1
|
Samajdar RN, Bhattacharyya AJ. Structure-Redox Response Correlation in a Few Select Heme Systems Using X-ray Absorption Spectroelectrochemistry. J Phys Chem B 2021; 125:5258-5264. [PMID: 33983739 DOI: 10.1021/acs.jpcb.1c02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heme based biomolecules control some of the most crucial life processes, such as oxygen and electron transport during respiration and energy metabolism, respectively. The active site of the heme, viz., the metal center, plays a key role and attributes functionality to these biomolecules. During the oxygen binding and debinding processes, it is important to note that the oxidation state of iron in hemoglobin (+II in the native form) does not undergo any change. However, the spin states of the metal center change. We present here a comprehensive study of the redox response of such molecules, based on the electronic structure of the active site. The local electronic structure of heme in a few selective molecular systems is studied in operando via synchrotron X-ray absorption spectroscopy (Fe K-edge) and cyclic voltammetry. Our objective is to identify the electronic structural parameters that can effectively be correlated with the redox reversibility. Evolution in these parameters can be followed to trace the overall changes in redox state of the system. Our data indicate that axial coordination and spin state of the iron center are two such parameters that are intimately connected with the redox response.
Collapse
Affiliation(s)
- Rudra N Samajdar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aninda J Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Álvarez L, Suárez SA, González PJ, Brondino CD, Doctorovich F, Martí MA. The Underlying Mechanism of HNO Production by the Myoglobin-Mediated Oxidation of Hydroxylamine. Inorg Chem 2020; 59:7939-7952. [DOI: 10.1021/acs.inorgchem.9b02750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucía Álvarez
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Sebastián A. Suárez
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Pablo J. González
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral y CONICET, S3000ZAA Santa Fe, Argentina
| | - Carlos D. Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral y CONICET, S3000ZAA Santa Fe, Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Marcelo A. Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
3
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 644] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Geeraerts Z, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Active Sites of O 2-Evolving Chlorite Dismutases Probed by Halides and Hydroxides and New Iron-Ligand Vibrational Correlations. Biochemistry 2017; 56:4509-4524. [PMID: 28758386 DOI: 10.1021/acs.biochem.7b00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O2-evolving chlorite dismutases (Clds) fall into two subfamilies, which efficiently convert ClO2- to O2 and Cl-. The Cld from Dechloromonas aromatica (DaCld) represents the chlorite-decomposing homopentameric enzymes found in perchlorate- and chlorate-respiring bacteria. The Cld from the Gram-negative human pathogen Klebsiella pneumoniae (KpCld) is representative of the second subfamily, comprising homodimeric enzymes having truncated N-termini. Here steric and nonbonding properties of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their fluorides, chlorides, and hydroxides. Cooperative binding of Cl- to KpCld drives formation of a hexacoordinate, high-spin aqua heme, whereas DaCld remains pentacoordinate and high-spin under analogous conditions. Fluoride coordinates to the heme iron in KpCld and DaCld, exhibiting ν(FeIII-F) bands at 385 and 390 cm-1, respectively. Correlation of these frequencies with their CT1 energies reveals strong H-bond donation to the F- ligand, indicating that atoms directly coordinated to heme iron are accessible to distal H-bond donation. New vibrational frequency correlations between either ν(FeIII-F) or ν(FeIII-OH) and ν(FeII-His) of Clds and other heme proteins are reported. These correlations orthogonalize proximal and distal effects on the bonding between iron and exogenous π-donor ligands. The axial Fe-X vibrations and the relationships between them illuminate both similarities and differences in the H-bonding and electrostatic properties of the distal and proximal heme environments in pentameric and dimeric Clds. Moreover, they provide general insight into the structural basis of reactivity toward substrates in heme-dependent enzymes and their mechanistic intermediates, especially those containing the ferryl moiety.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| |
Collapse
|
5
|
Yosca TH, Ledray AP, Ngo J, Green MT. A new look at the role of thiolate ligation in cytochrome P450. J Biol Inorg Chem 2017; 22:209-220. [PMID: 28091754 PMCID: PMC5640440 DOI: 10.1007/s00775-016-1430-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Protonated ferryl (or iron(IV)hydroxide) intermediates have been characterized in several thiolate-ligated heme proteins that are known to catalyze C-H bond activation. The basicity of the ferryl intermediates in these species has been proposed to play a critical role in facilitating this chemistry, allowing hydrogen abstraction at reduction potentials below those that would otherwise lead to oxidative degradation of the enzyme. In this contribution, we discuss the events that led to the assignment and characterization of the unusual iron(IV)hydroxide species, highlighting experiments that provided a quantitative measure of the ferryl basicity, the iron(IV)hydroxide pKa. We then turn to the importance of the iron(IV)hydroxide state, presenting a new way of looking at the role of thiolate ligation in these systems.
Collapse
Affiliation(s)
- Timothy H Yosca
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Aaron P Ledray
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Joanna Ngo
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Michael T Green
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Yosca TH, Langston MC, Krest CM, Onderko EL, Grove TL, Livada J, Green MT. Spectroscopic Investigations of Catalase Compound II: Characterization of an Iron(IV) Hydroxide Intermediate in a Non-thiolate-Ligated Heme Enzyme. J Am Chem Soc 2016; 138:16016-16023. [PMID: 27960340 PMCID: PMC5987761 DOI: 10.1021/jacs.6b09693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the protonation state of Helicobacter pylori catalase compound II. UV/visible, Mössbauer, and X-ray absorption spectroscopies have been used to examine the intermediate from pH 5 to 14. We have determined that HPC-II exists in an iron(IV) hydroxide state up to pH 11. Above this pH, the iron(IV) hydroxide complex transitions to a new species (pKa = 13.1) with Mössbauer parameters that are indicative of an iron(IV)-oxo intermediate. Recently, we discussed a role for an elevated compound II pKa in diminishing the compound I reduction potential. This has the effect of shifting the thermodynamic landscape toward the two-electron chemistry that is critical for catalase function. In catalase, a diminished potential would increase the selectivity for peroxide disproportionation over off-pathway one-electron chemistry, reducing the buildup of the inactive compound II state and reducing the need for energetically expensive electron donor molecules.
Collapse
Affiliation(s)
- Timothy H. Yosca
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Matthew C. Langston
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Courtney M. Krest
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Elizabeth L. Onderko
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tyler L. Grove
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jovan Livada
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael T. Green
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Yosca TH, Behan RK, Krest CM, Onderko EL, Langston MC, Green MT. Setting an upper limit on the myoglobin iron(IV)hydroxide pK(a): insight into axial ligand tuning in heme protein catalysis. J Am Chem Soc 2014; 136:9124-31. [PMID: 24875119 PMCID: PMC4091272 DOI: 10.1021/ja503588n] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To provide insight into the iron(IV)hydroxide pK(a) of histidine ligated heme proteins, we have probed the active site of myoglobin compound II over the pH range of 3.9-9.5, using EXAFS, Mössbauer, and resonance Raman spectroscopies. We find no indication of ferryl protonation over this pH range, allowing us to set an upper limit of 2.7 on the iron(IV)hydroxide pK(a) in myoglobin. Together with the recent determination of an iron(IV)hydroxide pK(a) ∼ 12 in the thiolate-ligated heme enzyme cytochrome P450, this result provides insight into Nature's ability to tune catalytic function through its choice of axial ligand.
Collapse
Affiliation(s)
- Timothy H Yosca
- Department of Chemistry, Pennsylvania State University , University Park, State College, Pennsylvania 16802, United States
| | | | | | | | | | | |
Collapse
|
8
|
Alfonso-Prieto M, Oberhofer H, Klein ML, Rovira C, Blumberger J. Proton Transfer Drives Protein Radical Formation in Helicobacter pylori Catalase but Not in Penicillium vitale Catalase. J Am Chem Soc 2011; 133:4285-98. [DOI: 10.1021/ja1110706] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Alfonso-Prieto
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - H. Oberhofer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. L. Klein
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - C. Rovira
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - J. Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Gumiero A, Metcalfe CL, Pearson AR, Raven EL, Moody PCE. Nature of the ferryl heme in compounds I and II. J Biol Chem 2011; 286:1260-8. [PMID: 21062738 PMCID: PMC3020733 DOI: 10.1074/jbc.m110.183483] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/04/2010] [Indexed: 11/06/2022] Open
Abstract
Heme enzymes are ubiquitous in biology and catalyze a vast array of biological redox processes. The formation of high valent ferryl intermediates of the heme iron (known as Compounds I and Compound II) is implicated for a number of catalytic heme enzymes, but these species are formed only transiently and thus have proved somewhat elusive. In consequence, there has been conflicting evidence as to the nature of these ferryl intermediates in a number of different heme enzymes, in particular the precise nature of the bond between the heme iron and the bound oxygen atom. In this work, we present high resolution crystal structures of both Compound I and Compound II intermediates in two different heme peroxidase enzymes, cytochrome c peroxidase and ascorbate peroxidase, allowing direct and accurate comparison of the bonding interactions in the different intermediates. A consistent picture emerges across all structures, showing lengthening of the ferryl oxygen bond (and presumed protonation) on reduction of Compound I to Compound II. These data clarify long standing inconsistencies on the nature of the ferryl heme species in these intermediates.
Collapse
Affiliation(s)
- Andrea Gumiero
- From the Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH
| | - Clive L. Metcalfe
- From the Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH
| | - Arwen R. Pearson
- the Astbury Centre for Structural Molecular Biology, Institute for Molecular and Cellular Biology, Astbury Building, University of Leeds, Leeds LS2 9JT, and
| | - Emma Lloyd Raven
- From the Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH
| | - Peter C. E. Moody
- the Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
10
|
Bergmann N, Bonhommeau S, Lange KM, Greil SM, Eisebitt S, de Groot F, Chergui M, Aziz EF. Retracted Article: On the enzymatic activity of catalase: an iron L-edge X-ray absorption study of the active centre. Phys Chem Chem Phys 2010; 12:4827-32. [DOI: 10.1039/b924245g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe L2,3-edge X-ray absorption spectra of a catalase active centre in a physiological solution reveals a partial ferryl character, which stems from the proximal tyrosine residue.
Collapse
Affiliation(s)
- Nora Bergmann
- Max-Delbrück-Center for Molecular Medicine
- D-13125 Berlin-Buch
- Germany
| | - Sébastien Bonhommeau
- Institut des Sciences Moléculaires-UMR 5255 CNRS
- Université Bordeaux 1
- 33405 Talence Cedex
- France
| | - Kathrin M. Lange
- Helmholtz-Zentrum Berlin für Materialen und Energie c/o BESSY II
- 12489 Berlin
- Germany
| | - Stefanie M. Greil
- Helmholtz-Zentrum Berlin für Materialen und Energie c/o BESSY II
- 12489 Berlin
- Germany
| | - Stefan Eisebitt
- Helmholtz-Zentrum Berlin für Materialen und Energie c/o BESSY II
- 12489 Berlin
- Germany
- Technical University Berlin
- 10623 Berlin
| | - Frank de Groot
- Department of Inorganic Chemistry and Catalysis
- Utrecht University
- 3584 CA Utrecht
- The Netherlands
| | - Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne
- Laboratoire de Spectroscopie Ultrarapide
- Faculté des Sciences de Base
- ISIC-BSP
- CH-1015 Lausanne-Dorigny
| | - Emad F. Aziz
- Helmholtz-Zentrum Berlin für Materialen und Energie c/o BESSY II
- 12489 Berlin
- Germany
- Ecole Polytechnique Fédérale de Lausanne
- Laboratoire de Spectroscopie Ultrarapide
| |
Collapse
|
11
|
Davydov R, Osborne RL, Kim SH, Dawson JH, Hoffman BM. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes. Biochemistry 2008; 47:5147-55. [PMID: 18407661 DOI: 10.1021/bi702514d] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nature of the [Fe(IV)-O] center in hemoprotein Compounds II has recently received considerable attention, as several experimental and theoretical investigations have suggested that this group is not necessarily the traditionally assumed ferryl ion, [Fe(IV)=O]2+, but can be the protonated ferryl, [Fe(IV)-OH]3+. We show here that cryoreduction of the EPR-silent Compound II by gamma-irradiation at 77 K produces Fe(III) species retaining the structure of the precursor [Fe(IV)=O]2+ or [Fe(IV)-OH]3+, and that the properties of the cryogenerated species provide a report on structural features and the protonation state of the parent Compound II when studied by EPR and 1H and 14N ENDOR spectroscopies. To give the broadest view of the properties of Compounds II we have carried out such measurements on cryoreduced Compounds II of HRP, Mb, DHP and CPO and on CCP Compound ES. EPR and ENDOR spectra of cryoreduced HRP II, CPO II and CCP ES are characteristic of low-spin hydroxy-Fe(III) heme species. In contrast, cryoreduced "globins", Mb II, Hb II, and DHP II, show EPR spectra having lower rhombicity. In addition the cryogenerated ferric "globin" species display strongly coupled exchangeable (1)H ENDOR signals, with A max approximately 20 MHz and a iso approximately 14 MHz, both substantially greater than for hydroxide/water ligand protons. Upon annealing at T > 180 K the cryoreduced globin compounds II relax to the low-spin hydroxy-ferric form with a solvent kinetic isotope effect, KIE > 6. The results presented here together with published resonance Raman and Mossbauer data suggest that the high-valent iron center of globin and HRP compounds II, as well as of CCP ES, is [Fe(IV)=O]2+, and that its cryoreduction produces [Fe(III)-O]+. Instead, as proposed by Green and co-workers, CPO II contains [Fe(IV)-OH]3+ which forms [Fe(III)-OH]2+ upon radiolysis. The [Fe(III)-O]+ generated by cryoreduction of HRP II and CCP ES protonate at 77 K, presumably because the heme is linked to a distal-pocket hydrogen bonding/proton-delivery network through an H-bond to the "oxide" ligand. The data also indicate that Mb and HRP compounds II exist as two major conformational substates.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-3113, USA
| | | | | | | | | |
Collapse
|
12
|
X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative. Proc Natl Acad Sci U S A 2008; 105:8179-84. [PMID: 18174331 DOI: 10.1073/pnas.0708299105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytochrome P450 enzyme CYP119, its compound II derivative, and its nitrosyl complex were studied by iron K-edge x-ray absorption spectroscopy. The compound II derivative was prepared by reaction of the resting enzyme with peroxynitrite and had a lifetime of approximately 10 s at 23 degrees C. The CYP119 nitrosyl complex was prepared by reaction of the enzyme with nitrogen monoxide gas or with a nitrosyl donor and was stable at 23 degrees C for hours. Samples of CYP119 and its derivatives were studied by x-ray absorption spectroscopy at temperatures below 140 (K) at the Advanced Photon Source of Argonne National Laboratory. The x-ray absorption near-edge structure spectra displayed shifts in edge and pre-edge energies consistent with increasing effective positive charge on iron in the series native CYP119 < CYP119 nitrosyl complex < CYP119 compound II derivative. Extended x-ray absorption fine structure spectra were simulated with good fits for k = 12 A(-1) for native CYP119 and k = 13 A(-1) for both the nitrosyl complex and the compound II derivative. The important structural features for the compound II derivative were an iron-oxygen bond length of 1.82 A and an iron-sulfur bond length of 2.24 A, both of which indicate an iron-oxygen single bond in a ferryl-hydroxide, Fe(IV)OH, moiety.
Collapse
|
13
|
Harvey JN, Bathelt CM, Mulholland AJ. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase. J Comput Chem 2007; 27:1352-62. [PMID: 16788912 DOI: 10.1002/jcc.20446] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
QM/MM calculations provide a means for predicting the electronic structure of the metal center in metalloproteins. Two heme peroxidases, Cytochrome c Peroxidase (CcP) and Ascorbate Peroxidase (APX), have a structurally very similar active site, yet have active intermediates with very different electronic structures. We review our recent QM/MM calculations on these systems, and present new computational data. Our results are in good agreement with experiment, and suggest that the difference in electronic structure is due to a large number of small differences in structure from one protein to another. We also discuss recent QM/MM calculations on the active species of cytochrome P450, in which a similar sensitivity of the electronic structure to the environment is found. However, this does not appear to explain different catalytic profiles of the different drug-metabolizing isoforms of this class of enzyme.
Collapse
Affiliation(s)
- Jeremy N Harvey
- School of Chemistry and Centre for Computational Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.
| | | | | |
Collapse
|
14
|
Cheng Z, Li Y. What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 2007; 107:748-66. [PMID: 17326688 DOI: 10.1021/cr040077w] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhiyong Cheng
- The Key Laboratory of Bioorganic & Molecular Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing, China 100871
| | | |
Collapse
|
15
|
Horner O, Mouesca JM, Solari PL, Orio M, Oddou JL, Bonville P, Jouve HM. Spectroscopic description of an unusual protonated ferryl species in the catalase from Proteus mirabilis and density functional theory calculations on related models. Consequences for the ferryl protonation state in catalase, peroxidase and chloroperoxidase. J Biol Inorg Chem 2007; 12:509-25. [PMID: 17237942 DOI: 10.1007/s00775-006-0203-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 12/21/2006] [Indexed: 11/24/2022]
Abstract
The catalase from Proteus mirabilis peroxide-resistant bacteria is one of the most efficient heme-containing catalases. It forms a relatively stable compound II. We were able to prepare samples of compound II from P. mirabilis catalase enriched in (57)Fe and to study them by spectroscopic methods. Two different forms of compound II, namely, low-pH compound II (LpH II) and high-pH compound II (HpH II), have been characterized by Mössbauer, extended X-ray absorption fine structure (EXAFS) and UV-vis absorption spectroscopies. The proportions of the two forms are pH-dependent and the pH conversion between HpH II and LpH II is irreversible. Considering (1) the Mössbauer parameters evaluated for four related models by density functional theory methods, (2) the existence of two different Fe-O(ferryl) bond lengths (1.80 and 1.66 A) compatible with our EXAFS data and (3) the pH dependence of the alpha band to beta band intensity ratio in the absorption spectra, we attribute the LpH II compound to a protonated ferryl Fe(IV)-OH complex (Fe-O approximately 1.80 A), whereas the HpH II compound corresponds to the classic ferryl Fe(IV)=O complex (Fe=O approximately 1.66 A). The large quadrupole splitting value of LpH II (measured 2.29 mm s(-1) vs. computed 2.15 mm s(-1)) compared with that of HpH II (measured 1.47 mm s(-1) vs. computed 1.46 mm s(-1)) reflects the protonation of the ferryl group. The relevancy and involvement of such (Fe(IV)=O/Fe(IV)-OH) species in the reactivity of catalase, peroxidase and chloroperoxidase are discussed.
Collapse
Affiliation(s)
- O Horner
- Laboratoire de Physicochimie des Métaux en Biologie, UMR CEA/CNRS/Université Joseph Fourier 5155, CEA/Grenoble, 38054, Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Decker A, Solomon EI. Comparison of FeIV=O heme and non-heme species: electronic structures, bonding, and reactivities. Angew Chem Int Ed Engl 2006; 44:2252-5. [PMID: 15719352 DOI: 10.1002/anie.200462182] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Decker
- Department of Chemistry, Stanford University, Stanford, California, 94305, USA
| | | |
Collapse
|
17
|
Stone KL, Behan RK, Green MT. Resonance Raman spectroscopy of chloroperoxidase compound II provides direct evidence for the existence of an iron(IV)-hydroxide. Proc Natl Acad Sci U S A 2006; 103:12307-10. [PMID: 16895990 PMCID: PMC1567876 DOI: 10.1073/pnas.0603159103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report direct evidence for the existence of an iron(IV)-hydroxide. Resonance Raman measurements on chloroperoxidase compound II (CPO-II) reveal an isotope ((18)O and (2)H)-sensitive band at nu(Fe-O) = 565 cm(-1). Preparation of CPO-II in H(2)O using H(2)(18)O(2) results in a red-shift of 22 cm(-1), while preparation of CPO-II in (2)H(2)O using H(2)O(2) results in a red-shift of 13 cm(-1). These values are in good agreement with the isotopic shifts predicted (23 and 12 cm(-1), respectively) for an Fe-OH harmonic oscillator. The measured Fe-O stretching frequency is also in good agreement with the 1.82-A Fe-O bond reported for CPO-II. A Badger's rule analysis of this distance provides an Fe-O stretching frequency of nu(Badger) = 563 cm(-1). We also present X-band electron nuclear double resonance (ENDOR) data for cryoreduced CPO-II. Cryogenic reduction (77 K) of the EPR-silent Fe(IV)OH center in CPO-II results in an EPR-active Fe(III)OH species with a strongly coupled (13.4 MHz) exchangeable proton. Based on comparisons with alkaline myoglobin, we assign this resonance to the hydroxide proton of cryoreduced CPO-II.
Collapse
Affiliation(s)
- Kari L Stone
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
18
|
Hersleth HP, Ryde U, Rydberg P, Görbitz CH, Andersson KK. Structures of the high-valent metal-ion haem–oxygen intermediates in peroxidases, oxygenases and catalases. J Inorg Biochem 2006; 100:460-76. [PMID: 16510192 DOI: 10.1016/j.jinorgbio.2006.01.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/09/2006] [Accepted: 01/09/2006] [Indexed: 11/22/2022]
Abstract
Peroxidases, oxygenases and catalases have similar high-valent metal-ion intermediates in their respective reaction cycles. In this review, haem-based examples will be discussed. The intermediates of the haem-containing enzymes have been extensively studied for many years by different spectroscopic methods like UV-Vis, EPR (electron paramagnetic resonance), resonance Raman, Mössbauer and MCD (magnetic circular dichroism). The first crystal structure of one of these high-valent intermediates was on cytochrome c peroxidase in 1987. Since then, structures have appeared for catalases in 1996, 2002, 2003, putatively for cytochrome P450 in 2000, for myoglobin in 2002, for horseradish peroxidase in 2002 and for cytochrome c peroxidase again in 1994 and 2003. This review will focus on the most recent structural investigations for the different intermediates of these proteins. The structures of these intermediates will also be viewed in light of quantum mechanical (QM) calculations on haem models. In particular quantum refinement, which is a combination of QM calculations and crystallography, will be discussed. Only small structural changes accompany the generation of these intermediates. The crystal structures show that the compound I state, with a so called pi-cation radical on the haem group, has a relatively short iron-oxygen bond (1.67-1.76A) in agreement with a double-bond character, while the compound II state or the compound I state with a radical on an amino acid residue have a relatively long iron-oxygen bond (1.86-1.92A) in agreement with a single-bond character where the oxygen-atom is protonated.
Collapse
Affiliation(s)
- Hans-Petter Hersleth
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | | | | | | | | |
Collapse
|
19
|
Terner J, Palaniappan V, Gold A, Weiss R, Fitzgerald MM, Sullivan AM, Hosten CM. Resonance Raman spectroscopy of oxoiron(IV) porphyrin π-cation radical and oxoiron(IV) hemes in peroxidase intermediates. J Inorg Biochem 2006; 100:480-501. [PMID: 16513173 DOI: 10.1016/j.jinorgbio.2006.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/04/2006] [Indexed: 11/15/2022]
Abstract
The catalytic cycle intermediates of heme peroxidases, known as compounds I and II, have been of long standing interest as models for intermediates of heme proteins, such as the terminal oxidases and cytochrome P450 enzymes, and for non-heme iron enzymes as well. Reports of resonance Raman signals for compound I intermediates of the oxo-iron(IV) porphyrin pi-cation radical type have been sometimes contradictory due to complications arising from photolability, causing compound I signals to appear similar to those of compound II or other forms. However, studies of synthetic systems indicated that protein based compound I intermediates of the oxoiron(IV) porphyrin pi-cation radical type should exhibit vibrational signatures that are different from the non-radical forms. The compound I intermediates of horseradish peroxidase (HRP), and chloroperoxidase (CPO) from Caldariomyces fumago do in fact exhibit unique and characteristic vibrational spectra. The nature of the putative oxoiron(IV) bond in peroxidase intermediates has been under discussion in the recent literature, with suggestions that the Fe(IV)O unit might be better described as Fe(IV)-OH. The generally low Fe(IV)O stretching frequencies observed for proteins have been difficult to mimic in synthetic ferryl porphyrins via electron donation from trans axial ligands alone. Resonance Raman studies of iron-oxygen vibrations within protein species that are sensitive to pH, deuteration, and solvent oxygen exchange, indicate that hydrogen bonding to the oxoiron(IV) group within the protein environment contributes to substantial lowering of Fe(IV)O frequencies relative to those of synthetic model compounds.
Collapse
Affiliation(s)
- James Terner
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Behan RK, Green MT. On the status of ferryl protonation. J Inorg Biochem 2006; 100:448-59. [PMID: 16500711 DOI: 10.1016/j.jinorgbio.2005.12.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 12/13/2005] [Indexed: 11/18/2022]
Abstract
We examine the issue of ferryl protonation in heme proteins. An analysis of the results obtained from X-ray crystallography, resonance Raman spectroscopy, and extended X-ray absorption spectroscopy (EXAFS) is presented. Fe-O bond distances obtained from all three techniques are compared using Badger's rule. The long Fe-O bond lengths found in the ferryl crystal structures of myoglobin, cytochrome c peroxidase, horseradish peroxidase, and catalase deviate substantially from the values predict by Badger's rule, while the oxo-like distances obtained from EXAFS measurements are in good agreement with the empirical formula. Density functional calculations, which suggest that Mössbauer spectroscopy can be used to determine ferryl protonation states, are presented. Our calculations indicate that the quadrupole splitting (DeltaE(Q)) changes significantly upon ferryl protonation. New resonance Raman data for horse-heart myoglobin compound II (Mb-II, pH 4.5) are also presented. An Fe-O stretching frequency of 790cm(-1) (shifting to 754cm(-1) with (18)O substitution) was obtained. This frequency provides a Badger distance of r(Fe-O)=1.66A. This distance is in agreement with the 1.69A Fe-O bond distance obtained from EXAFS measurements but is significantly shorter than the 1.93A bond found in the crystal structure of Mb-II (pH 5.2). In light of the available evidence, we conclude that the ferryl forms of myoglobin (pKa4), horseradish peroxidase (pKa4), cytochrome c peroxidase (pKa4), and catalase (pKa7) are not basic. They are authentic Fe(IV)oxos with Fe-O bonds on the order of 1.65A.
Collapse
Affiliation(s)
- Rachel K Behan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
21
|
Decker A, Solomon EI. Comparison of FeIV?O Heme and Non-heme Species: Electronic Structures, Bonding, and Reactivities. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
|
23
|
Nilsson K, Hersleth HP, Rod TH, Andersson KK, Ryde U. The protonation status of compound II in myoglobin, studied by a combination of experimental data and quantum chemical calculations: quantum refinement. Biophys J 2004; 87:3437-47. [PMID: 15339813 PMCID: PMC1304810 DOI: 10.1529/biophysj.104.041590] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 08/06/2004] [Indexed: 11/18/2022] Open
Abstract
Treatment of met-myoglobin (FeIII) with H2O2 gives rise to ferryl myoglobin, which is closely related to compound II in peroxidases. Experimental studies have given conflicting results for this species. In particular, crystallographic and extended x-ray absorption fine-structure data have shown either a short (approximately 170 pm) or a longer (approximately 190 pm) Fe-O bond, indicating either a double or a single bond. We here present a combined experimental and theoretical investigation of this species. In particular, we use quantum refinement to re-refine a crystal structure with a long bond, using 12 possible states of the active site. The states differ in the formal oxidation state of the iron ion and in the protonation of the oxygen ligand (O2-, OH-, or H2O) and the distal histidine residue (with a proton on Ndelta1, Nepsilon2, or on both atoms). Quantum refinement is essentially standard crystallographic refinement, where the molecular-mechanics potential, normally used to supplement the experimental data, is replaced by a quantum chemical calculation. Thereby, we obtain an accurate description of the active site in all the different protonation and oxidation states, and we can determine which of the 12 structures fit the experimental data best by comparing the crystallographic R-factors, electron-density maps, strain energies, and deviation from the ideal structure. The results indicate that FeIII OH- and FeIV OH- fit the experimental data almost equally well. These two states are appreciably better than the standard model of compound II, FeIV O2-. Combined with the available spectroscopic data, this indicates that compound II in myoglobin is protonated and is best described as FeIV OH-. It accepts a hydrogen bond from the distal His, which may be protonated at low pH.
Collapse
Affiliation(s)
- Kristina Nilsson
- Department of Theoretical Chemistry, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Sharonov YA. The energy level scheme for the ferryl heme in compound II of the peroxidase-catalase family as determined from analysis of low-temperature magnetic circular dichroism. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:444-51. [PMID: 11245808 DOI: 10.1016/s0005-2728(01)00161-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expressions for temperature-dependent magnetic circular dichroism (MCD) of the ferryl heme (Fe(4+)Por, S=1), which is a model of an intermediate product of the catalytic cycle of heme enzymes (compound II), have been derived in the framework of a two-term model. Theoretical predictions for the temperature and magnetic field dependence of MCD intensity of the ferryl heme are compared with those of the high-spin and low-spin ferric heme. Analysis of reported MCD spectra of myoglobin peroxide [Foot et al., Biochem. J. 2651 (1989) 515-522] and compound II of horseradish peroxidase [Browett et al., J. Am. Chem. Soc. 110 (1987) 3633-3640] has shown the presence in the samples of approximately 1% of a low-spin ferric component, which, however, should be taken into account in simulating observed temperature dependences of MCD intensity. The values of two adjustable parameters are estimated from the fit of the observed and simulated plots of MCD intensity against the reciprocal of the absolute temperature. One of them, the energy gap between the ground and excited terms, predetermines the axial zero-field splitting. The other parameter is correlated with the energy of splitting of excited quartets arising from either the porphyrin pi-->pi* transition or the spin-allowed charge-transfer transition.
Collapse
Affiliation(s)
- Y A Sharonov
- The Engelhardt Institute of Molecular Biology, Academy of Sciences of Russia, 117984, Moscow, Russia.
| |
Collapse
|
26
|
Gutierrez-Correa J, Fairlamb AH, Stoppani AO. Trypanosoma cruzi trypanothione reductase is inactivated by peroxidase-generated phenothiazine cationic radicals. Free Radic Res 2001; 34:363-78. [PMID: 11328673 DOI: 10.1080/10715760100300311] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Trypanosoma cruzi trypanothione reductase (TR) was irreversibly inhibited by peroxidase/H2O2 /phenothiazine (PTZ) systems. TR inactivation depended on (a) time of incubation with the phenothiazine system; (b) the peroxidase nature and (c) the PTZ structure and concentration. With the most effective systems, TR inactivation kinetics were biphasic, with a relatively fast initial phase during which about 75% of the enzyme activity was lost, followed by a slower phase leading to total enzyme inactivation. GSH prevented TR inactivation by the peroxidase/H2O2/PTZ+* systems. Production of PTZ+* cation radicals by PTZ peroxidation was essential for TR inactivation. Horseradish peroxidase, leukocyte myeloperoxidase (MPO) and the pseudo-peroxidase myoglobin (Mb) were effective catalysts of PTZ+* production. Promazine, thioridazine, chlorpromazine, propionylpromazine prochlorperazine, perphenazine and trimeprazine were effective constituents of the HRP/H2O2 /PTZ system. The presence of substituents at the PTZ nucleus position 2 exerted significant influence on PTZ activity, as shown by the different effects of 2-trifluoromethyl and 2-H or 2-chlorophenothiazines. The PTZ+* cation radicals disproportionation regenerated the non-radical PTZ molecule and produced the PTZ sulfoxide that was inactive on TR. Thiol compounds including GSH interacted with PTZ+* cation radicals transferring an electron from the sulfide anion to the PTZ+*, thus nullifying the PTZ+* biological and chemical activities.
Collapse
Affiliation(s)
- J Gutierrez-Correa
- Bioenergetics Research Centre, School of Medicine, University of Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina
| | | | | |
Collapse
|
27
|
Powers L, Hillar A, Loewen PC. Active site structure of the catalase-peroxidases from Mycobacterium tuberculosis and Escherichia coli by extended X-ray absorption fine structure analysis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:44-54. [PMID: 11257507 DOI: 10.1016/s0167-4838(00)00221-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The catalase-peroxidase encoded by katG of Mycobacterium tuberculosis is a more effective activator of the antibiotic isoniazid than is the equivalent enzyme from Escherichia coli. The environment of the heme iron was investigated using X-ray absorption spectroscopy to determine if differences in this region were associated with the differences in reactivity. The variation in the distal side Fe-ligand distances between the two enzymes was the same within experimental error indicating that it was not the heme iron environment that produced the differences in reactivity. Analysis of variants of the E. coli catalase-peroxidase containing changes in active site residues Arg102 and His106 revealed small differences in Fe-water ligand distance including a shorter distance for the His106Tyr variant. The Arg102Leu variant was 5-coordinate, but His106Cys and Arg102Cys variants showed no changes within experimental error. These results are compared with those reported for other peroxidases.
Collapse
Affiliation(s)
- L Powers
- National Center for the Design of Molecular Function, Utah State University, Logan, UT 84322-4155, USA.
| | | | | |
Collapse
|
28
|
Coulter ED, Cheek J, Ledbetter AP, Chang CK, Dawson JH. Preparation and initial characterization of the compound I, II, and III states of iron methylchlorin-reconstituted horseradish peroxidase and myoglobin: models for key intermediates in iron chlorin enzymes. Biochem Biophys Res Commun 2000; 279:1011-5. [PMID: 11162466 DOI: 10.1006/bbrc.2000.4077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the spectral properties of high valent and oxyferrous states in naturally occurring iron chlorin-containing proteins, we have prepared the oxoferryl compound I derivative of iron methylchlorin-reconstituted horseradish peroxidase (MeChl-HRP) and the compound II and oxyferrous compound III states of iron MeChl-reconstituted myoglobin. Initial spectral characterization has been carried out with UV-visible absorption and magnetic circular dichroism. In addition, the peroxidase activity of iron MeChl-HRP in pyrogallol oxidation has been found to be 40% of the rate for native HRP. Previous studies of oxoferryl chlorins have employed tetraphenylchlorins in organic solvents at low temperatures; stable oxyferrous chlorins have not been previously examined. The present study describes the compound I, II, and III states of histidine-ligated iron chlorins in a protein environment for the first time.
Collapse
Affiliation(s)
- E D Coulter
- Department of Chemistry and Biochemistry, School of Medicine, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
29
|
De Gioia L, Fantucci P. A molecular dynamics investigation of the resting, hydrogen peroxide-bound and compound II forms of cytochrome C peroxidase and Artromyces ramosus peroxidase. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0166-1280(98)00564-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Kong J, Mbindyo JN, Wu X, Zhou JX, Rusling JF. Electrochemical generation of ferrylmyoglobin during oxidation of styrene with films of DNA and a poly (ester sulfonic acid) ionomer. Biophys Chem 1999; 79:219-29. [PMID: 10443014 DOI: 10.1016/s0301-4622(99)00055-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chemistry of electrochemically-driven myoglobin-catalyzed oxidation of styrene was investigated in films of DNA or Eastman AQ ionomer on optically transparent electrodes. Conversion of styrene to styrene oxide proceeded via a ferrylmyoglobin radical intermediate. Ferrylmyoglobins were clearly detected by spectroelectrochemistry in films of 1-4 mm thick. The ferrylmyoglobin radical is produced by reaction of metmyoglobin (Mb) in the films with hydrogen peroxide formed by electrochemical catalytic reduction of oxygen catalyzed by Mb. Thus, electrochemically-driven styrene oxidation with these films proceeds by a 'doubly catalytic' electrode-driven reduction-oxidation pathway. Ferrylmyoglobin formation during electrolysis of Mb-DNA films in aerobic solutions was much faster, and styrene oxidation occurred with less Mb decomposition compared to the Mb-AQ films. The better performance of Mb-DNA films is correlated with a larger fraction of electroactive Mb and better stability than for the Mb-AQ films.
Collapse
Affiliation(s)
- J Kong
- Department of Chemistry, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Many reactions catalyzed by heme proteins involve an oxidation of the heme to one or two equivalents above the ferric state. Such intermediates are often referred to as Compound II and Compound I, respectively. Several different notations are used in the literature to describe the chemical structures of these compounds, which has led to errors and misinterpretations. The main problems are: 1. For many biochemists the notations X - FeIV = O and X - Fe + = O are equivalent and are used interchangeably, whereas other biochemists interpret these notations to have quite different meanings. 2. It is inaccurate and misleading to illustrate the increased oxidation state of Compound I by just adding two positive charges to the structure. 3. The bond between the oxygen and iron is not a conventional double bond and illustrating it as such leads to misconceptions concerning its properties. 4. In several instances, including horseradish peroxidase Compound I, there is reason to doubt that the radical moiety of the porphyrin ring (or of the protein in other peroxidases) carries a positive charge. The purpose of this article is to promote the use of uniform, as well as chemically correct, formulae and equations in describing the structures and reactivities of Compounds I and II. To accomplish this, a new notation is proposed for the iron-oxygen bond in these compounds.
Collapse
Affiliation(s)
- J Everse
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| |
Collapse
|
32
|
Abstract
The oxidation of myoglobin by H2O2 yields ferrylmyoglobin, which contains two oxidizing equivalents: the oxoferryl complex and an amino acid radical. This study examines the electron paramagnetic resonance (EPR) properties of the resulting amino acid radicals and their inherent kinetic features at [H2O2]/[protein] ratios close to physiological conditions (i.e., < or = 1). The EPR spectrum obtained with continuous flow at room temperature consisted of a composite of three signals: a low intensity signal and two high intensity signals. The former had a g-value of 2.014, contributed 10-15% to the overall spectrum and was ascribed to a peroxyl radical. Of the two high intensity signals, one consisted of a six-line spectrum (g = 2.0048) that contributed approximately 17-19% to the overall signal; hyperfine splitting constants to ring protons permitted to identify this signal as a tyrosyl radical. The other high intensity signal (with similar g-value and underlying that of the tyrosyl radical) was ascribed to an aromatic amino acid upon comparison with the EPR characteristics for radicals in aromatic amino acid-containing peptides. Analysis of these data in connection with amino acid analysis and the EPR spectra obtained under similar conditions with another hemoprotein, hemoglobin, allowed to suggest a mechanism for the formation of the protein radicals in myoglobin. The aromatic amino acid radical was observed to be relatively long lived in close proximity to the heme iron. Hence, it is likely that this is the first site of protein radical; reduction of the oxoferryl complex by Tyr (FeIV=O + Tyr-OH + H+ --> FeIII + H2O + Tyr-O.)--and alternatively by other amino acids--leads to the subsequent formation of other amino acid radicals within an electron-transfer process throughout the protein. This view suggests that the protein radical(s) is highly delocalized within the globin moiety in a dynamic process encompassing electron tunneling through the backbone chain or H-bonds and leading to the formation of secondary radicals.
Collapse
Affiliation(s)
- C Giulivi
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
33
|
Lee HC, Scheuring E, Peisach J, Chance MR. Electron Spin Echo Envelope Modulation and Extended X-ray Absorption Fine Structure Studies of Active Site Models of Oxygenated Cobalt-Substituted Hemoproteins: Correlating Electron-Nuclear Couplings and Metal−Ligand Bond Lengths. J Am Chem Soc 1997. [DOI: 10.1021/ja9717166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H. Caroline Lee
- Contribution from the Department of Physiology and Biophysics, Center for Synchrotron Biosciences, and Biotechnology Resource in Pulsed EPR Spectroscopy, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Eva Scheuring
- Contribution from the Department of Physiology and Biophysics, Center for Synchrotron Biosciences, and Biotechnology Resource in Pulsed EPR Spectroscopy, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Jack Peisach
- Contribution from the Department of Physiology and Biophysics, Center for Synchrotron Biosciences, and Biotechnology Resource in Pulsed EPR Spectroscopy, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Mark R. Chance
- Contribution from the Department of Physiology and Biophysics, Center for Synchrotron Biosciences, and Biotechnology Resource in Pulsed EPR Spectroscopy, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| |
Collapse
|
34
|
Brittain T, Baker AR, Butler CS, Little RH, Lowe DJ, Greenwood C, Watmough NJ. Reaction of variant sperm-whale myoglobins with hydrogen peroxide: the effects of mutating a histidine residue in the haem distal pocket. Biochem J 1997; 326 ( Pt 1):109-15. [PMID: 9337857 PMCID: PMC1218643 DOI: 10.1042/bj3260109] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reaction of hydrogen peroxide with a number of variants of sperm-whale myoglobin in which the distal pocket histidine residue (His64) had been mutated was studied with a combination of stopped-flow spectroscopy and freeze-quench EPR. The rate of the initial bimolecular reaction with hydrogen peroxide in all the proteins studied was found to depend on the polarity of the amino acid side chain at position 64. In wild-type myoglobin there were no significant optical changes subsequent to this reaction, suggesting the rapid formation of the well-characterized oxyferryl species. This conclusion was supported by freeze-quench EPR data, which were consistent with the pattern of reactivity previously reported [King and Winfield (1963) J. Biol. Chem. 238, 1520-1528]. In those myoglobins bearing a mutation at position 64, the initial bimolecular reaction with hydrogen peroxide yielded an intermediate species that subsequently decayed via a second hydrogen peroxide-dependent step leading to modification or destruction of the haem. In the mutant His64-->Gln the calculated electronic absorption spectrum of the intermediate was not that of an oxyferryl species but seemed to be that of a low-spin ferric haem. Freeze-quench EPR studies of this mutant and the apolar mutant (His64-->Val) revealed the accumulation of a novel intermediate after the first hydrogen peroxide-dependent reaction. The unusual EPR characteristics of this species are provisionally assigned to a low-spin ferric haem with bound peroxide as the distal ligand. These results are interpreted in terms of a reaction scheme in which the polarity of the distal pocket governs the rate of binding of hydrogen peroxide to the haem iron and the residue at position 64 governs both the rate of heterolytic oxygen scission and the stability of the oxyferryl product.
Collapse
Affiliation(s)
- T Brittain
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
35
|
Jørgensen LV, Andersen HJ, Skibsted LH. Kinetics of reduction of hypervalent iron in myoglobin by crocin in aqueous solution. Free Radic Res 1997; 27:73-87. [PMID: 9269582 DOI: 10.3109/10715769709097840] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Crocin in aqueous solution is oxidized by ferrylmyoglobin, MbFe(IV) = O, in a second order reaction with k = 183 l.mol-1.s-1, delta H++298 = 55.0 kJ.mol-1, and delta S++298 = -17 J.mol-1.K-1 (pH = 6.8, ionic strength 0.16 (NaCl), 25 degrees C), as studied by stopped-flow spectroscopy. The reaction has 1:1 stoichiometry to yield metmyoglobin, MbFe(III), and has delta G theta = -11 kJ.mol-1, as calculated from the literature value E0 = +0.85 V (pH = 7.4) vs. NHE for MbFe(IV)=O/MbFe(III) and from the half-peak potential +0.74 V (vs. NHE in aqueous 0.16 NaCl, pH = 7.4) determined by cyclic voltammetry for the one-electron oxidation product of crocin, for which a cation radical structure is proposed and which has a half-peak potential of +0.89 V for its formation from the two-electron oxidation product of crocin. The ferrylmyoglobin protein-radical, MbFe(IV)=O, reacts with crocin with 2:1 stoichiometry to yield MbFe(IV)=O, as determined by ESR spectroscopy, in a reaction faster than the second order protein-radical generating reaction between H2O2 and MbFe(III), for which latter reaction k = 137 l.mol-1.s-1, delta H++298 = 51.5 kJ.mol-1, and delta S++298 = -31 J.mol-1.K-1 (pH = 6.8, ionic strength = 0.16 (NaCl), 25 degrees C) was determined. Based on the difference between the stoichiometry for the reaction between crocin and each of the two hypervalent forms of myoglobin, it is concluded in agreement with the determined half peak reduction potentials, that the crocin cation radical is less reducing compared to crocin, as the cation radical can reduce the protein radical but not the iron(IV) centre in hypervalent myoglobin.
Collapse
Affiliation(s)
- L V Jørgensen
- Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | |
Collapse
|
36
|
Fenwick CW, English AM, Wishart JF. pH and Driving Force Dependence of Intramolecular Oxyferryl Heme Reduction in Myoglobin. J Am Chem Soc 1997. [DOI: 10.1021/ja963108g] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Craig W. Fenwick
- Contribution from the Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada, and Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Ann M. English
- Contribution from the Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada, and Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - James F. Wishart
- Contribution from the Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada, and Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000
| |
Collapse
|
37
|
|
38
|
Krishna MC, Samuni A, Taira J, Goldstein S, Mitchell JB, Russo A. Stimulation by nitroxides of catalase-like activity of hemeproteins. Kinetics and mechanism. J Biol Chem 1996; 271:26018-25. [PMID: 8824241 DOI: 10.1074/jbc.271.42.26018] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability of stable nitroxide radicals to detoxify hypervalent heme proteins such as ferrylmyoglobin (MbFeIV) produced in the reaction of metmyoglobin (MbFeIII) and H2O2 was evaluated by monitoring O2 evolution, H2O2 depletion, and redox changes of the heme prosthetic group. The rate of H2O2 depletion and O2 evolution catalyzed by MbFeIII was enhanced by stable nitroxides such as 4-OH-2,2,6,6-tetramethyl-piperidinoxyl (TPL) in a catalytic fashion. The reduction of MbFeIV to MbFeIII was the rate-limiting step. Excess TPL over MbFeIII enhanced catalase-like activity more than 4-fold. During dismutation of H2O2, [TPL] and [MbFeIV] remained constant. NADH caused: (a) inhibition of H2O2 decay; (b) progressive reduction of TPL to its respective hydroxylamine TPL-H; and (c) arrest/inhibition of oxygen evolution or elicit consumption of O2. Following depletion of NADH the evolution of O2 resumed, and the initial concentration of TPL was restored. Kinetic analysis showed that two distinct forms of MbFeIV might be involved in the process. In summary, by shuttling between two oxidation states, namely nitroxide and oxoammonium cation, stable nitroxides enhance the catalase mimic activity of MbFeIII, thus facilitating H2O2 dismutation accompanied by O2 evolution and providing protection against hypervalent heme proteins.
Collapse
Affiliation(s)
- M C Krishna
- Radiation Biology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Reduction of iron (IV) in ferrylmyoglobin in the presence of beta-lactoglobulin in aqueous solution is the result of two parallel reactions: (i) a so-called autoreduction, and (ii) reduction by beta-lactoglobulin in a second-order-reaction resulting in bityrosine formation in beta- lactoglobulin. In the pH-region investigated (5.4-7.4), the rate of reduction increased for both reactions with decreasing pH. The second order-reaction had for non-denatured beta-lactoglobulin the activation parameters: delta H* = 45 kJ.mol-1 and delta S not equal to = -93 J.mol-1.K-1 at pH = 7.0 and ionic strength 0.16 (NaCl). Reduction of ferrylmyoglobin by beta-lactoglobulin denatured by heat (86 degrees C for 3 min) or by hydrostatic pressure (300 MPa for 15 min) resulted in formation of higher molecular weight species as detected by size-exclusion chromatography and by SDS-PAGE. No molecular weight changes were observed for reduction of ferrylmyoglobin by native beta-lactoglobulin. Detection of bityrosine in the native beta-lactoglobulin fraction after oxidation with ferrylmyoglobin indicated intra-molecular bityrosine formation. In heat-denatured beta-lactoglobulin bityrosine formation could be of intra-molecular and/or of inter-molecular origin, the latter being confirmed by size-exclusion chromatography.
Collapse
Affiliation(s)
- H Ostdal
- Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | |
Collapse
|
40
|
Mikkelsen A, Skibsted LH. Acid-catalysed reduction of ferrylmyoglobin: product distribution and kinetics of autoreduction and reduction by NADH. ZEITSCHRIFT FUR LEBENSMITTEL-UNTERSUCHUNG UND -FORSCHUNG 1995; 200:171-7. [PMID: 7785340 DOI: 10.1007/bf01190488] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pH dependence of iron(II)/iron(III) product distribution, following reduction of the hypervalent iron in equine ferrylmyoglobin by the protein moiety of the pigment (so-called autoreduction) and by NADH (nicotinamide adenine dinucleotide, reduced) and the rate of reduction was found to depend different on pH. Autoreduction is specific acid catalysed and has a more modest temperature dependence than autoxidation of oxymyoglobin, with the activation parameters delta H# = 58.5 +/- 0.4 kJ.mol-1 and delta S# = 2.7 +/- 0.1 J.mol-1.K-1 in 0.16 mol.l-1 NaCl. The product of autoreduction is the iron(III) pigment metmyoglobin, which is slightly modified in the protein moiety. The reaction has a positive kinetic salt effect from which it is deduced that the reactive centre of ferrylmyoglobin has a charge of +1 in agreement with the structure Fe(IV) = O. Reduction by NADH involves parallel reactions of two pigment forms in acid/base equilibrium with each other with a pKa equal to 4.9, both forms yielding metmyoglobin as well as the iron(II) pigment, oxymyoglobin, as products. The protonated form reacts faster than the deprotonated form, and two-electron transfer has greater importance for the protonated form with a limiting Fe(II)/Fe(III) product ratio of 0.6 in acidic solution compared to 0.12 in alkaline solution. A square root dependence of rate on NADH concentration suggests involvement of NAD.radicals with a disproportionation as the termination reaction.
Collapse
Affiliation(s)
- A Mikkelsen
- KVL Centre for Food Research, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | |
Collapse
|
41
|
Abstract
The mechanism of myoglobin/H2O2 derived peroxidation of myosin was studied by comparing the catalytic activity of myoglobin and horseradish peroxidase using O-dianisidine, N-acetyl tyrosine and myosin as substrates. It was found that both hemoproteins induced myosin crosslinking and concomitant tyrosines oxidation to bityrosines, suggesting inter-molecular coupling of tyrosines in the crosslinking. The enzymatic activity of both hemoproteins on myosin was weak compared to small substrates. While horseradish peroxidase was much more active than myoglobin on small substrates, the reverse was true for myosin peroxidation. Since the suicidal interaction of myoglobin with H2O2 forms unstable tyrosine radicals, we suggest that the increased activity of myoglobin on myosin results from an efficient electron transfer between surface tyrosines of myosin and myoglobin but not horseradish peroxidase. These conclusions were supported by evidence that sperm whale myoglobin, which contains two active tyrosines--the heme-adjacent (tyrosine-103) and the surface (tyrosine-151), is more active as a mediator of myosin peroxidation than horse heart myoglobin which is devoid of the surface tyrosine.
Collapse
Affiliation(s)
- T Hanan
- Sackler Institute of Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
42
|
Della Longa S D, Ascone I, Fontaine A, Congiu Castellano A, Bianconi A. Intermediate states in ligand photodissociation of carboxymyoglobin studies by dispersive X-ray absorption. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1994; 23:361-8. [PMID: 7835320 DOI: 10.1007/bf00188660] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ligand photodissociation of sperm whale carboxymyoglobin (MbCO) at low temperature (15K-100K) under extended illumination has been studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy using the dispersive technique. XANES simulations through the multiple scattering (MS) approach allow one to interpret the spectroscopic data in structural terms, and to investigate the Fe site structure configurations of the states that follow the CO photodissociation as a function of temperature. The Fe site in the photoproduct is unbound, with an overall structure similar to the deoxy-form (Mb) of the protein. The Fe site structure changes from T < 30K(Mb*) to T > 50K (Mb**), revealing the existence of a slower unbound state Mb**. A model is proposed which includes the faster state (Mb*) as a planar porphyrin ring with a displacement of Fe from the heme plane of less than 0.3 A, and the slower state (Mb**) with a domed heme.
Collapse
Affiliation(s)
- D Della Longa S
- Dipartimento di Medicina Sperimentale, Università dell'Aquila, Italy
| | | | | | | | | |
Collapse
|
43
|
Rowlett RS, Chance MR, Wirt MD, Sidelinger DE, Royal JR, Woodroffe M, Wang YF, Saha RP, Lam MG. Kinetic and structural characterization of spinach carbonic anhydrase. Biochemistry 1994; 33:13967-76. [PMID: 7947805 DOI: 10.1021/bi00251a003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have carried out kinetics studies of spinach carbonic anhydrase (CA) using stopped-flow spectrophotometry at steady state and 13C-NMR exchange at chemical equilibrium. We found that the rate of CO2<-->HCO3- exchange catalyzed by spinach CA at pH 7.0 to be 3-5 times faster than the maximal kcat for either CO2 hydration or HCO3- dehydration at steady state, suggesting a rate-determining H+ transfer step in the catalytic mechanism. Correspondingly, we measured a pH-independent solvent deuterium isotope effect on kcat of approximately 2.0, and found that the rate of catalysis was significantly decreased at external buffer concentrations below 5 mM. Our results are consistent with a zinc-hydroxide mechanism of action with for spinach CA, similar to that of animal carbonic anhydrases. We have also collected X-ray absorption spectra of spinach CA. Analysis of the extended fine structure (EXAFS) suggests that the coordination sphere of Zn in spinach CA must have one or more sulfur ligands, in contrast to animal CAs which have only nitrogen and oxygen ligands. The models which best fit the data have average Zn-N(O) distances of 1.99-2.06 A, average Zn-S distances of 2.31--2.32 A, and a total coordination number of 4-6. We conclude that animal and spinach CAs are convergently evolved enzymes which are structurally quite different, but functionally equivalent.
Collapse
Affiliation(s)
- R S Rowlett
- Department of Chemistry, Colgate University, Hamilton, New York 13346
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Khoo UY, Newman DJ, Miller WK, Price CP. The influence of glycation on the peroxidase activity of haemoglobin. EUROPEAN JOURNAL OF CLINICAL CHEMISTRY AND CLINICAL BIOCHEMISTRY : JOURNAL OF THE FORUM OF EUROPEAN CLINICAL CHEMISTRY SOCIETIES 1994; 32:435-40. [PMID: 7918841 DOI: 10.1515/cclm.1994.32.6.435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The peroxidase activity of haemoglobin A was characterized for non-glycated and glycated haemoglobin (HbA1) within the pH range 4.5 to 6.0, by measuring the rate of oxidation of 5-aminosalicylic acid following the degradation of H2O2. Glycation was found to significantly lower the pH activity of haemoglobin peroxidase throughout the pH range. However, in the presence of 100 mmol/l sorbitol the pH activity profile of glycated haemoglobin was significantly elevated whilst that of non-glycated haemoglobin remained unchanged.
Collapse
Affiliation(s)
- U Y Khoo
- Department of Clinical Biochemistry, London Hospital Medical College, U.K
| | | | | | | |
Collapse
|
45
|
Rao S, Wilks A, Hamberg M, Ortiz de Montellano P. The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37269-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Ferryl iron and protein free radicals. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Frisbie SM, Chance MR. Human cobalophilin: the structure of bound methylcobalamin and a functional role in protecting methylcobalamin from photolysis. Biochemistry 1993; 32:13886-92. [PMID: 8268164 DOI: 10.1021/bi00213a018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interactions of methylcobalamin with cobalophilin from human serum were analyzed using extended X-ray absorption fine structure (EXAFS) spectroscopy, photolysis of the cobalt-carbon bond of methylcobalamin, and a pKa determination of the protonation of the coordinated nitrogen of 5,6-dimethylbenzimidazole (DMB). These results are consistent with the idea that the DMB nitrogen is still coordinated when protein is bound; however, the ability of a methyl radical (generated by photolysis) to escape the geminate cage of the protein is considerably reduced. For methylcobalamin in solution, the DMB nitrogen ligand is at a distance of 2.20 +/- 0.03 A from cobalt [Sagi, I., & Chance, M. R. (1992) J. Am. Chem. Soc. 114, 8061-8066]. This distance to the lower axial ligand does not change when protein binds (2.20 +/- 0.04 A), nor do the optical spectra exhibit any base-off character. The average of the distance from cobalt to the four equatorial nitrogens of the corrin plane is also unchanged. The pKa for the conversion of the "base-on" to the "base-off" form of methylcobalamin, where the above DMB nitrogen becomes protonated and the Co-N axial bond is cleaved, does not deviate from the free cobalamin value of 2.7 when methylcobalamin is bound to cobalophilin. These results indicate that replacement of the DMB ligand with a ligand from the protein is unlikely. Although the background-subtracted EXAFS data sets for free methylcobalamin and for the protein complex are extremely similar, more accurate data with explicit higher shell analysis would be required to entirely rule out ligand replacement. The chemical and electronic nature of the ligand changes little.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S M Frisbie
- Department of Chemistry, Georgetown University, Washington, D.C. 20057
| | | |
Collapse
|
48
|
Armstrong FA, Bond AM, Büchi FN, Hamnett A, Hill HA, Lannon AM, Lettington OC, Zoski CG. Electrocatalytic reduction of hydrogen peroxide at a stationary pyrolytic graphite electrode surface in the presence of cytochrome c peroxidase: a description based on a microelectrode array model for adsorbed enzyme molecules. Analyst 1993; 118:973-8. [PMID: 8214607 DOI: 10.1039/an9931800973] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Electrochemical reduction of H2O2 at pyrolytic graphite disc electrodes of radius 2.5 mm occurs at readily accessible potentials (600 mV versus the standard hydrogen electrode) in the presence of yeast cytochrome c peroxidase. Introduction of the enzyme into the electrolyte solution initiates large changes in the ellipsometric angles measured for the electrode-solution interface, consistent with time-dependent enzyme adsorption. This process may be correlated with changes in electrochemical activity. Over the same time course, linear-sweep voltammograms are characterized by a transition from a sigmoidal to a peak-type waveform. It is proposed that the time-dependent behaviour may be rationalized by use of a microscopic model for substrate mass transport, in which the two-electron reduction of peroxide occurs at electrocatalytic sites consisting of adsorbed enzyme molecules. A voltammetric theory based on treating the adsorbed redox enzymes as an expanding array of microelectrodes is in excellent agreement with experiment.
Collapse
Affiliation(s)
- F A Armstrong
- Department of Chemistry, University of California, Irvine 92717
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang CS, Sinclair R, Khalid S, Yamazaki I, Nakamura S, Powers L. An extended X-ray absorption fine structure investigation of the structure of the active site of lactoperoxidase. Biochemistry 1993; 32:2780-6. [PMID: 8457545 DOI: 10.1021/bi00062a007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Native lactoperoxidase, compound III, and the reduced forms (at pH 6 and 9) were studied using X-ray absorption spectroscopy (XAS). Native lactoperoxidase has four pyrrole nitrogen ligands at an average distance of 2.04 +/- 0.01 A, a proximal ligand at 1.91 +/- 0.02 A, and a sixth (distal) ligand at 2.16 +/- 0.03 A. Lactoperoxidase native enzyme has a first coordination shell structure that is similar to that of native lignin peroxidase [Sinclair, R., Yamazaki, I., Bumpus, J., Brock, B., Chang, C.-S., Albo, A., & Powers, L. (1992) Biochemistry 31, 4892-4900] and different from that of horseradish peroxidase [Chance, B., Powers, L., Ching, Y., Poulos, T., Schonbaum, G., Yamazaki, I., & Paul, K. (1984) Arch. Biochem. Biophys. 235, 596-611]. Similarly, lactoperoxidase compound III resembles lignin peroxidase compound III. The five-coordinated ferrous form was stable at pH 9, but at pH 6 it was rapidly converted to the six-coordinated form with a distal ligand at 2.18 +/- 0.03 A. No evidence typical of changes in spin state was obtained at the different pH values.
Collapse
Affiliation(s)
- C S Chang
- National Center for the Design of Molecular Function, Utah State University, Logan 84322-4630
| | | | | | | | | | | |
Collapse
|
50
|
The roles of His-64, Tyr-103, Tyr-146, and Tyr-151 in the epoxidation of styrene and beta-methylstyrene by recombinant sperm whale myoglobin. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54005-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|