1
|
Aralov AV, Gubina N, Cabrero C, Tsvetkov VB, Turaev AV, Fedeles BI, Croy RG, Isaakova EA, Melnik D, Dukova S, Ryazantsev DY, Khrulev AA, Varizhuk AM, González C, Zatsepin TS, Essigmann JM. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli. Nucleic Acids Res 2022; 50:3056-3069. [PMID: 35234900 PMCID: PMC8989528 DOI: 10.1093/nar/gkac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.
Collapse
Affiliation(s)
- Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Nina Gubina
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia
| | - Cristina Cabrero
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Anton V Turaev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Bogdan I Fedeles
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ekaterina A Isaakova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Denis Melnik
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Svetlana Dukova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Alexei A Khrulev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Timofei S Zatsepin
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow 119992, Russia
| | - John M Essigmann
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Guengerich FP, Ghodke PP. Etheno adducts: from tRNA modifications to DNA adducts and back to miscoding ribonucleotides. Genes Environ 2021; 43:24. [PMID: 34130743 PMCID: PMC8207595 DOI: 10.1186/s41021-021-00199-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
Etheno (and ethano) derivatives of nucleic acid bases have an extra 5-membered ring attached. These were first noted as wyosine bases in tRNAs. Some were fluorescent, and the development of etheno derivatives of adenosine, cytosine, and guanosine led to the synthesis of fluorescent analogs of ATP, NAD+, and other cofactors for use in biochemical studies. Early studies with the carcinogen vinyl chloride revealed that these modified bases were being formed in DNA and RNA and might be responsible for mutations and cancer. The etheno bases are also derived from other carcinogenic vinyl monomers. Further work showed that endogenous etheno DNA adducts were present in animals and humans and are derived from lipid peroxidation. The chemical mechanisms of etheno adduct formation involve reactions with bis-electrophiles generated by cytochrome P450 enzymes or lipid peroxidation, which have been established in isotopic labeling studies. The mechanisms by which etheno DNA adducts miscode have been studied with several DNA polymerases, aided by the X-ray crystal structures of these polymerases in mispairing situations and in extension beyond mispairs. Repair of etheno DNA adduct damage is done primarily by glycosylases and also by the direct action of dioxygenases. Some human DNA polymerases (η, κ) can insert bases opposite etheno adducts in DNA and RNA, and the reverse transcriptase activity may be of relevance with the RNA etheno adducts. Further questions involve the extent that the etheno adducts contribute to human cancer.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA.
| | - Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| |
Collapse
|
3
|
Caffrey PJ, Delaney S. Nucleosome Core Particles Lacking H2B or H3 Tails Are Altered Structurally and Have Differential Base Excision Repair Fingerprints. Biochemistry 2021; 60:210-218. [PMID: 33426868 DOI: 10.1021/acs.biochem.0c00877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A recently discovered post-translational modification of histone proteins is the irreversible proteolytic clipping of the histone N-terminal tail domains. This modification is involved in the regulation of various biological processes, including the DNA damage response. In this work, we used chemical footprinting to characterize the structural alterations to nucleosome core particles (NCPs) that result from a lack of a histone H2B or H3 tail. We also examine the influence of these histone tails on excision of the mutagenic lesion 1,N6-ethenoadenine (εA) by the repair enzyme alkyladenine DNA glycosylase. We found that the absence of the H2B or H3 tail results in altered DNA periodicity relative to that of native NCPs. We correlated these structural alterations to εA excision by utilizing a global analysis of 21 εA sites in NCPs and unincorporated duplex DNA. In comparison to native NCPs, there is enhanced excision of εA in tailless H2B NCPs in regions that undergo DNA unwrapping. This enhanced excision is not observed for tailless H3 NCPs; rather, excision is inhibited in more static areas of the NCP not prone to unwrapping. Our results support in vivo observations of alkylation damage profiles and the potential role of tail clipping as a mechanism for overcoming physical obstructions caused by packaging in NCPs but also reveal the potential inhibition of repair by tail clipping in some locations. Taken together, these results further our understanding of how base excision repair can be facilitated or diminished by histone tail removal and contribute to our understanding of the underlying mechanism that leads to mutational hot spots.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
4
|
Abstract
Genomic DNA is chemically reactive and therefore susceptible to damage by many exogenous and endogenous sources. Lesions produced from these damaging events can have various mutagenic and genotoxic consequences. This Perspective follows the journey of one particular lesion, 1,N6-ethenoadenine (εA), from its formation to replication and repair, and its role in cancerous tissues and inflammatory diseases. εA is generated by the reaction of adenine (A) with vinyl chloride or lipid peroxidation products. We present the miscoding properties of εA with an emphasis on how bacterial and mammalian cells can process lesions differently, leading to varied mutational spectra. But with information from these assays, we can better understand how the miscoding properties of εA lead to biological consequences and how genomic stability can be maintained via DNA repair mechanisms. We discuss how base excision repair (BER) and direct reversal repair (DRR) can minimize the biological consequences of εA lesions. Kinetic parameters of glycosylases and AlkB family enzymes are described, along with a discussion of the relative contributions of the BER and DRR pathways in the repair of εA. Because eukaryotic DNA is packaged in chromatin, we also discuss the impact of this packaging on BER and DRR, specifically in regards to repair of εA. Studying DNA lesions like εA in this context, from origin to biological implications, can provide crucial information to better understand prevention of mutagenesis and cancer.
Collapse
Affiliation(s)
- Katelyn L Rioux
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
5
|
Caffrey PJ, Kher R, Bian K, Li D, Delaney S. Comparison of the Base Excision and Direct Reversal Repair Pathways for Correcting 1, N6-Ethenoadenine in Strongly Positioned Nucleosome Core Particles. Chem Res Toxicol 2020; 33:1888-1896. [PMID: 32293880 PMCID: PMC7374743 DOI: 10.1021/acs.chemrestox.0c00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
1,N6-ethenoadenine (εA) is a
mutagenic lesion and biomarker observed in numerous cancerous tissues.
Two pathways are responsible for its repair: base excision repair
(BER) and direct reversal repair (DRR). Alkyladenine DNA glycosylase
(AAG) is the primary enzyme that excises εA in BER, generating
stable intermediates that are processed by downstream enzymes. For
DRR, the Fe(II)/α-ketoglutarate-dependent ALKBH2 enzyme repairs
εA by direct conversion of εA to A. While the molecular
mechanism of each enzyme is well understood on unpackaged duplex DNA,
less is known about their actions on packaged DNA. The nucleosome
core particle (NCP) forms the minimal packaging unit of DNA in eukaryotic
organisms and is composed of 145–147 base pairs wrapped around
a core of eight histone proteins. In this work, we investigated the
activity of AAG and ALKBH2 on εA lesions globally distributed
at positions throughout a strongly positioned NCP. Overall, we examined
the repair of εA at 23 unique locations in packaged DNA. We
observed a strong correlation between rotational positioning of εA
and AAG activity but not ALKBH2 activity. ALKBH2 was more effective
than AAG at repairing occluded εA lesions, but only AAG was
capable of full repair of any εA in the NCP. However, notable
exceptions to these trends were observed, highlighting the complexity
of the NCP as a substrate for DNA repair. Modeling of binding of the
repair enzymes to NCPs revealed that some of these observations can
be explained by steric interference caused by DNA packaging. Specifically,
interactions between ALKBH2 and the histone proteins obstruct binding
to DNA, which leads to diminished activity. Taken together, these
results support in vivo observations of alkylation
damage profiles and contribute to our understanding of mutational
hotspots.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Raadhika Kher
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
6
|
Furlan V, Bren U. Protective Effects of [6]-Gingerol Against Chemical Carcinogens: Mechanistic Insights. Int J Mol Sci 2020; 21:E695. [PMID: 31973096 PMCID: PMC7037038 DOI: 10.3390/ijms21030695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
[6]-Gingerol from ginger has received considerable attention as a potential cancer therapeutic agent because of its chemopreventive and chemotherapeutic effects, as well as its safety. In the current study, we examined [6]-gingerol as a natural scavenger of nine ultimate chemical carcinogens to which we are frequently exposed: glycidamide, styrene oxide, aflatoxin B1 exo-8,9-epoxide, β-propiolactone, ethylene oxide, propylene oxide, 2-cyanoethylene oxide, chloroethylene oxide, and vinyl carbamate epoxide. To evaluate [6]-gingerol efficacy, we expanded our research with the examination of glutathione-the strongest natural scavenger in human cells. The corresponding activation free energies were calculated using Hartree-Fock method with three flexible basis sets and two implicit solvation models. According to our results, [6]-gingerol proves to be an extremely effective scavenger of chemical carcinogens of the epoxy type. On the other hand, with the exception of aflatoxin B1 exo-8,9-epoxide, glutathione represents a relatively poor scavenger, whose efficacy could be augmented by [6]-gingerol. Moreover, our quantum mechanical study of the alkylation reactions of chemical carcinogens with [6]-gingerol and glutathione provide valuable insights in the reaction mechanisms and the geometries of the corresponding transition states. Therefore, we strongly believe that our research forms a solid basis for further computational, experimental and clinical studies of anticarcinogenic properties of [6]-gingerol as well as for the development of novel chemoprophylactic dietary supplements. Finally, the obtained results also point to the applicability of quantum chemical methods to studies of alkylation reactions related to chemical carcinogenesis.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
7
|
Lang AL, Goldsmith WT, Schnegelberger RD, Arteel GE, Beier JI. Vinyl Chloride and High-Fat Diet as a Model of Environment and Obesity Interaction. J Vis Exp 2020:10.3791/60351. [PMID: 31984951 PMCID: PMC7450540 DOI: 10.3791/60351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vinyl chloride (VC), an abundant environmental contaminant, causes steatohepatitis at high levels, but is considered safe at lower levels. Although several studies have investigated the role of VC as a direct hepatotoxicant, the concept that VC modifies sensitivity of the liver to other factors, such as nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD) is novel. This protocol describes an exposure paradigm to evaluate the effects of chronic, low-level exposure to VC. Mice are acclimated to low-fat or high-fat diet one week prior to the beginning of the inhalation exposure and remain on these diets throughout the experiment. Mice are exposed to VC (sub-OSHA level: <1 ppm) or room air in inhalation chambers for 6 hours/day, 5 days/week, for up to 12 weeks. Animals are monitored weekly for body weight gain and food consumption. This model of VC exposure causes no overt liver injury with VC inhalation alone. However, the combination of VC and HFD significantly enhances liver disease. A technical advantage of this co-exposure model is the whole-body exposure, without restraint. Moreover, the conditions more closely resemble a very common human situation of a combined exposure to VC with underlying nonalcoholic fatty liver disease and therefore support the novel hypothesis that VC is an environmental risk factor for the development of liver damage as a complication of obesity (i.e., NAFLD). This work challenges the paradigm that the current exposure limits of VC (occupational and environmental) are safe. The use of this model can shed new light and concern on the risks of VC exposure. This model of toxicant-induced liver injury can be used for other volatile organic compounds and to study other interactions that may impact the liver and other organ systems.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville; Hepatobiology and Toxicology Program, University of Louisville
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University; Center for Inhalation Toxicology, West Virginia University
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh; Pittsburgh Liver Research Center, University of Pittsburgh
| | - Gavin E Arteel
- Pittsburgh Liver Research Center, University of Pittsburgh; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh
| | - Juliane I Beier
- Pittsburgh Liver Research Center, University of Pittsburgh; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh;
| |
Collapse
|
8
|
Hostnik G, Gladović M, Bren U. Tannin Basic Building Blocks as Potential Scavengers of Chemical Carcinogens: A Computational Study. JOURNAL OF NATURAL PRODUCTS 2019; 82:3279-3287. [PMID: 31799841 DOI: 10.1021/acs.jnatprod.9b00435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tannins are natural compounds that have historically been used in the tanning of leather. In the scientific literature, one finds many reports of their possible beneficial health effects, although these are not always unequivocally confirmed. In order to gain a better insight into their proposed anticancer potential, we studied the scavenging capacity of the basic tannin building blocks against various chemical carcinogens of the epoxy type. The reactivity of gallic acid, ellagic acid, and epicathechin was examined using quantum mechanical calculations at the Hartree-Fock level of theory in conjunction with flexible basis sets and implicit solvation models. The monomeric tannin building blocks exhibited significant scavenging potential, with epicatechin presenting the best scavenger, thus encouraging and guiding future experimental studies of their anticarcinogenic properties.
Collapse
Affiliation(s)
- Gregor Hostnik
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
| | - Martin Gladović
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
- National Institute of Chemistry , Hajdrihova 19 , SI-1001 Ljubljana , Slovenia
| |
Collapse
|
9
|
Liu X, Wu Y, Wilson FP, Yu K, Lintner C, Cupples AM, Mattes TE. Integrated methodological approach reveals microbial diversity and functions in aerobic groundwater microcosms adapted to vinyl chloride. FEMS Microbiol Ecol 2018; 94:5045312. [DOI: 10.1093/femsec/fiy124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xikun Liu
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Yang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Nanshan District, Shenzhen 518055, China
| | - Fernanda P Wilson
- Department of Civil and Environmental Engineering, Engineering Building, 428 S. Shaw Lane, Room 3546, East Lansing, MI 48824, USA
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Nanshan District, Shenzhen 518055, China
| | - Carly Lintner
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Engineering Building, 428 S. Shaw Lane, Room 3546, East Lansing, MI 48824, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
10
|
Taylor AE, Bottomley PJ, Semprini L. Contrasting growth properties of Nocardioides JS614 on threedifferent vinyl halides. Appl Microbiol Biotechnol 2018; 102:1859-1867. [PMID: 29297101 DOI: 10.1007/s00253-017-8723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
Ethene (ETH)-grown inocula of Nocardioides JS614 grow on vinyl chloride (VC), vinyl fluoride (VF), or vinyl bromide (VB) as the sole carbon and energy source, with faster growth rates and higher cell yields on VC and VF than on VB. However, whereas acetate-grown inocula of JS614 grow on VC and VF after a lag period, growth on VB did not occur unless supplemental ethene oxide (EtO) was present in the medium. Despite inferior growth on VB, the maximum rate of VB consumption by ETH-grown cells was ~ 50% greater than the rates of VC and VF consumption, but Br- release during VB consumption was non-stoichiometric with VB consumption (~ 66%) compared to 100% release of Cl- and F- during VC and VF consumption. Evidence was obtained for VB turnover-dependent toxicity of cell metabolism in JS614 with both acetate-dependent respiration and growth being significantly reduced by VB turnover, but no VC or VF turnover-dependent toxicity of growth was detected. Reduced growth rate and cell yield of JS614 on VB probably resulted from a combination of inefficient metabolic processing of the highly unstable VB epoxide (t0.5 = 45 s), accompanied by growth inhibitory effects of VB metabolites on acetate-dependent metabolism. The exact role(s) of EtO in promoting growth of alkene repressed JS614 on VB remains unresolved, with evidence of EtO inducing epoxide consuming activity prior to an increase in alkene oxidizing activity and supplementing reductant supply when VB is the growth substrate.
Collapse
Affiliation(s)
- Anne E Taylor
- Department of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA. .,Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA. .,Department of Crop and Soil Science, 3017 ALS Building, Oregon State University, Corvallis, OR, 97331, USA.
| | - Peter J Bottomley
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Lewis Semprini
- Department of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
11
|
Abstract
DNA nucleobases are the prime targets for chemical modifications by endogenous and exogenous electrophiles. Alkylation of the N7 position of guanine and adenine in DNA triggers base-catalyzed imidazole ring opening and the formation of N5-substituted formamidopyrimidine (N5-R-FAPy) lesions. Me-FAPy-dG adducts induced by exposure to methylating agents and AFB-FAPy-dG lesions formed by aflatoxin B1 have been shown to persist in cells and to contribute to toxicity and mutagenicity. In contrast, the biological outcomes of other N5-substituted FAPy lesions have not been fully elucidated. To enable their structural and biological evaluation, N5-R-FAPy adducts must be site-specifically incorporated into synthetic DNA strands using phosphoramidite building blocks, which can be complicated by their unusual structural complexity. N5-R-FAPy exist as a mixture of rotamers and can undergo isomerization between α, β anomers and furanose-pyranose forms. In this Perspective, we will discuss the main types of N5-R-FAPy adducts and summarize the strategies for their synthesis and structural elucidation. We will also summarize the chemical biology studies conducted with N5-R-FAPy-containing DNA to elucidate their effects on DNA replication and to identify the mechanisms of N5-R-FAPy repair.
Collapse
Affiliation(s)
- Suresh S. Pujari
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
12
|
Abstract
The biochemical facets of toxicology have always had a major role in providing insight into mechanisms. Some of the history of the development of this area is summarized, including metabolism, enzymology, and the chemistry of reactive intermediates. Knowledge in these fields has had a major impact in the areas of drug metabolism and safety assessment, which are both critical steps in the development of pharmaceuticals and the rational use of commodity chemicals. The science of toxicology has developed considerably with input from other disciplines and today is poised to emerge as a predictive science with even more dramatic impact. The challenges ahead are considerable but there is renewed excitement in the potential of the field. As in the past, further advances in the field of toxicology will require the input of knowledge from many disciplines.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
13
|
Yoshimoto FK, Jung IJ, Goyal S, Gonzalez E, Guengerich FP. Isotope-Labeling Studies Support the Electrophilic Compound I Iron Active Species, FeO(3+), for the Carbon-Carbon Bond Cleavage Reaction of the Cholesterol Side-Chain Cleavage Enzyme, Cytochrome P450 11A1. J Am Chem Soc 2016; 138:12124-41. [PMID: 27571509 DOI: 10.1021/jacs.6b04437] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme cytochrome P450 11A1 cleaves the C20-C22 carbon-carbon bond of cholesterol to form pregnenolone, the first 21-carbon precursor of all steroid hormones. Various reaction mechanisms are possible for the carbon-carbon bond cleavage step of P450 11A1, and most current proposals involve the oxoferryl active species, Compound I (FeO(3+)). Compound I can either (i) abstract an O-H hydrogen atom or (ii) be attacked by a nucleophilic hydroxy group of its substrate, 20R,22R-dihydroxycholesterol. The mechanism of this carbon-carbon bond cleavage step was tested using (18)O-labeled molecular oxygen and purified P450 11A1. P450 11A1 was incubated with 20R,22R-dihydroxycholesterol in the presence of molecular oxygen ((18)O2), and coupled assays were used to trap the labile (18)O atoms in the enzymatic products (i.e., isocaproaldehyde and pregnenolone). The resulting products were derivatized and the (18)O content was analyzed by high-resolution mass spectrometry. P450 11A1 showed no incorporation of an (18)O atom into either of its carbon-carbon bond cleavage products, pregnenolone and isocaproaldehyde . The positive control experiments established retention of the carbonyl oxygens in the enzymatic products during the trapping and derivatization processes. These results reveal a mechanism involving an electrophilic Compound I species that reacts with nucleophilic hydroxy groups in the 20R,22R-dihydroxycholesterol intermediate of the P450 11A1 reaction to produce the key steroid pregnenolone.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - I-Ji Jung
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Sandeep Goyal
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Eric Gonzalez
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
14
|
Jeong CH, Postigo C, Richardson SD, Simmons JE, Kimura SY, Mariñas BJ, Barcelo D, Liang P, Wagner ED, Plewa MJ. Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13749-59. [PMID: 25942416 PMCID: PMC4791037 DOI: 10.1021/es506358x] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The introduction of drinking water disinfection greatly reduced waterborne diseases. However, the reaction between disinfectants and natural organic matter in the source water leads to an unintended consequence, the formation of drinking water disinfection byproducts (DBPs). The haloacetaldehydes (HALs) are the third largest group by weight of identified DBPs in drinking water. The primary objective of this study was to analyze the occurrence and comparative toxicity of the emerging HAL DBPs. A new HAL DBP, iodoacetaldehyde (IAL) was identified. This study provided the first systematic, quantitative comparison of HAL toxicity in Chinese hamster ovary cells. The rank order of HAL cytotoxicity is tribromoacetaldehyde (TBAL) ≈ chloroacetaldehyde (CAL) > dibromoacetaldehyde (DBAL) ≈ bromochloroacetaldehyde (BCAL) ≈ dibromochloroacetaldehyde (DBCAL) > IAL > bromoacetaldehyde (BAL) ≈ bromodichloroacetaldehyde (BDCAL) > dichloroacetaldehyde (DCAL) > trichloroacetaldehyde (TCAL). The HALs were highly cytotoxic compared to other DBP chemical classes. The rank order of HAL genotoxicity is DBAL > CAL ≈ DBCAL > TBAL ≈ BAL > BDCAL>BCAL ≈ DCAL>IAL. TCAL was not genotoxic. Because of their toxicity and abundance, further research is needed to investigate their mode of action to protect the public health and the environment.
Collapse
Affiliation(s)
- Clara H. Jeong
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute and the Science and Technology Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Cristina Postigo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Barcelona 08034, Spain
| | - Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jane Ellen Simmons
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Susana Y. Kimura
- Department of Civil and Environmental Engineering and
- Safe Global Water Institute and the Science and Technology Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Benito J. Mariñas
- Department of Civil and Environmental Engineering and
- Safe Global Water Institute and the Science and Technology Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Damia Barcelo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Barcelona 08034, Spain
- Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Girona, Spain
| | - Pei Liang
- Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R China
| | - Elizabeth D. Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute and the Science and Technology Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Michael J. Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute and the Science and Technology Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Corresponding Author: Phone: 217-333-3614.
| |
Collapse
|
15
|
Pottenger LH, Andrews LS, Bachman AN, Boogaard PJ, Cadet J, Embry MR, Farmer PB, Himmelstein MW, Jarabek AM, Martin EA, Mauthe RJ, Persaud R, Preston RJ, Schoeny R, Skare J, Swenberg JA, Williams GM, Zeiger E, Zhang F, Kim JH. An organizational approach for the assessment of DNA adduct data in risk assessment: case studies for aflatoxin B1, tamoxifen and vinyl chloride. Crit Rev Toxicol 2014; 44:348-91. [DOI: 10.3109/10408444.2013.873768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Can the chemical reactivity of an ultimate carcinogen be related to its carcinogenicity? An application to propylene oxide. Toxicol In Vitro 2013; 27:479-85. [DOI: 10.1016/j.tiv.2012.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022]
|
17
|
Kobori A, Yamauchi T, Nagae Y, Yamayoshi A, Murakami A. Novel photoresponsive cross-linking oligodeoxyribonucleotides having a caged α-chloroaldehyde. Bioorg Med Chem 2012; 20:5071-6. [PMID: 22871262 DOI: 10.1016/j.bmc.2012.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 01/06/2023]
Abstract
We have developed photoresponsive cross-linking oligodeoxyribonucleotides (ODNs) for sequence-selective interstrand covalent bond formation toward target nucleotides. A phosphoramidite derivative of α-chloroaldehyde whose carbonyl group was converted to a bis(2-nitrobenzyl)acetal group was prepared for the synthesis of photoresponsive α-chloroaldehyde (PCA)-conjugated ODN. The bis(2-nitrobenzyl)acetal group of a PCA-thymidine conjugate was completely removed by UV irradiation at 365 nm (400 mW/cm(2)) for 1 min. Photo-cross-linking studies revealed that PCA-ODN selectively reacted with the target nucleotides having an adenine or a cytosine moiety at the frontal position of the α-chloroaldehyde group.
Collapse
Affiliation(s)
- Akio Kobori
- Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | | | | | |
Collapse
|
18
|
Thermochemical properties of some vinyl chloride-induced DNA lesions: detailed view from NBO & AIM analysis. Struct Chem 2012. [DOI: 10.1007/s11224-012-0026-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Kotik M, Archelas A, Faměrová V, Oubrechtová P, Křen V. Laboratory evolution of an epoxide hydrolase – Towards an enantioconvergent biocatalyst. J Biotechnol 2011; 156:1-10. [DOI: 10.1016/j.jbiotec.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 11/29/2022]
|
20
|
Ly MA, Liew EF, Le NB, Coleman NV. Construction and evaluation of pMycoFos, a fosmid shuttle vector for Mycobacterium spp. with inducible gene expression and copy number control. J Microbiol Methods 2011; 86:320-6. [DOI: 10.1016/j.mimet.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/01/2011] [Accepted: 06/05/2011] [Indexed: 11/29/2022]
|
21
|
Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME JOURNAL 2011; 6:171-82. [PMID: 21796219 DOI: 10.1038/ismej.2011.98] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The copper membrane monooxygenases (CuMMOs) are an important group of enzymes in environmental science and biotechnology. Areas of relevance include the development of green chemistry for sustainable exploitation of methane (CH(4)) reserves, remediation of chlorinated hydrocarbon contamination and monitoring human impact in the biogeochemical cycles of CH(4) and nitrogen. Challenges for all these applications are that many aspects of the ecology, physiology and structure-function relationships in the CuMMOs are inadequately understood. Here, we describe genetic and physiological characterization of a novel member of the CuMMO family that has an unusual physiological substrate range (C(2)-C(4) alkanes) and a distinctive bacterial host (Mycobacterium). The Mycobacterial CuMMO genes (designated hmoCAB) were amenable to heterologous expression in M. smegmatis-this is the first example of recombinant expression of a complete and highly active CuMMO enzyme. The apparent specific activity of recombinant cells containing hmoCAB ranged from 2 to 3 nmol min(-1) per mg protein on ethane, propane and butane as substrates, and the recombinants could also attack ethene, cis-dichloroethene and 1,2-dichloroethane. No detectable activity of recombinants or wild-type strains was seen with methane. The specific inhibitor allylthiourea strongly inhibited growth of wild-type cells on C(2)-C(4) alkanes, and omission of copper from the medium had a similar effect, confirming the physiological role of the CuMMO for growth on alkanes. The hydrocarbon monooxygenase provides a new model for studying this important enzyme family, and the recombinant expression system will enable biochemical and molecular biological experiments (for example, site-directed mutagenesis) that were previously not possible.
Collapse
|
22
|
Mutlu E, Collins LB, Stout MD, Upton PB, Daye LR, Winsett D, Hatch G, Evansky P, Swenberg JA. Development and application of an LC-MS/MS method for the detection of the vinyl chloride-induced DNA adduct N(2),3-ethenoguanine in tissues of adult and weanling rats following exposure to [(13)C(2)]-VC. Chem Res Toxicol 2011; 23:1485-91. [PMID: 20799743 DOI: 10.1021/tx1001767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the 1970s, exposure to vinyl chloride (VC) was shown to cause liver angiosarcoma in VC workers. We have developed a new LC-MS/MS method for analyzing the promutagenic DNA adduct N(2),3-ethenoguanine (εG) and have applied this to DNA from tissues of both adult and weanling rats exposed to 1100 ppm [(13)C(2)]-VC for 5 days or 1100 ppm VC for 1 day. This assay utilizes neutral thermal hydrolysis and an HPLC cleanup prior to quantitation by LC-MS/MS. The number of endogenous and exogenous εG adducts in DNA from tissues of adult rats exposed to [(13)C(2)]-VC for 5 days was 4.1 ± 2.8 adducts/10(8) guanine of endogenous and 19.0 ± 4.9 adducts/10(8) guanine of exogenous εG in the liver, 8.4 ± 2.8 adducts/10(8) guanine of endogenous and 7.4 ± 0.5 adducts/10(8) guanine of exogenous εG in the lung, and 5.9 ± 3.3 adducts/10(8) guanine of endogenous and 5.7 ± 2.1 adducts/10(8) guanine of exogenous εG in the kidney (n = 4). Additionally, the data from weanling rats demonstrated higher numbers of exogenous εG, with ∼4-fold higher amounts in the liver DNA of weanlings (75.9 ± 17.9 adducts/10(8) guanine) in comparison to adult rats and ∼2-fold higher amounts in the lung (15.8 ± 3.6 adducts/10(8) guanine) and kidney (12.9 ± 0.4 adducts/10(8) guanine) (n = 8). The use of stable isotope labeled VC permitted accurate estimates of the half-life of εG for the first time by comparing [(13)C(2)]-εG in adult rats with identically exposed animals euthanized 2, 4, or 8 weeks later. The half-life of εG was found to be 150 days in the liver and lung and 75 days in the kidney, suggesting little or no active repair of this promutagenic adduct.
Collapse
Affiliation(s)
- Esra Mutlu
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee CYI, Delaney JC, Kartalou M, Lingaraju GM, Maor-Shoshani A, Essigmann JM, Samson LD. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Biochemistry 2009; 48:1850-61. [PMID: 19219989 DOI: 10.1021/bi8018898] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N(6)-ethenoadenine (epsilonA). The crystal structures of AAG bound to epsilonA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Delta80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known epsilonA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with epsilonA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N(2)-ethenoguanine (1,N(2)-epsilonG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both epsilonA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.
Collapse
Affiliation(s)
- Chun-Yue I Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Bowman BR, Lee S, Wang S, Verdine GL. Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA. Structure 2008; 16:1166-74. [PMID: 18682218 DOI: 10.1016/j.str.2008.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/23/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
Abstract
The constant attack on DNA by endogenous and exogenous agents gives rise to nucleobase modifications that cause mutations, which can lead to cancer. Visualizing the effects of these lesions on the structure of duplex DNA is key to understanding their biologic consequences. The most definitive method of obtaining such structures, X-ray crystallography, is troublesome to employ owing to the difficulty of obtaining diffraction-quality crystals of DNA. Here, we present a crystallization system that uses a protein, the DNA glycosylase AlkA, as a scaffold to mediate the crystallization of lesion-containing duplex DNA. We demonstrate the use of this system to facilitate the rapid structure determination of DNA containing the lesion 8-oxoguanine in several different sequence contexts, and also deoxyinosine and 1,N(6)-ethenoadenine, each stabilized as the corresponding 2'-flouro analog. The structures of 8-oxoguanine provide a correct atomic-level view of this important endogenous lesion in DNA.
Collapse
Affiliation(s)
- Brian R Bowman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
25
|
Christov PP, Kozekov ID, Rizzo CJ, Harris TM. The formamidopyrimidine derivative of 7-(2-oxoethyl)-2'-deoxyguanosine. Chem Res Toxicol 2008; 21:1777-86. [PMID: 18690723 DOI: 10.1021/tx800142m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vinyl chloride induces hepatic angiosarcomas, which are otherwise rare malignancies. The biochemical basis involves the formation of the epoxide, which reacts with DNA to give approximately 98% of the 7-(2-oxoethyl) adduct (4) of dGuo plus small amounts of the etheno derivatives of dGuo, dCyd, and dAdo. The carcinogenicity is generally ascribed to the etheno adducts, not 4, because 4 has been shown to disappear from cells rapidly and to have negligible mutagenicity, which argues against its biological importance, whereas etheno adducts are both persistent and mutagenic. It has also been shown that apurinic sites derived from 4 are unlikely to be crucial lesions. A confounding factor with regard to the etheno hypothesis is that etheno adducts arise in unexposed cells by reactions of various lipid peroxidation products. The present study explores the possibility that a major contributor to the carcinogenicity of vinyl chloride may be formamidopyrimidine (FAPy) 12, N-[2-amino-6-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-3,4-dihydro-4-oxo-5-pyrimidinyl]-N-(2-oxoethyl)-formamide, which can arise by ring opening of 4, although its formation has not been observed until the present study. N7 adduct 4 undergoes deglycosylation to give 7-(2-oxoethyl)-Gua (13) in acid and imidazolium ring-opening to 12 in base. At pH 7.4, both processes occur with the formation of 12 representing approximately 10% of the product mixture. FAPy 12 spontaneously cyclizes to 22, which upon mild acid treatment yields the deglycosylation product 2-amino-3,4,7,8-tetrahydro-7-hydroxy-4-oxopteridine-5(6H)-carbaldehyde (14). The structure of 14 has been established by NMR and mass spectroscopy and by independent synthesis. Reaction of the epoxide of crotonaldehyde with dGuo failed to give either 13 or 14, indicating that both compounds are unique products of the reactions of dGuo with the epoxides of vinyl monomers. Although FAPy 12 was found to be unstable, carbinolamine 22 arising from cyclization of 12 may be an important contributor to the carcinogenicity of vinyl chloride.
Collapse
Affiliation(s)
- Plamen P Christov
- Department of Chemistry, Vanderbilt University, NashVille, Tennessee 37235-1822, USA
| | | | | | | |
Collapse
|
26
|
Kotik M, Stepánek V, Kyslík P, Maresová H. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering. J Biotechnol 2007; 132:8-15. [PMID: 17875334 DOI: 10.1016/j.jbiotec.2007.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 07/18/2007] [Accepted: 08/01/2007] [Indexed: 11/19/2022]
Abstract
The gene encoding an epoxide hydrolase from Aspergillus niger M200 has been cloned and its sequence determined. The gene is interrupted by seven introns, one exon being only nine nucleotides long. The non-coding 5'- and 3'-regions of the mRNA are composed of 47 and 76 nucleotides, respectively. Overexpression of the fungal epoxide hydrolase in E. coli TOP10 has led to a 15-fold increase in specific activity (compared to the wild-type strain). Saturation mutagenesis at codon 217 resulted in the discovery of nine enzyme variants showing in several cases profound differences in activity and enantioselectivity towards various epoxides when compared to the data of the wild-type enzyme. The site 217 is located at the entrance of the tunnel that provides the substrate with access to the active site. The exchange of Ala at this position for Cys has led to a doubled enantioselectivity (E-value of 5.0) towards benzyl glycidyl ether. The same substitution resulted in a threefold-enhanced activity of the enzyme towards allyl glycidyl ether and styrene oxide without affecting enantioselectivity. The variant A217L showed an enhanced enantioselectivity towards tert-butyl glycidyl ether reaching an E-value of 100 (from 60 for the wild-type enzyme). Replacement of A217 by Val has led to higher activity towards allyl glycidyl ether by a factor of six. The substitutions Ala-->Glu and Ala-->Gln increased the enantioselectivity towards allyl glycidyl ether and styrene oxide by over 50% to E-values of 10 and 16, respectively. The study underlines that single amino acid exchanges in the substrate tunnel region can lead to significant improvements in enantioselectivity and activity of the epoxide hydrolase from A. niger M200.
Collapse
Affiliation(s)
- Michael Kotik
- Laboratory of Enzyme Technology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
27
|
Kim MY, Zhou X, Delaney JC, Taghizadeh K, Dedon PC, Essigmann JM, Wogan GN. AlkB influences the chloroacetaldehyde-induced mutation spectra and toxicity in the pSP189 supF shuttle vector. Chem Res Toxicol 2007; 20:1075-83. [PMID: 17658757 DOI: 10.1021/tx700167v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Chloroacetaldehyde (CAA), a metabolite of the carcinogen vinyl chloride, reacts with DNA to form cyclic etheno ()-lesions. AlkB, an iron-/alpha-ketoglutarate-dependent dioxygenase, repairs 1, N (6)-ethenodeoxyadenosine (A) and 3, N (4)-ethenodeoxycytidine (C) in site-specifically modified single-stranded viral genomes in vivo and also protects the E. coli genome from the toxic effects of CAA. We examined the role of AlkB as a cellular defense against CAA by characterizing the frequencies, types, and distributions of mutations induced in the double-stranded supF gene of pSP189 damaged in vitro and replicated in AlkB-proficient (AlkB (+)) and AlkB-deficient (AlkB (-)) E. coli. AlkB reduced mutagenic potency and increased the survival of CAA-damaged plasmids. Toxicity and mutagenesis data were benchmarked to levels of -adducts and DNA strand breaks measured by LC-MS/MS and a plasmid nicking assay. CAA treatment caused dose-dependent increases in A, C, and 1, N (2)-ethenodeoxyguanosine (1, N (2)-G) and small increases in strand breaks and abasic sites. Mutation frequency increased in plasmids replicated in both AlkB (+) and AlkB (-) cells; however, at the maximum CAA dose, the mutation frequency was 5-fold lower in AlkB (+) than in AlkB (-) cells, indicating that AlkB protected the genome from CAA lesions. Most induced mutations in AlkB (-) cells were G:C to A:T transitions, with lesser numbers of G:C to T:A transversions and A:T to G:C transitions. G:C to A:T and A:T to G:C transitions were lower in AlkB (+) cells than in AlkB (-) cells. Mutational hotspots at G122, G123, and G160 were common to both cell types. Three additional hotspots were found in AlkB (-) cells (C133, T134, and G159), with a decrease in mutation frequency and change in mutational signature in AlkB (+) cells. These results suggest that the AlkB protein contributes to the elimination of exocyclic DNA base adducts, suppressing the toxic and mutagenic consequences induced by this damage and contributing to genetic stability.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Biological Engineering, Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bren U, Zupan M, Guengerich FP, Mavri J. Chemical Reactivity as a Tool to Study Carcinogenicity: Reaction between Chloroethylene Oxide and Guanine. J Org Chem 2006; 71:4078-84. [PMID: 16709046 DOI: 10.1021/jo060098l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroethylene oxide, an ultimate carcinogen of vinyl chloride, reacts with DNA giving rise to 7-(2-oxyethyl)guanine adduct in a nearly quantitative yield. This reaction represents an initial step of carcinogenesis associated with vinyl chloride. From experimental data for this reaction we calculated the second-order rate constant of 0.049 s(-1) M(-1), which corresponds to the activation free energy of 19.5 kcal/mol. We also performed a series of medium high ab initio and density functional theory simulations. Effects of hydration were considered in the framework of the Langevine dipoles solvation model and the solvent reaction field method of Tomasi and co-workers. In silico calculated activation free energies are in a good agreement with the experimental value. This fact presents strong evidence in favor of the validity of the proposed reaction mechanism and points to the applicability of quantum-chemical methods to studies of other reactions associated with carcinogenesis. Insignificant stereoselectivity of the studied reaction was also predicted.
Collapse
Affiliation(s)
- Urban Bren
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
29
|
Guengerich FP. Principles of covalent binding of reactive metabolites and examples of activation of bis-electrophiles by conjugation. Arch Biochem Biophys 2005; 433:369-78. [DOI: 10.1016/j.abb.2004.07.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 07/28/2004] [Indexed: 11/24/2022]
|
30
|
Coleman NV, Spain JC. Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of mycobacterium strain JS60. J Bacteriol 2003; 185:5536-45. [PMID: 12949106 PMCID: PMC193758 DOI: 10.1128/jb.185.18.5536-5545.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium strains that grow on ethene and vinyl chloride (VC) are widely distributed in the environment and are potentially useful for biocatalysis and bioremediation. The catabolic pathway of alkene assimilation in mycobacteria is not well characterized. It is clear that the initial step is a monooxygenase-mediated epoxidation that produces epoxyethane from ethene and chlorooxirane from VC, but the enzymes involved in subsequent transformation of the epoxides have not been identified. We investigated epoxyethane metabolism in Mycobacterium strain JS60 and discovered a coenzyme M (CoM)-dependent enzyme activity in extracts from VC- and ethene-grown cells. PCR amplifications using primers targeted at epoxyalkane:CoM transferase (EaCoMT) genes yielded part of the JS60 EaCoMT gene, which was used to clone an 8.4-kb genomic DNA fragment. The complete EaCoMT gene (etnE) was recovered, along with genes (etnABCD) encoding a four-component monooxygenase and two genes possibly involved in acyl-CoA ester metabolism. Reverse transcription-PCR indicated that the etnE and etnA genes were cotranscribed and inducible by ethene and VC. Heterologous expression of the etnE gene in Mycobacterium smegmatis mc(2)155 using the pMV261 vector gave a recombinant strain capable of transforming epoxyethane, epoxypropane, and chlorooxirane. A metabolite identified by mass spectrometry as 2-hydroxyethyl-CoM was produced from epoxyethane. The results indicate that the EaCoMT and monooxygenase enzymes encoded by a single operon (etnEABCD) catalyze the initial reactions in both the VC and ethene assimilation pathways. CoM-mediated reactions appear to be more widespread in bacteria than was previously believed.
Collapse
|
31
|
Guengerich FP. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys 2003; 409:59-71. [PMID: 12464245 DOI: 10.1016/s0003-9861(02)00415-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the interest in the cytochrome P450 (P450) enzymes has been because of oxidation of chemicals to reactive products. The epoxides (oxiranes) have been a major topic of interest with olefins and aryl compounds. Epoxides vary considerably in their reactivity, with t(1/2) varying from 1s to several hours. The stability and reactivity influences not only the overall damage to biological systems but also the site of injury. Transformations of some xenobiotic chemicals may involve products other than epoxides. Chemicals considered here include olefins, aromatic hydrocarbons, heterocycles, vinyl halides, ethyl carbamate, vinyl nitrosamines, and aflatoxin B(1). These compounds either are unsaturated or are transformed to unsaturated products. The epoxides and other products provide a view of the landscape of P450-generated reactive products and the myriad of chemistry involved in the metabolism of drugs and protoxicants. Understanding the chemical nature of reactive products is necessary to develop rational strategies for intervention.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, School of Medicine, Vanderbilt University, 638 Robinson Research Building, 23rd and Pierce Avenues, Nashville, TN 37232-0146, USA.
| |
Collapse
|
32
|
Baumann F, Preiss R. Cyclophosphamide and related anticancer drugs. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 764:173-92. [PMID: 11817027 DOI: 10.1016/s0378-4347(01)00279-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This article presents an overview of the methods of bioanalysis of oxazaphosphorines, in particular, cyclophosphamide, ifosfamide, and trofosfamide as well as their metabolites. The metabolism of oxazaphosphorines is complex and leads to a large variety of metabolites and therefore the spectrum of methods used is relatively broad. The various methods used are shown in a table and the particularly important assays are described.
Collapse
Affiliation(s)
- F Baumann
- Institute of Clinical Pharmacology, University of Leipzig, Germany.
| | | |
Collapse
|
33
|
Verce MF, Ulrich RL, Freedman DL. Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol 2000; 66:3535-42. [PMID: 10919818 PMCID: PMC92182 DOI: 10.1128/aem.66.8.3535-3542.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An aerobic enrichment culture was developed by using vinyl chloride (VC) as the sole organic carbon and electron donor source. VC concentrations as high as 7.3 mM were biodegraded without apparent inhibition. VC use did not occur when nitrate was provided as the electron acceptor. A gram-negative, rod-shaped, motile isolate was obtained from the enrichment culture and identified based on biochemical characteristics and the sequence of its 16S rRNA gene as Pseudomonas aeruginosa, designated strain MF1. The observed yield of MF1 when it was grown on VC was 0.20 mg of total suspended solids (TSS)/mg of VC. Ethene, acetate, glyoxylate, and glycolate also served as growth substrates, while ethane, chloroacetate, glycolaldehyde, and phenol did not. Stoichiometric release of chloride and minimal accumulation of soluble metabolites following VC consumption indicated that the predominant fate for VC is mineralization and incorporation into cell material. MF1 resumed consumption of VC after at least 24 days when none was provided, unlike various mycobacteria that lost their VC-degrading ability after brief periods in the absence of VC. When deprived of oxygen for 2.5 days, MF1 did not regain the ability to grow on VC, and a portion of the VC was transformed into VC-epoxide. Acetylene inhibited VC consumption by MF1, suggesting the involvement of a monooxygenase in the initial step of VC metabolism. The maximum specific VC utilization rate for MF1 was 0.41 micromol of VC/mg of TSS/day, the maximum specific growth rate was 0.0048/day, and the Monod half-saturation coefficient was 0.26 microM. A higher yield and faster kinetics occurred when MF1 grew on ethene. When grown on ethene, MF1 was able to switch to VC as a substrate without a lag. It therefore appears feasible to grow MF1 on a nontoxic substrate and then apply it to environments that do not exhibit a capacity for aerobic biodegradation of VC.
Collapse
Affiliation(s)
- M F Verce
- Department of Civil and Environmental Engineering, University of Illinois, Urbana 61808, USA
| | | | | |
Collapse
|
34
|
Cullinan D, Johnson F, de los Santos C. Solution structure of an 11-mer duplex containing the 3, N(4)-ethenocytosine adduct opposite 2'-deoxycytidine: implications for the recognition of exocyclic lesions by DNA glycosylases. J Mol Biol 2000; 296:851-61. [PMID: 10677286 DOI: 10.1006/jmbi.1999.3490] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipid peroxidation products, as well as the metabolic products of vinyl chloride, react with cellular DNA producing the mutagenic adduct 3,N(4)-etheno-2'-deoxycytidine (epsilondC), along with several other exocyclic derivatives. High-resolution NMR spectroscopy and restrained molecular dynamics simulations were used to establish the solution structure of an 11-mer duplex containing an epsilondC.dC base-pair at its center. The NMR data suggested a regular right-handed helical structure having all residues in the anti orientation around the glycosydic torsion angle and Watson-Crick alignments for all canonical base-pairs of the duplex. Restrained molecular dynamics generated a three-dimensional model in excellent agreement with the spectroscopic data. The (epsilondC. dC)-duplex structure is a regular right-handed helix with a slight bend at the lesion site and no severe distortions of the sugar-phosphate backbone. The epsilondC adduct and its partner dC were displaced towards opposite grooves of the helix, resulting in a lesion-containing base-pair that was highly sheared but stabilized to some degree by the formation of a single hydrogen bond. Such a sheared base-pair alignment at the lesion site was previously observed for epsilondC.dG and epsilondC.T duplexes, and was also present in the crystal structures of duplexes containing dG.T and dG. U mismatches. These observations suggest the existence of a substrate structural motif that may be recognized by specific DNA glycosylases during the process of base excision repair.
Collapse
Affiliation(s)
- D Cullinan
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY, 11794-8651, USA
| | | | | |
Collapse
|
35
|
Visarius TM, Stucki JW, Lauterburg BH. Stimulation of respiration by methylene blue in rat liver mitochondria. FEBS Lett 1997; 412:157-60. [PMID: 9257711 DOI: 10.1016/s0014-5793(97)00767-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of methylene blue on isolated rat liver mitochondria in the presence and absence of chloroacetaldehyde was investigated. Fatty acid oxidation was inhibited by chloroacetaldehyde and subsequently stimulated by methylene blue. Assessment of tightly coupled mitochondria revealed decreasing respiratory control ratios induced by increasing concentrations of methylene blue and methylene blue provoked mitochondrial swelling. In uncoupled mitochondria, methylene blue promoted a concentration-dependent stimulation of respiration. These findings provide evidence that methylene blue, the redox dye currently used as an antidote for encephalopathy associated with alkylating chemotherapy, uncouples oxidative phosphorylation and acts as an electron transfer mediator to stimulate mitochondrial respiration.
Collapse
Affiliation(s)
- T M Visarius
- Department of Clinical Pharmacology, University of Berne, Switzerland.
| | | | | |
Collapse
|
36
|
Storm JE, Rozman KK. Evaluation of alternative methods for establishing safe levels of occupational exposure to vinyl halides. Regul Toxicol Pharmacol 1997; 25:240-55. [PMID: 9237327 DOI: 10.1006/rtph.1997.1089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The facts that reduction of occupational vinyl chloride exposures to levels within or below the 0.5-5 ppm range has so far been successful in eliminating vinyl chloride-induced liver angiosarcoma and that humans appear to be less sensitive to the carcinogenic effect of vinyl chloride than rats offered an opportunity to verify or dispute risk assessment extrapolation models used, and proposed, by the U.S. EPA. Safe occupational vinyl chloride exposures were defined as levels associated with an incidence of one angiosarcoma in 100,000 exposed workers, determined from rat bioassay data using default no-threshold (linearized multistage model and benchmark dose approach with linear extrapolation) and threshold (NOEL/LOEL and benchmark dose uncertainty factor approaches) models, and then compared against the likely protective range of 0.5-5 ppm. Safe levels derived using either no-threshold model are equivalent and are two to three orders of magnitude below the 0.5-5 ppm range. Safe levels derived using either threshold model, when applying uncertainty factors which reflect equal or less sensitivity in humans compared to rats, fall within the 0.5-5 ppm range. Similar results were obtained for vinyl bromide and vinyl fluoride. These results undermine the U.S. EPA default assumption of no-threshold for vinyl halides as well as for other DNA-reactive carcinogens while simultaneously supporting the notion that a practical threshold exists. They further suggest that when threshold models are appropriate, the default assumption of greater sensitivity in humans compared to rats should be carefully evaluated.
Collapse
Affiliation(s)
- J E Storm
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417, USA
| | | |
Collapse
|
37
|
van Hylckama VJ, de Koning W, Janssen DB. Transformation Kinetics of Chlorinated Ethenes by Methylosinus trichosporium OB3b and Detection of Unstable Epoxides by On-Line Gas Chromatography. Appl Environ Microbiol 1996; 62:3304-12. [PMID: 16535402 PMCID: PMC1388940 DOI: 10.1128/aem.62.9.3304-3312.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A rapid and accurate method for the determination of transformation kinetics of volatile organic substrates was developed. Concentrations were monitored by on-line gas chromatographic analysis of the headspace of well-mixed incubation mixtures. With this method, the kinetics of transformation of a number of C(inf1) and C(inf2) halogenated alkanes and alkenes by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase or soluble methane monooxygenase (sMMO) were studied. Apparent specific first-order rate constants for cells expressing sMMO decreased in the order of dichloromethane, vinyl chloride, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, trichloroethene, chloroform, and 1,2-dichloroethane. During the degradation of trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride, the formation of the corresponding epoxides was observed. The epoxide of vinyl chloride and the epoxide of trichloroethene, which temporarily accumulated in the medium, were chemically degraded according to first-order kinetics, with half-lives of 78 and 21 s, respectively. Cells expressing sMMO actively degraded the epoxide of cis-1,2-dichloroethene but not the epoxide of trans-1,2-dichloroethene. Methane and acetylene inhibited degradation of the epoxide of cis-1,2-dichloroethene, indicating that sMMO was involved.
Collapse
|
38
|
Dowsley TF, Forkert PG, Benesch LA, Bolton JL. Reaction of glutathione with the electrophilic metabolites of 1,1-dichloroethylene. Chem Biol Interact 1995; 95:227-44. [PMID: 7728894 DOI: 10.1016/0009-2797(94)03563-n] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1,1-Dichloroethylene (DCE) requires cytochrome P450-catalyzed bioactivation to electrophilic metabolites (1,1-dichloroethylene oxide, 2-chloroacetyl chloride and 2,2-dichloroacetaldehyde) to exert its cytotoxic effects. In this investigation, we examined the reactions of these metabolites with glutathione by spectroscopic and chromatographic techniques. In view of the extreme reactivity of 2-chloroacetyl chloride, primary reactions are likely to include alkylation of cytochrome P450, conjugation with GSH to give S-(2-chloroacetyl)-glutathione, or hydrolysis to give 2-chloroacetic acid. Our results showed conjugation of GSH with 1,1-dichloroethylene oxide, through formation of the mono- and di-glutathione adducts, 2-S-glutathionyl acetate and 2-(S-glutathionyl) acetyl glutathione, respectively. The observed equilibrium constant between the hydrate of 2,2-dichloroacetaldehyde and S-(2,2-dichloro-1-hydroxy)ethylglutathione was estimated from 1H-NMR experiments to be 14 +/- 2 M-1. Thus, 2,2-dichloroacetaldehyde is unlikely to make a significant contribution to GSH depletion as GSH concentrations above normal physiological levels would be necessary to form significant amounts of S-(2,2-dichloro-1-hydroxy)ethylglutathione. We also compared the formation of the glutathione conjugates in rat and mouse liver microsomes using 14C-DCE. The results demonstrated a species difference; the total metabolite production was 6-fold higher in microsomes from mice, compared with samples from rat. Production of DCE metabolites in hepatic microsomes from acetone-pretreated mice was 3-fold higher than those from untreated mice suggesting a role for P450 2E1 in DCE bioactivation. These results indicate that the epoxide is the major metabolite of DCE that is responsible for GSH depletion, suggesting that it may be involved in the hepatotoxicity evoked by DCE. Furthermore, this metabolite is formed to a greater extent in mouse than in rat liver microsomes and this difference may underlie the enhanced susceptibility found in the former species.
Collapse
Affiliation(s)
- T F Dowsley
- Department of Anatomy, Queen's University Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
Metabolism and cometabolism of halogenated C-1 and C-2 hydrocarbons. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0079-6352(06)80028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
40
|
Sood C, O'Brien PJ. Chloroacetaldehyde-induced hepatocyte cytotoxicity. Mechanisms for cytoprotection. Biochem Pharmacol 1994; 48:1025-32. [PMID: 8093090 DOI: 10.1016/0006-2952(94)90374-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
2-Chloroacetaldehyde (CAA)-induced cytotoxicity in isolated hepatocytes was enhanced markedly if hepatocyte alcohol or aldehyde dehydrogenase was inhibited prior to CAA addition. Hepatocyte GSH depletion, ATP depletion and lipid peroxidation by CAA were also enhanced markedly. Furthermore, CAA was about 10- and 70-fold more cytotoxic than its oxidative or reductive metabolite chloroacetate or chloroethanol, respectively. Nutrients such as lactate, xylitol, sorbitol or glycerol, which increase cytosolic NADH levels, prevented CAA cytotoxicity in normal hepatocytes but further enhanced cytotoxicity toward alcohol dehydrogenase inactivated hepatocytes, suggesting that increased cytosolic NADH reduces CAA via alcohol dehydrogenase in normal hepatocytes but prevents CAA oxidation in alcohol dehydrogenase inactivated hepatocytes. However, increasing cytosolic NADH levels with ethanol or NADH-generating nutrients after CAA had been metabolized also prevented cytotoxicity and caused a partial ATP recovery, whereas oxidation of cytosolic NADH with pyruvate markedly increased cytotoxicity. This indicates that cytotoxic CAA concentrations cause oxidative stress and that ATP levels can be restored if cellular redox homeostasis is normalized with reductants. Furthermore, except for fructose, nutrients that did not increase NADH did not affect CAA-induced cytotoxicity. Fructose also caused a partial ATP recovery, and its protection was prevented by the glycolytic inhibitor fluoride. Hepatocytes isolated from fasted animals were 4- to 6-fold more susceptible to CAA-induced ATP depletion and cytotoxicity. No lipid peroxidation occurred at these lower CAA concentrations. Furthermore, all nutrients, including alanine, glutamine and glucose, prevented cytotoxicity toward hepatocytes isolated from fasted animals. The susceptibility of hepatocytes to CAA cytotoxicity, therefore, depends on both cellular redox homeostasis and cellular energy supply.
Collapse
Affiliation(s)
- C Sood
- Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Guengerich FP. Mechanisms of formation of DNA adducts from ethylene dihalides, vinyl halides, and arylamines. Drug Metab Rev 1994; 26:47-66. [PMID: 8082581 DOI: 10.3109/03602539409029784] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
42
|
Gibson NJ, Parkinson JA, Barlow T, Watson WP, Brown T. The stability of duplex DNA containing 3,N4-etheno-2′-deoxycytidine (εdC). A UV melting and high resolution1H NMR study. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/c39940002241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Sood C, O'Brien PJ. Molecular mechanisms of chloroacetaldehyde-induced cytotoxicity in isolated rat hepatocytes. Biochem Pharmacol 1993; 46:1621-6. [PMID: 8240419 DOI: 10.1016/0006-2952(93)90332-q] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
2-Chloroacetaldehyde (CAA) induced a loss in hepatocyte viability in a concentration- and time-dependent manner. Three phases before cytotoxicity ensued could be distinguished. Glutathione (GSH) was depleted immediately upon addition of CAA but only partial depletion occurred with subtoxic CAA concentrations. GSH-depleted hepatocytes were much more susceptible to CAA toxicity, indicating that CAA was detoxified by GSH. The second phase of changes involved a steady decrease in protein thiol levels, mitochondrial respiration, transmembrane potential and ATP levels. The third phase involved lipid peroxidation which commenced at around 60 min with a CAA concentration that caused 50% cytotoxicity in 120 min. Addition of antioxidants (diphenylphenylenediamine, butylated hydroxyanisole) and iron chelators (desferoxamine) at 40 min prevented lipid peroxidation and delayed CAA-induced cytotoxicity without restoring protein thiols, hepatocyte respiration or preventing further ATP depletion. Addition of dithiothreitol at 40 min, however, restored protein thiols and hepatocyte respiration, and prevented further ATP depletion and cytotoxicity. CAA-induced hepatocyte cytotoxicity therefore involved reversible thiol protein adduct formation, mitochondrial toxicity and lipid peroxidation.
Collapse
Affiliation(s)
- C Sood
- Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | |
Collapse
|
44
|
Kaijser GP, Beijnen JH, Jeunink EL, Bult A, Keizer HJ, de Kraker J, Underberg WJ. Determination of chloroacetaldehyde, a metabolite of oxazaphosphorine cytostatic drugs, in plasma. JOURNAL OF CHROMATOGRAPHY 1993; 614:253-9. [PMID: 8314937 DOI: 10.1016/0378-4347(93)80316-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A derivatization high-performance liquid chromatographic method with ultraviolet detection to monitor the plasma concentration of chloroacetaldehyde, a neurotoxic metabolite of oxazaphosphorine drugs, is presented. To prevent the rapid degradation of chloroacetaldehyde, the plasma samples are stabilized with formaldehyde. The method is linear in the concentration range 1-250 nmol/ml. Blood samples from a patient who was treated with a ten-day continuous infusion of ifosfamide were assayed. The chloroacetaldehyde concentrations did not exceed 10 nmol/ml.
Collapse
Affiliation(s)
- G P Kaijser
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Utrecht University, Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Numerous halogenated hydrocarbons of the alkane, alkene, and alkyne classes are metabolized by P450 enzymes to products that elicit cytotoxic and/or carcinogenic effects. Such halogenated hydrocarbons include anesthetics (e.g., halothane and enflurane) and industrial solvents (e.g., carbon tetrachloride, chloroform, and vinylidine chloride). Formation of reaction intermediates from these compounds occurs via P450-promoted dehalogenation, reduction, or reductive oxygenation, with certain hydrocarbons undergoing all three reaction types. Of the multiple forms of P450 present in liver microsomes, P4502E1 has been identified as the primary catalyst of hydrocarbon bioactivation in animals and, most likely, in humans as well. As hepatic concentrations of this P450 enzyme are highly inducible by ethanol and similar agents, prior exposure to 2E1-inducing compounds can play a pivotal role in halogenated hydrocarbon toxicity. Considering that metabolism governs the cytotoxicity and carcinogenicity of halogenated hydrocarbons, an understanding of the mechanism(s) underlying 2E1 induction in man becomes all the more important.
Collapse
Affiliation(s)
- J L Raucy
- Toxicology Program, College of Pharmacy, University of New Mexico, Albuquerque 87131
| | | | | |
Collapse
|
46
|
Matijasevic Z, Sekiguchi M, Ludlum DB. Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Proc Natl Acad Sci U S A 1992; 89:9331-4. [PMID: 1409640 PMCID: PMC50120 DOI: 10.1073/pnas.89.19.9331] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human carcinogen vinyl chloride is metabolized in the liver to reactive intermediates which form N2,3-ethenoguanine in DNA. N2,3-Ethenoguanine is known to cause G----A transitions during DNA replication in Escherichia coli, and its formation may be a carcinogenic event in higher organisms. To investigate the repair of N2,3-ethenoguanine, we have prepared an N2,3-etheno[14C]guanine-containing DNA substrate by nick-translating DNA with [14C]dGTP and modifying the product with chloroacetaldehyde. E. coli 3-methyladenine DNA glycosylase II, purified from cells which carry the plasmid pYN1000, releases N2,3-ethenoguanine from chloroacetaldehyde-modified DNA in a protein- and time-dependent manner. This finding widens the known substrate specificity of glycosylase II to include a modified base which may be associated with the carcinogenic process. Similar enzymatic activity in eukaryotic cell might protect them from exposure to metabolites of vinyl chloride.
Collapse
Affiliation(s)
- Z Matijasevic
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | | | |
Collapse
|
47
|
Odum J, Foster JR, Green T. A mechanism for the development of Clara cell lesions in the mouse lung after exposure to trichloroethylene. Chem Biol Interact 1992; 83:135-53. [PMID: 1505057 DOI: 10.1016/0009-2797(92)90042-j] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Female CD-1 mice exposed to trichloroethylene (6 h/day) at concentrations from 20-2000 ppm developed a highly specific lung lesion after a single exposure, characterised by vacuolation of the Clara cells, the number of cells affected increasing with increasing dose level. At the highest dose levels pyknosis of the Clara cells was apparent. After 5 days of repeated exposures the lesion had resolved but exposure of mice following a 2-day break resulted in recurrence of the lesion. The changes in mouse lung Clara cells were accompanied by a marked loss of cytochrome P-450 activities. No morphological changes were seen in the lungs of rats exposed to either 500 or 1000 ppm trichloroethylene. Isolated mouse lung Clara cells were shown to metabolize trichloroethylene to chloral, trichloroethanol and trichloroacetic acid. Chloral was the major metabolite. Trichloroethanol glucuronide was not detected. In comparative experiments using mouse hepatocytes the major metabolites were trichloroethanol and its glucuronide conjugate. The activity of UDP-glucuronosyltransferase was compared in mouse lung Clara cells and hepatocytes using two phenolic substrates and trichloroethanol. Hepatocytes readily formed glucuronides from all three substrates whereas Clara cells were only active with the two phenolic substrates. The three major metabolites of trichloroethylene, chloral, trichloroethanol and trichloroacetic acid were each dosed to mice and of these metabolites, only chloral had an effect on mouse lung causing a lesion (Clara cell) identical to that seen with trichloroethylene. It is proposed that the failure of Clara cells to conjugate trichloroethanol leads to an accumulation of chloral which results in cytotoxicity. The known genotoxicity of chloral suggests that this lesion may be related to the development of lung tumours in mice exposed to trichloroethylene by inhalation.
Collapse
Affiliation(s)
- J Odum
- ICI Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, UK
| | | | | |
Collapse
|
48
|
Uziel M, Munro NB, Katz DS, Vo-Dinh T, Zeighami EA, Waters MD, Griffith JD. DNA adduct formation by 12 chemicals with populations potentially suitable for molecular epidemiological studies. Mutat Res 1992; 277:35-90. [PMID: 1376441 DOI: 10.1016/0165-1110(92)90025-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA adduct formation, route of absorption, metabolism and chemistry of 12 hazardous chemicals are reviewed. Methods for adduct detection are also reviewed and approaches to sensitivity and specificity are identified. The selection of these 12 chemicals from the Environmental Protection Agency list of genotoxic chemicals was based on the availability of information and on the availability of populations potentially suitable for molecular epidemiological study. The 12 chemicals include ethylene oxide, styrene, vinyl chloride, epichlorohydrin, propylene oxide, 4,4'-methylenebis-2-chloroaniline, benzidine, benzidine dyes (Direct Blue 6, Direct Black 38 and Direct Brown 95), acrylonitrile and benzyl chloride. While some of these chemicals (styrene and benzyl chloride, possibly Direct Blue 6) give rise to unique DNA adducts, others do not. Potentially confounding factors include mixed exposures in the work place, as well the formation of common DNA adducts. Additional research needs are identified.
Collapse
Affiliation(s)
- M Uziel
- Health and Safety Research Division, Oak Ridge National Laboratory, TN 37831-6101
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Most chemical carcinogens are not active in themselves but require bioactivation to electrophiles that bind covalently to DNA and often act by producing mutations. In recent years it has been realized that mutations can be important at many stages of carcinogenesis. A variety of different enzymes are involved in bioactivation reactions, which include oxidation, reduction, thiol conjugation, acetyl transfer, sulfur transfer, methyl transfer, glucuronosyl transfer, and epoxide hydrolysis. These processes often occur in concert with a single carcinogen. Humans vary considerably in activities of these enzymes and this variation may contribute to differences in risk.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
50
|
Kouchakdjian M, Eisenberg M, Yarema K, Basu A, Essigmann J, Patel DJ. NMR studies of the exocyclic 1,N6-ethenodeoxyadenosine adduct (epsilon dA) opposite thymidine in a DNA duplex. Nonplanar alignment of epsilon dA(anti) and dT(anti) at the lesion site. Biochemistry 1991; 30:1820-8. [PMID: 1993196 DOI: 10.1021/bi00221a014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dT 9-mer duplex) containing 1,N6-ethenodeoxyadenosine (epsilon dA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. Our NMR studies have focused on the conformation of the epsilon dA.dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5.epsilon dA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and epsilon dA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4.dC15 and dG6.dC13 pairs. Furthermore, the d(G4-T5-G6).d(C13-epsilon A14-C15) trinucleotide segment centered about the dT5.epsilon dA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and epsilon dA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the epsilon dA.dT 9-mer duplex. Two families of energy-minimized structures were identified with the dT5 displaced toward either the flanking dG4.dC15 or the dG6.dC13 base pair. These structures can be differentiated on the basis of the observed NOEs from the imino proton of dT5 to the imino proton of dG4 but not dG6 and to the amino protons of dC15 but not dC13 that were not included in the constraints data set used in energy minimization. Our NMR data are consistent with a nonplanar alignment of epsilon dA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4.dC15 base pair within the d(G4-T5-G6).d(C13-epsilon A14-C15) segment of the epsilon dA.dT 9-mer duplex.
Collapse
Affiliation(s)
- M Kouchakdjian
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | | | | | |
Collapse
|