Rlip cDNA transfected HT22 cells. We found cell survival was decreased in mTau-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mTau-HT22 cells. A significantly reduced oxygen consumption rate (OCR) was found in mTau-HT22 cells and in RNA-silenced Rlip-HT22 cells, with an even greater reduction in mTau-HT22 + Rlip RNA-silenced HT22 cells. A significantly increased OCR was found in Rlip-overexpressed HT22 cells and in all groups of cells that overexpress Rlip cDNA. Mitochondrial function was defective in mTau-HT22 cells, RNA silenced Rlip in HT22 cells, and was further defective in mTau-HT22 + Rlip RNA-silenced HT22 cells; however, it was rescued in Rlip overexpressed in all groups of HT22 cells. Synaptic and mitophagy proteins were decreased in mTau-HT22 cells, and further reductions were found in RNA-silenced mTau-HT22 cells. However, these were increased in mTau + Rlip-overexpressed HT22 cells. An increased number of mitochondria and decreased mitochondrial length were found in mTau-HT22 cells. These were rescued in Rlip-overexpressed mTau-HT22 cells. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reverses these defects. Overall, our findings revealed that Rlip is a promising new target for aging, AD, and other tauopathies/neurological diseases.
Collapse
Affiliation(s)
- P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.K.); (C.B.); (J.A.P.); (A.H.); (S.P.S.); (J.B.)
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.K.); (C.B.); (J.A.P.); (A.H.); (S.P.S.); (J.B.)
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.K.); (C.B.); (J.A.P.); (A.H.); (S.P.S.); (J.B.)
| | - Jangampalli Adi Pradeepkiran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.K.); (C.B.); (J.A.P.); (A.H.); (S.P.S.); (J.B.)
| | - Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.K.); (C.B.); (J.A.P.); (A.H.); (S.P.S.); (J.B.)
| | - Sharda P. Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.K.); (C.B.); (J.A.P.); (A.H.); (S.P.S.); (J.B.)
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.K.); (C.B.); (J.A.P.); (A.H.); (S.P.S.); (J.B.)
| |
Collapse
|
4
|
Hindle A, Singh SP, Pradeepkiran JA, Bose C, Vijayan M, Kshirsagar S, Sawant NA, Reddy PH. Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer’s Disease? Int J Mol Sci 2022; 23:ijms23116098. [PMID: 35682775 PMCID: PMC9181721 DOI: 10.3390/ijms23116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia in older people. AD is associated with the loss of synapses, oxidative stress, mitochondrial structural and functional abnormalities, microRNA deregulation, inflammatory responses, neuronal loss, accumulation of amyloid-beta (Aβ) and phosphorylated tau (p-tau). AD occurs in two forms: early onset, familial AD and late-onset, sporadic AD. Causal factors are still unknown for a vast majority of AD patients. Genetic polymorphisms are proposed to contribute to late-onset AD via age-dependent increases in oxidative stress and mitochondrial abnormalities. Recent research from our lab revealed that reduced levels of Rlip76 induce oxidative stress, mitochondrial dysfunction and synaptic damage, leading to molecular and behavioral phenotypes resembling late-onset AD. Rlip76 is a multifunctional 76 kDa protein encoded by the RALBP1 gene, located on chromosome 18. Rlip is a stress-protective ATPase of the mercapturic acid pathway that couples clathrin-dependent endocytosis with the efflux of glutathione–electrophile conjugates. Rlip is evolutionarily highly conserved across species and is ubiquitously expressed in all tissues, including AD-affected brain regions, the cerebral cortex and hippocampus, where highly active neuronal metabolisms render the cells highly susceptible to intracellular oxidative damage. In the current article, we summarize molecular and cellular features of Rlip and how depleted Rlip may exacerbate oxidative stress, mitochondrial dysfunction and synaptic damage in AD. We also discuss the possible role of Rlip in aspects of learning and memory via axonal growth, dendritic remodeling, and receptor regulation. We conclude with a discussion of the potential for the contribution of genetic polymorphisms in Rlip to AD progression and the potential for Rlip-based therapies.
Collapse
Affiliation(s)
- Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Jangampalli Adi Pradeepkiran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Neha A. Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence:
| |
Collapse
|
5
|
Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Cells 2022; 11:cells11101645. [PMID: 35626682 PMCID: PMC9139244 DOI: 10.3390/cells11101645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.
Collapse
|
6
|
Bose C, Hindle A, Lee J, Kopel J, Tonk S, Palade PT, Singhal SS, Awasthi S, Singh SP. Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246377. [PMID: 34944997 PMCID: PMC8699056 DOI: 10.3390/cancers13246377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epidemiological evidence suggests that breast cancer risk is lowered by Ω-3 and increased by Ω-6 polyunsaturated fatty acids (PUFAs). Paradoxically, the Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE) inhibits cancer cell growth. This duality prompted us to study whether arachidonic acid (AA) would enhance doxorubicin (dox) cytotoxicity towards breast cancer cells. We found that supplementing AA or inhibiting 4-HNE metabolism potentiated doxorubicin (dox) toxicity toward Her2-dependent breast cancer but spared myocardial cells. Our results suggest that Ω-6 PUFAs could improve outcomes of dox chemotherapy in Her2-overexpressing breast cancer. Abstract Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.
Collapse
Affiliation(s)
- Chhanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Ashly Hindle
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jihyun Lee
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jonathan Kopel
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Sahil Tonk
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Medical Oncology Service, Doctors Hospital, 16 Middle Rd., George Town, Grand Cayman KY1-1104, Cayman Islands, UK
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
7
|
Haploinsufficiency Interactions between RALBP1 and p53 in ERBB2 and PyVT Models of Mouse Mammary Carcinogenesis. Cancers (Basel) 2021; 13:cancers13133329. [PMID: 34283045 PMCID: PMC8268413 DOI: 10.3390/cancers13133329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Rlip knockout has been reported to prevent cancer in highly cancer-susceptible mice lacking p53, and Rlip knockdown kills many types of cancer cells. In humans, breast cancer shows diverse characteristics, including HER2-driven subtypes and viral-driven subtypes. HER2 can be targeted; however, escape of the cancer from targeted therapies remains a problem. In this work we evaluated the capacity of Rlip knockout to prevent breast cancer in genetically engineered mouse models of HER2-driven breast cancer (Erbb2 model) and polyomavirus-driven breast cancer (PyVT model). We found that in Erbb2 mice, Rlip knockout significantly delayed oncogenesis and reduced the expression of genes associated with poor prognosis in patients. In PyVT mice, Rlip knockout did not delay oncogenesis or tumor growth, but Rlip knockdown reduced tumor metastasis to the lung. We conclude that Rlip inhibitors may significantly improve survival in HER2-positive patients, but are unlikely to offer benefits to patients with polyomavirus-associated tumors. Abstract We recently reported that loss of one or both alleles of Ralbp1, which encodes the stress-protective protein RLIP76 (Rlip), exerts a strong dominant negative effect on both the inherent cancer susceptibility and the chemically inducible cancer susceptibility of mice lacking one or both alleles of the tumor suppressor p53. In this paper, we examined whether congenital Rlip deficiency could prevent genetically-driven breast cancer in two transgenic mouse models: the MMTV-PyVT model, which expresses the polyomavirus middle T antigen (PyVT) under control of the mouse mammary tumor virus promoter (MMTV) and the MMTV-Erbb2 model which expresses MMTV-driven erythroblastic leukemia viral oncogene homolog 2 (Erbb2, HER2/Neu) and frequently acquires p53 mutations. We found that loss of either one or two Rlip alleles had a suppressive effect on carcinogenesis in Erbb2 over-expressing mice. Interestingly, Rlip deficiency did not affect tumor growth but significantly reduced the lung metastatic burden of breast cancer in the viral PyVT model, which does not depend on either Ras or loss of p53. Furthermore, spontaneous tumors of MMTV-PyVT/Rlip+/+ mice showed no regression following Rlip knockdown. Finally, mice lacking one or both Rlip alleles differentially expressed markers for apoptotic signaling, proliferation, angiogenesis, and cell cycling in PyVT and Erbb2 breast tumors. Our results support the efficacy of Rlip depletion in suppressing p53 inactivated cancers, and our findings may yield novel methods for prevention or treatment of cancer in patients with HER2 mutations or tumor HER2 expression.
Collapse
|
8
|
Singhal SS, Srivastava S, Mirzapoiazova T, Horne D, Awasthi S, Salgia R. Targeting the mercapturic acid pathway for the treatment of melanoma. Cancer Lett 2021; 518:10-22. [PMID: 34126193 DOI: 10.1016/j.canlet.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The treatment of metastatic melanoma is greatly hampered by the simultaneous dysregulation of several major signaling pathways that suppress apoptosis and promote its growth and invasion. The global resistance of melanomas to therapeutics is also supported by a highly active mercapturic acid pathway (MAP), which is responsible for the metabolism and excretion of numerous chemotherapy agents. The relative importance of the MAP in melanoma survival was not recognized until demonstrated that B16 melanoma undergoes dramatic apoptosis and regression upon the depletion or inhibition of the MAP transporter protein RLIP. RLIP is a multi-functional protein that couples ATP hydrolysis with the movement of substances. As the rate-limiting step of the MAP, the primary function of RLIP in the plasma membrane is to catalyze the ATP-dependent efflux of unmetabolized drugs and toxins, including glutathione (GSH) conjugates of electrophilic toxins (GS-Es), which are the precursors of mercapturic acids. Clathrin-dependent endocytosis (CDE) is an essential mechanism for internalizing ligand-receptor complexes that promote tumor cell proliferation through autocrine stimulation (Wnt5a, PDGF, βFGF, TNFα) or paracrine stimulation by hormones produced by fibroblasts (IGF1, HGF) or inflammatory cells (IL8). Aberrant functioning of these pathways appears critical for melanoma cell invasion, metastasis, and evasion of apoptosis. This review focuses on the selective depletion or inhibition of RLIP as a highly effective targeted therapy for melanoma that could cause the simultaneous disruption of the MAP and critical peptide hormone signaling that relies on CDE.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| | - Saumya Srivastava
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| |
Collapse
|
9
|
Parallel Rap1>RalGEF>Ral and Ras signals sculpt the C. elegans nervous system. Dev Biol 2021; 477:37-48. [PMID: 33991533 DOI: 10.1016/j.ydbio.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Ras is the most commonly mutated oncogene in humans and uses three oncogenic effectors: Raf, PI3K, and RalGEF activation of Ral. Understanding the importance of RalGEF>Ral signaling in cancer is hampered by the paucity of knowledge about their function in animal development, particularly in cell movements. We found that mutations that disrupt function of RalGEF or Ral enhance migration phenotypes of mutants for genes with established roles in cell migration. We used as a model the migration of the canal associated neurons (CANs), and validated our results in HSN cell migration, neurite guidance, and general animal locomotion. These functions of RalGEF and Ral are specific to their control of Ral signaling output rather than other published functions of these proteins. In this capacity Ral functions cell autonomously as a permissive developmental signal. In contrast, we observed Ras, the canonical activator of RalGEF>Ral signaling in cancer, to function as an instructive signal. Furthermore, we unexpectedly identified a function for the close Ras relative, Rap1, consistent with activation of RalGEF>Ral. These studies define functions of RalGEF>Ral, Rap1 and Ras signaling in morphogenetic processes that fashion the nervous system. We have also defined a model for studying how small GTPases partner with downstream effectors. Taken together, this analysis defines novel molecules and relationships in signaling networks that control cell movements during development of the nervous system.
Collapse
|
10
|
Cornish J, Owen D, Mott HR. RLIP76: A Structural and Functional Triumvirate. Cancers (Basel) 2021; 13:cancers13092206. [PMID: 34064388 PMCID: PMC8124665 DOI: 10.3390/cancers13092206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
RLIP76/RalBP1 is an ATP-dependent transporter of glutathione conjugates, which is overexpressed in various human cancers, but its diverse functions in normal cells, which include endocytosis, stress response and mitochondrial dynamics, are still not fully understood. The protein can be divided into three distinct regions, each with its own structural properties. At the centre of the protein are two well-defined domains, a GTPase activating protein domain targeting Rho family small G proteins and a small coiled-coil that binds to the Ras family small GTPases RalA and RalB. In engaging with Rho and Ral proteins, RLIP76 bridges these two distinct G protein families. The N-terminal region is predicted to be disordered and is rich in basic amino acids, which may mediate membrane association, consistent with its role in transport. RLIP76 is an ATP-dependent transporter with ATP-binding sites within the N-terminus and the Ral binding domain. Furthermore, RLIP76 is subject to extensive phosphorylation, particularly in the N-terminal region. In contrast, the C-terminal region is thought to form an extensive coiled-coil that could mediate dimerization. Here, we review the structural features of RLIP76, including experimental data and computational predictions, and discuss the implications of its various post-translational modifications.
Collapse
|
11
|
Haploinsufficiency Interactions of RALBP1 and TP53 in Carcinogenesis. Cancers (Basel) 2021; 13:cancers13020255. [PMID: 33445456 PMCID: PMC7827952 DOI: 10.3390/cancers13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
|
12
|
A potential function of RLIP76 in the ovarian corpus luteum. J Ovarian Res 2019; 12:34. [PMID: 30999946 PMCID: PMC6474048 DOI: 10.1186/s13048-019-0510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Ral interacting protein of 76 kDa (RLIP76) is multifunctional protein localized and distributed in the plasma membrane, cytosol, and nucleus of the cell. In tumorigenesis, RLIP76 emerges as a common feature for the solid tumor growth. RLIP76 is ubiquitously expressed in various tissues including the ovary. Interestingly, the similar physiological events in obtaining an adequate supply of nutrient by gaining access to the host vascular system are required either for corpus luteum formation or tumor development. In addition, the identical angiogenesis modulators were found in neoplastic and normal ovaries. Our previous study involving RLIP76−/− mice implanted with melanoma or carcinoma cell conclusively demonstrated that RLIP76 is necessary for angiogenesis and neovascularization of primary solid tumors. RLIP76 plays an essential role in tumor angiogenesis through the regulation of pro-angiogenic factors such as vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF-1). In certain previous studies, those pro-angiogenic factors were found significantly to be upregulated during the corpus luteum formation. To that, the following review will discuss the likelihood of RLIP76 role in ovarian corpus luteum.
Collapse
|
13
|
Singhal SS, Salgia R, Singhal S, Horne D, Awasthi S. RLIP: An existential requirement for breast carcinogenesis. Biochim Biophys Acta Rev Cancer 2019; 1871:281-288. [PMID: 30771458 DOI: 10.1016/j.bbcan.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. Due to its complexity in nature, effective BC treatment can encounter many challenges. The human RALBP1 gene encodes a 76-kDa splice variant protein, RLIP (ral-binding protein1, RalBP1), a stress-protective mercapturic acid pathway (MAP) transporter protein, that also plays a key role in regulating clathrin-dependent endocytosis (CDE) as a Ral effector. Growing evidence shows that targeting RLIP may be an effective strategy in cancer therapy, as RLIP is over-expressed in multiple cancers and is known to induce resistance to apoptosis and chemotherapeutic drugs. Recent studies demonstrated that RLIP is expressed in human BC tissues, as well as BC cell lines. Knockdown of RLIP resulted in apoptotic death of BC cells in vitro, and targeted inhibition and depletion of RLIP resulted in regression of BC in xenograft studies of nude mice. Signaling studies showed that RLIP depletion inhibited endocytosis and differentially regulated signaling to Akt, Myc, and ERK1/2. However, the proliferation and multi-specific transport mechanisms that promote RLIP-mediated cell death in BC are not well understood. In this review, we will discuss a missing but an essentially determining and connecting piece of the puzzle on the understanding of proliferation and transport mechanisms by focused analyses of the apoptotic, drug- and radiation-sensitivity regulated by RLIP, a stress-responsive non-ATP-binding cassette (ABC), high capacity MAP transporter, in breast cancer.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, CA 92092, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Awasthi S, Singhal SS, Singhal J, Nagaprashantha L, Li H, Yuan YC, Liu Z, Berz D, Igid H, Green WC, Tijani L, Tonk V, Rajan A, Awasthi Y, Singh SP. Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget 2018; 9:36202-36219. [PMID: 30546837 PMCID: PMC6281421 DOI: 10.18632/oncotarget.26329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we found that 2'-hydroxyflavonone (2HF), a citrus flavonoid, inhibits the growth of renal cell carcinoma in a VHL-dependent manner. This was associated with the inhibition of glutathione S-transferases (GSTs), the first step enzyme of the mercapturic acid pathway that catalyzes formation of glutathione-electrophile conjugates (GS-E). We studied 2HF in small cell (SCLC) and non-small cell (NSCLC) lung cancer cell lines for sensitivity to 2HF antineoplastic activity and to determine the role of the GS-E transporter Rlip (Ral-interacting protein; RLIP76; RALBP1) in the mechanism of action of 2HF. Our results show that 2HF induced apoptosis in both histological types of lung cancer and inhibited proliferation and growth through suppression of CDK4, CCNB1, PIK3CA, AKT and RPS6KB1 (P70S6K) signaling. Increased E-cadherin and reduced fibronectin and vimentin indicated inhibition of epithelial-mesenchymal transition. Additionally, 2HF inhibited efflux of doxorubicin and increased its accumulation in the cells, but did not add to the transport inhibitory effect of anti-Rlip antibodies alone. Binding of Rlip to 2HF was evident from successful purification of Rlip by 2HF affinity chromatography. Consistent with increased drug accumulation, combined treatment with 1-chloro-2, 4-dinitrobenzene, reduced the GI50 of 2HF by an order of magnitude. Results of in-vivo nude mouse xenograft studies of SCLC and NSCLC, which showed that orally administered 2HF inhibited growth of both histological types of lung cancer, confirmed in-vitro study results. Our result suggest that Rlip inhibition is likely a mechanism of action. Our findings are basis of proposing 2HF as therapeutic or preventative drug for lung cancer.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S. Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zheng Liu
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - David Berz
- Beverly Hills Cancer Center, Los Angeles, CA 90211, USA
| | - Henry Igid
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - William C. Green
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Lukman Tijani
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Aditya Rajan
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Yogesh Awasthi
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sharda P. Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
15
|
Abstract
Mice that have homozygous deletion of the p53 tumor suppressor protein universally die of malignancy, generally before 6 months of age. We show that hemizygous deficiency of RALBP1 (RLIP76 or Rlip) confers a degree of protection from spontaneous malignancy that has never previously been observed. This discovery introduces a paradigm for p53 function, in which Rlip plays a central role as an effector that appears necessary for the cancer susceptibility of p53 null mice. Because p53 loss has a powerful effect on genomic instability that contributes to the initiation and promotion of cancers and to drug and radiation resistance in humans, our findings provide a method for prevention and therapy of p53-deficient cancer. TP53 (p53) is a tumor suppressor whose functions are lost or altered in most malignancies. p53 homozygous knockout (p53−/−) mice uniformly die of spontaneous malignancy, typically T-cell lymphoma. RALBP1 (RLIP76, Rlip) is a stress-protective, mercapturic acid pathway transporter protein that also functions as a Ral effector involved in clathrin-dependent endocytosis. In stark contrast to p53−/− mice, Rlip−/− mice are highly resistant to carcinogenesis. We report here that partial Rlip deficiency induced by weekly administration of an Rlip-specific phosphorothioate antisense oligonucleotide, R508, strongly inhibited spontaneous as well as benzo(a)pyrene-induced carcinogenesis in p53−/− mice. This treatment effectively prevented large-scale methylomic and transcriptomic abnormalities suggestive of inflammation found in cancer-bearing p53−/− mice. The remarkable efficiency with which Rlip deficiency suppresses spontaneous malignancy in p53−/− mice has not been observed with any previously reported pharmacologic or genetic intervention. These findings are supported by cross-breeding experiments demonstrating that hemizygous Rlip deficiency also reduces the spontaneous malignancy phenotype of p53+/− mice. Rlip is found on the cell surface, and antibodies directed against Rlip were found to inhibit growth and promote apoptosis of cell lines as effectively as Rlip siRNA. The work presented here investigates several features, including oxidative DNA damage of the Rlip–p53 association in malignant transformation, and offers a paradigm for the mechanisms of tumor suppression by p53 and the prospects of suppressing spontaneous malignancy in hereditary cancer syndromes such as Li-Fraumeni.
Collapse
|
16
|
Awasthi YC, Ramana KV, Chaudhary P, Srivastava SK, Awasthi S. Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity. Free Radic Biol Med 2017; 111:235-243. [PMID: 27794453 PMCID: PMC5643026 DOI: 10.1016/j.freeradbiomed.2016.10.493] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/17/2022]
Abstract
Glutathione-S-Transferases (GSTs) have primarily been thought to be xenobiotic metabolizing enzymes that protect cells from toxic drugs and environmental electrophiles. However, in last three decades, these enzymes have emerged as the regulators of oxidative stress-induced signaling and toxicity. 4-Hydroxy-trans 2-nonenal (HNE) an end-product of lipid peroxidation, has been shown to be a major determinant of oxidative stress-induced signaling and toxicity. HNE is involved in signaling pathways, including apoptosis, proliferation, modulation of gene expression, activation of transcription factors/repressors, cell cycle arrest, and differentiation. In this article, available evidence for a major role of GSTs in the regulation of HNE-mediated cell signaling processes through modulation of the intracellular levels of HNE is discussed.
Collapse
Affiliation(s)
- Yogesh C Awasthi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Pankaj Chaudhary
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort worth, TX 76107, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjay Awasthi
- Department of Internal Medicine-Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
17
|
Zhang H, Li W. Dysregulation of micro-143-3p and BALBP1 contributes to the pathogenesis of the development of ovarian carcinoma. Oncol Rep 2016; 36:3605-3610. [PMID: 27748916 DOI: 10.3892/or.2016.5148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/09/2016] [Indexed: 11/05/2022] Open
Abstract
The objective of the present study was to identify the association between mir-143-3p and RalA-binding protein 1 (RALBP1), and their roles in regulating the development of ovarian cancer. Overexpression of RALBP1 induced apoptosis of the ovarian cancer cells, and developed ovarian cancer. In silico analysis and luciferase assay were used to identify whether RALBP1 was the target of mir-143-3p. Subsequently, real‑time PCR and western blotting were used to determine the expression level of mir-143-3p, RALBP1 mRNA and protein in different groups, furthermore, MTT assay and flow cytometry were used to detect the viability and apoptosis of cells in different treatment groups. We identified RALBP1 as a target gene of miR-143-3p using computational analysis, and the luciferase activity of cells transfected with wild-type RALBP1 and RALBP1 siRNA were much lower than the scramble control, however, the luciferase activity of cells transfected with mutant RALBP1 was similar with scramble control. The real-time PCR and western blot results suggested that the miR‑143-3p level was markedly lower in participants with ovarian cancer compared with normal control, while the expression of RALBP1 mRNA and protein were evidently overexpressed in participants with ovarian cancer compared with normal control. Furthermore, the RALBP1 mRNA and protein level in cells transfected with miR-143-3p mimics and RALBP1 siRNA were downregulated, while notably upregulated subsequent to transfection with miR-143-3p inhibitor, when compared with scramble control. Additionally, the viability of cells were inhibited following transfection with miR-143-3p mimics and RALBP1 siRNA, while notably promoted subsequent to transfection with miR-143-3p inhibitor. Apoptosis of cells were promoted following transfection with miR-143-3p mimics and RALBP1 siRNA, while notably inhibited subsequent to transfection with miR-143-3p inhibitor. These findings provide support that downregulation of the miR-143-3p is associated with a decreased risk of ovarian cancer.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Wanbin Li
- Jining Medical University, Jining, Shandong 272113, P.R. China
| |
Collapse
|
18
|
Wang W, Liu J, Qi J, Zhang J, Zhu Q, Qin C. RLIP76 increases apoptosis through Akt/mTOR signaling pathway in gastric cancer. Oncol Rep 2016; 36:2216-24. [PMID: 27572296 PMCID: PMC5928772 DOI: 10.3892/or.2016.5043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/21/2016] [Indexed: 11/06/2022] Open
Abstract
RLIP76 is a stress-responsive multifunctional protein and is usually overexpressed in malignant carcinomas. It plays a significant role in multiple cellular biological behaviors, including cell growth, motility, division and apoptosis, in many types of malignant cells. However, functions of RLIP76 in gastric cancer (GC) remain unknown. In the present study, RLIP76 was overexpressed in GC tissues by immunohistochemistry. RLIP76-targeted shRNA-containing lentivirus (KD) and the scrambled shRNA (NC) were used to explore the knockout of RLIP76 on cellular functions of human GC SGC-7901 and MGC-803 cells. Quantitative RT-PCR and western blotting were used to confirm that the RLIP76 was suppressed both on mRNA and protein levels after transfection. The mRNA level in SGC-7901 and MGC-803 after transfection of RLIP76-targeted shRNA was 0.245722±0.021077 (p<0.05) and 0.225389±0.00974 (p<0.05), respectively. Our results showed that the konckdown of RLIP76 downregulated cell growth after 24 h in Cell Counting Kit-8 (CCK-8) assay, reduced migration from 486.7±128.8 to 219.7±43.6 in SGC-7901 (p<0.05) and from 630±95 to 333.7±46.5 in MGC-803 (p<0.05), decreased invasion from 306±33.5 to 97.7±24.3 in SGC-7901 (p<0.05) and from 350±50.9 to 163.3±87.5 in MGC-803 (p<0.05). Length of vascular endothelial growth factor (VEGF)-induced tube formation also decreased from 202.8±83.3 to 44.5±3.69 in SGC-7901 and from 193±3.5 to 71.8±8.83 in MGC-803 (p<0.05). Phosphorylation level of Akt declined from 138.45±13.8 to 69.9±29.7% in SGC-7901, and from 115.5±26.6 to 49.07±27% in MGC-803 (p<0.05) and phosphorylation level of mTOR also significantly decreased (p<0.05). While apoptosis of GC cells increased which we verified with apoptosis proteins and staining analysis. Our data showed that RLIP76 plays a significant oncogenic role in GC and it maybe a potential target in GC treatment.
Collapse
Affiliation(s)
| | | | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | | | | | | |
Collapse
|
19
|
Wang W, Liu J, Qi J, Zhang J, Zhu Q, Ma J, Qin C. Downregulation of RLIP76 is associated with vincristine resistance in human colorectal cancer HCT-8/VCR cells. Int J Oncol 2016; 49:1505-1512. [PMID: 27633085 DOI: 10.3892/ijo.2016.3672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/27/2016] [Indexed: 11/06/2022] Open
Abstract
RLIP76 is an anti-apoptotic transporter, participating in the multi-specific drug transport and resistance. In the absence of chemotherapy drugs, the knockout or inhibition of RLIP76 leads to pronounced tumor regression. RLIP76 transports anthracycline and vinca alkaloid drugs and mediates the resistance to these drugs. However, functions of RLIP76 in drug resistance colorectal cancer remain unclear. HCT-8 and the vincristine (VCR)-resistant colorectal cancer cell line HCT-8/VCR (HCT-8/V) were used in the present study. The effects of RLIP76 knockdown by the lentivirus were examined in cultured cells, including growth, apoptosis, invasion, and signaling pathways by qRT-PCR, western blot analysis and transwell assay. The relative level of RLIP76 in HCT-8 and HCT-8/V was assessed by western blot analysis, finding RLIP76 was overexpressed in HCT-8/V. Then, HCT-8/V cancer cells were transfected with lentivirus encoding RLIP76-specific shRNA (KD) and the control (NC), and no significant difference of RLIP76 level between the NC cells and cells without transfection was found, but the relative mRNA level decreased to 0.277±0.016 and protein level also reduced in KD cells. Cell functions changed after RLIP76 knockdown in HCT-8/V. The IC50 of VCR decreased from 164.4±1.734 to 13.95±2.008 (µg/ml) (p<0.05) in cell culture. The cell number reduced from 329.67±20.23 to 176.33±2.52 (p<0.05) in migration assay and from 294.67±30.07 to 153±22.11 (p<0.05) in invasion assay. Moreover, apoptotic proteins, including cleaved-caspase-8, cleaved-caspase-9, cleaved-Parp and Bax increased. The phosphorylation level of Erk also reduced significantly. The present study showed that RLIP76 is a key effector of cancer cell survival, invasion, and migration and possibly an important target to improve drug resistance and tumor treatment.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Juan Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Junyong Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jincai Ma
- Department of Gastroenterology, The Fifth People's Hospital of Jinan, Jinan, Shandong, 250021, P.R. China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
20
|
Mott HR, Owen D. RLIP76 (RalBP1): The first piece of the structural puzzle. Small GTPases 2014; 1:157-160. [PMID: 21686269 DOI: 10.4161/sgtp.1.3.14233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022] Open
Abstract
RLIP76 (RalBP1) is a multidomain protein that is a downstream effector of the small GTP ases RalA and RalB. As well as the Ral binding domain it contains a RhoGAP domain active against Cdc42 and Rac1. RLIP76 also binds to proteins involved in endocytosis and to R-Ras. We recently solved the structure of the Ral binding domain of RLIP76 and the structure of the complex that it forms with RalB. The structure shows that, unlike the other Ral effectors characterized so far, RLIP76 forms a coiled-coil that interacts with RalB. The RLIP76 Ral binding domain binds to both the switch regions of RalB, which are the parts of the G protein that chance conformation upon nucleotide exchange. Here, we review our structure and discuss how it sheds light on the other functions of RLIP76.
Collapse
Affiliation(s)
- Helen R Mott
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
21
|
Gentry LR, Martin TD, Reiner DJ, Der CJ. Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2976-2988. [PMID: 25219551 DOI: 10.1016/j.bbamcr.2014.09.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/26/2023]
Abstract
Since their discovery in 1986, Ral (Ras-like) GTPases have emerged as critical regulators of diverse cellular functions. Ral-selective guanine nucleotide exchange factors (RalGEFs) function as downstream effectors of the Ras oncoprotein, and the RalGEF-Ral signaling network comprises the third best characterized effector of Ras-dependent human oncogenesis. Because of this, Ral GTPases as well as their effectors are being explored as possible therapeutic targets in the treatment of RAS mutant cancer. The two Ral isoforms, RalA and RalB, interact with a variety of downstream effectors and have been found to play key and distinct roles in both normal and neoplastic cell physiology including regulation of vesicular trafficking, migration and invasion, tumor formation, metastasis, and gene expression. In this review we provide an overview of Ral biochemistry and biology, and we highlight recent discoveries.
Collapse
Affiliation(s)
- Leanna R Gentry
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA
| | | | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Structure and function of RLIP76 (RalBP1): an intersection point between Ras and Rho signalling. Biochem Soc Trans 2014; 42:52-8. [PMID: 24450627 DOI: 10.1042/bst20130231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RLIP76 (Ral-interacting protein of 76 kDa) [also known as RalBP1 (Ral-binding protein 1)] is an effector for the Ral family small GTPases. RLIP76 has been implicated in a number of cell processes, including receptor-mediated endocytosis, cell migration, mitochondrial division and metabolite transport. RLIP76 has two recognizable domains in the centre of the protein sequence: a GAP (GTPase-activating protein) domain for the Rho family G-proteins and an RBD (Ral-binding domain). The remainder of RLIP76 has no discernable homology with other proteins. The RBD forms a simple coiled-coil of two α-helices, which interacts with RalB by binding to both of the nucleotide-sensitive 'switch' regions. Both of these RLIP76 helices are involved in the interaction with Ral, but the interhelix loop is left free. This is the location of one of the two ATP-binding sites that have been identified in RLIP76 and suggests that Ral interaction would not prevent ATP binding. The structure of the RhoGAP-RBD dyad shows that the two domains are fixed in their orientation by a relatively rigid linker. This domain arrangement allows the two domains to engage Rho family and Ral small G-proteins simultaneously at the membrane. This suggests that RLIP76 is a node for Rho and Ras family signalling.
Collapse
|
23
|
Lee S, Goldfinger LE. RLIP76 regulates HIF-1 activity, VEGF expression and secretion in tumor cells, and secretome transactivation of endothelial cells. FASEB J 2014; 28:4158-68. [PMID: 24928198 DOI: 10.1096/fj.14-255711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/02/2014] [Indexed: 02/02/2023]
Abstract
This study was undertaken to reveal the mechanisms by which RLIP76 regulates endothelial cell angiogenic responses. RLIP76 is an effector of the angiogenic modulator, R-Ras. RLIP76 is overexpressed in many tumors, required for tumor angiogenesis, and blockade of RLIP76 results in tumor regression in multiple models. We report here that RLIP76 was required for expression and secretion of vascular endothelial growth factor (VEGF) in carcinoma and melanoma cells. Conditioned medium derived from RLIP76-depleted tumor cells, but not control knockdown cells, could not stimulate proliferation, migration, or Matrigel cord formation in endothelial cell cultures, which indicates that RLIP76 regulates angiogenic components of the tumor cell secretome. Recombinant VEGF added to conditioned medium from RLIP76-knockdown tumor cells restored these endothelial cell functions. Transcriptional activity of hypoxia-inducible factor 1 (HIF-1), which drives VEGF expression, was blocked in RLIP76-depleted tumor cells. RLIP76 was required for PI3-kinase activation, known to regulate HIF-1, in these cells. However, HIF-1α expression and nuclear localization were unaffected by RLIP76 knockdown, which suggests that RLIP76 regulates HIF-1 at the functional level. Thus, RLIP76 regulates tumor cell transactivation of endothelial cells via control of VEGF expression and secretion, providing a new important link in the mechanism of tumor cell induction of angiogenesis.
Collapse
Affiliation(s)
- Seunghyung Lee
- Department of Anatomy and Cell Biology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Lawrence E Goldfinger
- Department of Anatomy and Cell Biology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Rajasekar K, Campbell L, Nietlispach D, Owen D, Mott H. The structure of the RLIP76 RhoGAP-Ral binding domain dyad: fixed position of the domains leads to dual engagement of small G proteins at the membrane. Structure 2013; 21:2131-42. [PMID: 24207123 PMCID: PMC3852207 DOI: 10.1016/j.str.2013.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/15/2023]
Abstract
RLIP76 is an effector for Ral small GTPases, which in turn lie downstream of the master regulator Ras. Evidence is growing that Ral and RLIP76 play a role in tumorigenesis, invasion, and metastasis. RLIP76 contains both a RhoGAP domain and a Ral binding domain (GBD) and is, therefore, a node between Ras and Rho family signaling. The structure of the RhoGAP-GBD dyad reveals that the RLIP76 RhoGAP domain adopts a canonical RhoGAP domain structure and that the linker between the two RLIP76 domains is structured, fixing the orientation of the two domains and allowing RLIP76 to interact with Rho-family GTPases and Ral simultaneously. However, the juxtaposed domains do not influence each other functionally, suggesting that the RLIP76-Ral interaction controls cellular localization and that the fixed orientation of the two domains orientates the RhoGAP domain with respect to the membrane, allowing it to be perfectly poised to engage its target G proteins.
Collapse
Affiliation(s)
- Karthik V. Rajasekar
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Louise J. Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Helen R. Mott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
25
|
Sehrawat A, Yadav S, Awasthi YC, Basu A, Warden C, Awasthi S. P300 regulates the human RLIP76 promoter activity and gene expression. Biochem Pharmacol 2013; 85:1203-11. [PMID: 23419874 DOI: 10.1016/j.bcp.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 11/29/2022]
Abstract
A 76-kDa Ral-interacting protein (RLIP76) has been implicated in the pathogenesis of cancer and diabetes. It is often over expressed in human malignant cell lines and human tumor samples and has been associated with metastasis and chemoresistance. RLIP76 homozygous knockout mice exhibit increased insulin sensitivity, hypoglycemia, and hypolipidemia, and resist cancer development. Little is known about the mechanism by which the expression of RLIP76 is regulated. In the present study, we functionally characterized the RLIP76 promoter using deletion mapping and mutational analysis to investigate the regulation of RLIP76 transcription. We have identified the promoter regions important for RLIP76 transcription, including a strong cis-activating element in the proximal promoter containing overlapping consensus cMYB and cETS binding sites. Transcription factor cMYB and the coactivator p300 associated with RLIP76 gene promoter as shown by CHIP assay. Knockdown of p300 in HEK293 cells reduced the activity of the promoter fragment containing wild type cMYB/cETS binding site in comparison to that with deleted or mutated cMYB/cETS binding site. Knockdown of p300 also decreased the RLIP76 expression as indicated by immunoblotting, immunocytochemistry and flow cytometry analysis. Thus, we report for the first time that p300 associates with the RLIP76 promoter via an overlapping cMYB and cETS binding site and regulates RLIP76 promoter activity and its expression.
Collapse
Affiliation(s)
- Archana Sehrawat
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | |
Collapse
|
26
|
Goldfinger LE, Lee S. Emerging treatments in lung cancer - targeting the RLIP76 molecular transporter. LUNG CANCER-TARGETS AND THERAPY 2013; 2013:61-69. [PMID: 25419163 PMCID: PMC4240306 DOI: 10.2147/lctt.s53672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multidrug resistance in lung cancer cells is a significant obstacle in the treatment of lung cancer. Resistance to chemotherapeutic agents is often the result of efflux of the drugs from cancer cells, mediated by adenosine triphosphate (ATP)-dependent drug transport across the plasma membrane. Thus, identifying molecular targets in the cancer cell transport machinery could be a key factor in successful combinatorial therapy, along with chemotherapeutic drugs. The transport protein Ral-interacting protein of 76 kDa (RLIP76), also known as Ral-binding protein 1 (RalBP1), is a highly promising target for lung cancer treatment. RLIP76 is an ATP-dependent non-ATP-binding cassette (ABC) transporter, responsible for the major transport function in many cells, including many cancer cell lines, causing efflux of glutathione-electrophile conjugates of both endogenous metabolites and environmental toxins. RLIP76 is expressed in most human tissues, and is overexpressed in non-small-cell lung cancer cell lines and in many tumor types. The blockade of RLIP76 by various approaches has been shown to increase the sensitivity to radiation and chemotherapeutic drugs, and leads to apoptosis in cells. In xenograft tumor models in mice, RLIP76 blockade or depletion results in complete and sustained regression across many cancer cell types, including lung cancer cells. In addition to its transport function, RLIP76 has many other cellular and physiological functions based on its domain structure, which includes a unique Ral-binding domain and a Rho GTPase activating protein (RhoGAP)-catalytic domain as well as docking sites for multiple signaling proteins. As a Ral effector, RhoGAP, and adapter protein, RLIP76 has been shown to play important roles in endocytosis, mitochondrial fission, cell spreading and migration, actin dynamics during gastrulation, and Ras-induced tumorigenesis. Additionally, RLIP76 is also important for stromal cell function in tumors, as it was recently shown to be required for efficient endothelial cell function and angiogenesis in solid tumors. However, RLIP76 knockout mice are viable, and blockade effects appear to be selective for implanted tumors in mice, suggesting the possibility that RLIP76-targeting drugs may be successful in clinical trials. In this review, we outline the many cellular and physiological functions of RLIP76 in normal and cancer cells, and discuss the potential for RLIP76-based therapeutics in lung cancer treatment.
Collapse
Affiliation(s)
- Lawrence E Goldfinger
- Department of Anatomy and Cell Biology, The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA ; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Seunghyung Lee
- Department of Anatomy and Cell Biology, The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
Wang Q, Wang JY, Zhang XP, Lv ZW, Fu D, Lu YC, Hu GH, Luo C, Chen JX. RLIP76 is overexpressed in human glioblastomas and is required for proliferation, tumorigenesis and suppression of apoptosis. Carcinogenesis 2012; 34:916-26. [DOI: 10.1093/carcin/bgs401] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Lee S, Wurtzel JGT, Singhal SS, Awasthi S, Goldfinger LE. RALBP1/RLIP76 depletion in mice suppresses tumor growth by inhibiting tumor neovascularization. Cancer Res 2012; 72:5165-73. [PMID: 22902412 DOI: 10.1158/0008-5472.can-12-0468] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RalBP1/RLIP76 is a widely expressed multifunctional protein that binds the Ral and R-Ras small GTPases. In the mouse, RLIP76 is nonessential but its depletion or blockade promotes tumorigenesis and heightens the sensitivity of normal and tumor cells to radiation and cytotoxic drugs. However, its pathobiologic functions, which support tumorigenesis, are not well understood. Here, we show that RLIP76 is required for angiogenesis and for efficient neovascularization of primary solid tumors. Tumor growth from implanted melanoma or carcinoma cells was blunted in RLIP76(-/-) mice. An X-ray microcomputed tomography-based method to model tumor vascular structures revealed defects in both the extent and form of tumor angiogenesis in RLIP76(-/-) mice. Specifically, tumor vascular volumes were diminished and vessels were fewer in number, shorter, and narrower in RLIP76(-/-) mice than in wild-type mice. Moreover, we found that angiogenesis was blunted in mutant mice in the absence of tumor cells, with endothelial cells isolated from these animals exhibiting defects in migration, proliferation, and cord formation in vitro. Taken together, our results establish that RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.
Collapse
Affiliation(s)
- Seunghyung Lee
- Authors' Affiliations: Department of Anatomy & Cell Biology and The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
29
|
Leake K, Singhal J, Nagaprashantha LD, Awasthi S, Singhal SS. RLIP76 regulates PI3K/Akt signaling and chemo-radiotherapy resistance in pancreatic cancer. PLoS One 2012; 7:e34582. [PMID: 22509328 PMCID: PMC3317991 DOI: 10.1371/journal.pone.0034582] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy. Research Design and Methods Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively. Results Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer. Conclusions/Significance RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers.
Collapse
Affiliation(s)
- Kathryn Leake
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Jyotsana Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Lokesh Dalasanur Nagaprashantha
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sanjay Awasthi
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sharad S. Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
The RalB small GTPase mediates formation of invadopodia through a GTPase-activating protein-independent function of the RalBP1/RLIP76 effector. Mol Cell Biol 2012; 32:1374-86. [PMID: 22331470 DOI: 10.1128/mcb.06291-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our recent studies implicated key and distinct roles for the highly related RalA and RalB small GTPases (82% sequence identity) in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis and invasive and metastatic growth, respectively. How RalB may promote PDAC invasion and metastasis has not been determined. In light of known Ral effector functions in regulation of actin organization and secretion, we addressed a possible role for RalB in formation of invadopodia, actin-rich membrane protrusions that contribute to tissue invasion and matrix remodeling. We determined that a majority of KRAS mutant PDAC cell lines exhibited invadopodia and that expression of activated K-Ras is both necessary and sufficient for invadopodium formation. Invadopodium formation was not dependent on the canonical Raf-MEK-ERK effector pathway and was instead dependent on the Ral effector pathway. However, this process was more dependent on RalB than on RalA. Surprisingly, RalB-mediated invadopodium formation was dependent on RalBP1/RLIP76 but not Sec5 and Exo84 exocyst effector function. Unexpectedly, the requirement for RalBP1 was independent of its best known function as a GTPase-activating protein for Rho small GTPases. Instead, disruption of the ATPase function of RalBP1 impaired invadopodium formation. Our results identify a novel RalB-mediated biochemical and signaling mechanism for invadopodium formation.
Collapse
|
31
|
Neel NF, Martin TD, Stratford JK, Zand TP, Reiner DJ, Der CJ. The RalGEF-Ral Effector Signaling Network: The Road Less Traveled for Anti-Ras Drug Discovery. Genes Cancer 2011; 2:275-87. [PMID: 21779498 PMCID: PMC3128631 DOI: 10.1177/1947601911407329] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The high frequency of RAS mutations in human cancers (33%) has stimulated intense interest in the development of anti-Ras inhibitors for cancer therapy. Currently, the major focus of these efforts is centered on inhibitors of components involved in Ras downstream effector signaling. In particular, more than 40 inhibitors of the Raf-MEK-ERK mitogen-activated protein kinase cascade and phosphoinositide 3-kinase-AKT-mTOR effector signaling networks are currently under clinical evaluation. However, these efforts are complicated by the fact that Ras can utilize at least 9 additional functionally distinct effectors, with at least 3 additional effectors with validated roles in Ras-mediated oncogenesis. Of these, the guanine nucleotide exchange factors of the Ras-like (Ral) small GTPases (RalGEFs) have emerged as important effectors of mutant Ras in pancreatic, colon, and other cancers. In this review, we summarize the evidence for the importance of this effector pathway in cancer and discuss possible directions for therapeutic inhibition of aberrant Ral activation and signaling.
Collapse
Affiliation(s)
- Nicole F Neel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
32
|
Singhal SS, Wickramarachchi D, Yadav S, Singhal J, Leake K, Vatsyayan R, Chaudhary P, Lelsani P, Suzuki S, Yang S, Awasthi YC, Awasthi S. Glutathione-conjugate transport by RLIP76 is required for clathrin-dependent endocytosis and chemical carcinogenesis. Mol Cancer Ther 2011; 10:16-28. [PMID: 21220488 PMCID: PMC3065778 DOI: 10.1158/1535-7163.mct-10-0699] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted depletion of the RALBP1-encoded 76-kDa splice variant, RLIP76, causes marked and sustained regression of human xenografts of lung, colon, prostate, and kidney cancers without toxicity in nude mouse models. We proposed that the remarkable efficacy and broad spectrum of RLIP76-targeted therapy is because its glutathione-conjugate (GS-E) transport activity is required for clathrin-dependent endocytosis (CDE), which regulates all ligand-receptor signaling, and that RLIP76 is required not only for survival of cancer cells but also for their very existence. We studied RLIP76 mutant proteins and the functional consequences of their expression into RLIP76(-/-) MEFs, identified key residues for GS-E binding in RLIP76, established the requirement of RLIP76-mediated GS-E transport for CDE, and showed a direct correlation between GS-E transport activities with CDE. Depletion of RLIP76 nearly completely blocked signaling downstream of EGF in a CDE-dependent manner and Wnt5a signaling in a CDE-independent manner. The seminal prediction of this hypothesis-RLIP76(-/-) mice will be deficient in chemical neoplasia-was confirmed. Benzo[a]pyrene, dimethylbenzanthracene, and phorbol esters are ineffective in causing neoplasia in RLIP76(-/-). PMA-induced skin carcinogenesis in RLIP76(+/+) mouse was suppressed completely by depletion of either PKCα or RLIP76 by siRNA or antisense and could be restored by topical application of RLIP76 protein in RLIP76(-/-) mouse skin. Likewise, chemical pulmonary carcinogenesis was absent in female and nearly absent in male RLIP76(-/-) mice. In RLIP76(-/-) mice, p53, p38, and JNK activation did not occur in response to either carcinogen. Our findings show a fundamental role of RLIP76 in chemical carcinogenesis.
Collapse
Affiliation(s)
- Sharad S Singhal
- Corresponding Authors: Sanjay Awasthi or Sharad S. Singhal, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fenwick RB, Campbell LJ, Rajasekar K, Prasannan S, Nietlispach D, Camonis J, Owen D, Mott HR. The RalB-RLIP76 complex reveals a novel mode of ral-effector interaction. Structure 2010; 18:985-95. [PMID: 20696399 DOI: 10.1016/j.str.2010.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/30/2010] [Accepted: 05/11/2010] [Indexed: 01/08/2023]
Abstract
RLIP76 (RalBP1) is a multidomain protein that interacts with multiple small G protein families: Ral via a specific binding domain, and Rho and R-Ras via a GTPase activating domain. RLIP76 interacts with endocytosis proteins and has also been shown to behave as a membrane ATPase that transports chemotherapeutic agents from the cell. We have determined the structure of the Ral-binding domain of RLIP76 and show that it comprises a coiled-coil motif. The structure of the RLIP76-RalB complex reveals a novel mode of binding compared to the structures of RalA complexed with the exocyst components Sec5 and Exo84. RLIP76 interacts with both nucleotide-sensitive regions of RalB, and key residues in the interface have been identified using affinity measurements of RalB mutants. Sec5, Exo84, and RLIP76 bind Ral proteins competitively and with similar affinities in vitro.
Collapse
Affiliation(s)
- R Brynmor Fenwick
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
RLIP76: a versatile transporter and an emerging target for cancer therapy. Biochem Pharmacol 2010; 79:1699-705. [PMID: 20097178 DOI: 10.1016/j.bcp.2010.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 01/29/2023]
Abstract
In the last few years, extensive research has been made to elucidate the functional significance of RLIP76. The resulting novel breakthroughs have helped us understand its transport and signaling functions. RLIP76 is a ubiquitously expressed, key stress-defensive, anti-apoptotic, multi-functional protein that transports glutathione-conjugates of electrophilic compounds, thus controlling the intracellular concentration of pro-apoptotic oxidized lipid byproducts and other xenobiotics such as chemotherapeutic agents. These properties place RLIP76 at a very important position in the hierarchy of the stress defense mechanism adopted by the cell. Selective over-expression of RLIP76 in malignant cells of diverse origin is one of the possible mechanisms by which these cells overcome chemotherapy and radiation induced oxidative damage. RLIP76 has also been shown to be an effective transporter of many conventional chemotherapeutic drugs. Such transport, if inhibited, can lead to increased cellular accumulation of drugs which in turn translates to enhanced drug sensitivity. Recent studies have shown that inhibition and/or depletion of RLIP76 by antibodies, siRNA, or antisense can lead to drastic and sustained regression of lung, kidney, melanoma, colon, and prostate cancer xenografts with no observed recurrence of tumors. All these findings converge on the fact that such inhibition/depletion of RLIP76 can be used clinically to terminate cancer growth and progression. In the present review, we will discuss the role of RLIP76 as a multi-drug transporter, its involvement in cancer, and the prospects of using RLIP76 inhibition as an emerging treatment for cancer.
Collapse
|
35
|
Vatsyayan R, Chaudhary P, Lelsani PCR, Singhal P, Awasthi YC, Awasthi S, Singhal SS. Role of RLIP76 in doxorubicin resistance in lung cancer. Int J Oncol 2009; 34:1505-11. [PMID: 19424567 DOI: 10.3892/ijo_00000279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is still a major cause of cancer deaths in spite of considerable efforts in its systemic therapy. Chemotherapy, along with local irradiation is frequently employed but as a palliative therapy. Inherent and acquired resistance in NSCLC and SCLC towards chemotherapeutic agents further makes chemotherapy an incommodious problem. The resistance mechanisms responsible for inherent DOX-resistance of NSCLC and acquired DOX-resistance in SCLC have been the subject of numerous investigations. This review will focus on the recent studies done for understanding the mechanism(s) of inherent and acquired resistance in NSCLC and SCLC and how these can be exploited for the future development of more effective novel biologic agents for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rit Vatsyayan
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Awasthi YC, Chaudhary P, Vatsyayan R, Sharma A, Awasthi S, Sharma R. Physiological and pharmacological significance of glutathione-conjugate transport. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:540-551. [PMID: 20183533 DOI: 10.1080/10937400903358975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transport of the glutathione conjugates (GS-E) of electrophilic compounds generated during biotransformation of drugs and environmental pollutants is central to the mechanisms of defense against oxidative/electrophilic stress. In recent years emphasis has been placed on ATP-binding cassette (ABC) transport proteins in the transport of GS-E and their involvement in the detoxification mechanisms, including drug resistance. Recent studies, however, suggested that the majority of GS-E transport in human and rodent cells is mediated by a non-ABC, multifunctional stress-response protein, RLIP76 or RalBP1 (ral-binding GTPase activating protein 1), which also functions as an effector in the Ral-Ras-Rho signaling pathway. In this review, after briefly describing the major discoveries in the field of glutathione (GSH)-conjugate transport, recent findings are presented on the role of RLIP76 in ATP-dependent transport of GS-E, and the relevance of this transport process to the mechanisms of toxicity of xenobiotics, radiation, and endogenous electrophilic toxicants is described. Furthermore, recent studies suggesting a link between RLIP76 mediated GS-E transport and cell cycle signaling are presented.
Collapse
Affiliation(s)
- Yogesh C Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Singhal SS, Yadav S, Roth C, Singhal J. RLIP76: A novel glutathione-conjugate and multi-drug transporter. Biochem Pharmacol 2008; 77:761-9. [PMID: 18983828 DOI: 10.1016/j.bcp.2008.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/17/2022]
Abstract
RLIP76, a stress-responsive, multi-functional protein with multi-specific transport activity towards glutathione-conjugates (GS-E) and chemotherapeutic agents, is frequently over-expressed in malignant cells. Our recent studies suggest that it plays a prominent anti-apoptotic role selectively in cancer cells. We have previously shown that RLIP76 accounts for up to 80% of the transport of GS-E and blocking the RLIP76-mediated transport of GS-E in cells results in the accumulation of pro-apoptotic endogenous electrophiles and on-set of apoptosis. Here we demonstrate that when RLIP76 mediate transport of GS-E is abrogated either by anti-RLIP76 IgG or accumulation of 4-hydroxynonenal (4-HNE) and its GSH-conjugate (GS-HNE) occurs and a massive apoptosis is observed in cells, indicate that the inhibition of RLIP76 transport activity at the cell surface is sufficient for observed anti-tumor activity. RLIP76 is linked with certain cellular functions including membrane plasticity and movement (as a primary 'effector' in the Ral pathway, perhaps functioning as a GTPase activating protein, or GAP), and as a component of clathrin-coated pit-mediated receptor-ligand endocytosis-a process that mediates movement of membrane vesicles.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
38
|
Awasthi S, Singhal SS, Awasthi YC, Martin B, Woo JH, Cunningham CC, Frankel AE. RLIP76 and Cancer. Clin Cancer Res 2008; 14:4372-7. [PMID: 18628450 DOI: 10.1158/1078-0432.ccr-08-0145] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RLIP76 is a multifunctional membrane protein that transports glutathione conjugates of electrophilic compounds and other xenobiotics including chemotherapy agents out of cells. The protein is overexpressed in lung carcinomas, ovarian carcinomas, and melanomas. The protein also binds Ral and participates in mitotic spindle function, clathrin-dependent endocytosis, and triggers GTPase-activating protein activity. It is found throughout the cell, in membrane, cytosol, and the nucleus, and is known to shift between these compartments in response to stress. Loss of RLIP76 by antibody or antisense therapy is associated with increased sensitivity to radiation and chemotherapy. Conversely, liposomally delivered RLIP may treat poisoning and wounds.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Yadav S, Zajac E, Singhal SS, Awasthi S. Linking stress-signaling, glutathione metabolism, signaling pathways and xenobiotic transporters. Cancer Metastasis Rev 2007; 26:59-69. [PMID: 17260165 DOI: 10.1007/s10555-007-9043-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multi-specific drug-transport mechanisms are intricately involved in mediating a pleiotropic drug-resistance in cancer cells by mediating drug-accumulation defects in cells in which they are over-expressed. The existence and over-expression in drug-resistant neoplasms of transporter proteins belonging to ATP-binding cassette (ABC) family indicate that these myriad transporters contribute to the multidrug-resistance phenomena by removing or sequestering of toxins and metabolites. Another prominent mechanism of multispecific drug-resistance involves glutathione and glutathione linked enzymes, particularly those of the mercapturic acid pathway, which are involved in metabolism and excretion of both endogenous and exogenous electrophilic toxins. A key step in the mercapturic acid pathway, efflux of the glutathione-electrophile conjugate has recently been shown to be catalyzed largely by the stress-responsive protein RLIP76, a splice variant peptide endowed by the human gene RALBP1. The known involvement of RLIP76 in membrane signaling pathways and endocytosis has resulted in a new paradigm for transport and metabolism related drug-resistance in which RLIP76 plays a central role. Our recent studies demonstrating a key anti-apoptotic and stress-responsive role of RLIP76, and the demonstration of dramatic response in malignancies to RLIP76 depletion indicate that targeting this mercapturic acid pathway transporter may be a highly effective and multifaceted antineoplastic strategy.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX 76019-0065, USA
| | | | | | | |
Collapse
|
40
|
Nadkar A, Pungaliya C, Drake K, Zajac E, Singhal SS, Awasthi S. Therapeutic resistance in lung cancer. Expert Opin Drug Metab Toxicol 2006; 2:753-77. [PMID: 17014393 DOI: 10.1517/17425255.2.5.753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite considerable progress over the last 25 years in the systemic therapy of lung cancer, intrinsic and acquired resistance to chemotherapeutic agents and radiation remains a vexing problem. The number of mechanisms of therapeutic resistance in lung cancer has expanded considerably over the past three decades, and the crucial role of stress resistance pathways is increasingly recognised as a cause of intrinsic and acquired chemo- and radiotherapy resistance. This paper reviews recent evidence for stress defence proteins, particularly RALBP1/RLIP76, in mediating intrinsic and acquired chemotherapy and radiation resistance in human lung cancer.
Collapse
Affiliation(s)
- Aalok Nadkar
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, CPB # 351, 76019-0065, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Singhal SS, Yadav S, Singhal J, Awasthi YC, Awasthi S. Mitogenic and drug-resistance mediating effects of PKCalpha require RLIP76. Biochem Biophys Res Commun 2006; 348:722-7. [PMID: 16890208 PMCID: PMC2916682 DOI: 10.1016/j.bbrc.2006.07.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
PKCalpha-activation is a key signaling event governing cell growth, stress-resistance, and drug-resistance. Our recent studies demonstrated that DOX-resistance mediating effects of PKCalpha require the presence of RLIP76, and their concerted action is sufficient to explain intrinsic DOX-resistance of NSCLC [S.S. Singhal, D. Wickramarachchi, J. Singhal, S. Yadav, Y.C. Awasthi, et al., Determinants of differential doxorubicin sensitivity between SCLC and NSCLC. FEBS Lett. 580 (2006) 2258-2264]. Present studies were carried out to further explore the suggestion from the previous studies that the mitogenic effects of PKCalpha also require RLIP76. RLIP76-/- MEFs were resistant to PKCalpha-depletion mediated growth inhibition, as well as to the PKCalpha-dependent mitogen, phorbol 12-myristate 13-acetate (PMA). Augmenting cellular levels of RLIP76 using purified recombinant RLIP76 increased growth rate in all cells, and restored the sensitivity of RLIP76-/- MEFs to both inhibition through PKCalpha-depletion and stimulation through PMA. These results show that RLIP76 is a necessary down-stream effector for PKCalpha-mediated mitogenesis.
Collapse
Affiliation(s)
- Sharad S. Singhal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | - Sushma Yadav
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | - Jyotsana Singhal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | - Yogesh C. Awasthi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0647, USA
| | - Sanjay Awasthi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
- Corresponding author. Fax: +1 817 272 3808. (S. Awasthi)
| |
Collapse
|
42
|
Abstract
RLIP76/RALBP1 is a stress-responsive membrane protein implicated in the regulation of multiple cellular signaling pathways. It represents the predominant glutathione-conjugate transporter in cells, and our previous studies have shown that its inhibition by antibodies or depletion by short interfering RNA (siRNA) causes apoptosis in a number of cancer cell types. The present studies were done to explore the potential clinical applicability of our previous observations by comparing the relative expression of RLIP76 in cancer versus normal cell lines and to determine whether depletion of RLIP76 activity can exert cancer-specific apoptosis. RLIP76 expression was found to be significantly greater in malignant cells compared to nonmalignant cells. Inhibition of RLIP76, using antibodies towards a cell surface epitope, or depletion of RLIP76 using either siRNA or antisense phosphorothioate oligonucleotides preferentially caused apoptosis in malignant cells. More importantly, in vivo studies showed that administration of RLIP76 antibodies, siRNA, or antisense oligonucleotides to mice bearing syngeneic B16 mouse melanoma cells caused complete tumor regression within 10 days. These findings strongly suggest that RLIP76 depletion by genetic approaches or inhibition by antibodies may be a clinically viable antineoplastic therapy, particularly for melanoma.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington 76019-0065, USA
| | | | | |
Collapse
|
43
|
Singhal SS, Yadav S, Singhal J, Zajac E, Awasthi YC, Awasthi S. Depletion of RLIP76 sensitizes lung cancer cells to doxorubicin. Biochem Pharmacol 2005; 70:481-8. [PMID: 15950949 DOI: 10.1016/j.bcp.2005.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 05/04/2005] [Indexed: 11/19/2022]
Abstract
Ral-interacting protein (RLIP76) (RALBP1) is an anti-apoptotic non-ABC glutathione (GSH)-conjugate transporter involved in receptor-ligand endocytosis, as well as in multispecific drug transport and resistance. Partial inhibition of RLIP76 using antibodies in the absence of chemotherapy drug causes apoptosis in multiple small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cell lines and in the presence of doxorubicin (DOX), marked synergy is observed. These findings indicated that RLIP76 should be a good target for cancer cell killing; its down-regulation would promote apoptosis through both drug-dependent and drug-independent effects. To examine the effect of complete and specific RLIP76 depletion on apoptosis, we tested the effects of RLIP76 siRNA in a number of lung cancer cell lines. Growth inhibition and apoptosis was observed in all cases upon RLIP76 depletion. Consistent with these findings, augmenting cellular RLIP76 through transfection or liposomal protein delivery conferred resistance to apoptosis mediated by either DOX or 4-hydroxynonenal (4-HNE). Taken together, our results show that RLIP76 is rational and promising new target for lung cancer therapy.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | | | | | | | | | | |
Collapse
|
44
|
Singhal SS, Yadav S, Singhal J, Drake K, Awasthi YC, Awasthi S. The role of PKCα and RLIP76 in transport-mediated doxorubicin-resistance in lung cancer. FEBS Lett 2005; 579:4635-41. [PMID: 16087181 DOI: 10.1016/j.febslet.2005.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/11/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
In deletion mutant analyses of potential phosphorylation sites in RLIP76, we identified T297 and S509 as targets for phosphorylation by PKCalpha. Phosphorylation at T297 increased doxorubicin (DOX)-transport activity approximately 2-fold for RLIP76 purified from recombinant source, or from three small (H69, H1417, H1618) and three non-small cell, one each derived from H226 (squamous), H358 (bronchio alveolar), and H1395 (adenocarcinoma) lung cancer cell lines. T297 phosphorylation conferred sensitivity to tryptic digestion at R293. The specific activity for DOX-transport by RLIP76 purified from non-small cell, which was primarily in the phosphorylated form, was approximately twice that in small cell lung cancer cell lines. These finding offer a novel explanation for the observed intrinsic differences in sensitivity to DOX between non-small cell and small cell lung cancer cell lines.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Chemistry and Biochemistry, 502 Yates St., Science Hall #223, University of Texas at Arlington, Arlington, TX 76019-0065, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Awasthi S, Singhal SS, Yadav S, Singhal J, Drake K, Nadkar A, Zajac E, Wickramarachchi D, Rowe N, Yacoub A, Boor P, Dwivedi S, Dent P, Jarman WE, John B, Awasthi YC. RLIP76 Is a Major Determinant of Radiation Sensitivity. Cancer Res 2005; 65:6022-8. [PMID: 16024601 DOI: 10.1158/0008-5472.can-05-0968] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RLIP76 (RALBP1) is a glutathione-conjugate transporter that is a critical component of clathrin-coated pit-mediated endocytosis, as well as in stress responses. In cultured cells, it provides protection from stressors including heat, oxidant chemicals, chemotherapeutic agents, UV irradiation, and X-irradiation. Here, we show marked reduction in glutathione conjugate transport capacity and stepwise increase in radiation sensitivity associated with heterozygous or homozygous loss of the RLIP76 gene in mice. Survival after radiation in homozygous knockout animals was significantly shorter than either the heterozygous knockouts or the wild type. Delivery of recombinant RLIP76 to mice lacking RLIP76 via a liposomal delivery system rescued radiation sensitivity. Furthermore, treatment of wild-type mice with RLIP76-containing liposomes conferred resistance to radiation. These findings suggest that inhibiting RLIP76 could be used for sensitization to radiation during cancer therapy and that RLIP76 liposomes could be radioprotective agents useful for treatment of iatrogenic or catastrophic radiation poisoning.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019-0065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yadav S, Zajac E, Singhal SS, Singhal J, Drake K, Awasthi YC, Awasthi S. POB1 over-expression inhibits RLIP76-mediated transport of glutathione-conjugates, drugs and promotes apoptosis. Biochem Biophys Res Commun 2005; 328:1003-9. [PMID: 15707977 DOI: 10.1016/j.bbrc.2005.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Indexed: 10/25/2022]
Abstract
RLIP76 (RALBP1) is a Ral-binding nucleotidase which functions as an energy-dependent transporter for glutathione (GSH)-conjugates as well as structurally unrelated xenobiotics. Partner of RALBP1 (POB1), also referred to as REPS2, was identified as the human RLIP76-binding protein, which contains a coiled-coil C-terminal region that binds with the RLIP76. Recent studies show that over-expression of POB1 in prostate cancer cells induces apoptosis. In present studies, we have purified POB1 and one of its deletion mutants POB1(1-512) (lacking the RLIP76-binding domain), and examined their effect on the transport activity of RLIP76. Both doxorubicin and a model GSH-conjugate, dinitrophenyl-S-glutathione (DNP-SG), transport were inhibited by POB1 in a concentration-dependent manner but not by POB1(1-512), lacking RLIP76-binding site. Liposomal delivery of recombinant POB1 to H358 (NSCLC) cancer cells caused apoptosis in a concentration-dependent manner, whereas the POB1 mutant deficient in RLIP76-binding site did not exert this effect. Augmentation of cellular POB1 resulted in increased intracellular DOX-accumulation as well as decreased rate of efflux from cells. These results show for the first time that POB1 can regulate the transport function of RLIP76 and are consistent with our previous studies showing that inhibition of RLIP76 induces apoptosis in cancer cells through the accumulation of endogenously formed GSH-conjugates.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Stuckler D, Singhal J, Singhal SS, Yadav S, Awasthi YC, Awasthi S. RLIP76 Transports Vinorelbine and Mediates Drug Resistance in Non–Small Cell Lung Cancer. Cancer Res 2005. [DOI: 10.1158/0008-5472.991.65.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Vinorelbine (Navelbine), an amphiphilic semisynthetic Vinca alkaloid, has displayed superior activity and decreased resistance in the treatment of advanced non–small cell lung cancer (NSCLC) compared with other members of its class. Recently, vinorelbine and cisplatin combination chemotherapy has been shown for the first time to confer a significant survival advantage in early-stage lung cancer after surgical therapy. The biological mechanisms underlying the differential response of NSCLC to cytocidal activity of vinorelbine have yet to be elucidated. Our recent findings indicate a role of RLIP76, a non–ATP binding cassette transport protein, in catalyzing the ATP-dependent efflux of structurally and functionally unrelated chemotherapeutic agents such as doxorubicin and vinblastine in NSCLC. Present studies were conducted to assess whether RLIP76 mediates vinorelbine transport and resistance. Here we show that RLIP76 catalyzes the transport of vinorelbine in a saturable manner with respect to vinorelbine (Km 75 nmol/L) and ATP (Km = 3.4 mmol/L). Three-fold overexpression of RLIP76 in NSCLC and SCLC confers increased resistance to cytotoxicity. RLIP76 overexpression causes a sustained intracellular decrease in vinorelbine concentration because of increased efflux, and anti-RLIP76 antibodies sensitize lung cancer cells to vinorelbine by inhibiting its efflux. These studies for the first time show that RLIP76 mediates vinorelbine transport and is capable of conferring drug accumulation defect and resistance to lung cancer cells.
Collapse
Affiliation(s)
- David Stuckler
- 1Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas and
| | - Jyotsana Singhal
- 1Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas and
| | - Sharad S. Singhal
- 1Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas and
| | - Sushma Yadav
- 1Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas and
| | - Yogesh C. Awasthi
- 2Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Sanjay Awasthi
- 1Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas and
| |
Collapse
|
48
|
Awasthi YC, Ansari GAS, Awasthi S. Regulation of 4‐Hydroxynonenal Mediated Signaling By Glutathione S‐Transferases. Methods Enzymol 2005; 401:379-407. [PMID: 16399399 DOI: 10.1016/s0076-6879(05)01024-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
4-Hydroxy-trans-2-nonenal (HNE) was initially considered to be merely a toxic end product of lipid peroxidation that contributed to oxidative stress-related pathogenesis. However, in recent years its physiological role as an important "signaling molecule" has been established. HNE can modulate various signaling pathways in a concentration-dependent manner. Glutathione S-transferases (GSTs) are major determinants of the intracellular concentration of HNE, because these enzymes account for the metabolism of most cellular HNE through its conjugation to glutathione. Evidence is emerging that GSTs are involved in the regulation of the HNE-mediated signaling processes. Against the backdrop of our current understanding on the formation, metabolism, and role of HNE in signaling processes, the physiological role of GSTs in regulation of HNE-mediated signaling processes is critically evaluated in this chapter. Available evidence strongly suggests that besides their well-established pharmacological role of detoxifying xenobiotics, GSTs also play an important physiological role in the regulation of cellular signaling processes.
Collapse
Affiliation(s)
- Yogesh C Awasthi
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, USA
| | | | | |
Collapse
|
49
|
Sharma R, Singhal SS, Wickramarachchi D, Awasthi YC, Awasthi S. RLIP76 (RALBP1)-mediated transport of leukotriene C4 (LTC4) in cancer cells: implications in drug resistance. Int J Cancer 2004; 112:934-42. [PMID: 15386349 DOI: 10.1002/ijc.20516] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased active transport of LTC(4) observed frequently in multidrug-resistant cancer cells have been attributed to ABC-transporter proteins particularly, MRP1. We have demonstrated recently that a novel non-ABC transporter, RLIP76 (RALBP1) can also mediate ATP-dependent transport of GSH-conjugates (GS-E) as well as doxorubicin (DOX). We demonstrate RLIP76 reconstituted in artificial liposomes can catalyze ATP-dependent transport of LTC(4), which can be modulated by PKC-alpha. The ATPase activity of E. coli expressed homogenous RLIP76 was stimulated in a saturable fashion by LTC(4) with half maximal stimulation at 130 nM. Proteoliposomes reconstituted with RLIP76 catalyzed temperature and osmolar sensitive ATP-dependent transport of LTC(4) with K(m) values of 5.1 mM and 210 nM for ATP and LTC(4), respectively. V(max) for transport was found to be 3.2 nmol/min/mg. Colchicine inhibited LTC(4) transport to 50% at 5.8 microM. PKC-alpha catalyzed phosphorylation of RLIP76 and increased its transport activity by 2-3-fold. Membrane vesicles prepared from the small (SCLC) and non-small (NSCLC) lung cancer cell lines as well as HL-60 (leukemia) and U937 (lymphoma) cell lines exhibited ATP-dependent transport of LTC(4), which was inhibited by anti-RLIP76 antibodies. The rate of transport of LTC(4) in SCLC (H69, H378) was half of that observed in NSCLC cell lines but after transfection with RLIP76, the transport rate of LTC(4) in H69 became comparable to that in NSCLC cell lines. Anti-RLIP76 antibodies inhibited LTC(4) transport by 67-81% in all 8 cell lines examined, whereas N-19 anti-MRP1 antibodies inhibited transport of LTC(4) by only 11-26%. These results suggest that RLIP76 is the major LTC(4) transporter in cancer cells and that its transport activity is regulated by PKC-alpha-mediated phosphorylation.
Collapse
Affiliation(s)
- Rajendra Sharma
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
50
|
Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC. Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 2004; 6:289-300. [PMID: 15025930 DOI: 10.1089/152308604322899350] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione peroxidase activity and that these enzymes can also detoxify lipid peroxidation end products such as 4-hydroxynonenal (4-HNE). In this article, recent studies suggesting that the Alpha class GSTs provide a formidable defense against oxidative stress are critically evaluated and the role of these enzymes in the regulation of oxidative stress-mediated signaling is reviewed. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that lipid peroxidation products, particularly hydroperoxides and 4-HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the Alpha class GSTs through the regulation of the intracellular concentrations of 4-HNE.
Collapse
Affiliation(s)
- Rajendra Sharma
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|