1
|
Lai HY, Fan KC, Lee YH, Lew WZ, Lai WY, Lee SY, Chang WJ, Huang HM. Using a static magnetic field to attenuate the severity in COVID-19-invaded lungs. Sci Rep 2024; 14:16830. [PMID: 39039227 PMCID: PMC11263632 DOI: 10.1038/s41598-024-67806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Two important factors affecting the progress of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the S-protein binding function of ACE2 receptors and the membrane fluidity of host cells. This study aimed to evaluate the effect of static magnetic field (SMF) on S-protein/ACE2 binding and cellular membrane fluidity of lung cells, and was performed in vitro using a Calu-3 cell model and in vivo using an animal model. The ability of ACE2 receptors to bind to SARS-CoV-2 spike protein on host cell surfaces under SMF stimulation was evaluated using fluorescence images. Host lung cell membrane fluidity was tested using fluorescence polarization to determine the effects of SMF. Our results indicate that 0.4 T SMF can affect binding between S-protein and ACE2 receptors and increase Calu-3 cell membrane fluidity, and that SMF exposure attenuates LPS-induced alveolar wall thickening in mice. These results may be of value for developing future non-contact, non-invasive, and low side-effect treatments to reduce disease severity in COVID-19-invaded lungs.
Collapse
Affiliation(s)
- Hsuan-Yu Lai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Cheng Fan
- Department of Dentistry, Taipei Medical University Wan Fang Hospital, 11696, Taipei, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science, National Pingtung University of Science and Technology, 912301, Pingtung, Taiwan
| | - Wei-Zhen Lew
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, 112062, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Dentistry, Taipei Medical University Wan Fang Hospital, 11696, Taipei, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Yan A, Chen X, He J, Ge Y, Liu Q, Men D, Xu K, Li D. Phosphorothioated DNA Engineered Liposomes as a General Platform for Stimuli-Responsive Cell-Specific Intracellular Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202303973. [PMID: 37100742 DOI: 10.1002/anie.202303973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Intracellular protein delivery is highly desirable for protein drug-based cell therapy. Established technologies suffer from poor cell-specific cytosolic protein delivery, which hampers the targeting therapy of specific cell populations. A fusogenic liposome system enables cytosolic delivery, but its ability of cell-specific and controllable delivery is quite limited. Inspired by the kinetics of viral fusion, we designed a phosphorothioated DNA coatings-modified fusogenic liposome to mimic the function of viral hemagglutinin. The macromolecular fusion machine docks cargo-loaded liposomes at the membrane of target cells, triggers membrane fusion upon pH or UV light stimuli, and facilitates cytosolic protein delivery. Our results showed efficient cell-targeted delivery of proteins of various sizes and charges, indicating the phosphorothioated DNA plug-in unit on liposomes could be a general strategy for spatial-temporally controllable protein delivery both in vitro and in vivo.
Collapse
Affiliation(s)
- An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaoqing Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jie He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Qing Liu
- Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dong Men
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Canepa E, Bochicchio D, Brosio G, Silva PHJ, Stellacci F, Dante S, Rossi G, Relini A. Cholesterol-Containing Liposomes Decorated With Au Nanoparticles as Minimal Tunable Fusion Machinery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207125. [PMID: 36899445 DOI: 10.1002/smll.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Indexed: 06/08/2023]
Abstract
Membrane fusion is essential for the basal functionality of eukaryotic cells. In physiological conditions, fusion events are regulated by a wide range of specialized proteins, operating with finely tuned local lipid composition and ionic environment. Fusogenic proteins, assisted by membrane cholesterol and calcium ions, provide the mechanical energy necessary to achieve vesicle fusion in neuromediator release. Similar cooperative effects must be explored when considering synthetic approaches for controlled membrane fusion. We show that liposomes decorated with amphiphilic Au nanoparticles (AuLips) can act as minimal tunable fusion machinery. AuLips fusion is triggered by divalent ions, while the number of fusion events dramatically changes with, and can be finely tuned by, the liposome cholesterol content. We combine quartz-crystal-microbalance with dissipation monitoring (QCM-D), fluorescence assays, and small-angle X-ray scattering (SAXS) with molecular dynamics (MD) at coarse-grained (CG) resolution, revealing new mechanistic details on the fusogenic activity of amphiphilic Au nanoparticles (AuNPs) and demonstrating the ability of these synthetic nanomaterials to induce fusion regardless of the divalent ion used (Ca2+ or Mg2+ ). The results provide a novel contribution to developing new artificial fusogenic agents for next-generation biomedical applications that require tight control of the rate of fusion events (e.g., targeted drug delivery).
Collapse
Affiliation(s)
- Ester Canepa
- Department of Physics, University of Genoa, Genoa, 16146, Italy
- Institute of Materials Science & Engineering, EPFL, Lausanne, 1015, Switzerland
| | | | - Giorgia Brosio
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| | | | - Francesco Stellacci
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Silvia Dante
- Institute of Materials Science & Engineering, EPFL, Lausanne, 1015, Switzerland
| | - Giulia Rossi
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| | - Annalisa Relini
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| |
Collapse
|
4
|
Cavalcanti RRM, Lira RB, Riske KA. Membrane Fusion Biophysical Analysis of Fusogenic Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10430-10441. [PMID: 35977420 DOI: 10.1021/acs.langmuir.2c01169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liposomes represent important drug carrier vehicles in biological systems. A fusogenic liposomal system composed of equimolar mixtures of the cationic lipid DOTAP and the phospholipid DOPE showed high fusion and delivery efficiencies with cells and lipid vesicles. However, aspects of the thermodynamics involving the interaction of these fusogenic liposomes and biomimetic systems remain unclear. Here, we investigate the fusion of this system with large unilamellar vesicles (LUVs) composed of the zwitterionic lipid POPC and increasing fractions of the anionic lipid POPG and up to 30 mol % cholesterol. The focus here is to concomitantly follow changes in size, zeta-potential, and enthalpy binding upon membrane interaction and fusion. Isothermal titration calorimetry (ITC) data showed that membrane fusion in our system is an exothermic process in the absence of cholesterol, suggesting that electrostatic attraction is the driving force for fusion. An endothermic component appeared and eventually dominated the titration at 30 mol % cholesterol, which we propose is caused by membrane fluidification when cholesterol is diluted upon fusion. The inflection points of the ITC data occurred around 0.5-0.7 POPG/DOTAP for all systems, the same stoichiometry for which zeta-potential and dynamic light scattering measurements showed an increase in size coupled with charge neutralization of the system, which is consistent with the fact that fusion in our system is charge-mediated. Microscopy observations of the final mixtures revealed the presence of giant vesicles, which is a clear indication of fusion, coexisting with intermediate-sized objects that could be the result of both fusion and/or aggregation. The results show that the fusion efficiency of the DOTAP:DOPE fusogenic system is modulated by the charge and membrane packing of the acceptor membrane and explain why the system fuses very efficiently with cells.
Collapse
Affiliation(s)
- Rafaela R M Cavalcanti
- Departamento de Biofísica, Universidade Federal de São Paulo, CEP 04039-032, São Paulo, Brazil
| | - Rafael B Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, CEP 04039-032, São Paulo, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, CEP 04039-032, São Paulo, Brazil
| |
Collapse
|
5
|
Millay DP. Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Exp Cell Res 2022; 415:113134. [PMID: 35367215 PMCID: PMC9058940 DOI: 10.1016/j.yexcr.2022.113134] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
Abstract
Fusion of plasma membranes is essential for skeletal muscle development, regeneration, exercise-induced adaptations, and results in a cell that contains hundreds to thousands of nuclei within a shared cytoplasm. The differentiation process in myocytes culminates in their fusion to form a new myofiber or fusion to an existing myofiber thereby contributing more synthetic material to the syncytium. The choice for two cells to fuse and become one could be a dangerous event if the two cells are not committed to an allied function. Thus, fusion events are highly regulated with positive and negative factors to fine-tune the process, and requires muscle-specific fusogens (Myomaker and Myomerger) as well as general cellular machinery to achieve the union of membranes. While a unified vertebrate myoblast fusion pathway is not yet established, recent discoveries should make this pursuit attainable. Not only does myocyte fusion impact the normal biology of skeletal muscle, but new evidence indicates dysregulation of the process impacts pathologies of skeletal muscle. Here, I will highlight the molecular players and biochemical mechanisms that drive fusion events in muscle, and discuss how this key myogenic process impacts skeletal muscle diseases.
Collapse
Affiliation(s)
- Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
Valentine ML, Cardenas AE, Elber R, Baiz CR. Calcium-Lipid Interactions Observed with Isotope-Edited Infrared Spectroscopy. Biophys J 2020; 118:2694-2702. [PMID: 32362342 DOI: 10.1016/j.bpj.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 01/17/2023] Open
Abstract
Calcium ions bind to lipid membranes containing anionic lipids; however, characterizing the specific ion-lipid interactions in multicomponent membranes has remained challenging because it requires nonperturbative lipid-specific probes. Here, using a combination of isotope-edited infrared spectroscopy and molecular dynamics simulations, we characterize the effects of a physiologically relevant (2 mM) Ca2+ concentration on zwitterionic phosphatidylcholine and anionic phosphatidylserine lipids in mixed lipid membranes. We show that Ca2+ alters hydrogen bonding between water and lipid headgroups by forming a coordination complex involving the lipid headgroups and water. These interactions distort interfacial water orientations and prevent hydrogen bonding with lipid ester carbonyls. We demonstrate, experimentally, that these effects are more pronounced for the anionic phosphatidylserine lipids than for zwitterionic phosphatidylcholine lipids in the same membrane.
Collapse
Affiliation(s)
- Mason L Valentine
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - Alfredo E Cardenas
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
7
|
Degreif D, Cucu B, Budin I, Thiel G, Bertl A. Lipid determinants of endocytosis and exocytosis in budding yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1005-1016. [DOI: 10.1016/j.bbalip.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
|
8
|
Nguyen TT, Cramb DT. Elucidation of the mechanism and energy barrier for anesthetic triggered membrane fusion in model membranes. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane fusion is vital for cellular function and is generally mediated via fusogenic proteins and peptides. The mechanistic details and subsequently the transition state dynamics of membrane fusion will be dependent on the type of the fusogenic agent. We have previously established the potential of general anesthetics as a new class of fusion triggering agents in model membranes. We employed two-photon excitation fluorescence cross-correlation spectroscopy (TPE-FCCS) to report on vesicle association kinetics and steady-state fluorescence dequenching assays to monitor lipid mixing kinetics. Using halothane to trigger fusion in 110 nm diameter dioleoylphosphatidylcholine (DOPC) liposomes, we found that lipid rearrangement towards the formation of the fusion stalk was rate limiting. The activation barrier for halothane induced membrane fusion in 110 nm vesicles was found to be ∼40 kJ mol−1. We calculated the enthalpy and entropy of the transition state to be ∼40 kJ mol−1and ∼180 J mol−1K−1, respectively. We have found that the addition of halothane effectively lowers the energy barrier for membrane fusion in less curved vesicles largely due to entropic advantages.
Collapse
Affiliation(s)
- Trinh T. Nguyen
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - David T. Cramb
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Meher G, Chakraborty H. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. J Membr Biol 2019; 252:261-272. [PMID: 31011762 PMCID: PMC7079885 DOI: 10.1007/s00232-019-00064-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023]
Abstract
Membrane fusion, one of the most essential processes in the life of eukaryotes, occurs when two separate lipid bilayers merge into a continuous bilayer and internal contents of two separated membranes mingle. There is a certain class of proteins that assist the binding of the viral envelope to the target host cell and catalyzing fusion. All class I viral fusion proteins contain a highly conserved 20–25 amino-acid amphipathic peptide at the N-terminus, which is essential for fusion activity and is termed as the ‘fusion peptide’. It has been shown that insertion of fusion peptides into the host membrane and the perturbation in the membrane generated thereby is crucial for membrane fusion. Significant efforts have been given in the last couple of decades to understand the lipid-dependence of structure and function of the fusion peptide in membranes to understand the role of lipid compositions in membrane fusion. In addition, the lipid compositions further change the membrane physical properties and alter the mechanism and extent of membrane fusion. Therefore, lipid compositions modulate membrane fusion by changing membrane physical properties and altering structure of the fusion peptide.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
10
|
Uda RM, Kato Y, Takei M. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety. Colloids Surf B Biointerfaces 2016; 146:716-21. [DOI: 10.1016/j.colsurfb.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 01/25/2023]
|
11
|
Gale P. Could Bat Cell Temperature and Filovirus Filament Length Explain the Emergence of Ebola Virus in Mammals? Predictions of a Thermodynamic Model. Transbound Emerg Dis 2016; 64:1676-1693. [PMID: 27670273 DOI: 10.1111/tbed.12580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 02/07/2023]
Abstract
The host reservoir of Zaire ebolavirus (EBOV) remains elusive. One suggestion is that EBOV emerges in mammals when the precursor virus jumps from mayflies (or other riverine insects) to insectivorous bats. However, this does not fit with the current view that filoviruses cannot infect arthropods. Here, it is first argued that the evidence that arthropods are refractory is not definitive. Second, it is proposed that a combination of filovirus filament length and the high temperature (~42°C) experienced by an insect virus ingested by a flying bat, together with the large number of insects eaten by bats (e.g. during an ephemeral mass emergence of mayflies), facilitate jumping the species barrier. The length of a filovirus filament is related to the number of genome copies (GC). Predictions from a preliminary thermodynamic model developed here suggest that filament length could greatly affect EBOV infectivity to mammalian cells with infectivity peaking for filaments of a certain length. Importantly, the infectivity to mammals of even short filaments may be more than one million-fold higher than that for the single GC virion. Third, it is proposed that at the high temperature within the bat, the phospholipid phosphatidylserine in the virus envelope promotes filament formation through fusion of single GC particles within the ingested insect, thus hugely increasing their infectivity to bats. Forth, according to the thermodynamic model, increasing the temperature from 27°C (insect cell temperature at average air temperature in Guinea, West Africa) to 42°C (bat) could increase the affinity of the filaments for bat cells by 1-2 orders of magnitude, while having no effect on the binding affinity of the single GC virions. The thermodynamic model developed here is supported by the counterintuitive observation that high glycoprotein densities on the EBOV surface reduce its infectivity in contrast to other viruses such as HIV.
Collapse
Affiliation(s)
- P Gale
- Independent Scientist, Tilehurst, Reading, Berkshire, UK
| |
Collapse
|
12
|
LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress. J Membr Biol 2016; 249:789-800. [PMID: 27619206 DOI: 10.1007/s00232-016-9927-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.
Collapse
|
13
|
Nagarsekar K, Ashtikar M, Steiniger F, Thamm J, Schacher FH, Fahr A. Micro-spherical cochleate composites: method development for monodispersed cochleate system. J Liposome Res 2016; 27:32-40. [DOI: 10.3109/08982104.2016.1149865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kalpa Nagarsekar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| | - Mukul Ashtikar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| | - Frank Steiniger
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Jena, Germany,
| | - Jana Thamm
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| | - Felix H. Schacher
- Institut für Organische Chemie und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany, and
- Jena Center for Soft Matter, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Alfred Fahr
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| |
Collapse
|
14
|
Nagarsekar K, Ashtikar M, Steiniger F, Thamm J, Schacher F, Fahr A. Understanding cochleate formation: insights into structural development. SOFT MATTER 2016; 12:3797-3809. [PMID: 26997365 DOI: 10.1039/c5sm01469g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the structure and the self-assembly process of cochleates has become increasingly necessary considering the advances of this drug delivery system towards the pharmaceutical industry. It is well known that the addition of cations like calcium to a dispersion of anionic lipids such as phosphatidylserines results in stable, multilamellar cochleates through a spontaneous assembly. In the current investigation we have studied the intermediate structures generated during this self-assembly of cochleates. To achieve this, we have varied the process temperature for altering the rate of cochleate formation. Our findings from electron microscopy studies showed the formation of ribbonlike structures, which with proceeding interaction associate to form lipid stacks, networks and eventually cochleates. We also observed that the variation in lipid acyl chains did not make a remarkable difference to the type of structure evolved during the formation of cochleates. More generally, our observations provide a new insight into the self-assembly process of cochleates based on which we have proposed a pathway for cochleate formation from phosphatidylserine and calcium. This knowledge could be employed in using cochleates for a variety of possible biomedical applications in the future.
Collapse
Affiliation(s)
- Kalpa Nagarsekar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| | - Mukul Ashtikar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| | - Frank Steiniger
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Jana Thamm
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| | - Felix Schacher
- Institut für Organische Chemie und Makromolekulare Chemie Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany and Jena Center for Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Alfred Fahr
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Germany.
| |
Collapse
|
15
|
Saleem Q, Zhang Z, Petretic A, Gradinaru CC, Macdonald PM. Single lipid bilayer deposition on polymer surfaces using bicelles. Biomacromolecules 2015; 16:1032-9. [PMID: 25665160 DOI: 10.1021/acs.biomac.5b00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A lipid bilayer was deposited on a 3 μm diameter polystyrene (PS) bead via hydrophobic anchoring of bicelles containing oxyamine-bearing cholesteric moieties reacting with the aldehyde functionalized bead surface. Discoidal bicelles were formed by mixing dimyristoylphosphatidylcholine (DMPC), dihexanoylphosphatidylcholine (DHPC), dimyristoyltrimethylammonium propane (DMTAP), and the oxyamine-terminated cholesterol derivative, cholest-5-en-3β-oxy-oct-3,6-oxa-an-8-oxyamine (CHOLOA), in the molar ratio DMPC/DHCP/DMTAP/CHOLOA (1/0.5/0.01/0.05) in water. Upon exposure to aldehyde-bearing PS beads, a stable single lipid bilayer coating rapidly formed at the bead surface. Fluorescence recovery after photobleaching demonstrated that the deposited lipids fused into an encapsulating lipid bilayer. Electrospray ionization mass spectrometry showed that the short chain lipid DHPC was entirely absent from the PS adherent lipid coating. Fluorescence quenching measurements proved that the coating was a single lipid bilayer. The bicelle coating method is thus simple and robust, can be modified to include membrane-associated species, and can be adapted to coat any number of different surfaces.
Collapse
Affiliation(s)
- Qasim Saleem
- Departments of †Chemistry, ∥Physics, and ‡Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | | | | | | | | |
Collapse
|
16
|
Xia S, Tan C, Xue J, Lou X, Zhang X, Feng B. Chitosan/tripolyphosphate-nanoliposomes core-shell nanocomplexes as vitamin E carriers: shelf-life and thermal properties. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuqin Xia
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Chen Tan
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Jin Xue
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Xiaowei Lou
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| |
Collapse
|
17
|
Shimanouchi T, Kawasaki H, Fuse M, Umakoshi H, Kuboi R. Membrane fusion mediated by phospholipase C under endosomal pH conditions. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Kang DH, Jung HS, Lee J, Seo S, Kim J, Kim K, Suh KY. Design of polydiacetylene-phospholipid supramolecules for enhanced stability and sensitivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7551-7556. [PMID: 22515382 DOI: 10.1021/la300863d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present polydiacetylene (PDA) liposome assemblies with various phospholipids that have different headgroup charges and phase transition temperatures (T(m)). 10,12-Pentacosadiynoic acid (PCDA)-epoxy was used as a base PDA monomer and the insertion of highly charged phospholipids resulted in notable changes in the size of liposome and reduction of the aggregation of PDA liposome. Among the various phospholipids, the phospholipid with a moderate T(m) demonstrated enhanced stability and sensitivity, as measured by the size and zeta potential over storage time, thermochoromic response, and transmission electron microscopy images. By combining these results, we were able to detect immunologically an antibody of bovine viral diarrhea virus over a wide dynamic range of 0.001 to 100 μg/mL.
Collapse
Affiliation(s)
- Do Hyun Kang
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Strauss G, Hauser H. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci U S A 2010; 83:2422-6. [PMID: 16593683 PMCID: PMC323309 DOI: 10.1073/pnas.83.8.2422] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The freeze-induced fusion and leakage of small unilamellar vesicles (SUV) of natural and synthetic phosphatidylcholines and the suppression of these processes by sucrose was studied by electron microscopy, by high-resolution NMR, and by ESR techniques. During slow freezing of SUV suspensions in water, the lipid was compressed into a small interstitial volume and transformed into a multilamellar aggregate without vesicular structure. When frozen in sucrose solution, the lipid also was compressed between the ice crystals but remained in the form of vesicles. The fractional amount of lipid remaining as SUV after freezing was found to increase significantly only at sucrose/lipid molar ratios above 0.4. Eu(3+) displaced sucrose from the lipid by competitive binding. During freezing in the absence of sucrose, the vesicles became transiently permeable to ions. ESR studies showed that fusion of vesicles in the absence of sucrose is far more extensive when they are frozen while above their phase-transition temperature (t(c)) than when frozen while below their t(c). It is concluded that the extent of membrane disruption depends on the membrane mobility at the moment of freezing and that sucrose exerts its protective effect by binding to the membrane interface and/or by affecting the water structure.
Collapse
Affiliation(s)
- G Strauss
- Laboratorium für Biochemie, Eidgenössische Technische Hochschule, ETH Zentrum, CH 8092 Zürich, Switzerland
| | | |
Collapse
|
20
|
Yager P, Schoen PE, Davies C, Price R, Singh A. Structure of lipid tubules formed from a polymerizable lecithin. Biophys J 2010; 48:899-906. [PMID: 19431600 DOI: 10.1016/s0006-3495(85)83852-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have studied tubules formed from a polymerizable lipid in aqueous dispersion using freeze-fracture replication and transmission electron microscopy. The polymerizable diacetylenic lecithin 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine converts from liposomes to hollow cylinders, which we call tubules, on cooling through its chain melting phase transition temperature. These tubules differ substantially from cochleate cylinders formed by phosphatidylserines on binding of calcium. The tubules have diameters that range from 0.3 to 1 mum and lengths of up to hundreds of micrometers depending on conditions of formation. The thickness of the walls varies from as few as two bilayers to tens of bilayers in some longer tubules. Their surfaces may be either smooth, gently rippled, or with spiral steps depending on sample preparation conditions, including whether the lipids have been polymerized. The spiral steps may reflect the growth of the tubules by rolling up of flattened liposomes.
Collapse
|
21
|
Abstract
The autophagic/lysosomal system includes a variety of vesicular compartments that undergo dynamic fusion events. However, the characteristics and factors modulating these interactions remain, for the most part, unknown. To gain insights on the properties that govern lysosomal fusion events, we have established an in vitro fusion assay using different lysosomal/autophagic compartments isolated from mouse liver. We have found that autophagosome/lysosome fusion is a temperature-dependent process (fusion increment of 0.2+/-0.01%/degrees C), which requires ATP (1-3 mM), GTP (1-2 mM), Ca(2+) (0.2-2 mM), and an acidic lysosomal pH (pH 5.2). Furthermore, changes in membrane lipid composition, induced either in vitro, by treatment with 25 mM methyl-beta-cyclodextrin, or in vivo, by subjecting animals to a high-fat-diet challenge (60% kcal in fat) reduce autophagosome/lysosome fusion up to 70% of that observed in untreated fractions or from animals under a normal regular diet. These findings reveal a novel role for lipids in autophagic fusion and provide a mechanism for the reduced macroautophagic rates observed during exposure to a chronic lipid challenge. Changes in the intracellular lipid content (i.e., metabolic disorders) may thus have pronounced effects on the fusion step of macroautophagy and affect the overall activity of this intracellular proteolytic pathway.
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
22
|
Raudino A, Pannuzzo M. Nucleation theory with delayed interactions: An application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles. J Chem Phys 2010; 132:045103. [DOI: 10.1063/1.3290823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Oslakovic C, Krisinger MJ, Andersson A, Jauhiainen M, Ehnholm C, Dahlbäck B. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. J Biol Chem 2009; 284:5896-904. [PMID: 19129179 DOI: 10.1074/jbc.m807286200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood coagulation involves a series of enzymatic protein complexes that assemble on the surface of anionic phospholipid. To investigate whether apolipoproteins affect coagulation reactions, they were included during the preparation of anionic phospholipid vesicles using a detergent solubilization-dialysis method. Apolipoprotein components of high density lipoproteins, especially apolipoprotein A-I, had a pronounced anticoagulant effect. The anionic phospholipids lost their procoagulant effect when the vesicle preparation method was performed in the presence of apolipoprotein A-I. The anionic phospholipid-apolipoprotein A-I particles were 8-10 nm in diameter and contained around 60-80 phospholipid molecules, depending on the phospholipid composition. The phospholipids of these particles were unable to support the activation of prothrombin by factor Xa in the presence of factor Va and unable to support binding of factor Va, whereas binding of prothrombin and factor Xa were efficient. Phospholipid transfer protein was shown to mediate transfer of phospholipids from liposomes to apolipoprotein A-I-containing reconstituted high density lipoprotein. In addition, serum was also shown to neutralize the procoagulant effect of anionic liposomes and to efficiently mediate transfer of phospholipids from liposomes to either apolipoprotein A-I- or apolipoprotein B-containing particles. In conclusion, apolipoprotein A-I was found to neutralize the procoagulant properties of anionic phospholipids by arranging the phospholipids in surface areas that are too small to accommodate the prothrombinase complex. This anionic phospholipid scavenger function may be an important mechanism to control the exposure of such phospholipids to circulating blood and thereby prevent inappropriate stimulation of blood coagulation.
Collapse
Affiliation(s)
- Cecilia Oslakovic
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, University Hospital, SE-20502 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Goluch ED, Shaw AW, Sligar SG, Liu C. Microfluidic patterning of nanodisc lipid bilayers and multiplexed analysis of protein interaction. LAB ON A CHIP 2008; 8:1723-1728. [PMID: 18813396 DOI: 10.1039/b806733c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report a microfluidic method for precisely patterning lipid bilayers and a multiplexed assay to examine the interaction between the lipids and protein analytes. The lipids were packaged into nanoscale lipid bilayer particles known as Nanodiscs and delivered to surfaces using microfluidic channels. Two types of lipids were used in this study: biontinylated lipids and phosphoserine lipids. The deposition of biotinylated lipids on a glass surface was confirmed by attaching streptavidin coated quantum dots to the lipids, followed by fluorescent imaging. Using this multiplexed grid assay, we examined binding of annexin to phosphoserine lipids, and compared these results to similar analysis performed by surface plasmon resonance.
Collapse
Affiliation(s)
- Edgar D Goluch
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
25
|
Borovyagin V, Chernyshov V, Tarahovsky Y, Smekhova N. Dynamics of Interaction of Phosphatidylcholine/Octadecylamine Liposomes with Human Erythrocyte Membranes: Electron Microscopic Study. J Liposome Res 2008. [DOI: 10.3109/08982108909035997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Nunokawa SY, Anan H, Shimada K, Hachikubo Y, Kashiyama T, Ito K, Yamamoto K. Binding of chara Myosin globular tail domain to phospholipid vesicles. PLANT & CELL PHYSIOLOGY 2007; 48:1558-1566. [PMID: 17921149 DOI: 10.1093/pcp/pcm126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Shun-Ya Nunokawa
- Department of Biology, Chiba University, Yayoicho, Inage-ku, Chiba, 263-8522 Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Shaw AW, Pureza VS, Sligar SG, Morrissey JH. The local phospholipid environment modulates the activation of blood clotting. J Biol Chem 2007; 282:6556-63. [PMID: 17200119 DOI: 10.1074/jbc.m607973200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Examples abound of membrane-bound enzymes for which the local membrane environment plays an important role, including the ectoenzyme that triggers blood clotting, the plasma serine protease, factor VIIa, bound to the integral membrane protein, tissue factor. The activity of this enzyme complex is markedly influenced by lipid bilayer composition and further by tissue factor partitioning into membrane microdomains on some cell surfaces. Unfortunately, little is known about how membrane microdomain composition controls factor VIIa-tissue factor activity, as reactions catalyzed by membrane-tethered enzymes are typically studied under conditions in which the experimenter cannot control the composition of the membrane in the immediate vicinity of the enzyme. To overcome this problem, we used a nanoscale approach that afforded complete control over the membrane environment surrounding tissue factor by assembling the factor VIIa.tissue factor complex on stable bilayers containing 67 +/- 1 phospholipid molecules/leaflet (Nanodiscs). We investigated how local changes in phospholipid bilayer composition modulate the activity of the factor VIIa.tissue factor complex. We also addressed whether this enzyme requires a pool of membrane-bound protein substrate (factor X) for efficient catalysis, or alternatively if it could efficiently activate factor X, which binds directly to the membrane nanodomain adjacent to tissue factor. We have shown that full proteolytic activity of the factor VIIa.tissue factor complex requires extremely high local concentrations of anionic phospholipids and further that a large pool of membrane-bound factor X is not required to support sustained catalysis.
Collapse
Affiliation(s)
- Andrew W Shaw
- Department of Chemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
28
|
Hokanson DE, Ostap EM. Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc Natl Acad Sci U S A 2006; 103:3118-23. [PMID: 16492791 PMCID: PMC1413866 DOI: 10.1073/pnas.0505685103] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Myosin-I is the single-headed member of the myosin superfamily that associates with acidic phospholipids through its basic tail domain. Membrane association is essential for proper myosin-I localization and function. However, little is known about the physiological relevance of the direct association of myosin-I with phospholipids or about phospholipid headgroup-binding specificity. To better understand the mechanism of myosin-I-membrane association, we measured effective dissociation constants for the binding of a recombinant myo1c tail construct (which includes three IQ domains and bound calmodulins) to large unilamellar vesicles (LUVs) composed of phosphatidylcholine and various concentrations of phosphatidylserine (PS) or phosphatidylinositol 4,5-bisphosphate (PIP(2)). We found that the myo1c-tail binds tightly to LUVs containing >60% PS but very weakly to LUVs containing physiological PS concentrations (<40%). The myo1c tail and not the IQ motifs bind tightly to LUVs containing 2% PIP(2). Additionally, we found that the myo1c tail binds to soluble inositol-1,4,5-trisphosphate with nearly the same affinity as to PIP(2) in LUVs, suggesting that myo1c binds specifically to the headgroup of PIP(2). We also show that a GFP-myosin-I-tail chimera expressed in epithelial cells is transiently localized to regions known to be enriched in PIP(2). Our results suggest that myo1c does not bind to physiological concentrations of PS but rather binds tightly to PIP(2).
Collapse
Affiliation(s)
- David E. Hokanson
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
| | - E. Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Chapter 2: Surface Properties of Liposomes Depending on Their Composition. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Chapter 3: Interactions of Al and Related Metals with Membrane Phospholipids: Consequences on Membrane Physical Properties. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
31
|
Abstract
We have recently proposed a mechanism to describe secretion, a fundamental process in all cells. That hypothesis, called porocytosis, embodies all available data and encompasses both forms of secretion, i.e., vesicular and constitutive. The current accepted view of exocytotic secretion involves the physical fusion of vesicle and plasma membranes; however, that hypothesized mechanism does not fit all available physiological data. Energetics of apposed lipid bilayers do not favor unfacilitated fusion. We consider that calcium ions (e.g., 10(-4) to 10(-3) M calcium in microdomains when elevated for 1 ms or less), whose mobility is restricted in space and time, establish salt bridges among adjacent lipid molecules. This establishes transient pores that span both the vesicle and plasma membrane lipid bilayers; the diameter of this transient pore would be approximately 1 nm (the diameter of a single lipid molecule). The lifetime of the transient pore is completely dependent on the duration of sufficient calcium ion levels. This places the porocytosis hypothesis for secretion squarely in the realm of the physical and physical chemical interactions of calcium and phospholipids and places mass action as the driving force for release of secretory material. The porocytosis hypothesis that we propose satisfies all of the observations and provides a framework to integrate our combined knowledge of vesicular and constitutive secretion.
Collapse
Affiliation(s)
- Robert B Silver
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
32
|
Kunz JB, Schwarz H, Mayer A. Determination of four sequential stages during microautophagy in vitro. J Biol Chem 2003; 279:9987-96. [PMID: 14679207 DOI: 10.1074/jbc.m307905200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microautophagy is the transfer of cytosolic components into the lysosome by direct invagination of the lysosomal membrane and subsequent budding of vesicles into the lysosomal lumen. This process is topologically equivalent to membrane invagination during multivesicular body formation and to the budding of enveloped viruses. Vacuoles are lysosomal compartments of yeasts. Vacuolar membrane invagination can be reconstituted in vitro with purified yeast vacuoles, serving as a model system for budding of vesicles into the lumen of an organelle. Using this in vitro system, we defined different reaction states. We identified inhibitors of microautophagy in vitro and used them as tools for kinetic analysis. This allowed us to characterize four biochemically distinguishable steps of the reaction. We propose that these correspond to sequential stages of vacuole invagination and vesicle scission. Formation of vacuolar invaginations was slow and temperature-dependent, whereas the final scission of the vesicle from a preformed invagination was fast and proceeded even on ice. Our observations suggest that the formation of invaginations rather than the scission of vesicles is the rate-limiting step of the overall reaction.
Collapse
Affiliation(s)
- Joachim B Kunz
- Friedrich-Miescher-Laboratorium de Max-Planck-Gesellschaft, Tübingen, Germany
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Nejat Düzgüneş
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, California 94115, USA
| |
Collapse
|
34
|
Kitagawa S, Hiyama F, Kato M, Watanabe R. Interaction of double-chained cationic surfactants, dimethyldialkylammoniums, with erythrocyte membranes: stabilization of the cationic vesicles by phosphatidylcholines with unsaturated fatty acyl chains. J Pharm Pharmacol 2002; 54:773-80. [PMID: 12078993 DOI: 10.1211/0022357021779113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We studied the interaction of double-chained cationic surfactants, dimethyldialkylammoniums, (CH3)2N+(CnH2n+1)2, with the lipid bilayer of guinea-pig erythrocytes by observing the haemolysis, aggregation and shape change in the erythrocytes. In the presence of sonicated dispersions of the five dimethyldialkylammoniums tested (n = 10, 12, 14, 16 and 18), haemolysis was induced dose dependently, and at 0.1 mM or higher concentrations, haemolysis was induced more rapidly by dimethyldialkylammoniums with shorter alkyl chains. The cationic surfactants with longer alkyl chains, such as dimethyldipalmitylammonium, induced aggregation of the erythrocytes before haemolysis fully progressed. The vesicles of these long-chain dimethyldialkylammoniums in the presence of phosphatidylcholines with unsaturated fatty acyl chains markedly reduced the haemolysis rates. Furthermore, in the presence of phosphatidylcholines with unsaturated acyl chains the formation of tightly aggregated structures of several erythrocytes was observed. These findings, and analysis by spin label 5-doxylstearic acid, indicate that phosphatidylcholines enriched with unsaturated acyl chains stabilize the cationic vesicles of long-chain dimethyldialkylammoniums and the interaction with the lipid bilayer of erythrocyte membranes as cationic vesicles became prominent.
Collapse
Affiliation(s)
- Shuji Kitagawa
- Nigata University of Pharmacy and Applied Life Sciences, Faculty of Pharmaceutical Sciences, Japan
| | | | | | | |
Collapse
|
35
|
Ferro Y, Krafft MP. Incorporation of semi-fluorinated alkanes in the bilayer of small unilamellar vesicles of phosphatidylserine: impact on fusion kinetics. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1581:11-20. [PMID: 11960747 DOI: 10.1016/s1388-1981(02)00116-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Semi-fluorinated alkanes C(n)F(2n+1)C(m)H(2m+1) (FnHm) can be co-dispersed with standard phospholipids to form 'fluorinated' vesicles, i.e. vesicles with an internal fluorinated film within their bilayer membrane. This paper reports the effect of the presence of such FnHm diblocks in phosphatidylserine (PS)-based small unilamellar vesicles (SUVs) on their kinetics of fusion. Fusion was induced by calcium ions and monitored by the terbium/dipicolinic acid assay. The diblocks were composed of a 10-carbon long linear hydrocarbon segment and of a linear fluorocarbon segment of four, six or eight carbon atoms. We found that the incorporation of FnHm in the PS membrane considerably modifies the kinetics of the process of fusion, with Ca(2+) concentration having a much more limited effect on the fluorinated vesicles. Both the rates of fusion and the rates of release of the internal content, as evaluated by the release of 5,6-carboxyfluorescein, were much lower for the fluorinated SUVs than for those based on phosphatidylserine alone, the highest effect being obtained for F6H10 with a 10 times slower rate of fusion and a 40-fold reduction in the release of content. FnHm molecules are proposed to have a dual action: by hindering fusion and release by creating an inert, hydrophobic and lipophobic fluorinated film in the core of the membrane, and by stabilizing the membrane by increasing van der Waals interactions in the hydrocarbon region.
Collapse
Affiliation(s)
- Yves Ferro
- Unité de Chimie Moléculaire, Université de Nice-Sophia Antipolis, Faculté des Sciences, Parc Valrose, Nice, France
| | | |
Collapse
|
36
|
Miranda EJ, Hazel JR. The effect of acclimation temperature on the fusion kinetics of lipid vesicles derived from endoplasmic reticulum membranes of rainbow trout (Oncorhynchus mykiss) liver. Comp Biochem Physiol A Mol Integr Physiol 2002; 131:275-86. [PMID: 11818217 DOI: 10.1016/s1095-6433(01)00451-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Membrane fusion is an obligatory step in many vital cellular processes. The well-established enrichment of bilayer-destabilizing lipids in membranes of poikilotherms subjected to growth at low temperatures leads to the prediction that such membranes will possess a greater propensity to undergo fusion. This hypothesis was explicitly tested in the present study by determining the kinetics of fusion between small unilamellar vesicles (SUVs) prepared from endoplasmic reticulum (ER) membranes of thermally-acclimated (to 5 and 20 degrees C) rainbow trout (Oncorhynchus mykiss) liver and bovine brain phosphatidylserine (BBPS). At temperatures above 10 degrees C, ER vesicles from 5 degrees C-acclimated trout, fused more rapidly and to a greater extent with BBPS vesicles (by average factors of 1.25- and 1.45-fold, respectively) than ER vesicles of 20 degrees C-acclimated trout. At temperatures >35 degrees C, apparent fusion rates declined while the extent of fusion increased in both acclimation groups. Fusion kinetics were found to be well correlated with and limited by the physical properties and phase state of the BBPS vesicles. These results indicate that dynamic attributes of biological membranes, such as the propensity to undergo fusion, are of potential regulatory significance and are partially conserved when growth or environmental temperature changes.
Collapse
Affiliation(s)
- Estuardo J Miranda
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | |
Collapse
|
37
|
Raudino A, Cambria A, Sarpietro MG. Binding of Lipid Vesicles to Protein-Coated Solid Polymer Surfaces: A Model for Cell Adhesion to Artificial Biocompatible Materials. J Colloid Interface Sci 2000; 231:66-73. [PMID: 11082249 DOI: 10.1006/jcis.2000.7083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adhesion of lipid vesicles (liposomes) having controlled chemical and physical structure to polymer supported human serum albumin (HSA) thin layers was investigated by a spectrofluorimetric technique. The vesicle lipid bilayer was labeled with a small amount of an apolar fluorescent probe (diphenylexathriene) and the vesicle suspension was set in contact with the protein film. After washing and drying, the adhering vesicles containing sample was dissolved in chloroform and the homogeneous solution was analyzed by standard spectrofluorimetric techniques. Different parameters of the lipid bilayer, suspending solution, and protein film were varied and their influence on the liposome binding was investigated. Concerning the lipid bilayer, we studied the effect of liposome surface charge by using different mixtures of neutral (dipalmitoyl-phosphatidylcholine) and charged (dipalmitoyl-phosphatidic acid) phospholipids and the fluid or gel nature of the lipid bilayer (switched on and off by temperature variation). Variations of the local environment involve Ca(2+) and H(+) changes in the millimolar range as well as different hydrodynamical flows (in the range 0.1-10 cm/s). Preliminary measurements using different protein layers were also performed. Results show: (a) negligible adhesion without the protein layer, (b) the presence of a maximum for the liposome adhesion vs ion concentration (depending on the liposome composition and kind of the adsorbed ions), (c) a much stronger adhesion for vesicles in the fluid phase (overcoming the entropy-driven desorption increase with temperature), and (d) a dramatic lowering of the adhesion capability under hydrodynamic flow. Points a-c have been interpreted on the basis of a simple mechanoelectrical model. Copyright 2000 Academic Press.
Collapse
Affiliation(s)
- A Raudino
- Department of Chemistry, University of Catania, Viale A. Doria, Catania, 6-95125, Italy
| | | | | |
Collapse
|
38
|
Abstract
Membrane fusion has been examined in a model system of small unilamellar vesicles of synthetic lipids that can be oligomerized through the lipid headgroups. The oligomerization can be induced either in both bilayer leaflets or in the inner leaflet exclusively. Oligomerization leads to denser lipid headgroup packing, with concomitant reduction of lipid lateral diffusion and membrane permeability. As evidenced by lipid mixing assays, electron microscopy, and light scattering, calcium-induced fusion of the bilayer vesicles is strongly retarded and inhibited by oligomerization. Remarkably, oligomerization of only the inner leaflet of the bilayer is already sufficient to affect fusion. The efficiency of inhibition and retardation of fusion critically depend on the relative amount of oligomeric lipid present, on the concentration of calcium ions, and on temperature. Implications for the mechanism of bilayer membrane fusion are discussed in terms of lipid lateral diffusion and membrane curvature effects.
Collapse
Affiliation(s)
- B J Ravoo
- Department of Organic and Molecular Inorganic Chemistry and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
39
|
Kitagawa S, Tachikawa E, Kashimoto T, Nagaoka Y, Iida A, Fujita T. Asymmetrical membrane fluidity of bovine adrenal chromaffin cells and granules and effect of trichosporin-B-VIa. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1375:93-100. [PMID: 9767133 DOI: 10.1016/s0005-2736(98)00143-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined membrane fluidity of bovine adrenal chromaffin cells and chromaffin granules using cationic trimethylammonium derivative of diphenylhexatriene (TMA-DPH) as a fluorescence probe. After adding TMA-DPH to the suspension of chromaffin cells and that of granules, it first bound to the outer layer of the plasma membrane of the cells and that of the granule membrane, then gradually penetrated the inner layer of each membrane and distributed to both leaflets of the respective membranes. Accompanying increases in the ratio of incorporated probe on the cytoplasmic side of the chromaffin cell membrane, its fluorescence anisotropy gradually decreased. However, in chromaffin granules, the fluorescence anisotropy gradually increased with increases in the ratio of incorporated probe. These findings suggest that the inner layer of the plasma membrane and outer layer of the granular membrane are more fluid than the corresponding side of each membrane, which is suitable for the fusion between both membranes. We also examined the effect of trichosporin-B-VIa, a fungal ion channel forming alpha-aminoisobutyric acid-containing peptide, on the fluidity of chromaffin cells using TMA-DPH. The peptide decreased the fluorescence anisotropy and increased the fluorescence intensity in the concentration range that induced Ca2+ dependent catecholamine secretion, suggesting that a change in lipid dynamics of the lipid bilayer of the plasma membrane was induced by this peptide.
Collapse
Affiliation(s)
- S Kitagawa
- Niigata College of Pharmacy, Kamishin'ei-cho 5-13-2, Niigata 950-2081, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Yoshimoto M, Kuboi R, Yang Q, Miyake J. Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 712:59-71. [PMID: 9698229 DOI: 10.1016/s0378-4347(98)00157-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small unilamellar vesicles (SUVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1 mol% phosphatidylethanolamine were covalently coupled to chromatographic gel beads. Interactions of liposomal lipid bilayers with several water-soluble proteins, which had been denatured or partially denatured by 0.1-5 M guanidinium hydrochloride (GuHCl), were studied on gel beads containing the immobilized SUVs. The partially-denatured proteins treated with 0.5-1.0 M GuHCl were significantly retarded on the immobilized liposome column, whereas little retardation of native or unfolded proteins treated by >2 M GuHCl was observed on the same liposome columns. The retardation on the immobilized liposome column was found to be well correlated with local hydrophobicity, which was determined by the aqueous two-phase partitioning method using 1 mM Triton X-405 as a hydrophobic probe. It implies that the partially-denatured proteins are likely in a molten-globule state and associated with liposomal lipid bilayers. Chromatographic refolding of denatured bovine carbonic anhydrase (CAB) was achieved on the immobilized liposome column. The enzymatic activity of an unfolded CAB treated by 5 M GuHCl was recovered up to 83% after passing it through immobilized liposome column, whereas only 58% of the enzymatic activity was recovered when the denatured CAB was run on a liposome-free column. The refolding process is probably involved in the interaction of molten-globule state of CAB with the liposomal lipid bilayers.
Collapse
Affiliation(s)
- M Yoshimoto
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
41
|
Marinelli RA, Pellegrino JM, Larocca MC. Taurolithocholate can inhibit the biliary discharge of lysosomes in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1334:155-60. [PMID: 9101709 DOI: 10.1016/s0304-4165(96)00087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The natural bile salt taurolithocholate (TLC) impairs the biliary excretion of lipids and proteins, which are known to reach the canaliculus via vesicles. In this study we examined whether these observations could be extended to the exocytic discharge of lysosomal contents into bile. The single intravenous injection of a cholestatic dose of TLC, 3 micromol/100 g body wt., markedly inhibited the biliary excretion of the lysosomal enzymes acid phosphatase and beta-glucuronidase, despite the excretion of bile salts being normalized after a transient diminution. Under such a condition, TLC did not affect the normal transport to and the processing in lysosomes of the exogenously administered [14C]sucrose-labeled horseradish peroxidase. However, the biliary excretion of the radioactive lysosomal metabolites of the protein was significantly reduced. The results indicate that TLC can inhibit the biliary discharge of lysosomes in the rat without altering the functional integrity of these organelles. Possible explanations for these findings are discussed.
Collapse
Affiliation(s)
- R A Marinelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Consejo Nacional deInvestigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Argentina
| | | | | |
Collapse
|
42
|
Abstract
Patients with advanced renal failure have derangements in the function of their nervous system. The available clinical and experimental data indicate that the state of the secondary hyperparathyroidism of renal failure plays a major role in the genesis of the nervous system dysfunction. The excess parathyroid hormone (PTH) mediates its deleterious effect by causing an elevation in cytosolic calcium of brain cells. This report reviews the evidence leading to the conclusion that PTH is a major uremic toxin.
Collapse
Affiliation(s)
- M Smogorzewski
- Division of Nephrology, University of Southern California, School of Medicine, Los Angeles 90033, USA
| | | | | |
Collapse
|
43
|
Arnhold J, Wiegel D, Hussler O, Arnold K. Quenching and dequenching of octadecyl Rhodamine B chloride fluorescence in Ca(2+)-induced fusion of phosphatidylserine vesicles: effects of poly(ethylene glycol). BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1191:375-83. [PMID: 8172923 DOI: 10.1016/0005-2736(94)90189-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ca(2+)-induced fusion of SUV and LUV composed of ox brain phosphatidylserine (PS) was studied as a function of temperature and concentration of Ca2+ using octadecyl Rhodamine B chloride (R-18). Ca2+ was added to a 1:1 mixture of labelled (8 mol%) and unlabelled vesicles (assay conditions) or to samples containing only labelled liposomes (control conditions). Both, in SUV and LUV the dependence of differences in fluorescence between assay and control samples on temperature can be divided into three regions. At temperatures lower than 20 degrees C the differences in fluorescence increase only slightly in SUV or remain unchanged in LUV after the addition of Ca2+. At 28 degrees C and higher temperatures the differences of fluorescence intensities increase much more drastically, whereby SUV exhibit higher fusion rates than LUV. Between 20 degrees C and 28 degrees C exists an intermediate region for both SUV and LUV. Here the fluorescence changes continuously from one behaviour to the other independent of the concentration of Ca2+. A drastic quenching of R-18 fluorescence occurs in LUV composed of PS below 10 degrees C, where the lipids are in the gel state. In SUV the fluorescence is only weakly changed in this temperature region. It is assumed that a demixing between dye and phospholipid molecules occurs below phase transition. During fusion the phase transition of PS is shifted from 8-10 degrees C to about 24-28 degrees C as revealed by polarization measurements using diphenylhexatriene. Because the differences in R-18 fluorescence between assay and control samples depend strongly on temperature we assume that the shift in phase transition temperature of PS occurs immediately after the addition of Ca2+ to SUV or LUV. Poly(ethylene glycol) 6000 accelerates fusion in both SUV and LUV under all conditions where a fusion takes place. Further, the threshold concentration of Ca2+ to induce fusion is diminished from about 1 mmol/l without polymers to about 0.5 mmol/l in the presence of 10% (w/v) PEG 6000. The intermediate region of changes in fluorescence properties of R-18 in the Ca(2+)-induced fusion of PS is not changed by PEG.
Collapse
Affiliation(s)
- J Arnhold
- Institute of Medical Physics and Biophysics, School of Medicine, University of Leipzig, Germany
| | | | | | | |
Collapse
|
44
|
Sweedler JV, Fuller R, Timperman STA, Toma V, Khatib K. Novel detection schemes for the trace analysis of amino acids and peptides using capillary electrophoresis. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/mcs.1220050503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Walter A, Siegel DP. Divalent cation-induced lipid mixing between phosphatidylserine liposomes studied by stopped-flow fluorescence measurements: effects of temperature, comparison of barium and calcium, and perturbation by DPX. Biochemistry 1993; 32:3271-81. [PMID: 8461294 DOI: 10.1021/bi00064a009] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To understand the mechanism of membrane fusion, it is important to study the processes that mix the lipids of two apposed membranes. We measured the rates of divalent cation-induced aggregation and lipid mixing of bovine brain phosphatidylserine (BBPS) LUV, using light scattering and a resonance energy transfer assay. The lipid and divalent cation solutions were combined by stopped-flow mixing, which permitted measuring the half-times of aggregation and lipid mixing between pairs of liposomes. The collisional quencher DPX [p-xylene-bis(pyridinium bromide)], used in a liposome contents-mixing assay, lowered the main transition temperature (Tm) of BBPS by about 10 degrees C and decreased the temperature threshold for lipid mixing. Since DPX was inside the liposomes for the latter measurements, this implies that perturbations to the inner monolayer affect the reactivity of the liposome. When palmitoyl-oleoyl-PS (POPS) was substituted for BBPS, little or no lipid mixing occurred. Ca(2+)- and Ba(2+)-induced BBPS aggregation and lipid mixing were compared as a function of temperature and divalent cation concentration. Aggregation rates were nearly insensitive to temperature and correlated with the percent of PS bound to either Ba2+ or Ca2+. Above Tm, lipid-mixing rates increased with the Ba2+ and Ca2+ concentrations and temperature, even above the Tm of the Ba2+/PS complex. Arrhenius plots were linear for both ions. The temperature dependence was greater for Ca(2+)- than Ba(2+)-induced reactions, and the slopes were independent of divalent cation concentration. When equivalent fractions of PS were bound with divalent cation at, and above, 20 degrees C, the lipid-mixing rate was greater with Ca2+ than with Ba2+. The faster rate may reflect greater activation entropies and/or greater attempt frequencies at one or more steps in the Ca(2+)-induced process. We conclude that stopped-flow mixing permits better characterization of initial interaction between liposomes, that small changes in the acyl chain region of the PS bilayer or the inner monolayer can have large effects on lipid-mixing rates, and that the differences between Ba(2+)- and Ca(2+)-induced interactions may be related to qualitative differences in the destabilization step.
Collapse
Affiliation(s)
- A Walter
- Department of Physiology and Biophysics, Wright State University, Dayton, Ohio 45435
| | | |
Collapse
|
46
|
Flach CR, Mendelsohn R. A new infrared spectroscopoic marker for cochleate phases in phosphatidylserine-containing model membranes. Biophys J 1993; 64:1113-21. [PMID: 8494975 PMCID: PMC1262429 DOI: 10.1016/s0006-3495(93)81477-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fourier transform-infrared (IR) spectroscopic and electron microscopic studies are reported for 1,2-dimyristoylphosphatidylserine (DMPS) and for DMPS/1,2-dimyristoylphosphatidylcholine mixtures in the presence and absence of Ca2+ ion. The frequency of the methyl symmetric deformation mode near 1,378 cm-1, previously assumed insensitive to changes in lipid morphology, has been found to respond to cochleate phase formation by undergoing an approximately 8 cm-1 increase. The new IR spectroscopic marker at 1,386 cm-1 has been used to identify and verify structures suggested from the phase diagram of J. R. Silvius and J. Gagné (1984. Biochemistry. 23:3241-3247) for this system. In addition, the ability of Mg2+ ion to induce cochleate formation has been demonstrated. Higher Mg2+ than Ca2+ levels are required for this process. Finally, IR spectroscopy has been used to monitor dehydration of the lipid surface through changes in the asymmetric PO2- stretching mode. Dehydration precedes cochleate phase formation (i.e., occurs at a lower Ca2+/phosphatidylserine level).
Collapse
Affiliation(s)
- C R Flach
- Department of Chemistry, Newark College of Arts and Science, Rutgers University, New Jersey 07102
| | | |
Collapse
|
47
|
Helm CA, Israelachvili JN. Forces between phospholipid bilayers and relationship to membrane fusion. Methods Enzymol 1993; 220:130-43. [PMID: 8350750 DOI: 10.1016/0076-6879(93)20079-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- C A Helm
- Department of Chemical and Nuclear Engineering, University of California, Santa Barbara 93106
| | | |
Collapse
|
48
|
Kinnunen PK. Fusion of lipid bilayers: a model involving mechanistic connection to HII phase forming lipids. Chem Phys Lipids 1992; 63:251-8. [PMID: 1493616 DOI: 10.1016/0009-3084(92)90041-m] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A model for the molecular mechanism of the fusion of lipid bilayers is described. A crucial feature of this model and related to the lamellar-->hexagonal phase HII transition is a novel, hypothetical lipid conformation, tentatively referred to here as extended. During fusion this conformation could manifest itself in the contact site between two vesicles in close proximity and involves the extension of the acyl chains of a phospholipid molecule in opposite directions, i.e. embedded into the two opposing bilayers while maintaining the headgroup in the interface. Although evidence for the occurrence of the extended conformation for phospholipids is sparse this conformation appears to be compatible with currently available experimental data. Of importance also is that the extended conformation allows for the fusion of two bilayer membranes to proceed with minimal exposure of the lipid hydrocarbon chains to water. It can also account for other features of membrane fusion such as lipid mixing in the intermediate state without mixing of the vesicle contents as well as for the molecular basis of the action of fusogenic lipids.
Collapse
Affiliation(s)
- P K Kinnunen
- Department of Medical Chemistry, University of Helsinki, Finland
| |
Collapse
|
49
|
Marinelli RA, Roma MG, Pellegrino JM, Rodríguez Garay EA. Taurolithocholate-induced inhibition of biliary lipid and protein excretion in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1125:44-8. [PMID: 1567906 DOI: 10.1016/0005-2760(92)90153-m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Taurolithocholate (TLC), a natural bile salt, induces selective impairment on canalicular membrane of the hepatocyte, which seems to be a major determinant of its cholestatic effect in experimental animals. In order to extend existing studies about the effects of TLC on bile secretion, we examined in TLC-treated rats the biliary excretion of compounds that are transported to canalicular membrane via vesicles, such as lipids and proteins. The single intravenous injection of TLC (3 mumol/100 g body wt.) inhibited transiently the biliary bile salt excretion, while the biliary excretion of lipids (i.e., cholesterol and phospholipids) and proteins remained inhibited even though the biliary excretion and composition of bile salts were normalized. Under such a condition, TLC also inhibited the transcellular vesicular pathway to the exogenous protein horseradish peroxidase entry into bile, without altering the paracellular biliary access of the protein. The hepatic uptake of horseradish peroxidase was unaffected by TLC-treatment. The results indicate that TLC can inhibit the biliary excretion of compounds that reach the canaliculus via a vesicular pathway, such as lipids and proteins, by a mechanism not related to a defective bile salt excretion. Possible explanations for these findings are discussed.
Collapse
Affiliation(s)
- R A Marinelli
- Instituto de Fisiologia Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de Rosario, Argentina
| | | | | | | |
Collapse
|
50
|
Burgess SW, McIntosh TJ, Lentz BR. Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Biochemistry 1992; 31:2653-61. [PMID: 1547208 DOI: 10.1021/bi00125a004] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Large unilamellar vesicles composed of lipids with different hydration properties were prepared by the extrusion technique. Vesicles were composed of dioleoylphosphatidylcholine in combination with either 0.5 mol % monooleoylphosphatidylcholine or different molar ratios of dilauroylphosphatidylethanolamine. Fusion was revealed via a fluorescence assay for contents mixing and leakage, a fluorescent lipid probe assay for membrane mixing, and quasi-elastic light scattering to detect vesicle size growth. As the percentage of poorly hydrating phosphatidylethanolamine increased, the concentration of poly(ethylene glycol) (PEG) required to induce fusion decreased. From differential scanning calorimetry studies of membrane-phase behavior and X-ray diffraction monitoring of phase structure in PEG, it was concluded that PEG did not induce a hexagonal-phase transition or lamellar-phase separation. Electron density profiles derived from X-ray diffraction studies of multi- and unilamellar vesicles indicated that the water layer between vesicles had a thickness of approximately 5 A at PEG concentrations at which vesicles were first induced to fuse. At this distance of separation, the choline headgroups from apposing bilayers are in near-molecular contact. Since pure phosphatidylcholine vesicles did not fuse at this interbilayer spacing, a reduction in the interbilayer water layer to a critical width of approximately 2 water molecules may contribute to but is not sufficient to produce PEG-mediated fusion of phospholipid membranes. Comparison of these results with other results from this laboratory also indicates that, while close contact between bilayers promotes fusion, near-molecular contact is apparently not absolutely necessary to bring about fusion. A tentative model is presented to account for these results.
Collapse
Affiliation(s)
- S W Burgess
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599-7260
| | | | | |
Collapse
|