1
|
Gutiérrez-Cabrera AE, Zandberg WF, Zenteno E, Rodríguez MH, Espinoza B, Lowenberger C. Glycosylation on proteins of the intestine and perimicrovillar membrane of Triatoma (Meccus) pallidipennis, under different feeding conditions. INSECT SCIENCE 2019; 26:796-808. [PMID: 29446564 DOI: 10.1111/1744-7917.12579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, interacts with molecules in the midgut of its insect vector to multiply and reach the infective stage. Many studies suggest that the parasite binds to midgut-specific glycans. We identified several glycoproteins expressed in the intestine and perimicrovillar membrane (PMM) of Triatoma (Meccus) pallidipennis under different feeding conditions. In order to assess changes in protein-linked glycans, we performed lectin and immunoblot analyses on glycoprotein extracts from these intestinal tissues using well-characterized lectins, and an antibody, which collectively recognize a wide range of different glycans epitopes. We observed that the amount and composition of proteins and glycoproteins associated with different glycans structures changed over time in the intestines and PMM under different physiological conditions. PMM extracts contained a wide variety of glycoproteins with different sugar residues, including abundant high-mannose and complex sialylated glycans. We propose that these molecules could be involved in the process of parasite-vector interactions.
Collapse
Affiliation(s)
- Ana E Gutiérrez-Cabrera
- CONACyT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Edgar Zenteno
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, DF, Mexico
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, DF, Mexico
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
An illustration of optimal selected glycosidase for N-glycoproteins deglycosylation and crystallization. Int J Biol Macromol 2019; 122:265-271. [DOI: 10.1016/j.ijbiomac.2018.10.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 01/11/2023]
|
3
|
Palomares LA, Srivastava IK, Ramírez OT, Cox MMJ. Glycobiotechnology of the Insect Cell-Baculovirus Expression System Technology. ADVANCES IN GLYCOBIOTECHNOLOGY 2018; 175:71-92. [DOI: 10.1007/10_2018_61] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Affiliation(s)
- H D Klenk
- Institut für Virologie, Philipps-Universität Marburg, Postfach 2360, 35011, Marburg (Lahn), Germany
| |
Collapse
|
5
|
|
6
|
Abstract
CONCLUSION The insect cell as host for protein production is relative new. Therefore few data are available. This creates a vicious circle because it makes the choice of insect cells as basis for a pharmaceutical process less attractive. There are three main issues when comparing insect-cells to "traditional" systems as mammalian and bacterial cells. First, since the expression vector is not incorporated in the cells, a virus stock similar to the cell bank system has to be laid down and tested. This will cost time and money. Secondly the vector is subject to mutation and therefore the decrease in infectivity has to be characterized and validated. Third, the post-translational modification of the protein may differ. None of the mentioned issues, however, forms an obstacle that can not be overcome.
Collapse
Affiliation(s)
- F L van Lier
- Bio-Intermediair B.V., P.O. Box 454, 9700 AL, Groningen, the Netherlands
| |
Collapse
|
7
|
Hillar A, Jarvis DL. Re-visiting the endogenous capacity for recombinant glycoprotein sialylation by baculovirus-infected Tn-4h and DpN1 cells. Glycobiology 2010; 20:1323-30. [PMID: 20574041 DOI: 10.1093/glycob/cwq099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It was previously reported that Tn-4h and DpN1 cells have the endogenous capacity to efficiently sialylate secreted alkaline phosphatase (SEAP) when infected with a baculovirus expression vector. In contrast, it has been found that lepidopteran insect cell lines that are more widely used as hosts for baculovirus vectors typically fail to sialylate SEAP and other recombinant glycoproteins. Thus, the N-glycan processing capabilities of Tn-4h and DpN1 cells are of potential interest to investigators using the baculovirus expression system for recombinant glycoprotein production. In this study, we experimentally re-assessed the ability of Tn-4h and DpN1 cells to sialylate SEAP with Sf9 and glyco-engineered Sf9 cells (SfSWT-1) as negative and positive controls, respectively. Our results showed that the SEAP purified from SfSWT-1 cells was strongly sialylated and initially indicated that the SEAP purified from Tn-4h cells was weakly sialylated. However, further analyses suggested that the SEAP produced by Tn-4h cells only appeared to be sialylated because it was contaminated with an electrophoretically indistinguishable sialoglycoprotein derived from fetal bovine serum. We subsequently expressed, purified, and analyzed a second recombinant glycoprotein (GST-SfManI) from all four cell lines and found that only the SfSWT-1 cells were able to detectably sialylate this product. Together, these results showed that neither Tn-4h nor DpN1 cells efficiently sialylated SEAP or GST-SfManI when infected by baculovirus expression vectors. Furthermore, they suggested that previous reports of efficient SEAP sialylation by Tn-4h and DpN1 cells probably reflect contamination with a sialylated, co-migrating glycoprotein, perhaps bovine fetuin, derived from the serum used in the insect cell growth medium.
Collapse
Affiliation(s)
- Alexander Hillar
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
8
|
Kokuho T, Yasukochi Y, Watanabe S, Inumaru S. Molecular cloning and expression profile analysis of a novel beta-D-N-acetylhexosaminidase of domestic silkworm (Bombyx mori). Genes Cells 2010; 15:525-36. [PMID: 20384789 DOI: 10.1111/j.1365-2443.2010.01401.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lepidoptera such as the domestic silkworm (Bombyx mori) produce proteins modified with unsialylated, mannose-rich moieties known as 'high mannose-type'N-glycans. However, we observed that, under intrinsic acetylglucosaminidase (GlcNAcase)-inhibited conditions, moth cells tend to synthesize different types of glycoform with sialic acid modification. To identify molecules essential to assemble Lepidoptera-specific N-glycans, we performed BLAST analysis on the silkworm genetic database and isolated the entire coding sequence of novel Bombyx GlcNAcase, BmGlcNAcase 2. This enzyme showed weak homology to currently known, lysosome-associated eukaryotic hexosaminidases, but it revealed remarkable similarity with recently reported glycosyl hydrolases of Spodoptera and Bombyx. Interestingly, BmGlcNAcase 2 was found to be expressed in embryos and in certain tissues of molting larvae (i.e. ovary, fat bodies, mid-intestine, skin), but not in pupae, suggesting its unique function in the carbohydrate metabolism of juvenile silkworm.
Collapse
Affiliation(s)
- Takehiro Kokuho
- Advanced Biologicals, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | |
Collapse
|
9
|
Abstract
Recombinant protein expression has become a standard laboratory tool, and a wide variety of systems and techniques are now in use. Because there are so many systems to choose from, the investigator has to be careful to use the combination that will give the best results for the protein being studied. This overview unit discusses expression and production choices, including post-translational modifications (e.g., glycosylation, acylation, sulfation, and removal of N-terminal methionine), in vivo and in vitro folding, and influence of downstream elements on expression.
Collapse
Affiliation(s)
- D Gray
- Chiron Corporation, Emeryville, California, USA
| | | |
Collapse
|
10
|
Expression, purification and characterization of yeast protein disulfide isomerase produced by a recombinant baculovirus-mediated silkworm, Bombyx mori, pupae expression system. Biotechnol Lett 2007; 30:625-30. [PMID: 17985081 DOI: 10.1007/s10529-007-9582-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Protein disulfide isomerase (PDI) is a multifunctional polypeptide presents in the endoplasmic reticulum of the cell. Silkworm (Bombyx mori) pupae were used as hosts to produce recombinant PDI (rPDI). The concentration-dependent chaperone activity of rPDI was evidenced by the inhibition of the aggregation of rhodanese. Approximately 297 microg rPDI was purified from a single silkworm pupa. Results of rPDI treated with endoglycosidase H and N-glycanase, PNGase F, indicate that non-N-glycosylated rPDI (occupying 90%) and N-glycosylated rPDI are expressed in the silkworm expression system. The difference in glycosylation between silkworm pupae and yeast is discussed.
Collapse
|
11
|
Abstract
One of the major advantages of the baculovirus-insect cell system is that it is a eukaryotic system that can provide posttranslational modifications, such as protein N-glycosylation. However, this is a vastly oversimplified view, which reflects a poor understanding of insect glycobiology. In general, insect protein glycosylation pathways are far simpler than the corresponding pathways of higher eukaryotes. Paradoxically, it is increasingly clear that various insects encode and can express more elaborate protein glycosylation functions in restricted fashion. Thus, the information gathered in a wide variety of studies on insect protein N-glycosylation during the past 25 years has provided what now appears to be a reasonably detailed, comprehensive, and accurate understanding of the protein N-glycosylation capabilities of the baculovirus-insect cell system. In this chapter, we discuss the models of insect protein N-glycosylation that have emerged from these studies and how this impacts the use of baculovirus-insect cell systems for recombinant glycoprotein production. We also discuss the use of these models as baselines for metabolic engineering efforts leading to the development of new baculovirus-insect cell systems with humanized protein N-glycosylation pathways, which can be used to produce more authentic recombinant N-glycoproteins for drug development and other biomedical applications.
Collapse
Affiliation(s)
- Xianzong Shi
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
- Chesapeake-PERL, Inc. 8510A Corridor Rd, Savage, MD 20763, USA
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
12
|
Harrison RL, Jarvis DL. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins. Adv Virus Res 2006; 68:159-91. [PMID: 16997012 DOI: 10.1016/s0065-3527(06)68005-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Baculovirus expression vectors are frequently used to express glycoproteins, a subclass of proteins that includes many products with therapeutic value. The insect cells that serve as hosts for baculovirus vector infection are capable of transferring oligosaccharide side chains (glycans) to the same sites in recombinant proteins as those that are used for native protein N-glycosylation in mammalian cells. However, while mammalian cells produce compositionally more complex N-glycans containing terminal sialic acids, insect cells mostly produce simpler N-glycans with terminal mannose residues. This structural difference between insect and mammalian N-glycans compromises the in vivo bioactivity of glycoproteins and can potentially induce allergenic reactions in humans. These features obviously compromise the biomedical value of recombinant glycoproteins produced in the baculovirus expression vector system. Thus, much effort has been expended to characterize the potential and limits of N-glycosylation in insect cell systems. Discoveries from this research have led to the engineering of insect N-glycosylation pathways for assembly of mammalian-style glycans on baculovirus-expressed glycoproteins. This chapter summarizes our knowledge of insect N-glycosylation pathways and describes efforts to engineer baculovirus vectors and insect cell lines to overcome the limits of insect cell glycosylation. In addition, we consider other possible strategies for improving glycosylation in insect cells.
Collapse
Affiliation(s)
- Robert L Harrison
- Insect Biocontrol Laboratory, USDA Agricultural Research Service, Plant Sciences Institute, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | | |
Collapse
|
13
|
Tomiya N, Narang S, Lee YC, Betenbaugh MJ. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj J 2005; 21:343-60. [PMID: 15514482 DOI: 10.1023/b:glyc.0000046275.28315.87] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.
Collapse
Affiliation(s)
- Noboru Tomiya
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | | | |
Collapse
|
14
|
Wilkins S, Billingsley PF. Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:937-948. [PMID: 11483430 DOI: 10.1016/s0965-1748(01)00040-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.
Collapse
Affiliation(s)
- S Wilkins
- Department of Biology, Imperial College of Science Technology and Medicine, SW7 2BB, London, UK
| | | |
Collapse
|
15
|
Abstract
Our growing comprehension of the biological roles of glycan moieties has created a clear need for expression systems that can produce mammalian-type glycoproteins. In turn, this has intensified interest in understanding the protein glycosylation pathways of the heterologous hosts that are commonly used for recombinant glycoprotein expression. Among these, insect cells are the most widely used and, particularly in their role as hosts for baculovirus expression vectors, provide a powerful tool for biotechnology. Various studies of the glycosylation patterns of endogenous and recombinant glycoproteins produced by insect cells have revealed a large variety of O- and N-linked glycan structures and have established that the major processed O- and N-glycan species found on these glycoproteins are (Gal beta1,3)GalNAc-O-Ser/Thr and Man3(Fuc)GlcNAc2-N-Asn, respectively. However, the ability or inability of insect cells to synthesize and compartmentalize sialic acids and to produce sialylated glycans remains controversial. This is an important issue because terminal sialic acid residues play diverse biological roles in many glycoconjugates. While most work indicates that insect cell-derived glycoproteins are not sialylated, some well-controlled studies suggest that sialylation can occur. In evaluating this work, it is important to recognize that oligosaccharide structural determination is tedious work, due to the infinite diversity of this class of compounds. Furthermore, there is no universal method of glycan analysis; rather, various strategies and techniques can be used, which provide glycobiologists with relatively more or less precise and reliable results. Therefore, it is important to consider the methodology used to assess glycan structures when evaluating these studies. The purpose of this review is to survey the studies that have contributed to our current view of glycoprotein sialylation in insect cell systems, according to the methods used. Possible reasons for the disagreement on this topic in the literature, which include the diverse origins of biological material and experimental artifacts, will be discussed. In the final analysis, it appears that if insect cells have the genetic potential to perform sialylation of glycoproteins, this is a highly specialized function that probably occurs rarely. Thus, the production of sialylated recombinant glycoproteins in the baculovirus-insect cell system will require metabolic engineering efforts to extend the native protein glycosylation pathways of insect cells.
Collapse
Affiliation(s)
- I Marchal
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, CNRS UMR no8576, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
16
|
O'Riordan CR, Lachapelle AL, Marshall J, Higgins EA, Cheng SH. Characterization of the oligosaccharide structures associated with the cystic fibrosis transmembrane conductance regulator. Glycobiology 2000; 10:1225-33. [PMID: 11087715 DOI: 10.1093/glycob/10.11.1225] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane-associated glycoprotein. The protein can exist in three different molecular weight forms of approximately 127, 131, and 160 kDa, representing either nonglycosylated, core glycosylated, or fully mature, complex glycosylated CFTR, respectively. The most common mutation in cystic fibrosis (CF) results in the synthesis of a variant (DeltaF508-CFTR) that is incompletely glycosylated and defective in its trafficking to the cell surface. In this study, we have analyzed the oligosaccharide structures associated with the different forms of recombinant CFTR, by expressing and purifying the channel protein from either mammalian Chinese hamster ovary (CHO) or insect Sf9 cells. Using glycosidases and FACE analysis (fluorophore-assisted carbohydrate electrophoresis) we determined that purified CHO-CFTR contained polylactosaminoglycan (PL) sequences, while Sf9-CFTR had only oligomannosidic saccharides with fucosylation on the innermost GlcNAc. The presence of PL sequences on the recombinant CHO-CFTR is consistent with a normal feature of mammalian processing, since endogenous CFTR isolated from T84 cells displayed a similar pattern of glycosylation. The present study also reports on the use of FACE for the qualitative analysis of small amounts of glycoprotein oligosaccharides released enzymatically.
Collapse
Affiliation(s)
- C R O'Riordan
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, USA
| | | | | | | | | |
Collapse
|
17
|
Park YI, Wood HA, Lee YC. Monosaccharide compositions of Danaus plexippus (monarch butterfly) and Trichoplusia ni (cabbage looper) egg glycoproteins. Glycoconj J 1999; 16:629-38. [PMID: 10972141 DOI: 10.1023/a:1007029017400] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monosaccharide compositions of eggs from Danaus plexippus (monarch butterfly) and Trichoplusia ni (cabbage looper) were analyzed. Analyses were performed mainly with high performance anion exchange chromatography (HPAEC) using crude extracts of eggs or SDS-PAGE separated and PVDF-blotted protein bands. Man and GlcN were the major components in all cases, but low levels of Gal and Fuc were possibly present in some samples. Some T. ni egg glycoproteins even contained GalN. Although a peak comigrating with Neu5Ac could be detected with HPAEC-PAD or RP-HPLC (fluorometry) after derivatization with 1,2-diamino-4,5-methylenedioxy-benzene, the quantities were too small to be significant as an integral part of the analyzed glycoproteins. These data suggests that most of glycans on the glycoproteins are pauci-Man type N-glycans, but a small portion of N-glycan may be either hybrid type or complex type.
Collapse
Affiliation(s)
- Y I Park
- Biology Department, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
18
|
Sialic acids inTrichoplusia ni andDanaus plexippus egg glycoproteins. BIOTECHNOL BIOPROC E 1999. [DOI: 10.1007/bf02931922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Hooker AD, Green NH, Baines AJ, Bull AT, Jenkins N, Strange PG, James DC. Constraints on the transport and glycosylation of recombinant IFN-gamma in Chinese hamster ovary and insect cells. Biotechnol Bioeng 1999; 63:559-72. [PMID: 10397812 DOI: 10.1002/(sici)1097-0290(19990605)63:5<559::aid-bit6>3.0.co;2-l] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study we compare intracellular transport and processing of a recombinant glycoprotein in mammalian and insect cells. Detailed analysis of the N-glycosylation of recombinant human IFN-gamma by matrix-assisted laser-desorption mass spectrometry showed that the protein secreted by Chinese hamster ovary and baculovirus-infected insect Sf9 cells was associated with complex sialylated or truncated tri-mannosyl core glycans, respectively. However, the intracellular proteins were predominantly associated with high-mannose type oligosaccharides (Man-6 to Man-9) in both cases, indicating that endoplasmic reticulum to cis-Golgi transport is a predominant rate-limiting step in both expression systems. In CHO cells, although there was a minor intracellular subpopulation of sialylated IFN-gamma glycoforms identical to the secreted product (therefore associated with late-Golgi compartments or secretory vesicles), no other intermediates were evident. Therefore, anterograde transport processes in the Golgi stack do not limit secretion. In Sf9 insect cells, there was no direct evidence of post-ER glycan-processing events other than core fucosylation and de-mannosylation, both of which were glycosylation site-specific. To investigate the influence of nucleotide-sugar availability on cell-specific glycosylation, the cellular content of nucleotide-sugar substrates in both mammalian and insect cells was quantitatively determined by anion-exchange HPLC. In both host cell types, UDP-hexose and UDP-N-acetylhexosamine were in greater abundance relative to other substrates. However, unlike CHO cells, sialyltransferase activity and CMP-NeuAc substrate were not present in uninfected or baculovirus-infected Sf9 cells. Similar data were obtained for other insect cell hosts, Sf21 and Ea4. We conclude that although the limitations on intracellular transport and secretion of recombinant proteins in mammalian and insect cells are similar, N-glycan processing in Sf insect cells is limited, and that genetic modification of N-glycan processing in these insect cell lines will be constrained by substrate availability to terminal galactosylation.
Collapse
Affiliation(s)
- A D Hooker
- Research School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Donaldson M, Wood HA, Kulakosky PC, Shuler ML. Glycosylation of a recombinant protein in the Tn5B1-4 insect cell line: influence of ammonia, time of harvest, temperature, and dissolved oxygen. Biotechnol Bioeng 1999; 63:255-62. [PMID: 10099604 DOI: 10.1002/(sici)1097-0290(19990505)63:3<255::aid-bit1>3.0.co;2-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glycosylation is both cell line and protein dependent. Culture conditions can also influence the profile of glycoforms produced. To examine this possibility in the insect cell/baculovirus system, structures of N-linked oligosaccharides attached to SEAP (human secreted alkaline phosphatase), expressed under various culture conditions in BTI Tn5B1-4 cells, were characterized using FACE (fluorescence-assisted carbohydrate electrophoresis). Parameters varied were time of harvest, ammonia added during infection, dissolved oxygen, and temperature. It was found that glycosylation in the insect cell/baculovirus expression system is a robust, stable system that is less perturbed by variations in culture conditions than the level of protein expression. Addition of ammonia and low oxygen conditions affected SEAP expression, but not the oligosaccharide profile of SEAP. Time of SEAP harvest increased the amount of alpha-mannosidase resistant structures from 4.1% at 34 hours postinfection (h pi), to 5.0% at 100 h pi, and to 7.5% at 120 h pi. These structures were primarily sensitive to N-acetylhexosaminidase digest, although a small amount was insensitive to both mannosidase and N-acetyl-hexosaminidase digests. Lowering the temperature from 28 degrees C to 24 degrees C or even 20 degrees C, resulted in a twofold increase in oligosaccharides containing terminal alpha(1,3)-mannose residues. This condition did not affect the amount of mannosidase-resistant structures. However, this could result in more complete glycosylation of recombinant proteins in the BTI Tn5B1-4 cell line, because more structures with the potential for further processing would be produced.
Collapse
Affiliation(s)
- M Donaldson
- School of Chemical Engineering, Cornell University, 120 Olin Hall, Ithaca, New York, USA
| | | | | | | |
Collapse
|
21
|
Lopez M, Tetaert D, Juliant S, Gazon M, Cerutti M, Verbert A, Delannoy P. O-glycosylation potential of lepidopteran insect cell lines. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:49-61. [PMID: 10082987 DOI: 10.1016/s0304-4165(98)00176-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enzyme activities involved in O-glycosylation have been studied in three insect cell lines, Spodoptera frugiperda (Sf-9), Mamestra brassicae (Mb) and Trichoplusia ni (Tn) cultured in two different serum-free media. The structural features of O-glycoproteins in these insect cells were investigated using a panel of lectins and the glycosyltransferase activities involved in O-glycan biosynthesis of insect cells were measured (i.e., UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, UDP-Gal:core-1 beta1, 3-galactosyltransferase, CMP-NeuAc:Galbeta1-3GalNAc alpha2, 3-sialyltransferase, and UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase activities). First, we show that O-glycosylation potential depends on cell type. All three lepidopteran cell lines express GalNAcalpha-O-Ser/Thr antigen, which is recognized by soy bean agglutinin and reflects high UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase activity. Capillary electrophoresis and mass spectrometry studies revealed the presence of at least two different UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases in these insect cells. Only some O-linked GalNAc residues are further processed by the addition of beta1,3-linked Gal residues to form T-antigen, as shown by the binding of peanut agglutinin. This reflects relative low levels of UDP-Gal:core-1 beta1,3-galactosyltransferase in insect cells, as compared to those observed in mammalian control cells. In addition, we detected strong binding of Bandeiraea simplicifolia lectin-I isolectin B4 to Mamestra brassicae endogenous glycoproteins, which suggests a high activity of a UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase. This explains the absence of PNA binding to Mamestra brassicae glycoproteins. Furthermore, our results substantiated that there is no sialyltransferase activity and, therefore, no terminal sialic acid production by these cell lines. Finally, we found that the culture medium influences the O-glycosylation potential of each cell line.
Collapse
Affiliation(s)
- M Lopez
- Laboratoire de Chimie Biologique, Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS no. 8576, Université des Sciences et Technologies de Lille, F-59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Pajot-Augy E, Bozon V, Remy JJ, Couture L, Salesse R. Critical relationship between glycosylation of recombinant lutropin receptor ectodomain and its secretion from baculovirus-infected insect cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:635-48. [PMID: 10102991 DOI: 10.1046/j.1432-1327.1999.00241.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lutropin receptor ectodomain overexpressed under the control of the powerful polyhedrin promoter in baculovirus-infected Sf9 insect cells, is mainly found in an inactive, intracellularly-aggregated form. It is secreted in an active form under the control of the P10 promoter, a somewhat weaker and earlier promoter, at the price of a lower production. The apparent molecular masses of the two species encoded by the same cDNA are 48 kDa and 60-68 kDa, respectively. The relationship between the extent and type of glycosylation and the extracellular targeting for the recombinant lutropin receptor ectodomains was investigated precisely with endoglycosidases, lectins of various specificities, and a glycosylation inhibitor, and tested with monoclonal and polyclonal antibodies. The results indicate that the strong polyhedrin promoter probably overwhelms the processing capacity of the ER in Sf9 cells, so that only a high-mannose precursor is expressed in large amounts. Only a minute amount of protein is secreted, which has been processed by Sf9 exoglycosidases/glycosyltransferases and bears complex/hybrid oligosaccharides. The weaker P10 promoter allows secretion of a mature and active receptor ectodomain, bearing complex glycosylation. An important O-linked glycosylation is also added post-translationally on this species. In particular, beta-galactose and sialic acid residues were specifically detected in the secreted species, evidence of the induction of the corresponding glycosyltransferases or of their genes. These results suggest that Sf9 cells should eventually be engineered with chaperones and glycosyltransferases in order to improve the production of demanding glycoproteins such as the porcine lutropin ectodomain, so as to open the way to resolution of the three-dimensional structures of these receptors.
Collapse
Affiliation(s)
- E Pajot-Augy
- Unité Récepteurs et Communication Cellulaire, Biologie Cellulaire et Moléculaire, INRA-Biotechnologies, Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
23
|
Wolff MW, Murhammer DW, Linhardt RJ. Release and preparation of intact and unreduced N-linked oligosaccharides from Sf-9 insect cells. Prep Biochem Biotechnol 1999; 29:1-21. [PMID: 10069429 DOI: 10.1080/10826069908544689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Glycosylation, the addition of carbohydrates to a peptide backbone, is the most extensive cotranslational and posttranslational modification made to proteins by eukaryotic cells. The glycosylation profile of a recombinant glycoprotein can significantly affect its biological activity, which is particularly important when being used in human therapeutic applications. Therefore, defining glycan structures to ensure consistency of recombinant glycoproteins among different batches is critical. In this study we describe a method to prepare N-linked glycans derived from insect cell glycoproteins for structural analysis by capillary electrophoresis. Briefly, glycoproteins obtained from uninfected Spodoptera frugiperda Sf-9 insect cells were precipitated with ammonium sulfate and the glycans were chemically cleaved by hydrazinolysis. Following the regeneration of the glycan reducing terminal residue and the removal of contaminating proteins and peptides, the glycans were fluorescently labeled by reductive amination. Fluorescent labeling greatly enhanced the detection limit of the glycan structures determined by capillary electrophoresis. Five major glycan structures were found that migrated between tetra-mannosylated hexasaccharide and nonamannosylated undecasaccharide standards. Upon alpha-mannosidase digestion the number of glycan structures was reduced to two major structures with shorter migration times than the undigested glycans. None of the glycans were susceptible to hexosaminidase or galactosidase treatment. These results are consistent with the majority of previous results demonstrating hypermannosylated glycan structures in Sf-9 insect cells.
Collapse
Affiliation(s)
- M W Wolff
- Chemical and Biochemical Engineering College of Engineering, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
24
|
Maras M, van Die I, Contreras R, van den Hondel CA. Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 1999; 16:99-107. [PMID: 10612410 DOI: 10.1023/a:1026436424881] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20-40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but research is in progress to increase the production levels. In the past years the structure of protein-linked carbohydrates of a number of fungal proteins has been elucidated, showing the presence of oligo-mannosidic and high-mannose chains, sometimes with typical fungal modifications. A start has been made to engineer the glycosylation pathway in filamentous fungi to obtain strains that show a more mammalian-like type of glycosylation. This mini review aims to cover the current knowledge of glycosylation in filamentous fungi, and to show the possibilities to produce glycoproteins with these organisms with a more mammalian-like type of glycosylation for research purposes or pharmaceutical applications.
Collapse
Affiliation(s)
- M Maras
- Department of Molecular Biology, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
25
|
Lopez M, Gazon M, Juliant S, Plancke Y, Leroy Y, Strecker G, Cartron JP, Bailly P, Cerutti M, Verbert A, Delannoy P. Characterization of a UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase activity in a Mamestra brassicae cell line. J Biol Chem 1998; 273:33644-51. [PMID: 9837949 DOI: 10.1074/jbc.273.50.33644] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of Bandeiraea simplicifolia lectin-I isolectin B4 on the endogenous glycoproteins of different insect cell lines led us to characterize for the first time a UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase in a Mamestra brassicae cell line (Mb). The study of the acceptor specificity indicated that the Mb alpha-galactosyltransferase prefers Galbeta1-3-R as acceptor, and among such glycans, the relative substrate activity Vmax/Km was equal to 20 microliters.mg-1.h-1 for Galbetal-3GlcNAcbeta1-O-octyl and to 330 microliters.mg-1.h-1 for Galbeta1-3GalNAcalpha-1-O-benzyl, showing clearly that Galbeta1-3GalNAc disaccharide was the more suitable acceptor substrate for Mb alpha-galactosyltransferase activity. Nuclear magnetic resonance and mass spectrometry data allowed us to establish that the Mb alpha-galactosyltransferase synthesizes one unique product, Galalpha1-4Galbeta1-3GalNAcalpha1-O-benzyl. The Galbeta1-3GalNAc disaccharide is usually present on O-glycosylation sites of numerous asialoglycoproteins and at the nonreducing end of some glycolipids. We observed that Mb alpha1,4-galactosyltransferase catalyzed the transfer of galactose onto both natural acceptors. Finally, we demonstrated that the trisaccharide Galalpha1-4Galbeta1-3GalNAcalpha1-O-benzyl was able to inhibit anti-PK monoclonal antibody-mediated hemagglutination of human blood group PK1 and PK2 erythrocytes.
Collapse
Affiliation(s)
- M Lopez
- Laboratoire de Chimie Biologique, Unité Mixte de Recherche du CNRS 111, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kulakosky PC, Hughes PR, Wood HA. N-Linked glycosylation of a baculovirus-expressed recombinant glycoprotein in insect larvae and tissue culture cells. Glycobiology 1998; 8:741-5. [PMID: 9621115 DOI: 10.1093/glycob/8.7.741] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The potential of insect cell cultures and larvae infected with recombinant baculoviruses to produce authentic recombinant glycoproteins cloned from mammalian sources was investigated. A comparison was made of the N-linked glycans attached to secreted alkaline phosphatase (SEAP) produced in four species of insect larvae and their derived cell lines plus one additional insect cell line and larvae of one additional species. These data survey N-linked oligosaccharides produced in four families and six genera of the order Lepidoptera. Recombinant SEAP expressed by recombinant isolates of Autographa californica and Bombyx mori nucleopolyhedroviruses was purified from cell culture medium, larval hemolymph or larval homogenates by phosphate affinity chromatography. The N-linked oligosaccharides were released with PNGase-F, labeled with 8-aminonaphthalene-1-3-6-trisulfonic acid, fractionated by polyacrylamide gel electrophoresis, and analyzed by fluorescence imaging. The oligosaccharide structures were confirmed with exoglycosidase digestions. Recombinant SEAP produced in cell lines of Lymantria dispar (IPLB-LdEIta), Heliothis virescens (IPLB-HvT1), and Bombyx mori (BmN) and larvae of Spodoptera frugiperda, Trichoplusia ni , H.virescens , B.mori , and Danaus plexippus contained oligosaccharides that were structurally identical to the 10 oligosaccharides attached to SEAP produced in T.ni cell lines. The oligosaccharide structures were all mannose-terminated. Structures containing two or three mannose residues, with and without core fucosylation, constituted more than 75% of the oligosaccharides from the cell culture and larval samples.
Collapse
Affiliation(s)
- P C Kulakosky
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853-1801, USA
| | | | | |
Collapse
|
27
|
Haidaris CG, Fisher DJ, Gigliotti F, Simpson-Haidaris PJ. Antigenic properties of recombinant glycosylated and nonglycosylated Pneumocystis carinii glycoprotein A polypeptides expressed in baculovirus-infected insect cells. Mol Biotechnol 1998; 9:91-7. [PMID: 9658387 DOI: 10.1007/bf02760811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since a continuous culture system is not yet available for the opportunistic fungal pathogen Pneumocystis carinii, obtaining suitable amounts of purified P. carinii antigens free of mammalian-host lung contaminants is difficult. Hence, production of recombinant antigen possessing epitopes found in native P. carinii antigens is critical for immunological studies. We utilized the baculovirus expression vector system (BEVS) in insect cells to determine whether B-cell epitopes present in the protein core of a native P. carinii surface glycoprotein were conserved in the recombinant polypeptide, and to investigate its glycosylation by insect cells. B-cell epitopes were retained, but the insect cells appeared to hyperglycosylate the recombinant protein.
Collapse
Affiliation(s)
- C G Haidaris
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, NY 14642, USA.
| | | | | | | |
Collapse
|
28
|
Kulakosky PC, Shuler ML, Wood HA. N-glycosylation of a baculovirus-expressed recombinant glycoprotein in three insect cell lines. In Vitro Cell Dev Biol Anim 1998; 34:101-8. [PMID: 9542646 DOI: 10.1007/s11626-998-0091-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The capacity of two Trichoplusia ni (TN-368 and BTI-Tn-5b 1-4) and a Spodoptera frugiperda (IPLB-SF-21A) cell lines to glycosylate recombinant, baculovirus-encoded, secreted, placental alkaline phosphatase was compared. The alkaline phosphatase from serum-containing, cell culture medium was purified by phosphate affinity column chromatography. The N-linked oligosaccharides were released from the purified protein with PNGase F and analyzed by fluorophore-assisted carbohydrate electrophoresis. The majority of oligosaccharide structures produced by the three cell lines contained two or three mannose residues, with and without core fucosylation, but there were structures containing up to seven mannose residues. The oligosaccharides that were qualitatively or quantitatively different between the cell lines were sequenced with glycosidase digestions. The S. frugiperda cells produced more fucosylated oligosaccharides than either of the T. ni cell lines. The smallest oligosaccharide produced by S. frugiperda cells was branched trimannose. In contrast, both T. ni cell lines produced predominantly dimannose and linear trimannose structures devoid of alpha 1-3-linked mannose.
Collapse
Affiliation(s)
- P C Kulakosky
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
29
|
Butters TD, Yudkin B, Jacob GS, Jones IM. Structural characterization of the N-linked oligosaccharides derived from HIVgp120 expressed in lepidopteran cells. Glycoconj J 1998; 15:83-8. [PMID: 9530961 DOI: 10.1023/a:1006999718552] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The oligosaccharides of recombinant HIV gp120 expressed in lepidopteran Sf9 cells were analysed after hydrazine release by gel permeation and high pH anion exchange chromatography. N-Linked glycans were exclusively of the oligomannose series and no evidence for charged complex or hybrid type glycans was found. However a glycosylation reaction similar to those found in vertebrates was evident. The major glycoform of gp120, that comprised 30% of all the species analysed, was structurally identified by exoglycosidase digestion and found to be a core fucosylated structure, Manalpha1,6(Manalpha1,3)Manbeta1,4GlcNAc(Fucalpha1+ ++,6)GlcNAc. Further confirmation of the ability of lepidopteran cells to fucosylate N-linked glycans was provided by an in vitro analysis of this reaction using authentic oligosaccharide substrates.
Collapse
Affiliation(s)
- T D Butters
- Glycobiology Institute, Department of Biochemistry, University of Oxford, UK.
| | | | | | | |
Collapse
|
30
|
Toki D, Sarkar M, Yip B, Reck F, Joziasse D, Fukuda M, Schachter H, Brockhausen I. Expression of stable human O-glycan core 2 beta-1,6-N-acetylglucosaminyltransferase in Sf9 insect cells. Biochem J 1997; 325 ( Pt 1):63-9. [PMID: 9224630 PMCID: PMC1218529 DOI: 10.1042/bj3250063] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UDP-GlcNAc:Galbeta1-3GalNAc-R (GlcNAc to GalNAc) beta-1, 6-N-acetylglucosaminyltransferase (C2GnT) catalyses the formation of O-glycan core 2. Purification and characterization of C2GnT from natural sources has been hampered by the instability of this enzyme. We have been able to prepare a stable partly purified recombinant human C2GnT by expression of a truncated form of the enzyme in the baculovirus/Spodoptera frugiperda 9 (Sf9) insect cell system. C2GnT activity was secreted into the Sf9 culture medium (15 pmol/min per microl; approx. 0.2 mg/l) and was stable at 4 degrees C either in solution or after lyophilization. Endoglycosidase H and N-glycanase F treatment of the radiolabelled C2GnT indicated the presence of N-glycans at both potential N-glycosylation sites. The elimination of one or both of the two potential N-glycosylation sites or treatment of the virus-infected insect cells with tunicamycin resulted in loss of enzyme activity due in part to protein degradation.
Collapse
Affiliation(s)
- D Toki
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Percival MD, Bastien L, Griffin PR, Kargman S, Ouellet M, O'Neill GP. Investigation of human cyclooxygenase-2 glycosylation heterogeneity and protein expression in insect and mammalian cell expression systems. Protein Expr Purif 1997; 9:388-98. [PMID: 9126611 DOI: 10.1006/prep.1996.0685] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human cyclooxygenase-2 (hCox-2) is a key enzyme in the biosynthesis of prostaglandins and the target of nonsteroidal anti-inflammatory drugs. Recombinant hCox-2 overexpressed in a vaccinia virus (VV)-COS-7 system comprises two glycoforms. Removal of the N-glycosylation consensus sequence at Asn580 (N580Q and S582A mutants) resulted in the expression of protein comprising a single glycoform, consistent with the partial N-glycosylation at this site in the wild-type (WT) enzyme. The specific cyclooxygenase activities of the purified WT and N580Q mutant were equivalent (40 +/- 3 mumol O2/min/mg) and titrations with diclofenac showed no difference in inhibitor sensitivities of WT and both mutants. Results of the expression of WT and N580Q hCox-2 in a Drosophila S2 cell system were also consistent with the N-glycosylation at this site, but low levels of activity were obtained. High levels of N-glycosylation heterogeneity are observed in hCox-2 expressed using recombinant baculovirus (BV) in Sf9 cells. Expression of a double N-glycosylation site mutant in Sf9 cells, N580Q/N592Q, resulted in a decrease in glycosylation but no clear decrease in heterogeneity, indicating that the high degree of N-glycosylation heterogeneity observed with the BV-Sf9 system is not due to partial glycosylation of both Asn580 and Asn592. N-linked oligosaccharide profiling of purified VV and BV WT and S582A mutant hCox-2 showed the presence of high mannose structures, (Man)n (GlcNAc)2, n = 9, 8, 7, 6. The S582A mutant was the most homogeneous with (Man)9(GlcNAc)2 comprising greater than 50% of oligosaccharides present. Analysis of purified VV WT and S582A mutant hCox-2 by liquid chromatography-electrospray ionization-mass spectrometry showed an envelope of peaks separated by approximately 160 Da, corresponding to differences of a single monosaccharide. The difference between the highest mass peaks of the two envelopes, of approximately 1500 Da, is consistent with the wild-type enzyme containing an additional high mannose oligosaccharide.
Collapse
Affiliation(s)
- M D Percival
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Gu J, Nakayama Y, Nagai K, Wada Y. The production and purification of functional decorin in a baculovirus system. Biochem Biophys Res Commun 1997; 232:91-5. [PMID: 9125159 DOI: 10.1006/bbrc.1997.6230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human decorin was expressed in Spodoptera frugiperda 21 (Sf21) insect cells. A full-length cDNA encoding preprodecorin of 359 amino acids from a human fibroblast library was cloned into baculovirus transfer vector pVL1392, and transfected into Sf21 insect cells. The infected cells secreted the mature decorin into the culture medium. The secreted decorin lacked glycosaminoglycan but was N-glycosylated, whereas the unmodified decorin was present in the cell lysates, suggesting that N-glycosylation is required for decorin secretion from Sf21 cells. The recombinant decorin was then efficiently purified from the conditioned medium by two chromatographic procedures, hydroxyapatite Sepharose and Con A-Agarose, under nondenaturing conditions. The purified decorin was more potent, as evaluated by the inhibition of collagen fibrillogenesis, than that obtained from bovine tissues under denaturing conditions. The final yield of recombinant decorin was 1.5 mg in 200 ml culture medium of 3 x 10(8) cells. The biologically active decorin produced in Sf21 cells is a potentially useful probe for investigating the molecular interactions of this protein with other extracellular matrix proteins and may also have therapeutic applications.
Collapse
Affiliation(s)
- J Gu
- Department of Molecular Medicine, Osaka Medical Center, Japan
| | | | | | | |
Collapse
|
33
|
Jarvis DL, Finn EE. Modifying the insect cell N-glycosylation pathway with immediate early baculovirus expression vectors. Nat Biotechnol 1996; 14:1288-92. [PMID: 9631095 DOI: 10.1038/nbt1096-1288] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The baculovirus-insect cell expression system is well-suited for recombinant glycoprotein production because baculovirus vectors can provide high levels of expression and insect cells can modify newly synthesized proteins in eucaryotic fashion. However, the N-glycosylation pathway of baculovirus-infected insect cells differs from the pathway found in higher eucaryotes, as indicated by the fact that glycoproteins produced in the baculovirus system typically lack complex biantennary N-linked oligosaccharide side chains containing penultimate galactose and terminal sialic acid residues. We recently developed a new type of baculovirus vector that can express foreign genes immediately after infection under the control of the viral ie1 promoter. These immediate early baculovirus expression vectors can be used to modify the insect cell N-glycosylation pathway and produce a foreign glycoprotein with more extensively processed N-linked oligosaccharides. These vectors can also be used to study the influence of the late steps in N-linked oligosaccharide processing on glycoprotein function. Further development could lead to baculovirus-insect cell expression systems that can produce recombinant glycoproteins with complex biantennary N-linked oligosaccharides structurally identical to those produced by higher eucaryotes.
Collapse
Affiliation(s)
- D L Jarvis
- Department of Entomology, Texas A&M University, College Station 77843, USA.
| | | |
Collapse
|
34
|
Reverey H, Veit M, Ponimaskin E, Schmidt MF. Differential fatty acid selection during biosynthetic S-acylation of a transmembrane protein (HEF) and other proteins in insect cells (Sf9) and in mammalian cells (CV1). J Biol Chem 1996; 271:23607-10. [PMID: 8798573 DOI: 10.1074/jbc.271.39.23607] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transmembrane glycoprotein HEF and its acylation deficient mutant M1 were expressed in Sf9 insect cells infected with recombinant baculovirus and in CV1 mammalian cells using the vaccinia T7 system. In insect cells (Sf9), both wild type HEF and HEF(M1) are synthesized in their precursor form HEF0, which appears as a double band in SDS gels. Digestion with glycopeptidase F and endoglycosidase H reveals that the larger 84-kDa form is modified by the attachment of unprocessed carbohydrates of the high mannose type whereas the smaller 76-kDa form is non-glycosylated. As revealed by in vitro labeling experiments with palmitic acid another modification of HEF is the attachment of a long chain fatty acid to cysteine residue Cys-652 which is located at the internal border of the cytoplasmic membrane. After labeling with [3H]palmitic acid in both systems only HEF(WT) is acylated, whereas HEF(M1) is not. High performance liquid chromatography analysis of the fatty acids bound to HEF(WT) expressed in Sf9 insect cells reveals nearly 80% of palmitic acid. In contrast to this finding, the acylation pattern of HEF expressed in CV1 cells shows nearly the same amounts of stearic and palmitic acid (40%). Since the interconversion of the input [3H]palmitic acid to stearic acid is even lower in CV1 cells than in insect cells, it follows that only HEF expressed in mammalian, but not in insect cells selects for stearic acid during its biosynthetic acylation. We extended our study to acylation of endogenous proteins in Sf9 cells. In finding only palmitate linked to protein we present evidence that, in contrast to mammalian cells, insect cells (Sf9) cannot transfer stearic acid to polypeptide. This finding favors the hypothesis of enzymatic acylation over non-enzymatic mechanisms of acyl transfer to protein.
Collapse
Affiliation(s)
- H Reverey
- Institut für Immunologie und Molekularbiologie, Freie Universität Berlin, Fachbereich Veterinärmedizin, Luisenstrasse 56, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
35
|
Wagner R, Geyer H, Geyer R, Klenk HD. N-acetyl-beta-glucosaminidase accounts for differences in glycosylation of influenza virus hemagglutinin expressed in insect cells from a baculovirus vector. J Virol 1996; 70:4103-9. [PMID: 8648750 PMCID: PMC190296 DOI: 10.1128/jvi.70.6.4103-4109.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hemagglutinin of fowl plague virus has been expressed in Spodoptera frugiperda (Sf9) cells and in Estigmene acrea cells by using a baculovirus vector. Structural analysis revealed that the endo-H-resistant N-glycans of HA from Sf9 cells were predominantly trimannosyl core oligosaccharides, whereas in E. acrea cells most of these cores were elongated by at least one terminal N-acetylglucosamine residue. To understand the difference in carbohydrate structures, enzymes involved in N-glycan processing have been analyzed. The results revealed that the different glycosylation patterns observed are due to an N-acetyl-beta-glucosaminidase activity that was found in Sf9 cells but not in E. acrea cells. This enzyme specifically used the GlcNAcMan(3)GlcNAc(2) oligosaccharide as a substrate. When N-acetyl-beta-glucosaminidase or alpha-mannosidase II was inhibited by specific inhibitors, the amount of terminal N-acetylglucosamine in hemagglutinin from Sf9 cells was significantly enhanced. These results demonstrate that N glycosylation in both cell lines follows the classical pathway up to the stage of GlcNAcMan(3)GlcNAc(2) oligosaccharide side chains. Whereas these structures are the end product in E. acrea cells, they are degraded in Sf9 cells to Man(3)GlcNAc(2) cores by N-acetyl-beta-glucosaminidase.
Collapse
Affiliation(s)
- R Wagner
- Institut für Virologie, Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
36
|
James DC, Goldman MH, Hoare M, Jenkins N, Oliver RW, Green BN, Freedman RB. Posttranslational processing of recombinant human interferon-gamma in animal expression systems. Protein Sci 1996; 5:331-40. [PMID: 8745411 PMCID: PMC2143336 DOI: 10.1002/pro.5560050217] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have characterized the heterogeneity of recombinant human interferon-gamma (IFN-gamma) produced by three expression systems: Chinese hamster ovary cells, the mammary gland of transgenic mice, and baculovirus-infected Spodopera frugiperda (Sf9) insect cells. Analyses of whole IFN-gamma proteins by electrospray ionization-mass spectrometry (ESI-MS) from each recombinant source revealed heterogeneous populations of IFN-gamma molecules resulting from variations in N-glycosylation and C-terminal polypeptide cleavages. A series of more specific analyses assisted interpretation of maximum entropy deconvoluted ESI-mass spectra of whole IFN-gamma proteins; MALDI-MS analyses of released, desialylated N-glycans and of deglycosylated IFN-gamma polypeptides were combined with analyses of 2-aminobenzamide labeled sialylated N-glycans by cation-exchange high-performance liquid chromatography. These analyses enabled identification of specific polypeptide cleavage sites and characterization of associated N-glycans. Production of recombinant IFN-gamma in the mammalian expression systems yielded polypeptides C-terminally truncated at dibasic amino acid sites. Mammalian cell derived IFN-gamma molecules displayed oligosaccharides with monosaccharide compositions equivalent to complex, sialylated, or high-mannose type N-glycans. In contrast, IFN-gamma derived from baculovirus-infected Sf9 insect cells was truncated further toward the C-terminus and was associated with neutral (nonsialylated) N-glycans. These data demonstrate the profound influence of host cell type on posttranslational processing of recombinant proteins produced in eukaryotic systems.
Collapse
Affiliation(s)
- D C James
- Research School of Biosciences, University of Kent, Centerbury, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ogonah OW, Freedman RB, Jenkins N, Patel K, Rooney BC. Isolation and Characterization of an Insect Cell Line Able to Perform Complex N-Linked Glycosylation on Recombinant Proteins. Nat Biotechnol 1996. [DOI: 10.1038/nbt0296-197] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Post-translational modifications in insect cells. INSECT CELL CULTURE: FUNDAMENTAL AND APPLIED ASPECTS 1996. [DOI: 10.1007/0-306-46850-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Bei R, Schlom J, Kashmiri SV. Baculovirus expression of a functional single-chain immunoglobulin and its IL-2 fusion protein. J Immunol Methods 1995; 186:245-55. [PMID: 7594624 DOI: 10.1016/0022-1759(95)00149-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The baculovirus expression system has been used for the production of a variety of proteins, including antibodies. Two single-gene constructs encoding single-chain immunoglobulins have recently been developed. The antibody employed was monoclonal antibody (MAb) CC49 which reacts with the pancarcinoma antigen, tumor associated glycoprotein, TAG-72. One, single-chain construct designated SCA delta CLCH1 (SCIg), consists of the CC49 sFv covalently joined to the human Fc (gamma 1) through the hinge region. The other, SCA delta CLCH1-IL-2 (SCIg-IL-2), has a human IL-2 molecule attached to the carboxyl end of the SCIg. These constructs have been used to test the feasibility of producing biologically active antibodies using the baculovirus expression system. Both constructs have been successfully expressed in insect cells and purified. The baculovirus recombinant single-chain antibodies have been designated, bV-SCA delta CLCH1 (bV-SCIg) and bV-SCA delta CLCH1-IL-2 (bV-SCIg-IL-2) they have been shown to be secreted in the culture supernatant as dimeric molecules of approximately 115 kDa and 140 kDa, respectively. The specificity and antibody dependent cellular cytolytic activity of the baculovirus recombinant single-chain antibodies were shown to be similar to that of the myeloma derived molecules. Glycosylation analysis showed that baculovirus derived proteins were N-glycosylated, but carried few if any high mannose residues. The biological activity of the IL-2 moiety was retained in bV-SCIg-IL-2, as evidenced by its stimulatory effect on the proliferation of the IL-2 dependent cell line HT-2. The observation that a significantly shorter time is required to develop baculovirus recombinant molecules as compared to myeloma derived molecules and that insect cells express single chain MAbs at acceptable levels may have implications for the production of these molecules for clinical use.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/genetics
- Antibodies, Neoplasm/immunology
- Antibodies, Neoplasm/isolation & purification
- Antibody Specificity
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Neoplasm/immunology
- Carcinoma/immunology
- Cells, Cultured
- Genetic Vectors
- Glycoproteins/immunology
- Glycosylation
- Humans
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Nucleopolyhedroviruses/genetics
- Pancreatic Neoplasms/immunology
- Protein Processing, Post-Translational
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Spodoptera/cytology
Collapse
Affiliation(s)
- R Bei
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
40
|
Yang Y, Sammar M, Harrison JE, Lehnert K, Print CG, Leung E, Prestidge R, Krissansen GW. Construction and adhesive properties of a soluble MadCAM-1-Fc chimera expressed in a baculovirus system: phylogenetic conservation of receptor-ligand interaction. Scand J Immunol 1995; 42:235-47. [PMID: 7631157 DOI: 10.1111/j.1365-3083.1995.tb03650.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MAdCAM-1 is a high endothelial venule adhesion molecule composed of immunoglobulin and mucin-like domains which binds the leucocyte integrin LPAM-1 (alpha 4 beta 7), and is largely responsible for the selective homing of lymphocytes to mucosal tissues. A novel soluble form of mouse MAdCAM-1 which is normally membrane bound has been produced by joining the extracellular region of the receptor to the Fc domain of human IgG1. The MAdCAM-1-Fc cDNA was inserted into the genome of Autographa californica nuclear polyhedrosis virus (AcNPV). Spodoptera frugiperda insect cells infected with the recombinant virus produced MAdCAM-1-Fc as a disulfide-linked homodimer of 82 kDa polypeptides, which was secreted into the culture medium at > 1 microgram/ml. The product purified by Protein G-Sepharose was identified as authentic MAdCAM-1-Fc by the anti-MAdCAM-1 monoclonal antibody (MoAb) MECA-367 using Western blot and ELISA analysis. When immobilized on glass it was fully functional in supporting the binding of mouse alpha 4 beta 1+ alpha 4 beta 7+ mesenteric lymph node lymphocytes, and the alpha 4 beta 1- alpha 4 beta 7+ TK1 T cell lymphoma. Binding was enhanced by Mn(++)-induced integrin activation, and specifically blocked by anti-integrin alpha 4 subunit and anti-MAdCAM-1 MoAbs. Binding was blocked by pretreatment of cells with sodium azide, and EDTA, indicating that binding is an energy-dependent process which requires divalent cations. Thus the mouse MAdCAM-1-Fc chimera produced in insect cells retains certain functional properties that typify the native receptor, and should be valuable in analysing the role of MAdCAM-1 in lymphocyte recirculation and emigration. However it was not sialylated despite being post-translational modified with N- and O-linked carbohydrate moieties, suggesting that the ability of MAdCAM-1 to support cell adhesion under static conditions is sialylation-independent. A rabbit polyclonal antibody raised against the entire cytoplasmic domain of the human integrin beta 7 subunit recognized LPAM-1-like molecules in human, rat, and mouse cells, suggesting a high degree of conservation of the MAdCAM-1 receptor across species. In agreement with this notion MAdCAM-1-Fc immobilized on glass was fully functional in supporting the cation-dependent binding of peripheral blood or spleen cells from a range of other species including human, rat, and guinea pig; and for human myeloid HL60 cells, binding was mediated by alpha 4 integrins.
Collapse
Affiliation(s)
- Y Yang
- Department of Molecular Medicine, School of Medicine, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Determination of the structure of integral membrane proteins is a challenging task that is essential to understand how fundamental biological processes (such as photosynthesis, respiration and solute translocation) function at the atomic level. Crystallisation of membrane proteins in 3D has led to the determination of four atomic resolution structures [photosynthetic reaction centres (Allenet al. 1987; Changet al. 1991; Deisenhofer & Michel, 1989; Ermleret al. 1994); porins (Cowanet al. 1992; Schirmeret al. 1995; Weisset al. 1991); prostaglandin H2synthase (Picotet al. 1994); light harvesting complex (McDermottet al. 1995)], and crystals of membrane proteins formed in the plane of the lipid bilayer (2D crystals) have produced two more structures [bacteriorhodopsin (Hendersonet al. 1990); light harvesting complex (Kühlbrandtet al. 1994)].
Collapse
Affiliation(s)
- R Grisshammer
- Centre for Protein Engineering, MRC Centre, Cambridge, UK
| | | |
Collapse
|
42
|
Kalsner I, Hintz W, Reid LS, Schachter H. Insertion into Aspergillus nidulans of functional UDP-GlcNAc: alpha 3-D- mannoside beta-1,2-N-acetylglucosaminyl-transferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconj J 1995; 12:360-70. [PMID: 7496151 DOI: 10.1007/bf00731339] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Filamentous fungi are capable of secreting relatively large amounts of heterologous recombinant proteins. Recombinant human glycoproteins expressed in this system, however, carry only carbohydrates of the oligomannose type limiting their potential use in humans. One approach to the problem is genetic engineering of the fungal host to permit production of complex and hybrid N-glycans. UDP-GlcNAc:alpha 3-D-mannoside beta- 1,2-N-acetylglucosaminyltransferase I (GnT I) is essential for the conversion of oligomannose to hybrid and complex N-glycans in higher eukaryotic cells. Since GnT I is not produced by fungi, we have introduced into the genome of Aspergillus nidulans the gene encoding full-length rabbit GnT I and demonstrated the expression of GnT I enzyme activity at levels appreciably higher than occurs in most mammalian tissues. All the GnT I activity in the Aspergillus transformants remains intracellular suggesting that the rabbit trans-membrane sequence may be capable of targeting GnT I to the fungal Golgi apparatus.
Collapse
Affiliation(s)
- I Kalsner
- Research Institute, Hospital for Sick Children, Toronto, Ont., Canada
| | | | | | | |
Collapse
|
43
|
Seto NO, Ou D, Gillam S. Expression and characterization of secreted forms of rubella virus E2 glycoprotein in insect cells. Virology 1995; 206:736-41. [PMID: 7831834 DOI: 10.1016/s0042-6822(95)80098-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two different forms of rubella virus E2 glycoproteins were expressed in insect cells: intact wild-type E2 and a soluble form of E2 (E2 delta Tm) glycoprotein, in which the C-terminal membrane-anchor domain was deleted. E2 delta Tm behaved as a secretory protein and was secreted abundantly (5 mg/liter) from insect cells. In contrast to wild-type E2 (36 kDa), E2 delta Tm was secreted into the media and was detected as two species (33 and 30 kDa). Lectin binding assays in conjunction with glycosidase analyses revealed that both intracellular wild-type E2 and E2 delta Tm contained only N-linked glycans, while the two secreted forms of E2 delta Tm were found to differ in their glycosylation, with the 30-kDa form having only N-linked glycans while the 33-kDa species had both N-linked and O-linked glycans. The secreted E2 delta Tm species were purified by precipitation between 20 and 40% saturation with (NH4)2SO4 and retained full antigenicity. The levels of antibodies elicited in mice immunized with purified E2 delta Tm showed that the immunogenicity of secreted E2 delta Tm compared favorably to that of natural virion E2.
Collapse
Affiliation(s)
- N O Seto
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
44
|
Townsend RR. Chapter 5 Analysis of Glycoconjugates Using High-pH Anion-Exchange Chromatography. JOURNAL OF CHROMATOGRAPHY LIBRARY 1995. [DOI: 10.1016/s0301-4770(08)60510-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
März L, Altmann F, Staudacher E, Kubelka V. Chapter 10 Protein Glycosylation in Insects. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
46
|
Sarkar M. Expression of recombinant rabbit UDP-GlcNAc: alpha 3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I catalytic domain in Sf9 insect cells. Glycoconj J 1994; 11:204-9. [PMID: 7841795 DOI: 10.1007/bf00731219] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UDP-GlcNAc: alpha 3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I; EC 2.4.1.101) catalyses a key reaction in the conversion of oligomannose to complex and hybrid N-glycans. The cytoplasmic tail and transmembrane segment of rabbit GnT I cDNA were replaced with an in-frame cleavable signal sequence and the hybrid construct was inserted into the genome of Autographa californica nuclear polyhedrosis virus (AcMNPV) under the control of the polyhedrin promoter. Sf9 insect cells were infected with the recombinant baculovirus and the enzymatically active and soluble catalytic domain of GnT I was purified from the medium (1-5 mg l-1) in two steps to a specific activity of about 2 mumol min-1 mg-1 protein. Recombinant GnT I has been used for the chemical-enzymatic synthesis of analogues of Man alpha 1-6]GlcNAc beta 1-2Man alpha 1-3]Man beta-O-octyl.
Collapse
Affiliation(s)
- M Sarkar
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Yagi S, Yanagida M, Tanida I, Hasegawa A, Okumura K, Ra C. High-level expression of the truncated alpha chain of human high-affinity receptor for IgE as a soluble form by baculovirus-infected insect cells. Biochemical characterization of the recombinant product. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:593-8. [PMID: 8125119 DOI: 10.1111/j.1432-1033.1994.tb18660.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding subunit of human high-affinity receptor for IgE (Fc epsilon RI alpha) was efficiently expressed as a truncated form in insect cells. The soluble (s)Fc epsilon RI alpha purified from culture medium by affinity chromatography with an anti-(alpha chain) mAb was nearly homogeneous and had an IgE-binding activity. The amino acid composition and the revealed N-terminal amino acid sequence of sFc epsilon RI alpha suggested that it was properly processed in insect cells. The apparent molecular mass (35 kDa) of purified sFc epsilon RI alpha was smaller than that of sFc epsilon RI alpha produced by CHO transfectants. The reduction of the apparent molecular mass after N-glycanase treatment showed the recombinant product was N-glycosylated. Peptide mapping of native and deglycosylated sFc epsilon RI alpha indicated that three Asn residues (Asn21, Asn42 and Asn166) should be almost fully glycosylated, and that two Asn residues (Asn74 and Asn135) were partially glycosylated.
Collapse
Affiliation(s)
- S Yagi
- Corporate Research and Development Laboratory, Tonen Corporation, Iruma-gun, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The overwhelming diversity of oligosaccharide structures on glycoproteins and glycolipids is both the most fascinating and the most frustrating aspect of glycobiology. Moreover, a single protein may be variably glycosylated and thereby represented by multiple glycoforms. As envisioned, many modifications may serve no useful function while others are likely to be essential [1]; hence, experimental approaches to understand the biological basis for such complexity can be difficult to formulate. In a recent comprehensive review on oligosaccharide function [2], Varki concludes that oligosaccharides carry out a large number of biological roles and that 'while all theories are correct, exceptions to each can be found'. Although a common theme to oligosaccharide function may never appear, crucial biological information can be observed to reside within various glycoforms. Examples include the glycoform-dependent mechanism of selectin function in mediating haemopoietic cell extravasation during inflammatory responses [3] and the clearance of particular glycoforms from serum by various glycoform-specific receptors [4-6]. Together, studies of glycosyltransferase biochemistry, naturally-occurring and experimentally-induced glycoform mutations, and the genetic basis for the production of glycoform complexity have allowed crucial steps in the biosynthesis of specific glycan structures to be reconstructed as they appear to occur in the endoplasmic reticulum and Golgi apparatus of intact cells [7]. With a significant foundation of biochemical knowledge achieved, genetic approaches are under way further to decipher the physiological roles encoded within the diverse and dynamic mammalian oligosaccharide repertoire.
Collapse
Affiliation(s)
- J D Marth
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
Abstract
Currently, insect and plant cell cultures are not widely used to make products of commercial interest, largely because the development of large-scale cultivation methods is still in its infancy. With the advances made over the past year, some of the limitations associated with scale-up of these two types of expression system have been addressed. Increasing the oxygen supply and the concentration of various nutrients supplied to insect cells after infection has enabled high specific protein production to be maintained to higher cell densities than ever before, improving overall volumetric yields. Detailed work has focused on the capacity of insect cells to carry out complex post-translational modifications; however, as yet, evidence is conflicting as to the extent of protein processing and complex glycosylation possible in infected cells. In plant cell culture, the accepted axioms concerning large-scale culture have been re-examined. Recent studies have assessed culture at high cell densities and the constraints in reactor design resulting from the 'shear sensitivity' of plant cells. Results show that, as cell densities increase, alterations occur in the pathways of secondary metabolism, leading to decreases in specific productivity. The use of nutrient supplements and a medium cycling strategy shows promise for increasing and sustaining product formation. Furthermore, the importance of dissolved gas composition has been clearly demonstrated by use of a gas recirculation reactor. Reports of taxol and vindoline production in vitro demonstrate the potential and the necessity for further research in scale-up of plant cell culture.
Collapse
Affiliation(s)
- R A Taticek
- School of Chemical Engineering, Cornell University, Ithaca, New York 14853-5201
| | | | | |
Collapse
|
50
|
Kretzschmar E, Geyer R, Klenk HD. Baculovirus Infection Does not Alter N-Glycosylation inSpodoptera frugiperdaCells. ACTA ACUST UNITED AC 1994. [DOI: 10.1515/bchm3.1994.375.5.323] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|