1
|
Mollo L, Petrucciani A, Norici A. Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium. PHYSIOLOGIA PLANTARUM 2024; 176:e14574. [PMID: 39400338 DOI: 10.1111/ppl.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science. Ammonium-rich growth media were used to challenge the monocultures of Auxenochlorella protothecoides, Chlamydomonas reinhardtii and Tetradesmus obliquus, as well as their polyculture; NO3 - was also used as the sole nitrogen chemical form in control cultures. The study primarily compared the growth, carbon and nitrogen metabolisms, and protein content of the green microalgae monocultures to those of their consortium. Overall, the cultivation mode significantly affected all the measured parameters. Notably, at 50 mM NH4 +, the assimilation rates of carbon and nitrogen were at least twice as high as those in the monoculture counterparts, and the protein content was three times more abundant.Additionally, the consortium's response to NH4 + toxicity was investigated by observing a linear relationship between the indicator of tolerance to NH4 + nutrition and the N isotopic signature. The study highlighted a high degree of acclimation through metabolic flexibility and diversity, as well as species abundance plasticity in the consortium, resulting in a functional resilience that would otherwise have been unattainable by the respective monocultures.
Collapse
Affiliation(s)
- Lorenzo Mollo
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Petrucciani
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Norici
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- CIRCC, Consorzio Interuniversitario Reattività Chimica e Catalisi, Italy
| |
Collapse
|
2
|
Jiménez-Morillo NT, Almendros G, González-Vila FJ, Jordán A, Zavala LM, de la Rosa JM, González-Pérez JA. Fire effects on C and H isotopic composition in plant biomass and soil: Bulk and particle size fractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141417. [PMID: 32827815 DOI: 10.1016/j.scitotenv.2020.141417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This work studies carbon (C) and hydrogen (H) isotope composition of plant biomass and soil organic matter (SOM) in an attempt to assess both, changes exerted by fire and possible inputs of charred materials to the soil after a wildfire. Isotope composition of bulk soil, soil particle size fractions and biomass of the dominant standing vegetation in the area (Quercus suber) from Doñana National Park (SW-Spain) were studied by isotope ratio mass spectrometry (IRMS). SOM C isotope composition indicates the occurrence of two SOM pools with different degree of alteration. Coarse soil fractions (>0.5 mm) were found 13C depleted with δ13C values close to those in leaf biomass, pointing to a predominance of poorly transformed SOM. Conversely, fine fractions (<0.1 mm) were found enriched in 13C as corresponds to a more humified SOM. The fire produced no changes in this trend, although a consistent 13C enrichment (c. 1‰) was observed in all soil fractions with decreasing size. Concerning H isotopes, the coarse fractions (>0.5 mm) displayed significant lower δ2H values than the intermediate and fine ones (<0.5 mm), again similar to those in leaf biomass (c. -80‰), whereas the fine fractions were found deuterium (2H)-enriched with significant higher δ2H values (c. 50‰), suggesting physical speciation of H depending on soil particle size. The fire produced a significant 2H depletion (Δ2H c. -10‰) in the finer fractions (<0.1 mm). The study of stable isotope analysis added new information and complements the results obtained by other proxies to better understand the effect of fire on SOM.
Collapse
Affiliation(s)
- Nicasio T Jiménez-Morillo
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gonzalo Almendros
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Serrano 115-B, Madrid, Spain
| | - Francisco J González-Vila
- MOSS-Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes, 10, 41012 Sevilla, Spain
| | - Antonio Jordán
- MED_Soil Research Group, Dpto. de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Prof. García González, 1, 41012 Sevilla, Spain
| | - Lorena M Zavala
- MED_Soil Research Group, Dpto. de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Prof. García González, 1, 41012 Sevilla, Spain
| | - José M de la Rosa
- MOSS-Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes, 10, 41012 Sevilla, Spain
| | - José A González-Pérez
- MOSS-Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes, 10, 41012 Sevilla, Spain.
| |
Collapse
|
3
|
Abadie C, Tcherkez G. In vivo phosphoenolpyruvate carboxylase activity is controlled by CO 2 and O 2 mole fractions and represents a major flux at high photorespiration rates. THE NEW PHYTOLOGIST 2019; 221:1843-1852. [PMID: 30267568 DOI: 10.1111/nph.15500] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Phosphenolpyruvate carboxylase (PEPC)-catalysed fixation of bicarbonate to C4 acids is commonly believed to represent a rather small flux in illuminated leaves. In addition, its potential variation with O2 and CO2 is not documented and thus is usually neglected in gas-exchange studies. Here, we used quantitative NMR analysis of sunflower leaves labelled with 13 CO2 (99% 13 C) under controlled conditions and measured the amount of 13 C found in the four C-atom positions in malate, the major product of PEPC activity. We found that amongst malate 13 C-isotopomers present after labelling, most molecules were labelled at both C-1 and C-4, showing the incorporation of 13 C at C-4 by PEPC fixation and subsequent redistribution to C-1 by fumarase (malate-fumarate equilibrium). In addition, absolute quantification of 13 C content showed that PEPC fixation increased at low CO2 or high O2 , and represented up to 1.8 μmol m-2 s-1 , that is, 40% of net assimilation measured by gas exchange under high O2 /CO2 conditions. Our results show that PEPC fixation represents a quantitatively important CO2 -fixing activity that varies with O2 and/or CO2 mole fraction and this challenges the common interpretation of net assimilation in C3 plants, where PEPC activity is often disregarded or considered to be constant at a very low rate.
Collapse
Affiliation(s)
- Cyril Abadie
- Research School of Biology, Australian National University, 2601, Canberra, ACT, Australia
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, 2601, Canberra, ACT, Australia
| |
Collapse
|
4
|
Eiler JM, Clog M, Lawson M, Lloyd M, Piasecki A, Ponton C, Xie H. The isotopic structures of geological organic compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1144/sp468.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractOrganic compounds are ubiquitous in the Earth's surface, sediments and many rocks, and preserve records of geological, geochemical and biological history; they are also critical natural resources and major environmental pollutants. The naturally occurring stable isotopes of volatile elements (D, 13C, 15N, 17,18O, 33,34,36S) provide one way of studying the origin, evolution and migration of geological organic compounds. The study of bulk stable isotope compositions (i.e. averaged across all possible molecular isotopic forms) is well established and widely practised, but frequently results in non-unique interpretations. Increasingly, researchers are reading the organic isotopic record with greater depth and specificity by characterizing stable isotope ‘structures’ – the proportions of site-specific and multiply substituted isotopologues that contribute to the total rare-isotope inventory of each compound. Most of the technologies for measuring stable isotope structures of organic molecules have been only recently developed and to date have been applied only in an exploratory way. Nevertheless, recent advances have demonstrated that molecular isotopic structures provide distinctive records of biosynthetic origins, conditions and mechanisms of chemical transformation during burial, and forensic fingerprints of exceptional specificity. This paper provides a review of this young field, which is organized to follow the evolution of molecular isotopic structure from biosynthesis, through diagenesis, catagenesis and metamorphism.
Collapse
Affiliation(s)
- John M. Eiler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Matthieu Clog
- University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | - Max Lloyd
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Alison Piasecki
- Department of Earth Science, University of Bergen, 5020 Bergen, Norway
| | - Camilo Ponton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Hao Xie
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
5
|
Tang T, Mohr W, Sattin SR, Rogers DR, Girguis PR, Pearson A. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180 T grown photoautotrophically and photoheterotrophically. GEOBIOLOGY 2017; 15:324-339. [PMID: 28042698 DOI: 10.1111/gbi.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Anoxygenic, photosynthetic bacteria are common at redox boundaries. They are of interest in microbial ecology and geosciences through their role in linking the carbon, sulfur, and iron cycles, yet much remains unknown about how their flexible carbon metabolism-permitting either autotrophic or heterotrophic growth-is recorded in the bulk sedimentary and lipid biomarker records. Here, we investigated patterns of carbon isotope fractionation in a model photosynthetic sulfur-oxidizing bacterium, Allochromatium vinosum DSM180T . In one treatment, A. vinosum was grown with CO2 as the sole carbon source, while in a second treatment, it was grown on acetate. Different intracellular isotope patterns were observed for fatty acids, phytol, individual amino acids, intact proteins, and total RNA between the two experiments. Photoautotrophic CO2 fixation yielded typical isotopic ordering for the lipid biomarkers: δ13 C values of phytol > n-alkyl lipids. In contrast, growth on acetate greatly suppressed intracellular isotopic heterogeneity across all molecular classes, except for a marked 13 C-depletion in phytol. This caused isotopic "inversion" in the lipids (δ13 C values of phytol < n-alkyl lipids). The finding suggests that inverse δ13 C patterns of n-alkanes and pristane/phytane in the geologic record may be at least in part a signal for photoheterotrophy. In both experimental scenarios, the relative isotope distributions could be predicted from an isotope flux-balance model, demonstrating that microbial carbon metabolisms can be interrogated by combining compound-specific stable isotope analysis with metabolic modeling. Isotopic differences among molecular classes may be a means of fingerprinting microbial carbon metabolism, both in the modern environment and the geologic record.
Collapse
Affiliation(s)
- T Tang
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - W Mohr
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - S R Sattin
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D R Rogers
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry, Stonehill College, Easton, MA, USA
| | - P R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - A Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Matsuo N, Ojika K, Shuyskaya E, Radjabov T, Toderich K, Yamanaka N. Responses of the carbon and oxygen isotope compositions of desert plants to spatial variation in soil salinity in Central Asia. Ecol Res 2013. [DOI: 10.1007/s11284-013-1068-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Rhoads TW, Williams JR, Lopez NI, Morré JT, Bradford CS, Beckman JS. Using theoretical protein isotopic distributions to parse small-mass-difference post-translational modifications via mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:115-124. [PMID: 23247967 PMCID: PMC4119010 DOI: 10.1007/s13361-012-0500-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/08/2012] [Accepted: 09/09/2012] [Indexed: 06/01/2023]
Abstract
Small-mass-difference modifications to proteins are obscured in mass spectrometry by the natural abundance of stable isotopes such as (13)C that broaden the isotopic distribution of an intact protein. Using a ZipTip (Millipore, Billerica, MA, USA) to remove salt from proteins in preparation for high-resolution mass spectrometry, the theoretical isotopic distribution intensities calculated from the protein's empirical formula could be fit to experimentally acquired data and used to differentiate between multiple low-mass modifications to proteins. We could readily distinguish copper from zinc bound to a single-metal superoxide dismutase (SOD1) species; copper and zinc only differ by an average mass of 1.8 Da and have overlapping stable isotope patterns. In addition, proteins could be directly modified while bound to the ZipTip. For example, washing 11 mM S-methyl methanethiosulfonate over the ZipTip allowed the number of free cysteines on proteins to be detected as S-methyl adducts. Alternatively, washing with the sulfhydryl oxidant diamide could quickly reestablish disulfide bridges. Using these methods, we could resolve the relative contributions of copper and zinc binding, as well as disulfide reduction to intact SOD1 protein present from <100 μg of the lumbar spinal cord of a transgenic, SOD1 overexpressing mouse. Although techniques like ICP-MS can measure total metal in solution, this is the first method able to assess the metal-binding and sulfhydryl reduction of SOD1 at the individual subunit level and is applicable to many other proteins.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
8
|
Measuring Isotope Fractionation by Autotrophic Microorganisms and Enzymes. Methods Enzymol 2011. [DOI: 10.1016/b978-0-12-385112-3.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Kromdijk J, Griffiths H, Schepers HE. Can the progressive increase of C₄ bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? PLANT, CELL & ENVIRONMENT 2010; 33:1935-1948. [PMID: 20561250 DOI: 10.1111/j.1365-3040.2010.02196.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ability to concentrate CO₂ around Rubisco allows C₄ crops to suppress photorespiration. However, as phosphoenolpyruvate regeneration requires ATP, the energetic efficiency of the C₄ pathway at low photosynthetic flux densities (PFD) becomes a balancing act between primary fixation and concentration of CO₂ in mesophyll (M) cells, and CO₂ reduction in bundle sheath (BS) cells. At low PFD, retro-diffusion of CO₂ from BS cells, relative to the rate of bicarbonate fixation in M cells (termed leakiness φ), is known to increase. This paper investigates whether this increase in ϕ could be explained by incomplete inhibition of photorespiration. The PFD response of φ was measured at various O₂ partial pressures in young Zea mays plants grown at 250 (LL) and 750 µmol m⁻² s⁻¹ PFD (HL). φ increased at low PFD and was positively correlated with O₂ partial pressure. Low PFD during growth caused BS conductance and interveinal distance to be lower in the LL plants, compared to the HL plants, which correlated with lower φ. Model analysis showed that incomplete inhibition of photorespiration, especially in the HL plants, and an increase in the relative contribution of mitochondrial respiration at low PFD could explain the observed increases in φ.
Collapse
Affiliation(s)
- Johannes Kromdijk
- Physiological Ecology, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB23EA, UK.
| | | | | |
Collapse
|
10
|
Mundle SOC, Rathgeber S, Lacrampe-Couloume G, Sherwood Lollar B, Kluger R. Internal Return of Carbon Dioxide in Decarboxylation: Catalysis of Separation and 12C/13C Kinetic Isotope Effects. J Am Chem Soc 2009; 131:11638-9. [DOI: 10.1021/ja902686h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott O. C. Mundle
- Departments of Chemistry and Geology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Steven Rathgeber
- Departments of Chemistry and Geology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Barbara Sherwood Lollar
- Departments of Chemistry and Geology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ronald Kluger
- Departments of Chemistry and Geology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Bathellier C, Tcherkez G, Bligny R, Gout E, Cornic G, Ghashghaie J. Metabolic origin of the delta13C of respired CO2 in roots of Phaseolus vulgaris. THE NEW PHYTOLOGIST 2009; 181:387-399. [PMID: 19021866 DOI: 10.1111/j.1469-8137.2008.02679.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Root respiration is a major contributor to soil CO2 efflux, and thus an important component of ecosystem respiration. But its metabolic origin, in relation to the carbon isotope composition (delta13C), remains poorly understood. Here, 13C analysis was conducted on CO2 and metabolites under typical conditions or under continuous darkness in French bean (Phaseolus vulgaris) roots. 13C contents were measured either under natural abundance or following pulse-chase labeling with 13C-enriched glucose or pyruvate, using isotope ratio mass spectrometer (IRMS) and nuclear magnetic resonance (NMR) techniques. In contrast to leaves, no relationship was found between the respiratory quotient and the delta13C of respired CO2, which stayed constant at a low value (c. -27.5 per thousand) under continuous darkness. With labeling experiments, it is shown that such a pattern is explained by the 13C-depleting effect of the pentose phosphate pathway; and the involvement of the Krebs cycle fueled by either the glycolytic input or the lipid/protein recycling. The anaplerotic phosphoenolpyruvate carboxylase (PEPc) activity sustained glutamic acid (Glu) synthesis, with no net effect on respired CO2. These results indicate that the root delta13C signal does not depend on the availability of root respiratory substrates and it is thus plausible that, unless the 13C photosynthetic fractionation varies at the leaf level, the root delta13C signal hardly changes under a range of natural environmental conditions.
Collapse
Affiliation(s)
- Camille Bathellier
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Guillaume Tcherkez
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Richard Bligny
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Elizabeth Gout
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Gabriel Cornic
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Jaleh Ghashghaie
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
12
|
Yun SI, Ro HM. Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant. ACTA ACUST UNITED AC 2008. [DOI: 10.3839/jabc.2008.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
McNevin DB, Badger MR, Whitney SM, von Caemmerer S, Tcherkez GGB, Farquhar GD. Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J Biol Chem 2007; 282:36068-76. [PMID: 17925403 DOI: 10.1074/jbc.m706274200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The carboxylation kinetic (stable carbon) isotope effect was measured for purified d-ribulose-1,5-bisphosphate carboxylases/oxygenases (Rubiscos) with aqueous CO(2) as substrate by monitoring Rayleigh fractionation using membrane inlet mass spectrometry. This resulted in discriminations (Delta) of 27.4 +/- 0.9 per thousand for wild-type tobacco Rubisco, 22.2 +/- 2.1 per thousand for Rhodospirillum rubrum Rubisco, and 11.2 +/- 1.6 per thousand for a large subunit mutant of tobacco Rubisco in which Leu(335) is mutated to valine (L335V). These Delta values are consistent with the photosynthetic discrimination determined for wild-type tobacco and transplastomic tobacco lines that exclusively produce R. rubrum or L335V Rubisco. The Delta values are indicative of the potential evolutionary variability of Delta values for a range of Rubiscos from different species: Form I Rubisco from higher plants; prokaryotic Rubiscos, including Form II; and the L335V mutant. We explore the implications of these Delta values for the Rubisco catalytic mechanism and suggest that Rubiscos that are associated with a lower Delta value have a less product-like carboxylation transition state and/or allow a decarboxylation step that evolution has excluded in higher plants.
Collapse
Affiliation(s)
- Dennis B McNevin
- Molecular Plant Physiology and Environmental Biology, Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Schaefer J, Jiang H, Ransome AE, Kappock TJ. Multiple active site histidine protonation states in Acetobacter aceti N5-carboxyaminoimidazole ribonucleotide mutase detected by REDOR NMR. Biochemistry 2007; 46:9507-12. [PMID: 17655332 PMCID: PMC2793534 DOI: 10.1021/bi700899q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class I PurE (N5-carboxyaminoimidazole mutase) catalyzes a chemically unique mutase reaction. A working mechanistic hypothesis involves a histidine (His45 in Escherichia coli PurE) functioning as a general acid, but no evidence for multiple protonation states has been obtained. Solution NMR is a peerless tool for this task but has had limited application to enzymes, most of which are larger than its effective molecular size limit. Solid-state NMR is not subject to this limit. REDOR NMR studies of a 151 kDa complex of uniformly 15N-labeled Acetobacter aceti PurE (AaPurE) and the active site ligand [6-13C]citrate probed a single ionization equilibrium associated with the key histidine (AaPurE His59). In the AaPurE complex, the citrate central carboxylate C6 13C peak moves upfield, indicating diminution of negative charge, and broadens, indicating heterogeneity. Histidine 15N chemical shifts indicate His59 exists in approximately equimolar amounts of an Ndelta-unprotonated (pyridine-like) form and an Ndelta-protonated (pyrrole-like) form, each of which is approximately 4 A from citrate C6. The spectroscopic data are consistent with proton transfers involving His59 Ndelta that are invoked in the class I PurE mechanism.
Collapse
Affiliation(s)
- Jacob Schaefer
- Department of Chemistry, Washington University in St. Louis, St. Louis MO 63130-4899
| | - Hong Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis MO 63130-4899
| | - Aaron E. Ransome
- Department of Chemistry, Washington University in St. Louis, St. Louis MO 63130-4899
| | - T. Joseph Kappock
- Department of Chemistry, Washington University in St. Louis, St. Louis MO 63130-4899
| |
Collapse
|
15
|
Scott JH, O'Brien DM, Emerson D, Sun H, McDonald GD, Salgado A, Fogel ML. An examination of the carbon isotope effects associated with amino acid biosynthesis. ASTROBIOLOGY 2006; 6:867-80. [PMID: 17155886 DOI: 10.1089/ast.2006.6.867] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stable carbon isotope ratios (delta(13)C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of delta(13)C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the delta(13)C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO(2 )fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.
Collapse
Affiliation(s)
- James H Scott
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
McNevin DB, Badger MR, Kane HJ, Farquhar GD. Measurement of (carbon) kinetic isotope effect by Rayleigh fractionation using membrane inlet mass spectrometry for CO 2-consuming reactions. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:1115-1128. [PMID: 32689322 DOI: 10.1071/fp06201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 09/20/2006] [Indexed: 06/11/2023]
Abstract
Methods for determining carbon isotope discrimination, Δ, or kinetic isotope effects, α, for CO2-consuming enzymes have traditionally been cumbersome and time-consuming, requiring careful isolation of substrates and products and conversion of these to CO2 for measurement of isotope ratio by mass spectrometry (MS). An equation originally derived by Rayleigh in 1896 has been used more recently to good effect as it only requires measurement of substrate concentrations and isotope ratios. For carboxylation reactions such as those catalysed by d-ribulose-1,5-bisphosphate carboxylase / oxygenase (RuBisCO, EC 4.1.1.39) and PEP carboxylase (PEPC, EC 4.1.1.31), this has still required sampling of reactions at various states of completion and conversion of all inorganic carbon to CO2, as well as determining the amount of substrate consumed. We introduce a new method of membrane inlet MS which can be used to continuously monitor individual CO2 isotope concentrations, rather than isotope ratio. This enables the use of a simplified, new formula for calculating kinetic isotope effects, based on the assumptions underlying the original Rayleigh fractionation equation and given by.
Collapse
Affiliation(s)
- Dennis B McNevin
- Molecular Plant Physiology, Research School of Biological Sciences, The Australian National University, Canberra, 0200 ACT, Australia
| | - Murray R Badger
- Molecular Plant Physiology, Research School of Biological Sciences, The Australian National University, Canberra, 0200 ACT, Australia
| | - Heather J Kane
- Molecular Plant Physiology, Research School of Biological Sciences, The Australian National University, Canberra, 0200 ACT, Australia
| | - Graham D Farquhar
- Environmental Biology, Research School of Biological Sciences, The Australian National University, Canberra, 0200 ACT, Australia
| |
Collapse
|
17
|
|
18
|
|
19
|
Metzler DE, Metzler CM, Sauke DJ. Enzymatic Addition, Elimination, Condensation, and Isomerization. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Abstract
Nearly 50 years ago, inorganic carbon was shown to be fixed in microalgae as the C3 compound phosphoglyceric acid. The enzyme responsible for C3 carbon fixation, ribulose-1,5-bisphosphate carboxylase (Rubisco), however, requires inorganic carbon in the form of CO2 (ref. 2), and Rubisco enzymes from diatoms have half-saturation constants for CO2 of 30-60 microM (ref. 3). As a result, diatoms growing in seawater that contains about 10 microM CO2 may be CO2 limited. Kinetic and growth studies have shown that diatoms can avoid CO2 limitation, but the biochemistry of the underlying mechanisms remains unknown. Here we present evidence that C4 photosynthesis supports carbon assimilation in the marine diatom Thalassiosira weissflogii, thus providing a biochemical explanation for CO2-insensitive photosynthesis in marine diatoms. If C4 photosynthesis is common among marine diatoms, it may account for a significant portion of carbon fixation and export in the ocean, and would explain the greater enrichment of 13C in diatoms compared with other classes of phytoplankton. Unicellular C4 carbon assimilation may have predated the appearance of multicellular C4 plants.
Collapse
Affiliation(s)
- J R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | | | |
Collapse
|
21
|
Schmidt HL. Isotope Discriminations Upon Biosynthesis in Natural Systems: General Causes and Individual Factors of the Different Bioelements. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 1999; 35:11-18. [PMID: 29016208 DOI: 10.1080/10256019908234076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The global isotope abundance of natural organic compounds is determined by that of their precursors. A prerequisite for the formation of non-statistical intermolecular and intramolecular isotope distributions is the occurance of thermodynamic and kinetic isotope effects in irreversible and branched metabolic processes. This coincidence permits the interference of external factors like climatological conditions during biosynthesis, thus leading to corresponding modulations of isotope fractionations. The general principles of the in-vivo isotope discrimination are outlined and the individual properties of the different bioelements in this system are described. The results are discussed in regard to obtain maximum information about the origin and authenticity of a natural compound by multielement isotope analysis.
Collapse
Affiliation(s)
- H L Schmidt
- a Lehrstuhl für Biologische Chemie der Technischen Universität München Freising-Weihenstephan , Germany
| |
Collapse
|
22
|
Tovar-Méndez A, Rodríguez-Sotres R, López-Valentín DM, Muñoz-Clares RA. Re-examination of the roles of PEP and Mg2+ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of Zea mays. Effects of the activators glucose 6-phosphate and glycine. Biochem J 1998; 332 ( Pt 3):633-42. [PMID: 9620864 PMCID: PMC1219522 DOI: 10.1042/bj3320633] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To study the effects of phosphoenolpyruvate (PEP) and Mg2+ on the activity of the non-phosphorylated and phosphorylated forms of phosphoenolpyruvate carboxylase (PEPC) from Zea mays leaves, steady-state measurements have been carried out with the free forms of PEP (fPEP) and Mg2+ (fMg2+), both in a near-physiological concentration range. At pH 7.3, in the absence of activators, the initial velocity data obtained with both forms of the enzyme are consistent with the exclusive binding of MgPEP to the active site and of fPEP to an activating allosteric site. At pH 8.3, and in the presence of saturating concentrations of glucose 6-phosphate (Glc6P) or Gly, the free species also combined with the active site in the free enzyme, but with dissociation constants at least 35-fold that estimated for MgPEP. The latter dissociation constant was lowered to the same extent by saturating Glc6P and Gly, to approx. one-tenth and one-sixteenth in the non-phosphorylated and phosphorylated enzymes respectively. When Glc6P is present, fPEP binds to the active site in the free enzyme better than fMg2+, whereas the metal ion binds better in the presence of Gly. Saturation of the enzyme with Glc6P abolished the activation by fPEP, consistent with a common binding site, whereas saturation with Gly increased the affinity of the allosteric site for fPEP. Under all the conditions tested, our results suggest that fPEP is not able to combine with the allosteric site in the free enzyme, i.e. it cannot combine until after MgPEP, fPEP or fMg2+ are bound at the active site. The physiological role of Mg2+ in the regulation of the enzyme is only that of a substrate, mainly as part of the MgPEP complex. The kinetic properties of maize leaf PEPC reported here are consistent with the enzyme being well below saturation under the physiological concentrations of fMg2+ and PEP, particularly during the dark period; it is therefore suggested that the basal PEPC activity in vivo is very low, but highly responsive to even small changes in the intracellular concentration of its substrate and effectors.
Collapse
Affiliation(s)
- A Tovar-Méndez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., 04510, México
| | | | | | | |
Collapse
|
23
|
Sakata S, Hayes JM, McTaggart AR, Evans RA, Leckrone KJ, Togasaki RK. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of biomarker records. GEOCHIMICA ET COSMOCHIMICA ACTA 1997; 61:5379-5389. [PMID: 11540730 DOI: 10.1016/s0016-7037(97)00314-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For the cyanobacterium Synechocystis UTEX 2470, grown photoautotrophically to a logarithmic stage of growth, the total lipid extract is depleted in 13C by 4.8% relative to average biomass. Depletions observed for acetogenic (straight-chain) lipids range from 7.6 (hexadecanoic acid) to 9.9% (a C16 n-alkyl chain bound in a polar-lipid fraction), with a mass-weighted average of 9.1%. Polyisoprenoid lipids fall into two isotopic groups, with phytol, diplopterol, and diploptene depleted by 6.4-6.9% and bishomohopanol (produced from the extracts by the preparative degradation of bacteriohopanepolyol) depleted by 8.4%. Analysis of the pattern of depletions indicates that two carbon positions in each C5 biomonomer leading to polyisoprenoid products are probably depleted in 13C relative to average biomass. The depletion of bacteriohopanepolyol relative to other polyisoprenoids can be ascribed to changes that occur over the life of each cell: (1) the 13C content of carbon flowing to lipid biosynthesis decreases as the cell size increases and (2) a greater proportion of the bacteriohopanepolyol which, unlike other polyisoprenoids, is present mainly in the cytoplasm rather than in membranes and is synthesized when cells are larger. Chlorophyll a is depleted relative to average biomass by O.7%. Given the observed depletion of 13C in phytol, the heteroaromatic, chlorophyllide portion of chlorophyll must be enriched in 13C by 2.7%. This enrichment is large relative to that in chlorophyllides produced by eukaryotes and may be related to a parallel enrichment of 13C in cyanobacterial glutamic acid. As in many previous investigations of cyanobacterial lipids, long-chain n-alkanes (C22-C29) are found in the extracts. They are, however, enriched in 13C relative to biomass and have isotopic compositions suggesting that they are contaminants of petrochemical origin. Available results indicate that cyanobacterial lipids will be depleted relative to dissolved CO2 that has served as a carbon source by 22-30% and that a wider range of depletions will be characteristic of eukaryotic products. The absence of long-chain n-alkanes in cyanobacteria reduces the possibility that petroleum ever formed from pre-eukaryotic sedimentary debris.
Collapse
Affiliation(s)
- S Sakata
- Department of Geological Sciences, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chollet R, Vidal J, O'Leary MH. PHOSPHOENOLPYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants. ACTA ACUST UNITED AC 1996; 47:273-298. [PMID: 15012290 DOI: 10.1146/annurev.arplant.47.1.273] [Citation(s) in RCA: 356] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since plant phosphoenolpyruvate carboxylase (PEPC) was last reviewed in the Annual Review of Plant Physiology over a decade ago (O'Leary 1982), significant advances have been made in our knowledge of this oligomeric, cytosolic enzyme. This review highlights this exciting progress in plant PEPC research by focusing on the three major areas of recent investigation: the enzymology of the protein; its posttranslational regulation by reversible protein phosphorylation and opposing metabolite effectors; and the structure, expression, and molecular evolution of the nuclear PEPC genes. It is hoped that the next ten years will be equally enlightening, especially with respect to the three-dimensional structure of the plant enzyme, the molecular analysis of its highly regulated protein-Ser/Thr kinase, and the elucidation of its associated signal-transduction pathways in various plant cell types.
Collapse
Affiliation(s)
- Raymond Chollet
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, UA CNRS D-1128, Institut de Biotechnologie des Plantes, Universite de Paris-Sud, Orsay Cedex, 91405 France, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | | | | |
Collapse
|
25
|
Carbon isotope variations in a plantation of Sitka spruce, and the effect of acid mist. Oecologia 1995; 103:109-117. [DOI: 10.1007/bf00328431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/1994] [Accepted: 02/16/1995] [Indexed: 10/26/2022]
|
26
|
Utilization of partial reactions, side reactions, and chemical rescue to analyze site-directed mutants of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (rubisco). ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1080-8914(06)80044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Waldrop G, Holden HM, Rayment I. Preliminary X-ray crystallographic analysis of biotin carboxylase isolated from Escherichia coli. J Mol Biol 1994; 235:367-9. [PMID: 7904651 DOI: 10.1016/s0022-2836(05)80042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acetyl CoA carboxylase catalyzes the first committed step in the biosynthesis of long chain fatty acids. In Escherichia coli, the enzyme consists of three subunits that are isolated separately and display distinct functional properties. Here we report the crystallization and preliminary X-ray analysis of one of these components, namely biotin carboxylase. The crystals are grown by microdialysis against 10 mM potassium phosphate (pH 7.0), 1 mM EDTA, 2 mM DTT and 1 mM NaN3 at 4 degrees C. They belong to the space group P2(1)2(1)2(1) with unit cell dimensions of a = 61.9 A, b = 96.1 A and c = 180.6 A and contain one dimer per asymmetric unit. The crystals diffract to a nominal resolution of 2.2 A. From a mechanistic standpoint, biotin carboxylase is especially interesting in that it is the smallest protein within its class and is one of only two carboxylases that can utilize free biotin as a substrate.
Collapse
Affiliation(s)
- G Waldrop
- Institute for Enzyme Research, Graduate School and the Department of Biochemistry, University of Wisconsin, Madison 53705
| | | | | |
Collapse
|
28
|
Lloyd J, Farquhar GD. 13C discrimination during CO 2 assimilation by the terrestrial biosphere. Oecologia 1994; 99:201-215. [PMID: 28313874 DOI: 10.1007/bf00627732] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/1994] [Accepted: 06/30/1994] [Indexed: 10/26/2022]
Abstract
Estimates of the extent of the discrimination against13CO2 during photosynthesis (ΔA) on a global basis were made using gridded data sets of temperature, precipitation, elevation, humidity and vegetation type. Stomatal responses to leaf-to-air vapour mole fraction difference (D, leaf-to-air vapour pressure difference divided by atmospheric pressure) were first determined by a literature review and by assuming that stomatal behaviour results in the optimisation of plant water use in relation to carbon gain. Using monthly time steps, modelled stomatal responses toD were used to calculate the ratio of stomatal cavity to ambient CO2 mole fractions and then, in association with leaf internal conductances, to calculate ΔA. Weighted according to gross primary productivity (GPP, annual net CO2 asimilation per unit ground area), estimated ΔA for C3 biomes ranged from 12.9‰ for xerophytic woods and shrub to 19.6‰ for cool/cold deciduous forest, with an average value from C3 plants of 17.8‰. This is slightly less than the commonly used values of 18-20‰. For C4 plants the average modelled discrimination was 3.6‰, again slightly less than would be calculated from C4 plant dry matter carbon isotopic composition (yielding around 5‰). From our model we estimate that, on a global basis, 21% of GPP is by C4 plants and for the terrestrial biosphere as a whole we calculate an average isotope discrimination during photosynthesis of 14.8‰. There are large variations in ΔA across the globe, the largest of which are associated with the precence or absence of C4 plants. Due to longitudinal variations in ΔA, there are problems in using latitudinally averaged terrestrial carbon isotope discriminations to calculate the ratio of net oceanic to net terrestrial carbon fluxes.
Collapse
Affiliation(s)
- Jon Lloyd
- Environmental Biology Group, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, GPO Box 475, 2601, Canberra, ACT, Australia
| | - Graham D Farquhar
- Environmental Biology Group, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, GPO Box 475, 2601, Canberra, ACT, Australia
| |
Collapse
|
29
|
Maralihalli GB, Bhagwat AS. Modification of maize phosphoenolpyruvate carboxylase by Woodward's reagent K. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:451-7. [PMID: 8251065 DOI: 10.1007/bf01025045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maize leaf phosphoenolpyruvate carboxylase was completely and irreversibly inactivated by treatment with micromolar concentrations of Woodward's reagent K (WRK) for about 1 min. The inactivation followed pseudo-first-order reaction kinetics. The order of reaction with respect to WRK showed that the reagent causes formation of reversible enzyme inhibitor complex before resulting in irreversible inactivation. The loss of activity was correlated to the modification of a single carboxyl group per subunit, even though the reagent reacted with 2 carboxyl groups per protomer. Substrate PEP and PEP+Mg2+ offered substantial protection against inactivation by WRK. The modified enzyme showed a characteristic absorbance at 346 nm due to carboxyl group modification. The modified enzyme exhibited altered surface charge as seen from the elution profile on FPLC Mono Q anion exchange column. The modified enzyme was desensitized to positive and negative effectors like glucose-6-phosphate and malate. Pretreatment of PEP carboxylase with diethylpyrocarbonate prevented WRK incorporation into the enzyme, suggesting that both histidine and carboxyl groups may be closely physically related. The carboxyl groups might be involved in metal binding during catalysis by the enzyme.
Collapse
Affiliation(s)
- G B Maralihalli
- Molecular Biology and Agriculture Division, Bhabha Atomic Research Centre, Trombay, Bombay, India
| | | |
Collapse
|
30
|
Phosphoenol acetylphosphonates: Substrate analogues as inhibitors of phosphoenolpyruvate enzymes. Bioorg Chem 1992. [DOI: 10.1016/0045-2068(92)90034-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Terada K, Izui K. Site-directed mutagenesis of the conserved histidine residue of phosphoenolpyruvate carboxylase. His138 is essential for the second partial reaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:797-803. [PMID: 1765093 DOI: 10.1111/j.1432-1033.1991.tb16435.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Histidine residues have previously been suggested to be essential for the activity of phosphoenolpyruvate carboxylase as demonstrated by chemical modification of these residues. Although the location of these residues on the primary structure is not known, a comparison of nine phosphoenolpyruvate (P-pyruvate) carboxylases sequenced recently revealed that there are only two conserved histidine residues (His138 and His579, coordinates from the E. coli enzyme). Site-directed mutagenesis of these residues were undertaken with the E. coli P-pyruvate carboxylase and the properties of purified mutant enzymes were investigated. Mutation of His138 to asparagine (H138N) produced a protein which did not show carboxylase activity. However, this mutant enzyme catalyzed the bicarbonate-dependent dephosphorylation (Vmax = 1.4 mumol.min-1.mg-1) of the P-pyruvate. Since this reaction is due to one of the two partial reactions proposed for this enzyme, the results indicate that His138 is obligatory for the second-step reaction, i.e. the carboxylation of the enolate form of pyruvate by carboxyphosphate. Mutation of His579 to asparagine (H579N) produced an enzyme which had 69% of the wild-type carboxylase activity, but its affinity for P-pyruvate was decreased by 24-fold.
Collapse
Affiliation(s)
- K Terada
- Department of Chemistry, Faculty of Science, Kyoto University, Japan
| | | |
Collapse
|
32
|
Meyer CR, Rustin P, Black MK, Wedding RT. The influence of pH on substrate form specificity of phosphoenolpyruvate carboxylase purified from Crassula argentea. Arch Biochem Biophys 1990; 278:365-72. [PMID: 2327793 DOI: 10.1016/0003-9861(90)90272-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purified phosphoenolpyruvate carboxylase from both the crassulacean acid metabolism plant Crassula argentea and the C4 plant Zea mays was shown by kinetic studies at saturating fixed-varying concentrations of free mg2+ to selectively use the metal-complexed form of phosphoenolpyruvate when assayed at pH 8.0. A similar response to added magnesium at high free phosphoenolpyruvate concentrations was obtained for both enzymes, consistent with the use of the complex as the substrate. Kinetic studies at pH 7.0 indicated that at this pH the total concentration of phosphoenolpyruvate (including both free and metal-complexed forms) could be used by the enzyme from C.argentea while the C4 enzyme still utilized the complex. The loss of specificity induced by the decrease in the pH of the assay medium was accompanied by a decrease in the Km of this enzyme for phosphoenolpyruvate whatever the form considered and an increase in Vmax/Km. In contrast, a similar decrease of pH led to an increased Km of the C4 enzyme for phosphoenolpyruvate and a decrease of Vmax/Km. For the enzyme from C. argentea (previously shown to contain an essential arginine at the active site), protection of activity by the different forms of substrate against inactivation by the specific arginyl reagent 2,3-butanedione changes markedly with pH. At pH 8.1, the metal complex is the better protector while at pH 7.0 free phosphoenolpyruvate gives the best protection consistent with the observed kinetic changes in substrate form utilization. The relationship between the enzyme affinity for substrate, substrate specificity, and the requirement for magnesium for substrate turnover is discussed.
Collapse
Affiliation(s)
- C R Meyer
- Department of Biochemistry, University of California, Riverside 92521
| | | | | | | |
Collapse
|
33
|
Abstract
(Z)-3-Chlorophosphoenolpyruvate has been synthesized by the reaction of 3,3-dichloropyruvic acid with trimethylphosphite, followed by deesterification. This compound is a competitive inhibitor of pyruvate kinase and phosphoenolpyruvate carboxylase. Pyruvate kinase is not inactivated upon prolonged incubation with the compound, but phosphoenolpyruvate carboxylase is slowly inactivated (t1/2 = 5 h). The compound is a substrate for both enzymes, being acted upon by pyruvate kinase approximately 0.1% as rapidly as phosphoenolpyruvate itself. In the case of phosphoenolpyruvate carboxylase, the compound is converted into a 3:1 mixture of chloropyruvate and chlorooxalacetate, at an overall rate that is about 25% the carboxylation rate for phosphoenolpyruvate.
Collapse
Affiliation(s)
- J Liu
- Department of Chemistry, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
34
|
Smith HB, Larimer FW, Hartman FC. An engineered change in substrate specificity of ribulosebisphosphate carboxylase/oxygenase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40003-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Rodríguez-Sotres R, Muñoz-Clares RA. Kinetic evidence of the existence of a regulatory phosphoenolpyruvate binding site in maize leaf phosphoenolpyruvate carboxylase. Arch Biochem Biophys 1990; 276:180-90. [PMID: 2297221 DOI: 10.1016/0003-9861(90)90025-t] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenylphosphate, a structural analog of phosphoenolpyruvate (PEP), was found to be an activator of phosphoenolpyruvate carboxylase (PEP carboxylase) purified from maize leaves. This finding suggested the presence in the enzyme of a regulatory site, to which PEP could bind. We carried out kinetic studies on this enzyme using controlled concentrations of free PEP and of Mg-PEP complex and developed a theoretical kinetic model of the reaction. In summary, the main conclusions drawn from our results, and taken as assumptions of the model, were the following: (i) The affinity of the active site for the complex Mg-PEP is much higher than that for free PEP and Mg2+ ions, and therefore it can be considered that the preferential substrate of the PEP-catalyzed reaction is Mg-PEP. (ii) The enzyme has a regulatory site specific for free PEP, to which Mg2+ ions can not bind. (iii) The binding of free PEP, or an analog molecule, to this regulatory site yields a modified enzyme that has much lower apparent Km values and apparent Vmax values than the unmodified enzyme. So, free PEP behaves as an excellent activator of the reaction at subsaturating substrate concentrations, and as an inhibitor at saturating substrate concentrations. These findings may have important physiological implications on the regulation of the PEP carboxylase in vivo activity and, consequently, of the C4 pathway, since increased reaction rates would be obtained when the concentration of PEP rises, even at limiting Mg2+ concentrations.
Collapse
|
36
|
Examination of the function of active site lysine 329 of ribulose-bisphosphate carboxylase/oxygenase as revealed by the proton exchange reaction. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80134-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Abstract
Sulfoenolpyruvate, the analogue of phosphoenolpyruvate in which the phosphate ester has been replaced by a sulfate ester, has been synthesized in three chemical steps from ethyl bromopyruvate in 40% overall yield. This compound is a substrate for pyruvate kinase, producing pyruvate and adenosine 5'-sulfatopyrophosphate. The latter compound has been identified by NMR spectroscopy and by comparison with an authentic sample. Sulfuryl transfer from sulfoenolpyruvate is 250-600-fold slower than phosphate transfer from phosphoenolpyruvate under identical conditions. Sulfoenolpyruvate is not a substrate for phosphoenolpyruvate carboxylase. Kinetic studies reveal that it does not bind to the active site; instead, it binds to the site normally occupied by glucose 6-phosphate and activates the enzyme in a manner similar to that shown by glucose 6-phosphate.
Collapse
Affiliation(s)
- J A Peliska
- Department of Chemistry, University of Wisconsin-Madison 53706
| | | |
Collapse
|
38
|
The use of substrate analogues to study the active-site structure and mechanism of PEP carboxylase. Trends Biochem Sci 1989. [DOI: 10.1016/0968-0004(89)90085-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Thatcher RG, Kluger R. Mechanism and Catalysis of Nucleophilic Substitution in Phosphate Esters. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 1989. [DOI: 10.1016/s0065-3160(08)60019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
40
|
Angelopoulos K, Stamatakis K, Manetas Y, Gavalas NA. Artifacts in the assay of maize leaf phosphoenolpyruvate carboxylase activity due to its instability. PHOTOSYNTHESIS RESEARCH 1988; 18:317-325. [PMID: 24425242 DOI: 10.1007/bf00034836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/1988] [Accepted: 05/17/1988] [Indexed: 06/03/2023]
Abstract
When the assay of maize leaf phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity is started with phosphoenolpyruvate, much lower reaction rates are obtained as compared to the enzyme-initiated reaction. The difference is due to the lability of the dilute enzyme in the absence of its substrate and is increased with incubation time in the absence of substrate or stabilizers. The activation of the enzyme by glucose-6-phosphate is overestimated with the substrate-initiated assay since a part of the apparent activation is due to stabilization of the enzymic activity by this effector during the minus-substrate preincubation. In contrast, the inhibitory effect of malate is underestimated when the reaction is started with the substrate. The enzyme-initiated assay is recommended provided that the necessary corrections for apparent activity in the absence of substrate and for inactivation during the assay at low substrate levels are made.
Collapse
Affiliation(s)
- K Angelopoulos
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
41
|
Wagner R, Podestá FE, González DH, Andreo CS. Proximity between fluorescent probes attached to four essential lysyl residues in phosphoenolpyruvate carboxylase. A resonance energy transfer study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 173:561-8. [PMID: 2453360 DOI: 10.1111/j.1432-1033.1988.tb14036.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphoenolpyruvate carboxylase, purified from maize leaves, is rapidly inactivated by the fluorescence probe dansyl chloride. The loss of activity can be ascribed to the covalent modification of an R-NH2 group, presumably the epsilon-NH2 group of lysine. Analysis of the data by the statistical method of Tsou [Sci. Sin. 11, 1535-1558 (1962)] provides clear evidence that a pH 8 eight R-NH2 groups can be modified in the tetrameric form of the enzyme, four of which are essential for catalytic activity. Essential groups are modified about five times more rapidly than the non-essential ones. The enzyme was completely protected against inactivation by Mg2+ plus phosphoenolpyruvate and consequently binding of the modifier to the essential groups is completely abolished. Hence the four essential groups seemed to be located at or near the active site(s). One of the four essential groups was modified with dansyl chloride and the other three progressively with eosin isothiocyanate. In the doubly labeled protein non-radiative single-singlet energy transfer between dansyl chloride (donor) and eosin isothiocyanate (acceptor) was observed. The low variance (+/- 5%) in the efficiency of energy transfer obtained at a particular acceptor stoichiometry (0.8-1.1, 1.9-2.1, 2.9-3.1) in triplicate samples provided confidence that the measured transfer efficiency may be interpreted as transfer between specific sites. The distances calculated from the efficiency of resonance energy transfer revealed two acceptor sites, equally separated, 4.8-5.1 nm from the donor site and third site being 6.4 nm apart from the donor. Under conditions where the tetrameric enzyme dissociates into the monomers, no transfer of resonance energy between the protein-bound dansyl chloride and eosin isothiocyanate was observed. Most likely the four essential lysyl residues in the tetrameric enzyme are located in different subunits of the enzyme, hence each of the subunits would contain a substrate-binding site with one lysyl residue crucial for activity.
Collapse
Affiliation(s)
- R Wagner
- Centro de Estudios Fotosintéticos y Bioquímicos, Rosario, Argentina
| | | | | | | |
Collapse
|
42
|
|
43
|
Gonzalez DH, Andreo CS. Stereoselectivity of the interaction of E- and Z-2-phosphoenolbutyrate with maize leaf phosphoenolpyruvate carboxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 173:339-43. [PMID: 3360012 DOI: 10.1111/j.1432-1033.1988.tb14003.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of this work was to investigate the stereoselectivity of maize leaf phosphoenolpyruvate carboxylase with E- and Z-2-phosphoenolbutyrate as inhibitors and substrates. In addition, a procedure is presented for the separation of the isomers of 2-phosphoenolbutyrate. The method is based on the different interaction of those compounds with a strong anion-exchange high-pressure liquid chromatography column using 50 mM potassium phosphate (pH 3) as elution buffer, and allows the obtention of pure E- and Z-P-enolbutyrate with high yield. The same system was used to identify Z-P-enolbutyrate as the product of the phosphorylation of 2-oxobutyrate by rabbit muscle pyruvate kinase. In the presence of 5 mM Mg2+, both isomers of P-enolbutyrate inhibited C4-plant P-enolpyruvate carboxylase; the values of Ki were 15-20 microM and 100-110 microM for Z- and E-P-enolbutyrate, respectively. With 0.5 mM Mn2+, the Z isomer was also effective as inhibitor (Ki = 35-40 microM), while the E isomer produced activation of the carboxylase probably due to its binding at an allosteric site. Both compounds were substrates of the enzyme with similar V/Km values; however, V and Km for the two isomers were significantly different (i.e. Km = 110 microM for Z-P-enolbutyrate and 220 microM for E-P-enolbutyrate). The results indicate the existence of stereoselectivity for the binding of P-enolbutyrate to the active site of P-enolpyruvate carboxylase. However, this fact does not affect the use of the isomers as substrates by the plant carboxylase.
Collapse
Affiliation(s)
- D H Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Argentina
| | | |
Collapse
|
44
|
Ganson RJ, Jensen RA. The essential role of cobalt in the inhibition of the cytosolic isozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Nicotiana silvestris by glyphosate. Arch Biochem Biophys 1988; 260:85-93. [PMID: 3341755 DOI: 10.1016/0003-9861(88)90427-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The prime molecular target of glyphosate (N-[phosphonomethyl]glycine), a potent herbicidal and antimicrobial agent, is known to be the shikimate-pathway enzyme, 5-enol-pyruvylshikimate-3-phosphate synthase. Inhibition by glyphosate of an earlier pathway enzyme that is located in the cytosol of higher plants, 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DS-Co), has raised the possibility of dual enzyme targets in vivo. With the recent appreciation that magnesium (and manganese) can replace cobalt as the divalent-metal activator of DS-Co, it has now been possible to show that sensitivity of DS-Co to inhibition by glyphosate is obligately dependent upon the presence of cobalt. Evidence for a cobalt(II):glyphosate complex with octahedral coordination was obtained through examination of the effect of glyphosate upon the visible electronic spectrum of aqueous solutions of cobalt(II) chloride. The presence of glyphosate increased the concentration of cobalt(II) chloride required for enzyme activity, and the concentration of cobalt(II) chloride markedly affected the concentration of glyphosate required for inhibition of DS-Co activity. The extent to which DS-Co is vulnerable to inhibition by glyphosate in vivo depends, therefore, upon the unknown extent to which DS-Co molecules in the cytosol might be associated with cobalt.
Collapse
Affiliation(s)
- R J Ganson
- Department of Biological Sciences, State University of New York, Binghamton 13901
| | | |
Collapse
|
45
|
Wagner R, Gonzalez DH, Podesta FE, Andreo CS. Changes in the quaternary structure of phosphoenolpyruvate carboxylase induced by ionic strength affect its catalytic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 164:661-6. [PMID: 3569281 DOI: 10.1111/j.1432-1033.1987.tb11177.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phosphoenolpyruvate carboxylase from maize leaves dissociated into dimers and/or monomers when exposed to increasing ionic strength (e.g. 200-400 mM NaCl) as indicated by gel filtration experiments. Changes in the oligomerization state were dependent on pH, time of preincubation with salt and protein concentration. A dissociation into dimers and monomers was observed at pH 8, while at pH 7 dissociation into the dimeric form only was observed. Exposure of the enzyme to higher ionic strength decreased the activity in a time-dependent manner. Turnover conditions and glucose 6-phosphate protected the carboxylase from the decay in activity, which was faster at pH 7 than at pH 8. The results suggest that changes in activity of the enzyme, following exposure to high ionic strength, are the consequence of dissociation. Tetrameric and dimeric forms of the phosphoenolpyruvate carboxylase seemingly reveal different catalytic properties. We suggest that the distinct catalytic properties of the different oligomeric species of phosphoenolpyruvate carboxylase and changes in the equilibrium between them could be the molecular basis for an effective regulation of metabolite levels by this key enzyme of C4 plants.
Collapse
|
46
|
O'Leary MH, Hermes JD. Determination of substrate specificity of carboxylases by nuclear magnetic resonance. Anal Biochem 1987; 162:358-62. [PMID: 3111298 DOI: 10.1016/0003-2697(87)90404-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Determination of whether CO2 or HCO3- is the substrate for an enzymatic carboxylation has generally been accomplished by taking advantage of the fact that equilibration of these two compounds requires more than a minute at temperatures below 15 degrees C; thus different kinetics of carboxylation are obtained depending on whether CO2 or HCO3- is used to initiate the reaction. We report a new method using 13C18O2 as substrate for determining the CO2/HCO3- specificity of carboxylases. If CO2 is the substrate, then the 18O content of the 13C-containing product is the same as that of the 13CO2 used, whereas if HCO3- is the substrate, the 18O content is 2/3 that of the starting material. The method is independent of the detailed kinetics of the CO2/HCO3- interconversion and independent of the presence of contaminating unlabeled CO2 or HCO3-. Isotopic analysis is accomplished by 13C NMR. The method has been used to confirm that HCO3- is the substrate for phosphoenolpyruvate carboxylase. Studies of oxygen-18 isotope shifts in phosphorus NMR spectra have permitted confirmation of the observation that label is transferred from HC18O3- into Pi during the carboxylation of phosphoenolpyruvate.
Collapse
|
47
|
Climent I, Rubio V. ATPase activity of biotin carboxylase provides evidence for initial activation of HCO3- by ATP in the carboxylation of biotin. Arch Biochem Biophys 1986; 251:465-70. [PMID: 2948446 DOI: 10.1016/0003-9861(86)90353-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
When we incubated biotin carboxylase from Escherichia coli with ATP in absence of biotin we observed HCO3- -dependent ATP hydrolysis, which was activated by 10% ethanol in the same proportion as the activity of D-biotin carboxylation assayed in the presence of biotin. The two activities exhibited identical heat stability and were protected equally by glycerol; both required Mg2+ and K+ and showed similar dependency on the concentration of ATP. Biotin assay excluded potential contamination by traces of biotin as a cause of the observed ATP hydrolysis, and this was confirmed by the findings that carboxybiotin did not accumulate and that avidin was uninhibitory. Therefore we concluded that this HCO3- -dependent ATPase was genuinely a partial activity of biotin carboxylase. This partial activity supports a sequential mechanism for enzymatic carboxylation of biotin in which HCO3- is activated by ATP in a first step. It is consistent with the initial formation of the carbonic-phosphoric anhydride (HOCO2PO3(2-)), and it does not agree with models where biotin is phosphorylated by ATP prior to reaction with HCO3-. It appears that enzymes that use HCO3- for carboxylation, including biotin-dependent carboxylases, phosphoenolpyruvate carboxylase, and carbamoyl phosphate synthetase, activate HCO3- by a common mechanism involving the initial formation of the carbonic-phosphoric anhydride.
Collapse
|
48
|
O'Keefe SJ, Knowles JR. Biotin-dependent carboxylation catalyzed by transcarboxylase is a stepwise process. Biochemistry 1986; 25:6077-84. [PMID: 3790507 DOI: 10.1021/bi00368a036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To investigate the mechanism of the carboxylation of pyruvate to oxalacetate catalyzed by the enzyme transcarboxylase, we have measured the D(V/K) and 13(V/K) isotope effects. Comparison of the double-reciprocal plots of the initial velocities with [1H3]pyruvate and with [2H3]pyruvate as substrate yields a deuterium isotope effect on Vmax/Km of 1.39 +/- 0.04. The 13C kinetic isotope effect on the carboxylation of pyruvate to oxalacetate has been measured by the competitive method and is 1.0227 +/- 0.0008. To determine whether the removal of the proton from pyruvate and the addition of the carboxyl group occur in the same or in different steps, the double-isotope fractionation test has been used. When [2H3]pyruvate replaces [1H3]pyruvate as the substrate, the observed 13(V/K) isotope effect falls from 1.0227 to 1.0141 +/- 0.001. The latter value is in excellent agreement with the value of 1.0136, predicted for a stepwise pathway. We may conclude, therefore, that the carboxylation of pyruvate catalyzed by transcarboxylase proceeds by a stepwise mechanism involving the intermediate formation of the substrate carbanion.
Collapse
|
49
|
Iglesias AA, González DH, Andreo CS. Purification and molecular and kinetic properties of phosphoenolpyruvate carboxylase from Amaranthus viridis L. leaves. PLANTA 1986; 168:239-244. [PMID: 24232027 DOI: 10.1007/bf00402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/1985] [Accepted: 02/12/1986] [Indexed: 06/02/2023]
Abstract
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified 43-fold from Amaranthus viridis leaves by using a combination of ammonium-sulphate fractionation, chromatography on O-(diethylaminoethyl)-cellulose and hydroxylapatite, and filtration through Sepharose 6B. The purified enzyme had a specific activity of 17.1 μmol·(mg protein)(-1)·min(-1) and migrated as a single band of relative molecular weight 100000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A homotetrameric structure was determined for the native enzyme. Phosphoenolpyruvate carboxylase from Zea mays L. and A. viridis showed partial identity in Ouchterlony two-dimensional diffusion. Isoelectric focusing showed a band at pI 6.2. Km values for phosphoenolpyruvate and bicarbonate were 0.29 and 0.17 mM, respectively, at pH 8.0. The activation constant (Ka) for Mg(2+) was 0.87 mM at the same pH. The carboxylase was activated by glucose-6-phosphate and inhibited by several organic acids of three to five carbon atoms. The kinetic and structural properties of phosphoenolpyruvate carboxylase from A. viridis leaves are similar to those of the enzyme from Zea mays leaves.
Collapse
Affiliation(s)
- A A Iglesias
- Centro de Estudios Fotosintéticos y Bioquímicos, Suipacha 531, 2000, Rosario, Argentina
| | | | | |
Collapse
|
50
|
Podesta FE, Iglesias AA, Andreo CS. Modification of an essential amino group of phosphoenolpyruvate carboxylase from maize leaves by pyridoxal phosphate and by pyridoxal phosphate-sensitized photooxidation. Arch Biochem Biophys 1986; 246:546-53. [PMID: 3085590 DOI: 10.1016/0003-9861(86)90309-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phosphoenolpyruvate carboxylase from maize leaves was inactivated by pyridoxal 5'-phosphate in the dark and in the light. A two-step reversible mechanism is proposed for inactivation in the dark, which involves the formation of a noncovalent complex prior to a Schiff base with amino groups of the enzyme. Spectral analysis of pyridoxal 5'-phosphate-modified phosphoenolpyruvate carboxylase showed absorption maxima at 432 and 327 nm, before and after reduction with NaBH4, respectively, suggesting that epsilon-amino groups of lysine residues are the reactive groups in the enzyme. A correlation between spectral data and the maximal inactivation obtained with several concentrations of inhibitor allowed us to establish that the incorporation of 4 mol of pyridoxal 5'-phosphate per mole of holoenzyme accounts for total inactivation. The absence of modifier bound to phosphoenolpyruvate carboxylase when the modification was carried out in the presence of phosphoenolpyruvate and MgCl2 suggests the existence of an essential lysine residue at the catalytic site of the enzyme. Modification of phosphoenolpyruvate carboxylase in the light under an oxygen atmosphere resulted in an irreversible inactivation, which was completely protected by phosphoenolpyruvate and MgCl2. Spectral analysis of the photomodified enzyme showed an absorption peak of 320 nm, suggesting light-mediated addition of a nucleophilic residue (probably an imidazole group) to the pyridoxal 5'-phosphate-lysine azomethine bond.
Collapse
|