1
|
Sonohara Y, Takatsuka R, Masutani C, Iwai S, Kuraoka I. Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis 2021; 43:52-59. [PMID: 34546339 DOI: 10.1093/carcin/bgab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Nucleotide excision repair (NER) is a repair mechanism that removes DNA lesions induced by UV radiation, environmental mutagens, and carcinogens. There exists sufficient evidence against acetaldehyde suggesting it to cause a variety of DNA lesions and be carcinogenic to humans. Previously, we found that acetaldehyde induces reversible intra-strand GG crosslinks in DNA similar to those induced by cis-diammineplatinum(II) that is subsequently repaired by NER. In this study, we analysed the repairability by NER mechanism and the mutagenesis of acetaldehyde. In an in vitro reaction setup with NER-proficient and NER-deficient xeroderma pigmentosum group A (XPA) cell extracts, NER reactions were observed in the presence of XPA recombinant proteins in acetaldehyde-treated plasmids. Using an in vivo assay with living XPA cells and XPA-correcting XPA cells, the repair reactions were also observed. Additionally, it was observed that DNA polymerase eta inserted dATP opposite guanine in acetaldehyde-treated oligonucleotides, suggesting that acetaldehyde induced GG to TT transversions. These findings show that acetaldehyde induces NER repairable mutagenic DNA lesions.
Collapse
Affiliation(s)
- Yuina Sonohara
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Reine Takatsuka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Chikahide Masutani
- Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Isao Kuraoka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
2
|
Takatsuka R, Ito S, Iwai S, Kuraoka I. An assay to detect DNA-damaging agents that induce nucleotide excision-repairable DNA lesions in living human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:1-7. [PMID: 28676261 DOI: 10.1016/j.mrgentox.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/02/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Biochemical risk assessment studies of chemicals that induce DNA lesions are important, because lesions in genomic DNA frequently result in cancer, neurodegeneration, and aging in humans. Many classes of DNA lesions induced by chemical agents are eliminated via DNA repair mechanisms, such as nucleotide excision repair (NER) and base excision repair (BER), for the maintenance of genomic integrity. Individuals with NER-defective xeroderma pigmentosum (XP), in which bulky DNA lesions are not efficiently removed, are cancer-prone and suffer neurodegeneration. For research into cancer and neurological diseases, therefore, it might be important to identify DNA damage from agents that induce NER-repairable bulky DNA lesions. However, simple and quick assays to detect such damaging agents have not been developed using human cells. Here, we report a simple, non-isotopic assay for determining DNA damaging agents that induce NER-repairable DNA lesions by visualizing gene expression from treated fluorescent protein vectors in a mammalian cell system. This assay is based on a comparison of fluorescent protein expression in NER-proficient and NER-deficient cells. When we tested UV-irradiated fluorescent protein vectors, the fluorescent protein was observed in NER-proficient cells, but not in NER-deficient cells. Similar results were obtained for vectors treated with the anticancer drug, cisplatin. In contrast, when treated with the DNA alkylating agent methyl methanesulfonate, believed to cause BER-repairable damage, no difference in gene expression between NER-proficient and NER-deficient cells was observed. These results suggest that our assay can specifically detect DNA-damaging agents that induce NER-repairable DNA lesions, and could be used to analyze chemicals with the potential to cause cancer and neurological diseases. With further validation, the assay might be also applicable to XP diagnosis.
Collapse
Affiliation(s)
- Reine Takatsuka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shunsuke Ito
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Abstract
In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, 175 S. University Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
4
|
Sonohara Y, Iwai S, Kuraoka I. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes Environ 2015; 37:8. [PMID: 27350805 PMCID: PMC4918014 DOI: 10.1186/s41021-015-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction A wide variety of DNA lesions such as ultraviolet light-induced photoproducts and chemically induced bulky adducts and crosslinks (intrastrand and interstrand) interfere with replication and lead to mutations and cell death. In the human body, these damages may cause cancer, inborn diseases, and aging. So far, mutation-related actions of DNA polymerases during replication have been intensively studied. However, DNA lesions also block RNA synthesis, making the detection of their effects on transcription equally important for chemical safety assessment. Previously, we established an in vivo method for detecting DNA damage induced by ultraviolet light and/or chemicals via inhibition of RNA polymerase by visualizing transcription. Results Here, we present an in vitro method for detecting the effects of chemically induced DNA lesions using in vitro transcription with T7 RNA polymerase and real-time reverse transcription polymerase chain reaction (PCR) based on inhibition of in vitro RNA synthesis. Conventional PCR and real-time reverse transcription PCR without in vitro transcription can detect DNA lesions such as complicated cisplatin DNA adducts but not UV-induced lesions. We found that only this combination of in vitro transcription and real-time reverse transcription PCR can detect both cisplatin- and UV-induced DNA lesions that interfere with transcription. Conclusions We anticipate that this method will be useful for estimating the potential transcriptional toxicity of chemicals in terminally differentiated cells engaged in active transcription and translation but not in replication.
Collapse
Affiliation(s)
- Yuina Sonohara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
5
|
Kamenisch Y, Fousteri M, Knoch J, von Thaler AK, Fehrenbacher B, Kato H, Becker T, Dollé MET, Kuiper R, Majora M, Schaller M, van der Horst GTJ, van Steeg H, Röcken M, Rapaport D, Krutmann J, Mullenders LH, Berneburg M. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. ACTA ACUST UNITED AC 2010; 207:379-90. [PMID: 20100872 PMCID: PMC2822596 DOI: 10.1084/jem.20091834] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Defects in the DNA repair mechanism nucleotide excision repair (NER) may lead to tumors in xeroderma pigmentosum (XP) or to premature aging with loss of subcutaneous fat in Cockayne syndrome (CS). Mutations of mitochondrial (mt)DNA play a role in aging, but a link between the NER-associated CS proteins and base excision repair (BER)-associated proteins in mitochondrial aging remains enigmatic. We show functional increase of CSA and CSB inside mt and complex formation with mtDNA, mt human 8-oxoguanine glycosylase (mtOGG)-1, and mt single-stranded DNA binding protein (mtSSBP)-1 upon oxidative stress. MtDNA mutations are highly increased in cells from CS patients and in subcutaneous fat of aged Csb(m/m) and Csa(-/-) mice. Thus, the NER-proteins CSA and CSB localize to mt and directly interact with BER-associated human mitochondrial 8-oxoguanine glycosylase-1 to protect from aging- and stress-induced mtDNA mutations and apoptosis-mediated loss of subcutaneous fat, a hallmark of aging found in animal models, human progeroid syndromes like CS and in normal human aging.
Collapse
Affiliation(s)
- York Kamenisch
- Department of Dermatology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Smeaton MB, Miller PS, Ketner G, Hanakahi LA. Small-scale extracts for the study of nucleotide excision repair and non-homologous end joining. Nucleic Acids Res 2007; 35:e152. [PMID: 18073193 PMCID: PMC2190712 DOI: 10.1093/nar/gkm974] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The repair of DNA by nucleotide excision repair (NER) and non-homologous end joining (NHEJ) is essential for maintenance of genomic integrity and cell viability. Examination of NHEJ and NER in vitro using cell-free extracts has led to a deeper understanding of the biochemical mechanisms that underlie these processes. Current methods for production of whole-cell extracts (WCEs) to investigate NER and NHEJ start with one or more liters of culture containing 1–5 × 109 cells. Here, we describe a small-scale method for production of WCE that can be used to study NER. We also describe a rapid, small-scale method for the preparation of WCE that can be used in the study of NHEJ. These methods require less time, 20- to 1000-fold fewer cells than large-scale extracts, facilitate examination of numerous samples and are ideal for such applications as the study of host–virus interactions and analysis of mutant cell lines.
Collapse
Affiliation(s)
- Michael B Smeaton
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
7
|
Chen D, Minami M, Henshall DC, Meller R, Kisby G, Simon RP. Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia. J Cereb Blood Flow Metab 2003; 23:88-98. [PMID: 12500094 DOI: 10.1097/01.wcb.0000039286.37737.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The mechanism by which brief episodes of cerebral ischemia confer protection (tolerance) against subsequent prolonged ischemic challenges remains unclear, but may involve upregulation of cell injury repair capability. The mitochondrion is a key site for the regulation of cell death pathways, and damage to mitochondrial genes has been linked to a number of neurologic diseases and aging. Therefore, the authors examined the response of the DNA base excision repair (BER) pathway in rat brain mitochondria after either brief (tolerance-inducing) or prolonged (injury-producing) focal cerebral ischemia. Brief (30-minute) middle cerebral artery occlusion (MCAO) induced mild oxidative mitochondrial DNA damage and initiated a prolonged (up to 72-hour) activation above control levels of the principal enzymes of the mitochondrial BER pathway, including uracil DNA glycosylase, apurinic/apyrimidinic (AP) endonuclease, DNA polymerase-gamma, and DNA ligase. In contrast, prolonged (100-minute MCAO) ischemia induced more substantial mitochondrial oxidative DNA damage whereas elevation of BER activity was transient (approximately 1 hour), declining to less than control levels over the course of 4 to 72 hours. These data reveal the differences in BER capacity after brief or prolonged ischemia, which may contribute to the neuron's ability to resist subsequent ischemic insults.
Collapse
Affiliation(s)
- Dexi Chen
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Oregon Health Sciences University, Portland 97232, USA
| | | | | | | | | | | |
Collapse
|
8
|
Imamura O, Fujita K, Itoh C, Takeda S, Furuichi Y, Matsumoto T. Werner and Bloom helicases are involved in DNA repair in a complementary fashion. Oncogene 2002; 21:954-63. [PMID: 11840341 DOI: 10.1038/sj.onc.1205143] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2001] [Revised: 10/23/2001] [Accepted: 10/31/2001] [Indexed: 11/08/2022]
Abstract
Werner syndrome (WS) is a recessive disorder characterized by premature senescence. Bloom syndrome (BS) is a recessive disorder characterized by short stature and immunodeficiency. A common characteristic of both syndromes is genomic instability leading to tumorigenesis. WRN and BLM genes causing WS and BS, encode proteins that are closely related to the RecQ helicase. We produced WRN-/-, BLM-/- and WRN(-/-)/BLM(-/-) mutants in the chicken B-cell line DT40. WRN-/- cells showed hypersensitivities to genotoxic agents, such as 4-nitroquinoline 1-oxide, camptothecin and methyl methanesulfonate. They also showed a threefold increase in targeted integration rate of exogenous DNAs, but not in sister chromatid exchange (SCE) frequency. BLM-/- cells showed hypersensitivities to the genotoxic agents as well as ultraviolet (UV) light, in addition to a 10-fold increase in targeted integration rate and an 11-fold increase in SCE frequency. In WRN(-/-)/BLM(-/-) cells, synergistically increased hypersensitivities to the genotoxic agents were observed whereas both SCE frequencies and targeted integration rates were partially diminished compared to the single mutants. Chromosomal aberrations were also synergistically increased in WRN(-/-)/BLM(-/-) cells when irradiated with UV light in late S to G(2) phases. These results suggest that both WRN and BLM may be involved in DNA repair in a complementary fashion.
Collapse
Affiliation(s)
- Osamu Imamura
- AGENE Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Hara R, Mo J, Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol Cell Biol 2000; 20:9173-81. [PMID: 11094069 PMCID: PMC102175 DOI: 10.1128/mcb.20.24.9173-9181.2000] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effect of nucleosomes on nucleotide excision repair in humans, we prepared a mononucleosome containing a (6-4) photoproduct in the nucleosome core and examined its repair with the reconstituted human excision nuclease system and with cell extracts. Nucleosomal DNA is repaired at a rate of about 10% of that for naked DNA in both systems. These results are in agreement with in vivo data showing a considerably slower rate of repair of overall genomic DNA relative to that for transcriptionally active DNA. Furthermore, our results indicate that the first-order packing of DNA in nucleosomes is a primary determinant of slow repair of DNA in chromatin.
Collapse
Affiliation(s)
- R Hara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
10
|
Chen D, Lan J, Pei W, Chen J. Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J Neurosci Res 2000; 61:225-36. [PMID: 10878595 DOI: 10.1002/1097-4547(20000715)61:2<225::aid-jnr13>3.0.co;2-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Endogenous oxidative damage to brain mitochondrial DNA and consequential disturbances of gene expression and mitochondrial dysfunction have long been implicated in aging and the pathogenesis of neurodegenerative diseases. It has yet to be determined, however, whether mitochondria in brain cells contain an active DNA repair system and, if so, how this system functions. Therefore, the capacity for the repair of defined types of oxidative DNA lesions has been investigated in adult rat brain mitochondria. Using in vitro DNA incorporation repair assay, we have detected base excision repair (BER) activity for the common oxidative DNA adduct 8-hydroxyl-2'-deoxyguanine (8-oxodG) in mitochondria protein extracts from cortical tissues and cultured primary cortical neurons and astrocytes. The levels of BER activity were both protein concentration-dependent and repair-incubation time-dependent. To resolve the BER pathway, the activity of essential BER enzymes was examined in mitochondria using oligonucleotide incision assay, DNA polymerase assay, and DNA ligase assay employing specific DNA substrates. Mitochondrial extracts were able to remove specifically 8-oxodG, uracil, and the apurinic/apyrimidinic abasic site from substrates. Moreover, a gamma-like DNA polymerase activity and a DNA ligase activity were detected in mitochondiral extracts, based on the formation of specific repair products. These results demonstrate that adult brain mitochondria possess an active BER system for repairing oxidative DNA lesions. This repair system appears to function by sequential actions of DNA repair enzymes that are homologous to, but not identical to, that in the nucleus. Thus, BER may represent an endogenous protective mechanism against oxidative damage to mitochondrial, as well as nuclear, genomes in brain cells.
Collapse
Affiliation(s)
- D Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
11
|
Nagayama T, Simon RP, Chen D, Henshall DC, Pei W, Stetler RA, Chen J. Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem 2000; 74:1636-45. [PMID: 10737622 DOI: 10.1046/j.1471-4159.2000.0741636.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of poly(ADP-ribose) polymerase (PARP) activation in rat brain in a model of sublethal transient global ischemia. Adult male rats were subjected to 15 min of ischemia with brain temperature reduced to 34 degrees C, followed by 1, 2, 4, 8, 16, 24, and 72 h of reperfusion. PARP mRNA expression was examined in the hippocampus using quantitative RT-PCR, northern blot analysis, and in situ hybridization. Protein expression was assessed using western blot analysis. PARP enzymatic activity was investigated by measuring nuclear [3H]NAD incorporation. The presence of poly(ADP-ribose) polymers was assessed immunocytochemically. Although PARP mRNA and protein expressions were not altered after ischemia, enzymatic activity was increased 4.37-fold at 1 h (p < 0.05 vs. sham) and 1.73-fold (p < 0.05 vs. sham) at 24 h of reperfusion. Immunostaining demonstrated the presence of poly(ADP-ribose) polymers in CA1 neurons. Cellular NAD+ levels were not significantly altered at any time point. Furthermore, systemic administration of 3-aminobenzamide (30 mg/kg), a PARP inhibitor, prevented the increase in PARP activity at 1 and 24 h of reperfusion, significantly decreased the number of surviving neurons in the hippocampal CA1 region 72 h after ischemia (p < 0.01 vs. sham), and increased DNA single-strand breaks assessed as DNA polymerase I-mediated biotin-dATP nick-translation (PANT)-positive cells (p < 0.01 vs. sham). Furthermore, using an in vitro DNA repair assay, 3-aminobenzamide (30 mg/kg) was shown to block DNA base excision repair activity. These data suggest that the activation of PARP, without subsequent NAD+ depletion, following mild transient ischemia may be neuroprotective in the brain.
Collapse
Affiliation(s)
- T Nagayama
- Department of Neurology, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Salles B, Rodrigo G, Li RY, Calsou P. DNA damage excision repair in microplate wells with chemiluminescence detection: development and perspectives. Biochimie 1999; 81:53-8. [PMID: 10214910 DOI: 10.1016/s0300-9084(99)80038-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of in vitro repair assays with human cell-free extracts led to new insights on the mechanism of excision of DNA damage which consists of incision/excision and repair synthesis/ligation. We have adapted the repair synthesis reaction with cells extracts incubated with damaged plasmid DNA performed in liquid phase to solid phase by DNA adsorption into microplate wells. Since cells extracts are repair competent in base excision and nucleotide excision repair, all types of substrate DNA lesions were detected with chemiluminescence measurement after incorporation of biotin-deoxynucleotide during the repair synthesis step. Derivatives of our initial 3D-assay (DNA damage detection) have been set up to: i) screen antioxidative compounds and NER inhibitors; ii) capture genomic DNA (3D(Cell)-assay) that allows detection of alkylated base and consequently determines the kinetics of the cellular repair; and iii) immunodetect the repair proteins in an ELISA reaction (3D(Rec)-assay). The 3D derived assays are presented and discussed.
Collapse
Affiliation(s)
- B Salles
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, Toulouse, France
| | | | | | | |
Collapse
|
13
|
Rapić Otrin V, Kuraoka I, Nardo T, McLenigan M, Eker AP, Stefanini M, Levine AS, Wood RD. Relationship of the xeroderma pigmentosum group E DNA repair defect to the chromatin and DNA binding proteins UV-DDB and replication protein A. Mol Cell Biol 1998; 18:3182-90. [PMID: 9584159 PMCID: PMC108900 DOI: 10.1128/mcb.18.6.3182] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB- XP-E cell extracts, but microinjection of the protein into DDB- XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin.
Collapse
Affiliation(s)
- V Rapić Otrin
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2725, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kasten U, Mullenders LH, Hartwig A. Cobalt(II) inhibits the incision and the polymerization step of nucleotide excision repair in human fibroblasts. Mutat Res 1997; 383:81-9. [PMID: 9042422 DOI: 10.1016/s0921-8777(96)00052-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Compounds of cobalt are carcinogenic to experimental animals, but the mutagenicity in mammalian cells in culture is rather weak. In contrast, cobalt(II) has been shown to inhibit the removal of DNA damage induced by UVC light, indicating an interference with cellular DNA repair processes. In the present study it was investigated which step of the nucleotide excision repair is affected by cobalt(II) and which mechanisms are involved. In this context, the effect of non-cytotoxic cobalt(II) concentrations on the induction as well as on the repair of UVC-induced DNA lesions has been examined in human fibroblasts by using the alkaline unwinding technique under various conditions. Cobalt(II) concentrations as low as 50 microM inhibit the incision as well as the polymerization step. In contrast, the ligation of repair patches is not disturbed by this metal. By combining the alkaline unwinding technique with the repair enzyme T4 endonuclease V, it is demonstrated that the incision at the site of cyclobutane pyrimidine dimers is affected at concentrations of 150 microM and higher. As one mode of action, the competition with essential magnesium(II) ions by cobalt(II) ions could be identified.
Collapse
Affiliation(s)
- U Kasten
- University of Bremen, Department of Biology and Chemistry, Germany
| | | | | |
Collapse
|
15
|
Oda N, Saxena JK, Jenkins TM, Prasad R, Wilson SH, Ackerman EJ. DNA polymerases alpha and beta are required for DNA repair in an efficient nuclear extract from Xenopus oocytes. J Biol Chem 1996; 271:13816-20. [PMID: 8662731 DOI: 10.1074/jbc.271.23.13816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Xenopus oocytes and an oocyte nuclear extract efficiently repair the bulky DNA lesions cyclobutane pyrimidine dimers,(6-4) photoproducts, and N-acetoxy-2-aminofluorene (AAF) adducts by an excision repair mechanism. Nearly all (>95%) of the input damaged DNA was repaired within 5 h in both injected cells and extracts with no significant incorporation of label into control undamaged DNA. Remarkably, more than 10(10) cyclobutane pyrimidine dimers or(6-4) photoproducts are repaired/nuclei. The extracts are free from nuclease activity, and repair is independent of exogenous light. Both the high efficiency and DNA polymerase requirements of this system appear to be different from extracts derived from human cells. We demonstrated a requirement for DNA polymerases alpha and beta in repair of both photoproducts and AAF by inhibiting repair with several independent antibodies specific to either DNA polymerases alpha or beta and then restoring repair by adding the appropriate purified polymerase. Repair is inhibited by aphidicolin at concentrations specific for blocking DNA polymerase alpha and dideoxynucleotide triphosphates at concentrations specific for inhibiting DNA polymerase beta.
Collapse
Affiliation(s)
- N Oda
- Office of Scientific Director, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
16
|
Chao CC. Cross-resistance to cis-diamminedichloroplatinum(II) of a multidrug-resistant lymphoma cell line associated with decreased drug accumulation and enhanced DNA repair. Eur J Pharmacol 1996; 305:213-22. [PMID: 8813556 DOI: 10.1016/0014-2999(96)00168-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HOB1/VCR, a multidrug-resistant subline of the immunoblastic B lymphoma cell line, was established by sequential selection in increasing concentrations of vincristine. The expression of the human mdr l gene, as analyzed by reverse transcription and polymerase-chain reaction (RT-PCR), revealed a 10-15-fold overexpression in this resistant cell line. A complete inhibition of vincristine resistance by verapamil was observed in the vincristine-resistant HOB1/VCR cells, which suggests that acquired resistance may be mainly due to P-glycoprotein. HOB1/VCR cells also developed a 67-fold cross-resistance to the anticancer drug cis-diamminedichloroplatinum (cisplatin). DNA repair of the resistant and the parental cell lines was investigated by in situ detection with a cisplatin-DNA adduct-specific antibody and by measurement of repair-associated host cell reactivation of damaged plasmid DNA. HOB1/VCR cells exhibited a 2-fold decrease in the level of cisplatin-DNA adducts, compared to the parental cells. The DNA repair rate following peak accumulation of cisplatin-DNA adducts (which took approximately 4 h) was also enhanced in the resistant cells. This was supported by the measurement of the cisplatin level remaining in cells by atomic absorption spectrophotometry, which showed a 2.7-fold reduction in the resistant cells. In addition, the acquired resistance and enhanced DNA repair in HOB1/VCR cells were partially reversed by nontoxic aphidicolin, a DNA polymerase-alpha and DNA repair inhibitor. Inhibition of the intracellular level of glutathione by DL-buthionine-[S,R]-sulfoximine demonstrated that cell viability was inhibited 4-fold more in the resistant cells than in the parental cells. The results suggest that the reduced formation of cisplatin-DNA adducts and the increased glutathione content of the multidrug-resistant cells play a major role in phenotypic cross-resistance to cisplatin.
Collapse
MESH Headings
- Antineoplastic Agents/metabolism
- Aphidicolin/pharmacology
- Cell Survival/drug effects
- Cisplatin/metabolism
- Colchicine/pharmacology
- DNA Adducts/metabolism
- DNA Repair/drug effects
- DNA, Neoplasm/isolation & purification
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Enzyme-Linked Immunosorbent Assay
- Gene Expression
- Genes, MDR
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mitomycin/pharmacology
- Polymerase Chain Reaction
- Puromycin/pharmacology
- Spectrophotometry, Atomic
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Verapamil/pharmacology
- Vincristine/pharmacology
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan, ROC
| |
Collapse
|
17
|
Hess MT, Gunz D, Naegeli H. A repair competition assay to assess recognition by human nucleotide excision repair. Nucleic Acids Res 1996; 24:824-8. [PMID: 8600447 PMCID: PMC145731 DOI: 10.1093/nar/24.5.824] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We developed a competition assay to compare, in a quantitative manner, the ability of human nucleotide excision repair (NER) to recognise structurally different forms of DNA damage. This assay uses a NER substrate consisting of M13 double-stranded DNA with a single and uniquely located acetylaminofluorene (AAF) adduct, and measures the efficiency by which multiply damaged plasmid DNA competes for excision repair of the site-directed modification. To validate this assay, we tested competitor DNA containing defined numbers of either AAF adducts or UV radiation products. In both cases, repair of the site-directed NER substrate was inhibited in a damage-specific and dose-dependent manner. We then exploited this competition assay to determine the susceptibility of bulky adozelesin-DNA adducts to human NER.
Collapse
Affiliation(s)
- M T Hess
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Zürich, Switzerland
| | | | | |
Collapse
|
18
|
Hess MT, Schwitter U, Petretta M, Giese B, Naegeli H. Site-specific DNA substrates for human excision repair: comparison between deoxyribose and base adducts. CHEMISTRY & BIOLOGY 1996; 3:121-8. [PMID: 8807837 DOI: 10.1016/s1074-5521(96)90288-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The genetic integrity of living organisms is maintained by a complex network of DNA repair pathways. Nucleotide excision repair (NER) is a versatile process that excises bulky base modifications from DNA. To study the substrate range of this system, we constructed bulky deoxyribose adducts that do not affect the chemistry of the corresponding bases. These novel adducts were incorporated into double-stranded DNA in a site-specific manner and the repair of the modified sites was investigated. RESULTS Using restriction enzymes as a probe for DNA modification, we confirmed that the resulting substrates contained the bulky deoxyribose adducts at the expected position. DNA containing these unique adducts did not stimulate DNA repair synthesis when mixed with an NER-competent human cell extract. Inefficient repair of deoxyribose adducts was confirmed by monitoring the release of single-stranded oligonucleotides during the excision reaction that precedes DNA repair synthesis. As a control, the same human cell extract was able to process a base adduct of comparable size. CONCLUSIONS Our results indicate that modification of DNA bases rather than disruption of the sugar-phosphate backbone is an important determinant for damage recognition by the human NER system. Specific positions in DNA may thus be modified without eliciting NER responses. This observation suggests new strategies for anticancer drug design to generate DNA modifications that are refractory to repair processes.
Collapse
Affiliation(s)
- M T Hess
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Winterthurerstr. 260, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Kozlovskis PL, Smets MJ, Strauss WL, Myerburg RJ. DNA synthesis in adult feline ventricular myocytes. Comparison of hypoxic and normoxic states. Circ Res 1996; 78:289-301. [PMID: 8575073 DOI: 10.1161/01.res.78.2.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adult mammalian ventricular myocytes are terminally differentiated cells, and the prevailing perception has been that DNA synthesis and repair are not active. We tested the hypothesis that there is potential for DNA synthesis and repair by studying the ability of whole-cell extracts from adult myocytes to incorporate [alpha-32P]dCTP into damaged plasmids. Left ventricular myocytes were isolated from adult cat hearts by collagenase dissociation. Cells were maintained in room air (control extract, CE) or made ischemic (IE) with N2 displacement of O2 and extracted for total protein. The nicked form of the plasmid was produced by exposure to an Fe3+/ascorbic acid free radical generating system. Both IE and CE degraded the supercoiled form of the plasmid and incorporated [alpha-32P]dCTP into the nicked (32P/DNA mass; CE = 2.2, IE = 3.0) and linear forms (32P/DNA mass; CE = 28.7, IE = 25.2). Exposure of plasmids to UV light did not inhibit incorporation of label. Inhibition studies with the cell extracts suggested a participation of polymerase delta in myocyte DNA repair/synthesis. Myocyte extract was as active as extract from rapidly growing COS cells at incorporating labeled nucleotides into plasmid DNA. The ability of intact myocytes to incorporate [alpha-32P]dCTP into endogenous DNA was measured in isolated cells made permeable with saponin. Studies were done in room air or N2. Permeable cells incorporated [alpha-32P]dCTP into nuclear DNA, but maximal specific activity of DNA was observed at 15 minutes with ischemia and at 60 minutes with room air control cells (ischemia, 1.34 +/- 0.5, 0.86 +/- 0.33, 0.60 +/- 0.04; air, 1.0, 1.28 +/- 0.20, 1.87 +/- 0.38, at 15, 30, and 60 minutes, respectively). These data indicate that mammalian adult ventricular myocytes can actively repair and/or synthesize both exogenous and endogenous DNA. A DNA synthetic response to cellular damage may have important pathological and clinical implications.
Collapse
Affiliation(s)
- P L Kozlovskis
- Department of Medicine, University of Miami School of Medicine, FL 33101, USA
| | | | | | | |
Collapse
|
20
|
Ma L, Hoeijmakers JH, van der Eb AJ. Mammalian nucleotide excision repair. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:137-63. [PMID: 7492568 DOI: 10.1016/0304-419x(95)00008-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L Ma
- Department of Medical Biochemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
21
|
Thielmann HW, Popanda O, Edler L, Böing A, Jung EG. DNA repair synthesis following irradiation with 254-nm and 312-nm ultraviolet light is not diminished in fibroblasts from patients with dysplastic nevus syndrome. J Cancer Res Clin Oncol 1995; 121:327-37. [PMID: 7797597 DOI: 10.1007/bf01225684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The DNA excision repair capacity of 23 primary fibroblast lines from patients with dysplastic nevus syndrome was investigated and DNA repair synthesis ("unscheduled DNA synthesis") was determined after UV exposure. Seventeen fibroblast lines from normal donors served as controls. The dose/response experiments included up to ten dose levels and two wavelength ranges: UV-C (using a low-pressure mercury lamp emitting predominantly 254-nm light) and UV-B (artificial "sunlamp" radiation centering around 312-nm light). For each dose level, silver grains over fibroblast nuclei were counted by visual inspection. Twelve cell lines were also evaluated for both UV wavelength ranges using a new semi-automatic image analyzing system. This system included components for rapid sequential identification of both fibroblast nuclei and silver grains sited above them. Silver grains over 100 nuclei were determined for each UV dose level. Dose/response curves were established and analyzed by linear regression. As a quantitative term for assessing DNA excision repair capacity of a cell line we calculated the linear increase (G0) in the number of grains per nucleus, when the UV dose was multiplied by the factor e (i.e. 2.72). The sensitivity of grain detection and resolution of overlapping grains was approximately threefold better in visual than in automatic counting, especially when there were more than 70 grains over nuclei. The time required for visual counting, however, was tenfold that of automatic counting. The variance-weighted mean G0v.w of all fibroblast lines from patients with dysplastic nevus syndrome was found to be 79.1 (+/- 1.8- grains/nucleus, that of fibroblast lines from normal donors was 74.2 (+/- 1.7) grains/nucleus. This difference revealed a slightly better repair capability for cell lines from patients but was at the borderline of detection and, therefore, should not be overinterpreted. From the experimental accuracy achieved by determination of the variance-weighted means of the two groups, we would have been able to detect a difference of 7 and more grains [> 2 x (sigma normal+sigma patients)]. The variance-weighted mean G0v.w of all fibroblast lines from patients with dysplastic nevus syndrome was found to be 76.4 (+/- 1.4) grains/nucleus, whereas that of fibroblast lines from normal donors was only 66.6 (+/- 1.8) grains/nucleus. This difference was statistically significant and, contrary to expectation, revealed better, not worse post-UV DNA repair capability in cell lines from patients that in those from normal donors.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H W Thielmann
- Division of Interaction of Carcinogens with Biological Macromolecules, German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|
22
|
Kinley JS, Brunborg G, Moan J, Young AR. Detection of UVR-induced DNA damage in mouse epidermis in vivo using alkaline elution. Photochem Photobiol 1995; 61:149-58. [PMID: 7899504 DOI: 10.1111/j.1751-1097.1995.tb03953.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alkaline elution has been used to detect ultraviolet radiation (UVR)-induced DNA damage in the epidermis of C3H/Tif hr/hr mice. This technique detects DNA damage in the form of single-strand breaks and alkali-labile sites (SSB) formed directly by UVA (320-400 nm) or indirectly by UVB (280-320 nm). The latter induces DNA damage such as cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4)-photoproducts, which are then converted into transient SSB by cellular endonucleases, during nucleotide excision repair (NER). The irradiation system used had a spectral output similar in effect to solar UVR, with the UVB component inducing 94% of the edema response observed in mice. Consequently, the majority of SSB detected were those formed via NER of UVB-induced photoadducts. The number of SSB detected immediately after 8 kJ/m2 (2.7 minimum erythema doses determined at 48 h post-UVR [MED]) was low, indicating the formation of only small numbers of transient SSB. When DNA repair inhibitors hydroxyurea and 1-beta-D-arabinofuranosylcytosine were administered (intraperitoneally) to mice 30 min before UVR, they prevented sealing of the DNA SSB formed during NER. A four-fold increase in the number of SSB detected resulted, which was found to be linearly related to the UVR dose. The SSB induced by 2 kJ/m2 (less than an MED) were readily detected, with the ear showing lower numbers of SSB than the dorsum. When repair inhibitors were added post-UVR, the rate of formation of SSB declined rapidly with time of administration, reflecting repair of DNA lesions. After a UVR dose of 6 kJ/m2 (2 MED), 50% of the initial repair-dependent SSB had been removed after approximately 2 h in the ear and 4 h in the dorsum; no more SSB appeared to be incised by 24 h post-UVR. The technique described is an efficient and highly sensitive one for the quantification of SSB induced in UV-irradiated skin samples in vivo.
Collapse
Affiliation(s)
- J S Kinley
- Department of Biophysics, Norwegian Radium Hospital, Oslo
| | | | | | | |
Collapse
|
23
|
Eveno E, Quilliet X, Chevallier-Lagente O, Daya-Grosjean L, Stary A, Zeng L, Benoit A, Savini E, Ciarrocchi G, Kannouche P. Stable SV40-transformation and characterisation of some DNA repair properties of fibroblasts from a trichothiodystrophy patient. Biochimie 1995; 77:906-12. [PMID: 8824772 DOI: 10.1016/0300-9084(95)90011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To characterize nucleotide excision repair properties of cells from trichothiodystrophy (TTD) patients genetically-related to the xeroderma pigmentosum (XP) group D, TTD skin fibroblasts from two unrelated patients (TTD1VI and TTD2VI) belonging to the TTD/XPD group were transformed with a plasmid containing SV40 large T antigen-coding sequences and some DNA repair properties, such as unscheduled DNA synthesis (UDS), UV-survival, in vitro repair synthesis of cell extracts and reactivation of UV-irradiated reporter plasmid were studied. Results showed that: a) both untransformed and transformed TTD cells present a reduced UV-survival, compared to wild-type cells, but at significantly less reduced levels than XP-D cells; b) reduced repair activities were detected in both TTD and XP-D transformed cells by using in vitro cell free extract repair and reactivation of UV-irradiated plasmid procedures, and these relative reduced extents correlated with respective UV-survival; c) surprisingly, near wild-type UDS levels were detected in TTD2VILas transformed cells at different passages after the crisis, suggesting a phenotypic reversion of this transformed cell line; d) fluoro-cytometric analysis of TTD2VILas cells revealed a strong increase of a cell population containing a DNA amount more than twice as high than that of untransformed cells; finally, e) when UDS data were normalized to the DNA content in TTD2VILas cells, it appeared that the repair efficiency was only slightly higher than in untransformed cells. This implies that in transformed cells DNA repair properties should be evaluated, taking into account additional parameters. We obtained an immortalized TTD cell line which maintains DNA repair properties similar to those of parental untransformed cells and may be used to characterize the TTD defect at genetic, molecular and biochemical levels.
Collapse
Affiliation(s)
- E Eveno
- Laboratory of Molecular Genetics, UPR 42-CNRS, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Frosina G, Fortini P, Rossi O, Carrozzino F, Abbondandolo A, Dogliotti E. Repair of abasic sites by mammalian cell extracts. Biochem J 1994; 304 ( Pt 3):699-705. [PMID: 7818470 PMCID: PMC1137391 DOI: 10.1042/bj3040699] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hamster cell extracts that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers, were used to study the repair of apurinic/apyrimidinic (AP) sites and methoxyamine (MX)-modified AP sites. Plasmid molecules were heat-treated at pH 5 and incubated with MX when required. The amount of damage introduced ranged from 0.2 to 0.9 AP sites/kb. Extracts were prepared from the Chinese hamster ovary CHO-9 cell line and from its derivative, 43-3B clone which is mutated in the nucleotide excision repair (NER) ERCC1 gene. AP and MX-AP sites stimulated repair synthesis by CHO-9 cell extracts. The level of synthesis correlated with the number of lesions and was of similar magnitude to the repair stimulated by 4.3 u.v. photoproducts/kb. Repair of AP and MX-AP sites was faster than the repair of u.v. damage and was independent of ERCC1 gene product. The high level of repair replication was due to a very efficient and rapid incision of plasmids carrying AP or MX-AP sites, performed by abundant AP endonucleases present in the extract. The calculated average repair patch sizes were: 7 nucleotides per AP site; 10 nucleotides per MX-AP site; 28 nucleotides per (6-4) u.v. photoproduct or cyclobutane pyrimidine dimer. The data indicate that AP and MX-AP sites are very efficiently repaired by base-excision repair in mammalian cells and suggest that MX-AP sites may also be processed via alternative repair mechanisms.
Collapse
Affiliation(s)
- G Frosina
- Laboratory of CSTA-Mutagenesis, Istituto Nazionale per la Ricerca sul Cancro, IST, Genova, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Calsou P, Salles B. Properties of damage-dependent DNA incision by nucleotide excision repair in human cell-free extracts. Nucleic Acids Res 1994; 22:4937-42. [PMID: 7800483 PMCID: PMC523759 DOI: 10.1093/nar/22.23.4937] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nucleotide excision repair (NER) is the primary mechanism for the removal of many lesions from DNA. This repair process can be broadly divided in two stages: first, incision at damaged sites and second, synthesis of new DNA to replace the oligonucleotide removed by excision. In order to dissect the repair mechanism, we have recently devised a method to analyze the incision reaction in vitro in the absence of repair synthesis (1). Damage-specific incisions take place in a repair reaction in which mammalian cell-free extracts are mixed with undamaged and damaged plasmids. Most of the incision events are accompanied by excision. Using this assay, we investigated here various parameters that specifically affect the level of damage-dependent incision activity by cell-free extracts in vitro. We have defined optimal conditions for the reaction and determined the kinetics of the incision with cell-free extracts from human cells. We present direct evidence that the incision step of NER is ATP-dependent. In addition, we observe that Mn2+ but no other divalent cation can substitute for Mg2+ in the incision reaction.
Collapse
Affiliation(s)
- P Calsou
- Laboratoire de Pharmacologie et Toxicologie Fondamentales du CNRS, Toulouse, France
| | | |
Collapse
|
26
|
Chao CC, Shieh TC, Huang H. Use of a monoclonal antibody to detect DNA damage caused by the anticancer drug cis-diamminedichloroplatinum (II) in vivo and in vitro. FEBS Lett 1994; 354:103-9. [PMID: 7957889 DOI: 10.1016/0014-5793(94)01088-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A monoclonal antibody, MAb62-5, was prepared and used to detect DNA damage due to the anticancer drug cis-diamminedichloroplatinum (II) (or cisplatin). ELISA competition indicated that the binding of MAb62-5 to cisplatin-DNA was competitively inhibited (50% control) by 210 nM of cisplatin bound to DNA, cisplatin/nucleotide (D/N) = 0.2. Using a DNA mobility shift assay, MAb62-5 binding activity was inhibited by 50% by approximately 50-fold molar excess of cisplatin-DNA adducts (D/N = 0.08), whereas there was less than 5% inhibition by UV-DNA adducts or mock-treated DNA. In addition, MAb62-5 showed a similar affinity to the cisplatin-DNA adducts as compared to an endogenous cisplatin-damaged DNA recognition protein. Using ELISA with this antibody, we have demonstrated a 2-fold enhancement in excision repair of cisplatin-DNA adducts in resistant HeLa cells. This is supported by the measurement of repair-associated DNA strand breaks using alkaline elution and host cell reactivation of transfected plasmid DNA carrying cisplatin damage. These findings also provide explanation for the complexicity of immunoassay in cells.
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan, ROC
| | | | | |
Collapse
|
27
|
Chao CC. Enhanced excision repair of DNA damage due to cis-diamminedichloroplatinum(II) in resistant cervix carcinoma HeLa cells. Eur J Pharmacol 1994; 268:347-55. [PMID: 7805758 DOI: 10.1016/0922-4106(94)90059-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously reported a cisplatin-resistant HeLa cell line which exhibits overproduction of nuclear proteins preferential for cisplatin-modified DNA (Chao et al., Cancer Res. 51:601-605, 1991; Biochem. J. 277: 875-878, 1991). In this study, excision repair of cisplatin-DNA adducts in a resistant and a revertant cell lines was investigated using in situ detection of cisplatin-DNA adducts by an immunoassay and the measurement of repair-associated DNA strand breaks by a sensitive alkaline elution method. The resistant cells exhibited a 2-fold decrease in the accumulation of cisplatin-DNA adducts; whereas, the revertant cells showed a similar level of cisplatin-DNA adducts as the parental cells in the parallel experiment. Immediately following cisplatin treatment, the resistant and the revertant cells accumulated respectively approximately 50% and 90% cisplatin-DNA adducts of the parental cells. However, the kinetic patterns of repair rate following peak accumulation of cisplatin-DNA adducts (which took approximately 4 h) was the same in the three cell lines. This finding was supported by the measurement of repair-associated DNA strand breaks using alkaline elution which showed 1.6- and 1.5-fold increase in the resistant and the revertant cells respectively. In addition, following transfection with plasmid DNA carrying cisplatin damage, the resistant and the revertant cells displayed a 2.4- and 1.4-fold enhancement in host cell reactivation, respectively. Furthermore, the acquired resistance in HeLa cells was partially reversed by nontoxic aphidicolin, a DNA polymerase-alpha and DNA repair inhibitor. The results strongly suggest the improved excision repair of cisplatin-DNA adducts as a mechanism of phenotypic resistance of cells to cisplatin.
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan, ROC
| |
Collapse
|
28
|
Jackson DA, Hassan AB, Errington RJ, Cook PR. Sites in human nuclei where damage induced by ultraviolet light is repaired: localization relative to transcription sites and concentrations of proliferating cell nuclear antigen and the tumour suppressor protein, p53. J Cell Sci 1994; 107 ( Pt 7):1753-60. [PMID: 7983145 DOI: 10.1242/jcs.107.7.1753] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repair of damage induced in DNA by ultraviolet light involves excision of the damaged sequence and synthesis of new DNA to repair the gap. Sites of such repair synthesis were visualized by incubating permeabilized HeLa or MRC-5 cells with the DNA precursor, biotin-dUTP, in a physiological buffer; then incorporated biotin was immunolabeled with fluorescent antibodies. Repair did not take place at sites that reflected the DNA distribution; rather, sites were focally concentrated in a complex pattern. This pattern changed with time; initially intense repair took place at transcriptionally active sites but when transcription became inhibited it continued at sites with little transcription. Repair synthesis in vitro also occurred in the absence of transcription. Repair sites generally contained a high concentration of proliferating cell nuclear antigen but not the tumour-suppressor protein, p53.
Collapse
Affiliation(s)
- D A Jackson
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
29
|
Jackson DA, Balajee AS, Mullenders L, Cook PR. Sites in human nuclei where DNA damaged by ultraviolet light is repaired: visualization and localization relative to the nucleoskeleton. J Cell Sci 1994; 107 ( Pt 7):1745-52. [PMID: 7983144 DOI: 10.1242/jcs.107.7.1745] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repair of damage induced in DNA by ultraviolet light involves excision of the damage and then repair synthesis to fill the gap. We investigated the sites of repair synthesis using MRC-5 fibroblasts and HeLa cells in G1 phase. Cells were encapsulated in agarose microbeads to protect them during manipulation, irradiated, incubated to allow repair to initiate, and permeabilized with streptolysin O to allow entry of labelled triphosphates; [32P]dTTP was incorporated into acid-insoluble material in a dose-dependent manner. Incubation with biotin-16-dUTP allowed sites of incorporation to be indirectly immunolabeled using a FITC-conjugated antibody; sites were not diffusely spread throughout nuclei but concentrated in discrete foci. This is similar to sites of S phase activity that are attached to an underlying nucleoskeleton. After treatment with an endonuclease, most repaired DNA electroeluted from beads with chromatin fragments; this was unlike nascent DNA made during S phase and suggests that repaired DNA is not as closely associated with the skeleton. However, the procedure destroyed repair activity, so repaired DNA might be attached in vivo through a polymerase that was removed electrophoretically. Therefore this approach cannot be used to determine decisively whether repair sites are associated with a skeleton in vivo.
Collapse
Affiliation(s)
- D A Jackson
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
30
|
|
31
|
Zeng X, Jiang Y, Zhang S, Hao H, Lee M. DNA polymerase delta is involved in the cellular response to UV damage in human cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36709-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Meldrum RA, Meaking WS, Wharton CW. The kinetics and mechanism of repair of UV induced DNA damage in mammalian cells. The use of 'caged' nucleotides and electroporation to study short time course events in DNA repair. Nucleic Acids Res 1994; 22:1234-41. [PMID: 8165138 PMCID: PMC523648 DOI: 10.1093/nar/22.7.1234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using 'caged' DNA break trapping agents as well as the equivalent uncaged reagents and an automated apparatus, we have measured time courses of incorporation of radiolabelled nucleotides into HL60 cellular DNA in the early stages after 248 UV laser damage. These time courses show two distinctive phases, one between 0 and 120 seconds and another after 120 secs following damage. The first phase consists of a transient which shows a rapid initial incorporation of radiolabel followed by a sharp fall in incorporated label. This occurs with TTP as well as ddATP, which suggests that an excision activity which results in removal of recently incorporated bases is not solely provoked by the incorporation of an unnatural base, but also by the incorporation of an incorrectly paired base in a phase of what may be low fidelity repair. The second phase consists of a more steady state of incorporation. Both phases are dose dependent and show higher incorporation at higher doses. The transient is most apparent at does which cause some lethality. It may represent a form of emergency or 'panic' repair where it seems that there may be an immediate effort to maintain strand continuity in the damaged DNA. Results of experiments with polymerase inhibitors suggest that a polymerase which is sensitive to aphidicholin and which shows some sensitivity to dideoxythymidine is active during the transient phase of repair. Since excision of newly incorporated radiolabel takes place very rapidly during the first phase this would imply that a polymerase with an associated proof-reading nuclease is active at this stage. Polymerases alpha, delta, and epsilon all have this property but delta and epsilon have a higher sensitivity to dideoxythymidine than does alpha. Since the transient burst phase shows significant inhibition by dideoxythymidine, it is more likely that delta or epsilon are active at this stage. The putative panic response discussed in relation to proof reading mechanisms in aminoacyl-tRNA and DNA synthesis.
Collapse
Affiliation(s)
- R A Meldrum
- School of Biochemistry, University of Birmingham, UK
| | | | | |
Collapse
|
33
|
Sung P, Watkins J, Prakash L, Prakash S. Negative superhelicity promotes ATP-dependent binding of yeast RAD3 protein to ultraviolet-damaged DNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Szymkowski DE, Lawrence CW, Wood RD. Repair by human cell extracts of single (6-4) and cyclobutane thymine-thymine photoproducts in DNA. Proc Natl Acad Sci U S A 1993; 90:9823-7. [PMID: 8234319 PMCID: PMC47664 DOI: 10.1073/pnas.90.21.9823] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One cis-syn cyclobutane thymine dimer or one (6-4) thymine-thymine photoproduct was built into an identical sequence of a closed-circular M13 duplex DNA, and nucleotide excision repair synthesis carried out by human cell extracts in the area containing each lesion was determined. Extracts from normal cells repaired the (6-4) photoproduct with a patch size of approximately 20-30 nucleotides, but repair was at least 10-fold lower at the cyclobutane dimer. The (6-4) lesion was repaired with comparable efficiency to a single acetylamino-fluorene-guanine adduct in a similar location. Extract from nucleotide excision repair-deficient xeroderma pigmentosum group A cells could not remove any of these adducts but could complete repair of the lesions after incision with Escherichia coli UvrABC proteins. This direct comparison of repair of two UV photoproducts, in an in vitro system where chromatin assembly and transcription are absent, suggests that the more rapid repair of the (6-4) lesion observed in the mammalian cell genome overall is due in part to a significant difference in the ability of the repair complex to locate and incise these lesions in DNA.
Collapse
Affiliation(s)
- D E Szymkowski
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, United Kingdom
| | | | | |
Collapse
|
35
|
Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36924-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Chao CC, Huang SL. Apparent alterations in the early stage of excision repair of UV-induced DNA damages in a HeLa mutant cell line that is resistant to genotoxic stresses. Mutat Res 1993; 303:19-27. [PMID: 7690902 DOI: 10.1016/0165-7992(93)90004-f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously reported a cisplatin-resistant HeLa cell line featuring a cross-resistance to genotoxic stresses including ultraviolet (UV) radiation and an enhancement of plasmid reactivation. In this study, excision repair of UV-DNA adducts in this resistant cell line was investigated. Using alkaline elution analysis, this resistant cell line showed a 2-fold enhancement in damage incision-associated DNA strand breaks. Using a gel mobility shift assay, the resistant cells exhibited a 3-fold increase in nuclear proteins which specifically recognize UV-damaged DNA. However, the rate of repair synthesis in the resistant cells appeared to be the same as in their parental counterparts. Thus, recognition and incision activities, the early stage of excision repair, are altered in the resistant cells. The results suggest that phenotypic cross-resistance of this cell line to UV is probably due to an improved excision repair of UV-DNA adducts which is defective in xeroderma pigmentosum group A cells. The results are consistent with the conclusion that the early stage, including recognition and incision, of excision repair is critical in determining cellular sensitivity or resistance to DNA damage.
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan
| | | |
Collapse
|
37
|
Guzder SN, Sung P, Prakash L, Prakash S. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc Natl Acad Sci U S A 1993; 90:5433-7. [PMID: 8516285 PMCID: PMC46734 DOI: 10.1073/pnas.90.12.5433] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A-G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. We have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. We also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair.
Collapse
Affiliation(s)
- S N Guzder
- Department of Biology, University of Rochester, NY 14627
| | | | | | | |
Collapse
|
38
|
Abstract
Nucleotide excision repair is the major DNA repair mechanism in all species tested. This repair system is the sole mechanism for removing bulky adducts from DNA, but it repairs essentially all DNA lesions, and thus, in addition to its main function, it plays a back-up role for other repair systems. In both pro- and eukaryotes nucleotide excision is accomplished by a multisubunit ATP-dependent nuclease. The excision nuclease of prokaryotes incises the eighth phosphodiester bond 5' and the fourth or fifth phosphodiester bond 3' to the modified nucleotide and thus excises a 12-13-mer. The excision nuclease of eukaryotes incises the 22nd, 23rd, or 24th phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion and thus removes the adduct in a 27-29-mer. A transcription repair coupling factor encoded by the mfd gene in Escherichia coli and the ERCC6 gene in humans directs the excision nuclease to RNA polymerase stalled at a lesion in the transcribed strand and thus ensures preferential repair of this strand compared to the nontranscribed strand.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
39
|
|
40
|
Abstract
We have developed a dot blot immunoassay for UV photoproducts which distinguishes 6-4 photoproducts from cyclobutane dimers. The assay uses a polyclonal antiserum that is specific for UV-irradiated DNA. Cyclobutane dimers are measured in DNA samples which have been treated with hot alkali to destroy 6-4 photoproducts. 6-4 Photoproducts are measured using blots that have been incubated in photoreactivating enzyme to eliminate cyclobutane dimers. A combination of the two treatments leaves no detectable antigenic lesions. Wild-type S. cerevisiae repairs 6-4 photoproducts, in the genome overall, more rapidly than cyclobutane dimers. The most sensitive alleles of rad1, rad2, rad3 and rad4 are completely unable to repair either kind of photoproduct. We conclude that 6-4 photoproducts are repaired by essentially the same mechanism as are cyclobutane dimers.
Collapse
Affiliation(s)
- S McCready
- Department of Plant Sciences, University of Oxford, UK
| | | |
Collapse
|
41
|
DNA repair by eukaryotic nucleotide excision nuclease. Removal of thymine dimer and psoralen monoadduct by HeLa cell-free extract and of thymine dimer by Xenopus laevis oocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53943-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Calsou P, Frit P, Salles B. Repair synthesis by human cell extracts in cisplatin-damaged DNA is preferentially determined by minor adducts. Nucleic Acids Res 1992; 20:6363-8. [PMID: 1475197 PMCID: PMC334528 DOI: 10.1093/nar/20.23.6363] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During reaction of cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, a number of adducts are formed which may be discriminated by the excision-repair system. An in vitro excision-repair assay with human cell-free extracts has been used to assess the relative repair extent of monofunctional adducts, intrastrand and interstrand cross-links of cis-DDP on plasmid DNA. Preferential removal of cis-DDP 1,2-intrastrand diadducts occurred in the presence of cyanide ions. In conditions where cyanide treatment removed 85% of total platinum adducts while approximately 70% of interstrand cross-links remained in plasmid DNA, no significant variation in repair synthesis by human cell extracts was observed. Then, we constructed three types of plasmid DNA substrates containing mainly either monoadducts, 1,2-intrastrand cross-links or interstrand cross-links lesions. The three plasmid species were modified in order to obtain the same extent of total platinum DNA adducts per plasmid. No DNA repair synthesis was detected with monofunctional adducts during incubation with human whole cell extracts. However, a two-fold increase in repair synthesis was found when the proportion of interstrand cross-links in plasmid DNA was increased by 2-3 fold. These findings suggest that (i) cis-DDP 1,2-intrastrand diadducts are poorly repaired by human cell extracts in vitro, (ii) among other minor lesions potentially cyanide-resistant, cis-DDP interstrand cross-links represent a major lesion contributing to the repair synthesis signal in the in vitro assay. These results could account for the drug efficiency in vivo.
Collapse
Affiliation(s)
- P Calsou
- Laboratoire de Pharmacologie et Toxicologie Fondamentales du CNRS, Toulouse, France
| | | | | |
Collapse
|
43
|
Treiber DK, Chen Z, Essigmann JM. An ultraviolet light-damaged DNA recognition protein absent in xeroderma pigmentosum group E cells binds selectively to pyrimidine (6-4) pyrimidone photoproducts. Nucleic Acids Res 1992; 20:5805-10. [PMID: 1454541 PMCID: PMC334419 DOI: 10.1093/nar/20.21.5805] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The binding specificity was defined of a human ultraviolet light-damaged DNA recognition protein (UV-DRP), the activity of which is absent in some xeroderma pigmentosum complementation group E cells. Our results suggest that cyclobutane pyrimidine dimers (CPDs) are not high affinity UV-DRP binding sites--a finding consistent with other reports on this protein (Hirschfeld et al., (1990) Mol. Cell Biol., 10, 2041-2048). A major role for 6-4 photoproducts in UV-DRP binding was suggested in studies showing that irradiated oligonucleotides containing a T4C UV box sequence, which efficiently forms a TC 6-4 photoproduct, was a superior substrate for the UV-DRP when compared to a similar irradiated oligonucleotide having a T5 sequence. The latter sequence forms CPDs at a much higher frequency than 6-4 photoproducts. In a more direct approach, T4C-containing oligonucleotides complexed with the UV-DRP were separated from the unbound oligonucleotide fraction and the frequencies of 6-4 photoproducts in the two DNA populations were compared. The UV-DRP-bound fraction was highly enriched for the 6-4 lesion over the unbound fraction supporting the conclusion that 6-4 photoproducts are the principal binding cues for the UV-DRP.
Collapse
Affiliation(s)
- D K Treiber
- Department of Chemistry, Whitaker College of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
44
|
Nichols AF, Sancar A. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res 1992; 20:2441-6. [PMID: 1352873 PMCID: PMC312376 DOI: 10.1093/nar/20.10.2441] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human cell free extracts carry out nucleotide excision repair in vitro. The extract is readily separated into two fractions by chromatography on a DEAE column. Neither the low salt (0.1 M KCl) nor the high salt (0.8 M KCl) fractions are capable of repair synthesis but the combination of the two restore the repair synthesis activity. Using the repair synthesis assay we purified a protein of 37 kDa from the high salt fraction which upon addition to the low salt fraction restores repair synthesis activity. Amino acid sequence analysis, amino acid composition and immunoblotting with PCNA antibodies revealed that the 37 kDa protein is the proliferating cell nuclear antigen (PCNA) known to stimulate DNA Polymerases delta and epsilon. By using an assay which specifically measures the excision of thymine dimers we found that PCNA is not required for the actual excision reaction per se but increases the extent of excision by enabling the excision repair enzyme to turn over catalytically.
Collapse
Affiliation(s)
- A F Nichols
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
45
|
Huang JC, Svoboda DL, Reardon JT, Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A 1992; 89:3664-8. [PMID: 1314396 PMCID: PMC48929 DOI: 10.1073/pnas.89.8.3664] [Citation(s) in RCA: 331] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
By using a human cell-free system capable of nucleotide excision repair, a synthetic substrate consisting of a plasmid containing four thymidine dimers at unique locations, and deoxyribonucleoside 5'-[alpha-thio]triphosphates for repair synthesis, we obtained DNA fragments containing repair patches with phosphorothioate linkages. Based on the resistance of these linkages to digestion by exonuclease III and their sensitivity to cleavage by I2, we were able to delineate the borders of the repair patch to single-nucleotide resolution and found an asymmetric patch with sharp boundaries. That the repair patch was produced by filling in a gap generated by an excision nuclease and not by nick-translation was confirmed by the finding that the thymidine dimer was released in a 27- to 29-nucleotide oligomer.
Collapse
Affiliation(s)
- J C Huang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | | | | | |
Collapse
|
46
|
Requirement for ERCC-1 and ERCC-3 gene products in DNA excision repair in vitro. Complementation using rodent and human cell extracts. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50510-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
47
|
Jones CJ, Cleaver JE, Wood RD. Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line. Nucleic Acids Res 1992; 20:991-5. [PMID: 1549511 PMCID: PMC312081 DOI: 10.1093/nar/20.5.991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cells derived from individuals with mutations in the xeroderma pigmentosum complementation group A gene (XP-A gene) are hypersensitive to UV light and have a severe defect in nucleotide excision repair of damaged DNA. UV-resistant revertant cell lines can arise from XP-A cells in culture. Cells of one such revertant, XP129, were previously shown to remove (6-4) photoproducts from irradiated DNA, but to have poor repair of cyclobutane pyrimidine dimers. To analyze the biochemical nature of the reversion, whole cell extracts were prepared from the SV40-immortalized fibroblast cell lines XP12RO (an XP-A cell line), the revertant XP129 (derived from XP12RO), and 1BR.3N (from a normal individual). The ability of extracts to carry out repair synthesis in UV-irradiated DNA was examined, and immunoblots were performed using antiserum that recognizes XP-A protein. XP12RO extracts exhibited a very low level of repair and no detectable XP-A protein, but repair activity could be conferred by adding purified XP-A protein to the reaction mixture. XP129 extracts have essentially normal repair synthesis consistent with the observation that most repair of UV-irradiated DNA by extracts appears to occur at (6-4) photoproducts. An XP-A polypeptide of normal size was present in XP129, but in reduced amounts. The results indicate that in XP129 a mutational event has converted the inactive XP12RO XP-A gene into a form which expresses an active XP-A protein.
Collapse
Affiliation(s)
- C J Jones
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | | | |
Collapse
|
48
|
Affiliation(s)
- G Ross
- Academic Radiotherapy Unit, Royal Marsden Hospital, Sutton, Surrey, U.K
| | | |
Collapse
|
49
|
Robins P, Jones CJ, Biggerstaff M, Lindahl T, Wood RD. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J 1991; 10:3913-21. [PMID: 1935910 PMCID: PMC453130 DOI: 10.1002/j.1460-2075.1991.tb04961.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Complementation group A of xeroderma pigmentosum (XP) represents one of the most prevalent and serious forms of this cancer-prone disorder. Because of a marked defect in DNA excision repair, cells from individuals with XP-A are hypersensitive to the toxic and mutagenic effects of ultraviolet light and many chemical agents. We report here the isolation of the XP-A DNA repair protein by complementation of cell extracts from a repair-defective human XP-A cell line. XP-A protein purified from calf thymus migrates on denaturing gel electrophoresis as a doublet of 40 and 42 kilodaltons. The XP-A protein binds preferentially to ultraviolet light-irradiated DNA, with a preference for damaged over nondamaged nucleotides of approximately 10(3). This strongly suggests that the XP-A protein plays a direct role in the recognition of and incision at lesions in DNA. We further show that this protein corresponds to the product encoded by a recently isolated gene that can restore excision repair to XP-A cells. Thus, excision repair of plasmid DNA by cell extracts sufficiently resembles genomic repair in cells to reveal accurately the repair defect in an inherited disease. The general approach described here can be extended to the identification and isolation of other human DNA repair proteins.
Collapse
Affiliation(s)
- P Robins
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | | | | | | | |
Collapse
|
50
|
Wang Z, Wu X, Friedberg E. Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54596-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|