1
|
Garzón-Tituaña M, Sierra-Monzón JL, Comas L, Santiago L, Khaliulina-Ushakova T, Uranga-Murillo I, Ramirez-Labrada A, Tapia E, Morte-Romea E, Algarate S, Couty L, Camerer E, Bird PI, Seral C, Luque P, Paño-Pardo JR, Galvez EM, Pardo J, Arias M. Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis. Theranostics 2021; 11:3781-3795. [PMID: 33664861 PMCID: PMC7914344 DOI: 10.7150/thno.49288] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Tatiana Khaliulina-Ushakova
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Sonia Algarate
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ludovic Couty
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 3800, Clayton VIC, Australia
| | - Cristina Seral
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Pilar Luque
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018, Zaragoza, Spain
- Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| |
Collapse
|
2
|
Dementiev A, Swanson R, Roth R, Isetti G, Izaguirre G, Olson ST, Gettins PGW. The allosteric mechanism of activation of antithrombin as an inhibitor of factor IXa and factor Xa: heparin-independent full activation through mutations adjacent to helix D. J Biol Chem 2013; 288:33611-33619. [PMID: 24068708 DOI: 10.1074/jbc.m113.510727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allosteric conformational changes in antithrombin induced by binding a specific heparin pentasaccharide result in very large increases in the rates of inhibition of factors IXa and Xa but not of thrombin. These are accompanied by CD, fluorescence, and NMR spectroscopic changes. X-ray structures show that heparin binding results in extension of helix D in the region 131-136 with coincident, and possibly coupled, expulsion of the hinge of the reactive center loop. To examine the importance of helix D extension, we have introduced strong helix-promoting mutations in the 131-136 region of antithrombin (YRKAQK to LEEAAE). The resulting variant has endogenous fluorescence indistinguishable from WT antithrombin yet, in the absence of heparin, shows massive enhancements in rates of inhibition of factors IXa and Xa (114- and 110-fold, respectively), but not of thrombin, together with changes in near- and far-UV CD and (1)H NMR spectra. Heparin binding gives only ∼3-4-fold further rate enhancement but increases tryptophan fluorescence by ∼23% without major additional CD or NMR changes. Variants with subsets of these mutations show intermediate activation in the absence of heparin, again with basal fluorescence similar to WT and large increases upon heparin binding. These findings suggest that in WT antithrombin there are two major complementary sources of conformational activation of antithrombin, probably involving altered contacts of side chains of Tyr-131 and Ala-134 with core hydrophobic residues, whereas the reactive center loop hinge expulsion plays only a minor additional role.
Collapse
Affiliation(s)
- Alexey Dementiev
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Richard Swanson
- Center for Molecular Biology of Oral Disease, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Ryan Roth
- Center for Molecular Biology of Oral Disease, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Giulia Isetti
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Gonzalo Izaguirre
- Center for Molecular Biology of Oral Disease, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Steven T Olson
- Center for Molecular Biology of Oral Disease, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Peter G W Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607.
| |
Collapse
|
3
|
Olson ST, Richard B, Izaguirre G, Schedin-Weiss S, Gettins PGW. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Biochimie 2010; 92:1587-96. [PMID: 20685328 PMCID: PMC2974786 DOI: 10.1016/j.biochi.2010.05.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/18/2010] [Indexed: 11/20/2022]
Abstract
Serpin family protein proteinase inhibitors regulate the activity of serine and cysteine proteinases by a novel conformational trapping mechanism that may itself be regulated by cofactors to provide a finely-tuned time and location-dependent control of proteinase activity. The serpin, antithrombin, together with its cofactors, heparin and heparan sulfate, perform a critical anticoagulant function by preventing the activation of blood clotting proteinases except when needed at the site of a vascular injury. Here, we review the detailed molecular understanding of this regulatory mechanism that has emerged from numerous X-ray crystal structures of antithrombin and its complexes with heparin and target proteinases together with mutagenesis and functional studies of heparin-antithrombin-proteinase interactions in solution. Like other serpins, antithrombin achieves specificity for its target blood clotting proteinases by presenting recognition determinants in an exposed reactive center loop as well as in exosites outside the loop. Antithrombin reactivity is repressed in the absence of its activator because of unfavorable interactions that diminish the favorable RCL and exosite interactions with proteinases. Binding of a specific heparin or heparan sulfate pentasaccharide to antithrombin induces allosteric activating changes that mitigate the unfavorable interactions and promote template bridging of the serpin and proteinase. Antithrombin has thus evolved a sophisticated means of regulating the activity of blood clotting proteinases in a time and location-dependent manner that exploits the multiple conformational states of the serpin and their differential stabilization by glycosaminoglycan cofactors.
Collapse
Affiliation(s)
- Steven T Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
4
|
Richard B, Swanson R, Schedin-Weiss S, Ramirez B, Izaguirre G, Gettins PGW, Olson ST. Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin. J Biol Chem 2008; 283:14417-29. [PMID: 18375953 PMCID: PMC2386924 DOI: 10.1074/jbc.m710327200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/20/2008] [Indexed: 11/06/2022] Open
Abstract
A conformationally altered prelatent form of antithrombin that possesses both anticoagulant and antiangiogenic activities is produced during the conversion of native to latent antithrombin (Larsson, H., Akerud, P., Nordling, K., Raub-Segall, E., Claesson-Welsh, L., and Björk, I. (2001) J. Biol. Chem. 276, 11996-12002). Here, we show that the previously characterized prelatent antithrombin is a mixture of native antithrombin and a modified, true prelatent antithrombin that are resolvable by heparin-agarose chromatography. Kinetic analyses revealed that prelatent antithrombin is an intermediate in the conversion of native to latent antithrombin whose formation is favored by stabilizing anions of the Hofmeister series. Purified prelatent antithrombin had reduced anticoagulant function compared with native antithrombin, due to a reduced heparin affinity and consequent impaired ability of heparin to either bridge prelatent antithrombin and coagulation proteases in a ternary complex or to induce full conformational activation of the serpin. Significantly, prelatent antithrombin possessed an antiangiogenic activity more potent than that of latent antithrombin, based on the relative abilities of the two forms to inhibit endothelial cell growth. The prelatent form was conformationally altered from native antithrombin as judged from an attenuation of tryptophan fluorescence changes following heparin activation and a reduced thermal stability. The alterations are consistent with the limited structural changes involving strand 1C observed in a prelatent form of plasminogen activator inhibitor-1 (Dupont, D. M., Blouse, G. E., Hansen, M., Mathiasen, L., Kjelgaard, S., Jensen, J. K., Christensen, A., Gils, A., Declerck, P. J., Andreasen, P. A., and Wind, T. (2006) J. Biol. Chem. 281, 36071-36081), since the (1)H NMR spectrum, electrophoretic mobility, and proteolytic susceptibility of prelatent antithrombin most resemble those of native rather than those of latent antithrombin. Together, these results demonstrate that limited conformational alterations of antithrombin that modestly reduce anticoagulant activity are sufficient to generate antiangiogenic activity.
Collapse
Affiliation(s)
- Benjamin Richard
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Meagher JL, Beechem JM, Olson ST, Gettins PG. Deconvolution of the fluorescence emission spectrum of human antithrombin and identification of the tryptophan residues that are responsive to heparin binding. J Biol Chem 1998; 273:23283-9. [PMID: 9722560 DOI: 10.1074/jbc.273.36.23283] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin causes an allosterically transmitted conformational change in the reactive center loop of antithrombin and a 40% enhancement of tryptophan fluorescence. We have expressed four human antithrombins containing single Trp --> Phe mutations and determined that the fluorescence of antithrombin is a linear combination of the four tryptophans. The contributions to the spectrum of native antithrombin at 340 nm were 8% for Trp-49, 10% for Trp-189, 19% for Trp-225, and 63% for Trp-307. Trp-225 and Trp-307 accounted for the majority of the heparin-induced fluorescence enhancement, contributing 37 and 36%, respectively. Trp-49 and Trp-225 underwent spectral shifts of 15 nm to blue and 5 nm to red, respectively, in the antithrombin-heparin complex. The blue shift for Trp-49 is consistent with partial burial by contact with heparin, whereas the red shift for Trp-225 and large enhancement probably result from increased solvent access upon heparin-induced displacement of the contact residue Ser-380. The enhancement for Trp-307 may result from the heparin-induced movement of helix H seen in the crystal structure. The time-resolved fluorescence properties of individual tryptophans of wild-type antithrombin were also determined using the four variants and showed that Trp-225 and Trp-307 experienced the largest change in lifetime upon heparin binding, providing support for the steady-state fluorescence deconvolution.
Collapse
Affiliation(s)
- J L Meagher
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
6
|
Kridel SJ, Knauer DJ. Lysine residue 114 in human antithrombin III is required for heparin pentasaccharide-mediated activation. J Biol Chem 1997; 272:7656-60. [PMID: 9065421 DOI: 10.1074/jbc.272.12.7656] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recombinant native antithrombin III (ATIII) and two genetic variants with glutamine substitutions at lysine residues 114 and 139 were expressed in insect cells using a baculovirus-driven expression system. The purified proteins were used to evaluate the potential role(s) of these residues in the pentasaccharide-mediated activation of ATIII. The second order rate constants for the inhibition of factor Xa by both of the genetic variants were nearly identical to those of recombinant native ATIII, indicating that the glutamine substitutions did not result in serious protein conformational changes. The glutamine substitution at lysine 139 had no effect on the pentasaccharide-mediated activation of ATIII toward factor Xa. In contrast, lysine 114 was found to be critical in the activation of ATIII toward factor Xa. No activation was observed, even at a pentasaccharide concentration 10 times higher than that required to activate recombinant native ATIII. These data are the first to demonstrate a pivotal role for lysine 114 in the pentasaccharide-mediated activation of ATIII.
Collapse
Affiliation(s)
- S J Kridel
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
7
|
Skinner R, Abrahams JP, Whisstock JC, Lesk AM, Carrell RW, Wardell MR. The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol 1997; 266:601-9. [PMID: 9067613 DOI: 10.1006/jmbi.1996.0798] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The crystal structure of a dimeric form of intact antithrombin has been solved to 2.6 A, representing the highest-resolution structure of an active, inhibitory serpin to date. The crystals were grown under microgravity conditions on Space Shuttle mission STS-67. The overall confidence in the structure, determined earlier from lower resolution data, is increased and new insights into the structure-function relationship are gained. Clear and continuous electron density is present for the reactive centre loop region P12 to P14 inserting into the top of the A-beta-sheet. Areas of the extended amino terminus, unique to antithrombin and important in the binding of the glycosaminoglycan heparin, can now be traced further than in the earlier structures. As in the earlier studies, the crystals contain one active and one latent molecule per asymmetric unit. Better definition of the electron density surrounding the D-helix and of the residues implicated in the binding of the heparin pentasaccharide (Arg47, Lys114, Lys125, Arg129) provides an insight into the change of affinity of binding that accompanies the change in conformation. In particular, the observed hydrogen bonding of these residues to the body of the molecule in the latent form explains the mechanism for the release of newly formed antithrombin-protease complexes into the circulation for catabolic removal.
Collapse
Affiliation(s)
- R Skinner
- Department of Haematology, University of Cambridge, MRC Centre, UK
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Kridel SJ, Chan WW, Knauer DJ. Requirement of lysine residues outside of the proposed pentasaccharide binding region for high affinity heparin binding and activation of human antithrombin III. J Biol Chem 1996; 271:20935-41. [PMID: 8702852 DOI: 10.1074/jbc.271.34.20935] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Variant forms of human antithrombin III with glutamine or threonine substitutions at Lys114, Lys125, Lys133, Lys136, and Lys139 were expressed in insect cells to evaluate their roles in heparin binding and activation. Recombinant native ATIII and all of the variants had very similar second order rate constants for thrombin inhibition in the absence of heparin, ranging from 1.13 x 10(5) M-1min-1 to 1.66 x 10(5) M-1min-1. Direct binding studies using 125I-flouresceinamine-heparin yielded a Kd of 6 nM for the recombinant native ATIII and K136T, whereas K114Q and K139Q bound heparin so poorly that a Kd could not be determined. K125Q had a moderately reduced affinity. Heparin binding affinity correlated directly with heparin cofactor activity. Recombinant native ATIII was nearly identical to plasma-purified ATIII, whereas K114Q and K139Q were severely impaired in heparin cofactor activity. K125Q and K136T were only slightly impaired. Based on these data, Lys114 and Lys139, which are outside of the putative pentasaccharide binding site, play pivotal roles in the high affinity binding of heparin to ATIII and the activation of thrombin inhibitory activity.
Collapse
Affiliation(s)
- S J Kridel
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92717, USA
| | | | | |
Collapse
|
10
|
Streusand VJ, Björk I, Gettins PG, Petitou M, Olson ST. Mechanism of acceleration of antithrombin-proteinase reactions by low affinity heparin. Role of the antithrombin binding pentasaccharide in heparin rate enhancement. J Biol Chem 1995; 270:9043-51. [PMID: 7721817 DOI: 10.1074/jbc.270.16.9043] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of the sequence-specific pentasaccharide region of high affinity heparin (HAH) in heparin acceleration of antithrombin-proteinase reactions was elucidated by determining the accelerating mechanism of low affinity heparin (LAH) lacking this sequence. LAH was shown to be free of HAH (< 0.001%) from the lack of exchange of added fluorescein-labeled HAH into LAH after separating the polysaccharides by antithrombin-agarose chromatography. Fluorescence titrations showed that LAH bound to antithrombin with a 1000-fold weaker affinity (KD 19 +/- 6 microM) and 5-6-fold smaller fluorescence enhancement (8 +/- 3%) than HAH. LAH accelerated the antithrombin-thrombin reaction with a bell-shaped dependence on heparin concentration resembling that of HAH, but with the bell-shaped curve shifted to approximately 100-fold higher polysaccharide concentrations and with a approximately 100-fold reduced maximal accelerating effect. Rapid kinetic studies indicated these differences arose from a reverse order of assembly of an intermediate heparin-thrombin-antithrombin ternary complex and diminished ability of LAH to bridge antithrombin and thrombin in this complex, as compared to HAH. By contrast, LAH and HAH both accelerated the antithrombin-factor Xa reaction with a simple saturable dependence on heparin or inhibitor concentrations which paralleled the formation of an antithrombin-heparin binary complex. The maximal accelerations of the two heparins in this case correlated with the inhibitor fluorescence enhancements induced by the polysaccharides, consistent with the accelerations arising from conformational activation of antithrombin. 1H NMR difference spectroscopy of antithrombin complexes with LAH and HAH and competitive binding studies were consistent with LAH accelerating activity being mediated by binding to the same site on the inhibitor as HAH. These results demonstrate that LAH accelerates antithrombin-proteinase reactions by bridging and conformational activation mechanisms similar to those of HAH, with the reduced magnitude of LAH accelerations resulting both from a decreased antithrombin affinity and the inability to induce a full activating conformational change in the inhibitor.
Collapse
Affiliation(s)
- V J Streusand
- Henry Ford Hospital, Division of Biochemical Research, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
11
|
Fan B, Turko IV, Gettins PG. Antithrombin histidine variants 1H NMR resonance assignments and functional properties. FEBS Lett 1994; 354:84-8. [PMID: 7957907 DOI: 10.1016/0014-5793(94)01083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three variants of the 57.5 kDa human plasma proteinase inhibitor antithrombin, H1Q, H65C, and H120C, have been expressed in baby hamster kidney cells to permit assignment of the 1H NMR resonances from the three histidines and evaluation of the role of these histidines in heparin binding. The NMR assignments have enabled more definitive interpretation of previous NMR-based studies of human antithrombin to be made. Although resonances of all three histidines are perturbed by heparin binding, only histidine 120 plays a significant role in the heparin binding site. The perturbations of resonances from histidines 1 and 65 indicate proximity to the heparin binding site and consequent sensitivity to the presence of heparin.
Collapse
Affiliation(s)
- B Fan
- Department of Biochemistry, University of Illinois at Chicago 60612
| | | | | |
Collapse
|
12
|
Gettins PG. 1H- and 19F-NMR approaches to the study of the structure of proteins larger than 25 kDa. Int J Biol Macromol 1994; 16:227-35. [PMID: 7893627 DOI: 10.1016/0141-8130(94)90027-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The three-dimensional solution structures of proteins larger than about 25 kDa cannot at present be determined by multi-dimensional nuclear magnetic resonance (NMR) methods. However, for proteins that are larger than 25 kDa, for which X-ray structural information is not available, there are a variety of mostly one-dimensional NMR methods that still represent some of the most informative approaches to obtaining structural answers to questions of biochemical interest. This paper provides recent illustrative examples of 1H- and 19F-NMR experiments that describe ways to focus on proteins by region, by amino acid type, or by individual amino acid. Methods to focus on a particular region of a protein include exploiting domain mobility, using transferred nuclear Overhauser enhancements, the use of difference spectroscopy, the use of paramagnetic species, and domain fragmentation. Particular types of amino acid can be identified using selective deuteration, by incorporation of fluorinated amino acid analogues, by using photochemically induced dynamic nuclear polarization, and from the pH dependence of histidine residues. Individual amino acids can be identified by mutagenesis and, in special circumstances, by chemical shift. Many of the examples given are of plasma proteinases and their protein inhibitors, but other classes of protein are also discussed, including antibodies and DNA-binding proteins.
Collapse
Affiliation(s)
- P G Gettins
- Department of Biochemistry, University of Illinois, Chicago 60612
| |
Collapse
|
13
|
Patston PA, Gettins PG, Schapira M. The mechanism by which serpins inhibit thrombin and other serine proteinases. Ann N Y Acad Sci 1994; 714:13-20. [PMID: 8017761 DOI: 10.1111/j.1749-6632.1994.tb12026.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P A Patston
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | | | | |
Collapse
|
14
|
Dawes J, James K, Lane DA. Conformational change in antithrombin induced by heparin probed with a monoclonal antibody against the 1C/4B region. Biochemistry 1994; 33:4375-83. [PMID: 7512382 DOI: 10.1021/bi00180a035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A murine monoclonal antibody (MAb) raised against a covalent antithrombin-heparin complex was used to probe the conformational change resulting when the serpin antithrombin binds to heparin. This MAb completely inhibited the progressive activity of antithrombin against thrombin. However, although the MAb remained bound to antithrombin in the presence of heparin, it did not significantly inhibit heparin cofactor activity against thrombin, and increasing concentrations of the antithrombin-binding pentasaccharide progressively unblocked the inhibitory action of the MAb. The MAb bound to antithrombin without affecting either heparin-binding affinity or heparin-induced fluorescence enhancement, and it did not convert antithrombin from inhibitor to substrate. The MAb failed to interact with reduced and S-carboxymethylated antithrombin, indicating the conformational nature of its epitope. Antithrombin variants with N-terminal substitutions (Arg47-->Cys or His, Leu99-->Phe, Arg129-->Gln) modifying heparin binding, and C-terminal substitutions affecting the reactive site (Arg393-->Cys) or resulting in substrate-variant antithrombin (Ala384-->Pro), were all recognized normally, as were normal reactive site cleaved antithrombin and the thrombin-antithrombin complex. However, interaction of the MAb with antithrombin was reduced by several substitution mutations (Phe402-->Cys, Phe402-->Ser, Phe402-->Leu, Ala404-->Thr, Pro407-->Thr) in the 402-407 sequence which codes for amino acid residues of strand 1C and the polypeptide leading to strand 4B. Pro429-->Leu also blocks recognition [Olds et al. (1992) Blood 79, 1206-1212], and this residue is believed to be spatially approximated to strand 1C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Dawes
- Heart Research Institute, Camperdown, NSW, Australia
| | | | | |
Collapse
|
15
|
|
16
|
Gettins P, Patston PA, Schapira M. The role of conformational change in serpin structure and function. Bioessays 1993; 15:461-7. [PMID: 8379949 DOI: 10.1002/bies.950150705] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Serpins are members of a family of structurally related protein inhibitors of serine proteinases, with molecular masses between 40 and 100kDa. In contrast to other, simpler, proteinase inhibitors, they may interact with proteinases as inhibitors, as substrates, or as both. They undergo conformational interconversions upon complex formation with proteinase, upon binding of some members to heparin, upon proteolytic cleavage at the reactive center, and under mild denaturing conditions. These conformational changes appear to be critical in determining the properties of the serpin. The structures and stabilities of these various forms may differ significantly. Although the detailed structural changes required for inhibition of proteinase have yet to be worked out, it is clear that the serpin does undergo a major conformational change. This is in contrast to other, simpler, families of protein inhibitors of serine proteinases, which bind in a substrate-like or product-like manner. Proteolytic cleavage of the serpin can result in a much more stable protein with new biological properties such as chemo-attractant behaviour. These structural transformations in serpins provide opportunities for regulation of the activity and properties of the inhibitor and are likely be important in vivo, where serpins are involved in blood coagulation, fibrinolysis, complement activation and inflammation.
Collapse
Affiliation(s)
- P Gettins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | |
Collapse
|
17
|
Gettins P, Choay J, Crews B, Zettlmeiss G. Role of tryptophan 49 in the heparin cofactor activity of human antithrombin III. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36704-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Olson S, Björk I, Sheffer R, Craig P, Shore J, Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42309-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Samama JP, Delarue M, Mourey L, Choay J, Moras D. Crystallization and preliminary crystallographic data for bovine antithrombin III. J Mol Biol 1989; 210:877-9. [PMID: 2614848 DOI: 10.1016/0022-2836(89)90116-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Crystals of bovine antithrombin III were obtained in the presence of metal ions with ammonium sulphate as precipitating agent. Crystals belong to space group P4(1)2(1)2 or P4(3)2(1)2 with cell parameters a = b = 91.4 A, c = 383.1 A; there are two molecules per asymmetric unit. Electrophoresis experiments and amino acid sequence analysis of the N-terminal part of redissolved crystals suggest that the protein molecules are cleaved at the active site.
Collapse
Affiliation(s)
- J P Samama
- Laboratoire de Cristallographie Biologique, I.B.M.C. du C.N.R.S., Strasbourg, France
| | | | | | | | | |
Collapse
|
20
|
Lane DA, Caso R. Antithrombin: structure, genomic organization, function and inherited deficiency. BAILLIERE'S CLINICAL HAEMATOLOGY 1989; 2:961-98. [PMID: 2688761 DOI: 10.1016/s0950-3536(89)80054-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antithrombin is a major plasma protein inhibitor of proteinases generated during blood coagulation; it plays an important role in the regulation of thrombin in blood. The anticoagulant heparin greatly accelerates the rate of inactivation of proteinases by antithrombin, predominantly through its well defined, highly specific binding reaction with the inhibitor, but also through a less strictly defined interaction with some of the proteinases (such as thrombin). There is evidence for an analogous acceleratory mechanism in vivo, that functions by the binding of antithrombin to a subpopulation of heparan sulphate proteoglycans intercalated in the surface of endothelial cells. The location and structure of the gene for antithrombin are known. Both its overall organization and the structure of the subdomains of the expressed protein can be considered in terms of their relationships to a serine proteinase inhibitor superfamily, which is believed to have evolved from a common ancestor. The region of the antithrombin gene 5' to the coding region has been characterized. Unlike other members of the serpin family, there is no TATA-like promoter sequence. Two enhancer sequences have been identified that are homologous to enhancer regions of other genes. There are two polymorphisms: an intragenic polymorphism arising from a translationally silent A to G transition in codon 305, and a length polymorphism arising from the presence of 32 bp or 108 bp non-homologous sequences 345 bp upstream from the translation initiation codon. Inherited deficiency of antithrombin is associated with familial thromboembolism. The molecular genetic basis of some subtypes of deficiency is increasingly yielding to investigation. It is interesting to note that a number of mutations have been identified in CpG dinucleotides, supporting the suggestion that this dinucleotide sequence may represent a mutation hotspot in the human genome.
Collapse
|
21
|
Jordan RE, Nelson RM, Kilpatrick J, Newgren JO, Esmon PC, Fournel MA. Inactivation of Human Antithrombin by Neutrophil Elastase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81648-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Pratt CW, Whinna HC, Meade JB, Treanor RE, Church FC. Physicochemical aspects of heparin cofactor II. Ann N Y Acad Sci 1989; 556:104-15. [PMID: 2660681 DOI: 10.1111/j.1749-6632.1989.tb22494.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C W Pratt
- Department of Pathology, University of North Carolina, Chapel Hill 27599
| | | | | | | | | |
Collapse
|
23
|
Gettins P, Choay J. Examination, by 1H-n.m.r. spectroscopy, of the binding of a synthetic, high-affinity heparin pentasaccharide to human antithrombin III. Carbohydr Res 1989; 185:69-76. [PMID: 2713873 DOI: 10.1016/0008-6215(89)84022-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Binding of a synthetic, high-affinity heparin pentasaccharide and of intact heparin to both native and elastase-modified human antithrombin III have been examined by 1H-n.m.r. spectroscopy. The pentasaccharide perturbs many protein resonances in the same way as does intact heparin. There are, however, differences that seem to arise both from fewer contacts in the heparin binding-site when the pentasaccharide binds and from dissimilar conformational changes in the protein. The resonance of the H-2 atom of the histidine, considered to be the N-terminal residue and to be located in the heparin binding-site, is strongly perturbed by heparin binding both to native and modified antithrombin. The pentasaccharide has little effect on this histidine in either protein. Resonances from two of the remaining four histidine units are sensitive to longer-range conformational changes, and show differences between binding of the two heparin species both in native and modified ATIII. It is concluded that the pentasaccharide only partly fills the heparin binding-site and does not produce a conformational change identical to that caused by intact heparin. This is particularly significant as regards the mechanism of action of heparin, because the synthetic pentasaccharide activates ATIII towards Factor Xa, but not towards thrombin.
Collapse
Affiliation(s)
- P Gettins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|