1
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
2
|
Yu L, Iqbal S, Zhang Y, Zhang G, Ali U, Lu S, Yao X, Guo L. Proteome-wide identification of S-sulphenylated cysteines in Brassica napus. PLANT, CELL & ENVIRONMENT 2021; 44:3571-3582. [PMID: 34347306 DOI: 10.1111/pce.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Deregulation of reduction-oxidation (redox) metabolism under environmental stresses results in enhanced production of intracellular reactive oxygen species (ROS), which ultimately leads to post-translational modifications (PTMs) of responsive proteins. Redox PTMs play an important role in regulation of protein function and cellular signalling. By means of large-scale redox proteomics, we studied reversible cysteine modification during the response to short-term salt stress in Brassica napus (B. napus). We applied an iodoacetyl tandem mass tags (iodoTMT)-based proteomic approach to analyse the redox proteome of B. napus seedlings under control and salt-stressed conditions. We identified 1,821 sulphenylated sites in 912 proteins from all samples. A great number of sulphenylated proteins were predicted to localize to chloroplasts and cytoplasm and GO enrichment analysis of differentially sulphenylated proteins revealed that metabolic processes such as photosynthesis and glycolysis are enriched and enzymes are overrepresented. Redox-sensitive sites in two enzymes were validated in vitro on recombinant proteins and they might affect the enzyme activity. This targeted approach contributes to the identification of the sulphenylated sites and proteins in B. napus subjected to salt stress and our study will improve our understanding of the molecular mechanisms underlying the redox regulation in response to salt stress.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Two-step reaction mechanism reveals new antioxidant capability of cysteine disulfides against hydroxyl radical attack. Proc Natl Acad Sci U S A 2020; 117:18216-18223. [PMID: 32680962 DOI: 10.1073/pnas.2006639117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cysteine disulfides, which constitute an important component in biological redox buffer systems, are highly reactive toward the hydroxyl radical (•OH). The mechanistic details of this reaction, however, remain unclear, largely due to the difficulty in characterizing unstable reaction products. Herein, we have developed a combined approach involving mass spectrometry (MS) and theoretical calculations to investigate reactions of •OH with cysteine disulfides (Cys-S-S-R) in the gas phase. Four types of first-generation products were identified: protonated ions of the cysteine thiyl radical (+Cys-S•), cysteine (+Cys-SH), cysteine sulfinyl radical (+Cys-SO•), and cysteine sulfenic acid (+Cys-SOH). The relative reaction rates and product branching ratios responded sensitively to the electronic property of the R group, providing key evidence to deriving a two-step reaction mechanism. The first step involved •OH conducting a back-side attack on one of the sulfur atoms, forming sulfenic acid (-SOH) and thiyl radical (-S•) product pairs. A subsequent H transfer step within the product complex was favored for protonated systems, generating sulfinyl radical (-SO•) and thiol (-SH) products. Because sulfenic acid is a potent scavenger of peroxyl radicals, our results implied that cysteine disulfide can form two lines of defense against reactive oxygen species, one using the cysteine disulfide itself and the other using the sulfenic acid product of the conversion of cysteine disulfide. This aspect suggested that, in a nonpolar environment, cysteine disulfides might play a more active role in the antioxidant network than previously appreciated.
Collapse
|
6
|
Joller C, De Vrieze M, Moradi A, Fournier C, Chinchilla D, L’Haridon F, Bruisson S, Weisskopf L. S-methyl Methanethiosulfonate: Promising Late Blight Inhibitor or Broad Range Toxin? Pathogens 2020; 9:pathogens9060496. [PMID: 32580401 PMCID: PMC7350374 DOI: 10.3390/pathogens9060496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: S-methyl methanethiosulfonate (MMTS), a sulfur containing volatile organic compound produced by plants and bacterial species, has recently been described to be an efficient anti-oomycete agent with promising perspectives for the control of the devastating potato late blight disease caused by Phytophthora infestans. However, earlier work raised questions regarding the putative toxicity of this compound. To assess the suitability of MMTS for late blight control in the field, the present study thus aimed at evaluating the effect of MMTS on a wide range of non-target organisms in comparison to P. infestans. (2) Methods: To this end, we exposed P. infestans, as well as different pathogenic and non-pathogenic fungi, bacteria, the nematode Caenorhabditis elegans as well as the plant Arabidopsis thaliana to MMTS treatment and evaluated their response by means of in vitro assays. (3) Results: Our results showed that fungi (both mycelium and spores) tolerated MMTS better than the oomycete P. infestans, but that the compound nevertheless exhibited non-negligible toxic effects on bacteria, nematodes and plants. (4) Conclusions: We discuss the mode of action of MMTS and conclude that even though this compound might be too toxic for chemical application in the field, its strong anti-oomycete activity could still be exploited when naturally released at the site of infection by plant-associated microbes inoculated as biocontrol agents.
Collapse
Affiliation(s)
- Charlotte Joller
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Mout De Vrieze
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Aboubakr Moradi
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Claudine Fournier
- Medical and Molecular Microbiology, University of Fribourg, 1702 Fribourg, Switzerland;
| | - Delphine Chinchilla
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Floriane L’Haridon
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Sebastien Bruisson
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, 1702 Fribourg, Switzerland; (C.J.); (M.D.V.); (A.M.); (D.C.); (F.L.); (S.B.)
- Correspondence:
| |
Collapse
|
7
|
Barthels F, Marincola G, Marciniak T, Konhäuser M, Hammerschmidt S, Bierlmeier J, Distler U, Wich PR, Tenzer S, Schwarzer D, Ziebuhr W, Schirmeister T. Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A. ChemMedChem 2020; 15:839-850. [PMID: 32118357 PMCID: PMC7318353 DOI: 10.1002/cmdc.201900687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with drug-resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active-site cysteine. A broad series of derivatives were synthesized to derive structure-activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single-digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase-mediated adherence of S. aureus cells.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| | - Gabriella Marincola
- Institute for Molecular Infection BiologyJulius-Maximilians-University of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Tessa Marciniak
- Institute for Molecular Infection BiologyJulius-Maximilians-University of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Matthias Konhäuser
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| | - Stefan Hammerschmidt
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| | - Jan Bierlmeier
- Interfaculty Institute of BiochemistryEberhard-Karls-University of TübingenHoppe-Seyler-Strasse 472076TübingenGermany
| | - Ute Distler
- Institute for ImmunologyUniversity Medical CenterJohannes-Gutenberg-University of MainzLangenbeckstr. 155131MainzGermany
- Focus Program Translational Neuroscience (FTN)University Medical CenterLangenbeckstr. 155131MainzGermany
| | - Peter R. Wich
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
- School of Chemical EngineeringUniversity of New South WalesScience and Engineering BuildingSydneyNSW 2052Australia
| | - Stefan Tenzer
- Institute for ImmunologyUniversity Medical CenterJohannes-Gutenberg-University of MainzLangenbeckstr. 155131MainzGermany
| | - Dirk Schwarzer
- Interfaculty Institute of BiochemistryEberhard-Karls-University of TübingenHoppe-Seyler-Strasse 472076TübingenGermany
| | - Wilma Ziebuhr
- Institute for Molecular Infection BiologyJulius-Maximilians-University of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Tanja Schirmeister
- Institute for Pharmacy and BiochemistryJohannes-Gutenberg-University of MainzStaudinger Weg 555128MainzGermany
| |
Collapse
|
8
|
Makarov VA, Tikhomirova NK, Savvateeva LV, Petushkova AI, Serebryakova MV, Baksheeva VE, Gorokhovets NV, Zernii EY, Zamyatnin AA. Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140259. [PMID: 31376523 DOI: 10.1016/j.bbapap.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also be employed as an inhibitor of enzymatic activity, since nucleophilic cysteine thiolates are commonly present at active sites of various enzymes. The advantage of using MMTS for this purpose is the reversibility of the formation of methylthio mixed disulfides, compared to irreversible alkylation using conventional agents. Additional benefits include good accessibility of MMTS to buried protein cysteines due to its small size and the simplicity of the protection and deprotection procedures. In this study we report examples of MMTS application in experiments involving oxidoreductase (glyceraldehyde-3-phosphate dehydrogenase, GAPDH), redox-regulated protein (recoverin) and cysteine protease (triticain-α). We demonstrate that on the one hand MMTS can modify functional cysteines in the thiol enzyme GAPDH, thereby preventing thiol oxidation and reversibly inhibiting the enzyme, while on the other hand it can protect the redox-sensitive thiol group of recoverin from oxidation and such modification produces no impact on the activity of the protein. Furthermore, using the example of the papain-like enzyme triticain-α, we report a novel application of MMTS as a protector of the primary structure of active cysteine protease during long-term purification and refolding procedures. Based on the data, we propose new lines of MMTS employment in research, pharmaceuticals and biotechnology for reversible switching off of undesirable activity and antioxidant protection of proteins with functional thiol groups.
Collapse
Affiliation(s)
- Vladimir A Makarov
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia
| | - Natalia K Tikhomirova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Lyudmila V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia
| | - Anastasiia I Petushkova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia
| | - Marina V Serebryakova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Viktoriia E Baksheeva
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Neonila V Gorokhovets
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia
| | - Evgeni Yu Zernii
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia; Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia; Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| |
Collapse
|
9
|
Obeidat Y, Catandi G, Carnevale E, Chicco AJ, DeMann A, Field S, Chen T. A multi-sensor system for measuring bovine embryo metabolism. Biosens Bioelectron 2019; 126:615-623. [PMID: 30508786 PMCID: PMC6661109 DOI: 10.1016/j.bios.2018.09.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
Abstract
This paper presents the development of a multi-sensor platform capable of simultaneous measurement of dissolved oxygen (DO) concentration, glucose and lactate concentrations in a micro-chamber for real-time evaluation of metabolic flux in bovine embryos. A micro-chamber containing all three sensors (DO, glucose, and lactate) was made to evaluate metabolic flux of single oocytes or embryos at different stages of development in ≤ 120 µL of respiration buffer. The ability of the sensor to detect a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis was demonstrated in embryos by an ablation of oxygen consumption and an increase in lactate production following addition of oligomycin, an inhibitor of mitochondrial adenosine triphosphate (ATP) synthesis. An increased reliance upon glycolysis relative to OXPHOS was demonstrated in embryos as they developed from morula to hatched blastocysts by a progressive increase in the lactate/oxygen flux ratio, consistent with isolated metabolic assessments reported previously. These studies highlight the utility of a metabolic multi-sensor for integrative real-time monitoring of aerobic and anaerobic energy metabolism in bovine embryos, with potential applications in the study of metabolic processes in oocyte and early embryonic development.
Collapse
Affiliation(s)
- Yusra Obeidat
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Giovana Catandi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elaine Carnevale
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - August DeMann
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| | - Stuart Field
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| | - Tom Chen
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Inagaki F, Momose M, Maruyama N, Matsuura K, Matsunaga T, Mukai C. Activation of disulfide bond cleavage triggered by hydrophobization and lipophilization of functionalized dihydroasparagusic acid. Org Biomol Chem 2018; 16:4320-4324. [DOI: 10.1039/c8ob01055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of a hydrophilic group into dihydroasparagusic acid (DHAA) indicated higher reduction ability of disulfide in protein and lower air oxidation.
Collapse
Affiliation(s)
- Fuyuhiko Inagaki
- Division of Pharmaceutical Sciences
- Graduate School of Medical Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Miyuki Momose
- Division of Pharmaceutical Sciences
- Graduate School of Medical Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Naoya Maruyama
- Division of Pharmaceutical Sciences
- Graduate School of Medical Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Kenkyo Matsuura
- Department of Pharmacology and Cancer Biology
- Duke University School of Medicine
- Durham
- USA
| | - Tsukasa Matsunaga
- Division of Pharmaceutical Sciences
- Graduate School of Medical Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Chisato Mukai
- Division of Pharmaceutical Sciences
- Graduate School of Medical Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| |
Collapse
|
11
|
Tranquilino A, Andrade SR, da Silva APM, Menezes PH, Oliveira RA. Non-expensive, open-flask and selective catalytic systems for the synthesis of sulfinate esters and thiosulfonates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Teo JY, Chin W, Ke X, Gao S, Liu S, Cheng W, Hedrick JL, Yang YY. pH and redox dual-responsive biodegradable polymeric micelles with high drug loading for effective anticancer drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:431-442. [PMID: 27720991 DOI: 10.1016/j.nano.2016.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/20/2023]
Abstract
Diblock copolymers of poly(ethylene glycol) (PEG) and biodegradable polycarbonate functionalized with GSH-sensitive disulfide bonds and pH-responsive carboxylic acid groups were synthesized via organocatalytic ring-opening polymerization of functional cyclic carbonates with PEG having different molecular weights as macroinitiators. These narrowly-dispersed polymers had predictable molecular weights, and were used to load doxorubicin (DOX) into micelles primarily through ionic interactions. The DOX-loaded micelles exhibited the requisite small particle size (<100 nm), narrow size distribution and high drug loading capacity. When exposed to endolysosomal pH of 5.0, drug release was accelerated by at least two-fold. The introduction of GSH further expedited DOX release. Effective DOX release enhanced cytotoxicity against cancer cells. More importantly, the DOX-loaded micelles with the optimized composition showed excellent antitumor efficacy in nude mice bearing BT-474 xenografts without inducing toxicity. These pH and redox dual-responsive micelles have the potential as delivery carriers to maximize the therapeutic effect of anticancer drugs.
Collapse
Affiliation(s)
- Jye Yng Teo
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Willy Chin
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Xiyu Ke
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Wei Cheng
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | | | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore.
| |
Collapse
|
13
|
Hicks KA, Yuen ME, Zhen WF, Gerwig TJ, Story RW, Kopp MC, Snider MJ. Structural and Biochemical Characterization of 6-Hydroxynicotinic Acid 3-Monooxygenase, A Novel Decarboxylative Hydroxylase Involved in Aerobic Nicotinate Degradation. Biochemistry 2016; 55:3432-46. [DOI: 10.1021/acs.biochem.6b00105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine A. Hicks
- Department
of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Meigan E. Yuen
- Department
of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Wei Feng Zhen
- Department
of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Tyler J. Gerwig
- Department
of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Ryan W. Story
- Department
of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Megan C. Kopp
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mark J. Snider
- Department
of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
14
|
Lutzke A, Neufeld BH, Neufeld MJ, Reynolds MM. Nitric oxide release from a biodegradable cysteine-based polyphosphazene. J Mater Chem B 2016; 4:1987-1998. [DOI: 10.1039/c6tb00037a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First report of nitric oxide (NO) release from a biodegradable polyphosphazene containing theS-nitrosothiol NO donor group.
Collapse
Affiliation(s)
- Alec Lutzke
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
| | | | | | - Melissa M. Reynolds
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
- School of Biomedical Engineering
| |
Collapse
|
15
|
Pham HT, Nguyen NLT, Duus F, Luu TXT. Ultrasound-Accelerated Synthesis of Asymmetrical Thiosulfonate S-Esters by Base-Promoted Reaction of Sulfonyl Chlorides with Thiols. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1034313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hien Thi Pham
- Department of Science, Systems and Models, Roskilde University, Roskilde, DK, 4000, Denmark
| | - Ngoc-Lan Thi Nguyen
- Department of Organic Chemistry, University of Science, Hochiminh City, Vietnam
| | - Fritz Duus
- Department of Science, Systems and Models, Roskilde University, Roskilde, DK, 4000, Denmark
| | - Thi Xuan Thi Luu
- Department of Science, Systems and Models, Roskilde University, Roskilde, DK, 4000, Denmark
- Department of Organic Chemistry, University of Science, Hochiminh City, Vietnam
| |
Collapse
|
16
|
Fuzita FJ, Pinkse MWH, Verhaert PDEM, Lopes AR. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:47-58. [PMID: 25818482 DOI: 10.1016/j.ibmb.2015.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil; Biotechnology Program, University of São Paulo, São Paulo, Brazil
| | - Martijn W H Pinkse
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - Peter D E M Verhaert
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - Adriana R Lopes
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil; Biotechnology Program, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Fuzita FJ, Pinkse MWH, Patane JSL, Juliano MA, Verhaert PDEM, Lopes AR. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod. PLoS One 2015; 10:e0123841. [PMID: 25875018 PMCID: PMC4398375 DOI: 10.1371/journal.pone.0123841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/25/2015] [Indexed: 01/29/2023] Open
Abstract
Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily, a large gene duplication of cathepsin L occurred in Arachnida with the sequences from ticks being completely divergent from other arachnids probably due to the particular selective pressures over this group.
Collapse
Affiliation(s)
- Felipe J. Fuzita
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
- Biotechnology Program, University of São Paulo, São Paulo, Brazil
| | - Martijn W. H. Pinkse
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - José S. L. Patane
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Peter D. E. M. Verhaert
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - Adriana R. Lopes
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
18
|
Luu TXT, Nguyen TTT, Le TN, Spanget-Larsen J, Duus F. Fast and efficient green synthesis of thiosulfonate S-esters by microwave-supported permanganate oxidation of symmetrical disulfides. J Sulphur Chem 2015. [DOI: 10.1080/17415993.2015.1025404] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Thi Xuan Thi Luu
- Department of Science, Systems and Models, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
- Department of Organic Chemistry, University of Science of Ho Chi Minh City, 227 Nguyen Van Cu St., Dist. 5, Ho Chi Minh City, Vietnam
| | - Thao-Tran Thi Nguyen
- Department of Science, Systems and Models, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
- Department of Organic Chemistry, University of Science of Ho Chi Minh City, 227 Nguyen Van Cu St., Dist. 5, Ho Chi Minh City, Vietnam
| | - Thach Ngoc Le
- Department of Organic Chemistry, University of Science of Ho Chi Minh City, 227 Nguyen Van Cu St., Dist. 5, Ho Chi Minh City, Vietnam
| | - Jens Spanget-Larsen
- Department of Science, Systems and Models, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
| | - Fritz Duus
- Department of Science, Systems and Models, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
19
|
Abraham SJ, Cheng RC, Chew TA, Khantwal CM, Liu CW, Gong S, Nakamoto RK, Maduke M. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. JOURNAL OF BIOMOLECULAR NMR 2015; 61:209-26. [PMID: 25631353 PMCID: PMC4398623 DOI: 10.1007/s10858-015-9898-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 05/03/2023]
Abstract
CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).
Collapse
Affiliation(s)
- Sherwin J. Abraham
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Ricky C. Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Thomas A. Chew
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Chandra M. Khantwal
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, 299 Campus Drive West, D105 Fairchild Science Building, Stanford, CA 94305
| | - Shimei Gong
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
- corresponding author, , tel (650)-723-9075, fax (650)-725-8021
| |
Collapse
|
20
|
Dispensability of zinc and the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase. Biosci Rep 2015; 35:BSR20150005. [PMID: 25686371 PMCID: PMC4381286 DOI: 10.1042/bsr20150005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNAGln via interaction with GatCAB, whereas its role in tRNAGlu interaction may be a consequence of the presence of pZBD. Zinc is functionally important in glutamylation of tRNAGlu in Escherichia coli, yet, it is absent from many bacterial glutamyl-tRNA synthetases (GluRSs). We demonstrate and rationalize why zinc or the putative zinc-binding domain (pZBD) is not indispensable in all bacterial GluRSs.
Collapse
|
21
|
Ge C, Wang H, Zhang B, Yao J, Li X, Feng W, Zhou P, Wang Y, Fang J. A thiol–thiosulfonate reaction providing a novel strategy for turn-on thiol sensing. Chem Commun (Camb) 2015; 51:14913-6. [DOI: 10.1039/c5cc05390k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A thiosulfonate scaffold was applied to design selective and turn-on thiol probes for the first time.
Collapse
Affiliation(s)
- Chunpo Ge
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Hao Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Weimin Feng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yawen Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
22
|
Wang Y, Ling J. Synthetic protocols toward polypeptide conjugates via chain end functionalization after RAFT polymerization. RSC Adv 2015. [DOI: 10.1039/c4ra17094f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We design protocols of conjugating synthetic polypeptides to RAFT-prepared polymers regardless of RAFT CTA structures.
Collapse
Affiliation(s)
- Yifei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
23
|
Wojdyla K, Williamson J, Roepstorff P, Rogowska-Wrzesinska A. The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations. J Proteomics 2014; 113:415-34. [PMID: 25449835 DOI: 10.1016/j.jprot.2014.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED Redox homeostasis is essential for normal function of cells and redox imbalance has been recognised as a pathogenic factor of numerous human diseases. Oxidative modifications of cysteine thiols modulate function of many proteins, mediate signalling, and fine-tune transcriptional and metabolic processes. In this study we present the SNO/SOH TMT strategy, which enables simultaneous analysis of two different types of cysteine modification: S-nitrosylation (SNO) and S-sulfenylation (SOH). The method facilitates quantitation of modification changes corrected by changes in protein abundance levels and estimation of relative modification site occupancy in a single nLC-MSMS run. The approach was evaluated in vivo using an Escherichia coli based model of mild oxidative stress. Bacteria were grown anaerobically on fumarate or nitrate. Short-term treatment with sub-millimolar levels of hydrogen peroxide was used to induce SOH. We have identified and quantified 114 SNO and SOH modified peptides. In many instances SNO and SOH occupy the same site, suggesting an association between them. High site occupancy does not equate to a site of modification which responds to redox imbalance. The SNO/SOH TMT strategy is a viable alternative to existing methods for cysteine oxidation analysis and provides new features that will facilitate our understanding of the interplay between SNO and SOH. BIOLOGICAL SIGNIFICANCE SNO/SOH TMT strategy outperforms other available strategies for cysteine oxidation analysis. It provides quantitative profiling of S-nitrosylation and S-sulfenylation changes simultaneously in two experimental conditions. It allows correction of modification levels by protein abundance changes and determination of relative modification site occupancy - all in a single nLC-MSMS experiment based on commercially available reagents. The method has proven precise and sensitive enough to detect and quantify endogenous levels of oxidative stress on proteome-wide scale.
Collapse
Affiliation(s)
- Katarzyna Wojdyla
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - James Williamson
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Peter Roepstorff
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Adelina Rogowska-Wrzesinska
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark.
| |
Collapse
|
24
|
Lukesh JC, Wallin KK, Raines RT. Pyrazine-derived disulfide-reducing agent for chemical biology. Chem Commun (Camb) 2014; 50:9591-4. [PMID: 25014913 PMCID: PMC4237594 DOI: 10.1039/c4cc04491f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For fifty years, dithiothreitol (DTT) has been the preferred reagent for the reduction of disulfide bonds in proteins and other biomolecules. Herein we report on the synthesis and characterization of 2,3-bis(mercaptomethyl)pyrazine (BMMP), a readily accessible disulfide-reducing agent with reactivity under biological conditions that is markedly superior to DTT and other known reagents.
Collapse
Affiliation(s)
- John C Lukesh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA.
| | | | | |
Collapse
|
25
|
Bhatia H, Manhas RK, Kumar K, Magotra R. Traditional knowledge on poisonous plants of Udhampur district of Jammu and Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:207-216. [PMID: 24412380 DOI: 10.1016/j.jep.2013.12.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/06/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poisonous plants comprise the third largest category of poisons known around the world. Other than affecting the humans directly, they are the major cause of economic losses in the livestock industry since the advent of civilisation. Aim of the present study was to collect and systematically document the traditional knowledge of poisonous plants of Udhampur District for the benefit of humanity before it is entombed forever. MATERIAL AND METHODS Direct interviews of the informants were conducted and the plants identified as poisonous by them were collected, identified and herbarium sheets were prepared. The data collected through interviews was analysed with two quantitative tools viz. the factor informant consensus and fidelity level. RESULTS A total of 90 toxic plants were listed from the study site. Most dominant toxic families were Fabaceae, Asteraceae, Solanaceae, Apocynaceae and Euphorbiaceae. Most of the poisonous plants were herbs (57.1%) and the whole plant toxicity was reported to be the highest (32.4%) followed by leaves (23.1%). According to the factor informant consensus, gastrointestinal category had the greatest agreement closely followed by the death category. The most important species on the basis of fidelity level for gastrointestinal category were Cannabis sativa, Cassia occidentalis, Cuscuta reflexa, Euphorbia helioscopia and Euphorbia hirta, for death category were Anagalis arvensis, Embelia robusta and Prunus persica, for dermatological category Euphorbia royleana, Leucaena leucocephala, Parthenium hysterophorus and Urtica dioica, and for sexual illness category were Calotropis procera and Carica papaya. CONCLUSION Further phytochemical and pharmacological studies are required to ascertain the toxic components of the poisonous plants, so that they may be utilised for the betterment of future generations.
Collapse
Affiliation(s)
- Harpreet Bhatia
- Department of Botany, University of Jammu, Jammu 180001, J&K, India
| | - R K Manhas
- Department of Botany, Government Degree College, Kathua 184104, J&K, India.
| | - Kewal Kumar
- Department of Botany, Government Degree College for Women, Udhampur 182101, J&K, India
| | - Rani Magotra
- Department of Botany, University of Jammu, Jammu 180001, J&K, India
| |
Collapse
|
26
|
Lukesh JC, VanVeller B, Raines RT. Thiols and selenols as electron-relay catalysts for disulfide-bond reduction. Angew Chem Int Ed Engl 2013; 52:12901-4. [PMID: 24123634 PMCID: PMC3885359 DOI: 10.1002/anie.201307481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 01/21/2023]
Abstract
Pass them on! Dithiobutylamine immobilized on a resin is a useful reagent for the reduction of disulfide bonds. Its ability to reduce a disulfide bond in a protein is enhanced greatly if used along with a soluble strained cyclic disulfide or mixed diselenide that relays electrons from the resin to the protein. This electron-relay catalysis system provides distinct advantages over the use of excess soluble reducing agent alone.
Collapse
Affiliation(s)
- John C. Lukesh
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brett VanVeller
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 1-608-890-2583, Homepage: http://www.biochem.wisc.edu/faculty/raines/lab. Department of Biochemistry, 433 Babcock Drive, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Lukesh JC, VanVeller B, Raines RT. Thiols and Selenols as Electron-Relay Catalysts for Disulfide-Bond Reduction. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Luu TXT, Duus F, Spanget-Larsen J. Molecular and vibrational structure of thiosulfonate S-esters. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Emmott AA, Mort JS. Efficient processing of procathepsin K to the mature form. Protein Expr Purif 2013; 91:37-41. [DOI: 10.1016/j.pep.2013.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022]
|
30
|
Roth PJ, Theato P. Thiol–Thiosulfonate Chemistry in Polymer Science: Simple Functionalization of Polymers via Disulfide Linkages. THIOL‐X CHEMISTRIES IN POLYMER AND MATERIALS SCIENCE 2013. [DOI: 10.1039/9781849736961-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein we highlight the reaction of thiols with thiosulfonates yielding asymmetric disulfides. The chapter begins with an overview of the synthesis and reactivity of functional thiosulfonates and is followed by a review of polymeric thiosulfonates. We then emphasize the novel use of thiosulfonates as trapping/functionalization agents for macromolecular thiols obtained from parent (co)polymers prepared by reversible addition‐fragmentation chain transfer (RAFT) radical polymerization. We also note how such facile disulfide‐forming chemistries can be readily employed simultaneously with other highly efficient coupling chemistries with an emphasis on the concurrent reaction of activated esters with amines in the presence of thiosulfonates. Finally, we discuss the use of methyl disulfide (SSMe) functional/end‐modified (co)polymers as reagents for the formation of polymeric self‐assembled monolayers (polymer brushes) on metal surfaces such as nanoparticles and quantum dots.
Collapse
Affiliation(s)
- Peter J. Roth
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW 2052 Australia
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry University of Hamburg, Bundesstrasse 45, D‐20146 Hamburg Germany ‐hamburg.de
| |
Collapse
|
31
|
Pan J, Carroll KS. Persulfide reactivity in the detection of protein s-sulfhydration. ACS Chem Biol 2013; 8:1110-6. [PMID: 23557648 DOI: 10.1021/cb4001052] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen sulfide (H2S) has emerged as a new member of the gaseous transmitter family of signaling molecules and appears to play a regulatory role in the cardiovascular and nervous systems. Recent studies suggest that protein cysteine S-sulfhydration may function as a mechanism for transforming the H2S signal into a biological response. However, selective detection of S-sulfhydryl modifications is challenging since the persulfide group (RSSH) exhibits reactivity akin to other sulfur species, especially thiols. A modification of the biotin switch technique, using S-methyl methanethiosulfonate (MMTS) as an alkylating reagent, was recently used to identify a large number of proteins that may undergo S-sulfhydration, but the underlying mechanism of chemical detection was not fully explored. To address this key issue, we have developed a protein persulfide model and analogue of MMTS, S-4-bromobenzyl methanethiosulfonate (BBMTS). Using these new reagents, we investigated the chemistry in the modified biotin switch method and examined the reactivity of protein persulfides toward different electrophile/nucleophile species. Together, our data affirm the nucleophilic properties of the persulfide sulfane sulfur and afford new insights into protein S-sulfhydryl chemistry, which may be exploited in future detection strategies.
Collapse
Affiliation(s)
- Jia Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33456, United States
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33456, United States
| |
Collapse
|
32
|
The effect of various S-alkylating agents on the chromatographic behavior of cysteine-containing peptides in reversed-phase chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 915-916:57-63. [DOI: 10.1016/j.jchromb.2012.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/26/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
|
33
|
Defonsi Lestard ME, Díaz SB, Tuttolomondo ME, Sánchez Cortez S, Puiatti M, Pierini AB, Ben Altabef A. Interaction of S-methyl methanethiosulfonate with DPPC bilayer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 97:479-489. [PMID: 22832011 DOI: 10.1016/j.saa.2012.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/14/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
The present study is a first step towards the investigation of S-methyl methanethiosulfonate (MMTS) interaction with membrane model systems like liposomes. In this paper, the interaction of MMTS with dipalmitoylphosphatidylcholine (DPPC) bilayers was studied by FTIR and SERS spectroscopy. Lysolipid effect on vesicle stability was studied. The results show that MMTS interacts to different extents with the phosphate and carbonyl groups of membranes in the gel and the liquid crystalline states. To gain a deeper insight into MMTS properties that may be potentially helpful in the design of new drugs with therapeutic effects, we performed theoretical studies that may be the basis for the design of their mode of action.
Collapse
Affiliation(s)
- María E Defonsi Lestard
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, Argentina
| | | | | | | | | | | | | |
Collapse
|
34
|
Lukesh JC, Palte MJ, Raines RT. A potent, versatile disulfide-reducing agent from aspartic acid. J Am Chem Soc 2012; 134:4057-9. [PMID: 22353145 PMCID: PMC3353773 DOI: 10.1021/ja211931f] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 11/30/2022]
Abstract
Dithiothreitol (DTT) is the standard reagent for reducing disulfide bonds between and within biological molecules. At neutral pH, however, >99% of DTT thiol groups are protonated and thus unreactive. Herein, we report on (2S)-2-amino-1,4-dimercaptobutane (dithiobutylamine or DTBA), a dithiol that can be synthesized from l-aspartic acid in a few high-yielding steps that are amenable to a large-scale process. DTBA has thiol pK(a) values that are ~1 unit lower than those of DTT and forms a disulfide with a similar E°' value. DTBA reduces disulfide bonds in both small molecules and proteins faster than does DTT. The amino group of DTBA enables its isolation by cation-exchange and facilitates its conjugation. These attributes indicate that DTBA is a superior reagent for reducing disulfide bonds in aqueous solution.
Collapse
Affiliation(s)
- John C. Lukesh
- Department
of Chemistry, Medical Scientist Training Program, Molecular & Cellular Pharmacology Graduate
Training Program, and Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Michael J. Palte
- Department
of Chemistry, Medical Scientist Training Program, Molecular & Cellular Pharmacology Graduate
Training Program, and Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Ronald T. Raines
- Department
of Chemistry, Medical Scientist Training Program, Molecular & Cellular Pharmacology Graduate
Training Program, and Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| |
Collapse
|
35
|
Vu MT, Zhai P, Lee J, Guerra C, Liu S, Gustin MC, Silberg JJ. The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9. Protein Sci 2012; 21:258-67. [PMID: 22162012 DOI: 10.1002/pro.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/04/2011] [Accepted: 11/27/2011] [Indexed: 01/20/2023]
Abstract
Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones.
Collapse
Affiliation(s)
- Michael T Vu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Religa TL, Ruschak AM, Rosenzweig R, Kay LE. Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. J Am Chem Soc 2011; 133:9063-8. [DOI: 10.1021/ja202259a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomasz L. Religa
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amy M. Ruschak
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
37
|
Jia X, Maleckis A, Huber T, Otting G. 4,4′-Dithiobisdipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy. Chemistry 2011; 17:6830-6. [DOI: 10.1002/chem.201003573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Indexed: 11/09/2022]
|
38
|
Trivedi MV, Laurence JS, Siahaan TJ. The role of thiols and disulfides on protein stability. Curr Protein Pept Sci 2010; 10:614-25. [PMID: 19538140 DOI: 10.2174/138920309789630534] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 05/23/2009] [Indexed: 01/20/2023]
Abstract
There has been a tremendous increase in the number of approved drugs derived from recombinant proteins; however, their development as potential drugs has been hampered by their instability that causes difficulty to formulate them as therapeutic agents. It has been shown that the reactivity of thiol and disulfide functional groups could catalyze chemical (i.e., oxidation and beta-elimination reactions) and physical (i.e., aggregation and precipitation) degradations of proteins. Because most proteins contain a free Cys residue or/and a disulfide bond, this review is focused on their roles in the physical and chemical stability of proteins. The effect of introducing a disulfide bond to improve physical stability of proteins and the mechanisms of degradation of disulfide bond were discussed. The qualitative/quantitative methods to determine the presence of thiol in the Cys residue and various methods to derivatize thiol group for improving protein stability were also illustrated.
Collapse
Affiliation(s)
- Maulik V Trivedi
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Ave., Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
39
|
Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 2010; 192:2359-72. [PMID: 20190049 DOI: 10.1128/jb.01445-09] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's high-throughput sequencing technology. The resulting sequences were used to construct genome-wide transcriptional profiles. Novel bioinformatics analyses were developed and used in combination with proteomics data for the qualitative classification of transcriptional activity in defined regions. As expected, most transcriptional activity was consistent with predictions from the genome annotation. Importantly, we identified and confirmed transcriptional activity in areas of the genome inconsistent with the annotation and in unannotated regions. Further analyses revealed potential RpoN-dependent promoter sequences upstream of several noncoding RNAs (ncRNAs), suggesting a role for these ncRNAs in RpoN-dependent phenotypes. We were also able to validate a number of transcriptional start sites, many of which were consistent with predicted promoter motifs. Overall, our approach provides an efficient way to survey global transcriptional activity in bacteria and enables rapid discovery of specific areas in the genome that merit further investigation.
Collapse
|
40
|
Su XC, Otting G. Paramagnetic labelling of proteins and oligonucleotides for NMR. JOURNAL OF BIOMOLECULAR NMR 2010; 46:101-112. [PMID: 19529883 DOI: 10.1007/s10858-009-9331-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 05/20/2009] [Indexed: 05/26/2023]
Abstract
Paramagnetic effects offer a rich source of long-range structural restraints. Here we review current methods for site-specific tagging of proteins and oligonucleotides with paramagnetic molecules. The paramagnetic tags include nitroxide radicals and metal chelators. Particular emphasis is placed on tags suitable for site-specific and rigid attachment of lanthanide ions to macromolecules.
Collapse
Affiliation(s)
- Xun-Cheng Su
- The Australian National University, Canberra, Australia
| | | |
Collapse
|
41
|
Gardonio D, Siemann S. Chelator-facilitated chemical modification of IMP-1 metallo-beta-lactamase and its consequences on metal binding. Biochem Biophys Res Commun 2009; 381:107-11. [PMID: 19351604 DOI: 10.1016/j.bbrc.2009.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 02/08/2009] [Indexed: 10/21/2022]
Abstract
A method involving the reversible chemical modification of an active site, zinc-binding cysteine residue (Cys221) for the specific removal of one of the two zinc ions in the metallo-beta-lactamase IMP-1 was explored. Covalent modification of Cys221 by 5,5'-dithio-bis(2-nitrobenzoic acid) was greatly enhanced by the presence of dipicolinic acid, and subsequent removal of the modifying group was easily achieved by reduction of the disulfide bond. However, mass spectrometric analyses and an assessment of IMP-1's catalytic competence are consistent with the maintenance of the enzyme's binuclear status. The consequences arising from chemical modification of Cys221 are thus distinct from those reported for Cys-->Ala/Ser mutants of IMP-1 and other metallo-beta-lactamases, which are mononuclear.
Collapse
Affiliation(s)
- Dave Gardonio
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Rd., Sudbury, Ont., Canada P3E 2C6
| | | |
Collapse
|
42
|
Tedaldi LM, Smith MEB, Nathani RI, Baker JR. Bromomaleimides: new reagents for the selective and reversible modification of cysteine. Chem Commun (Camb) 2009:6583-5. [DOI: 10.1039/b915136b] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Roth PJ, Kessler D, Zentel R, Theato P. A Method for Obtaining Defined End Groups of Polymethacrylates Prepared by the RAFT Process during Aminolysis. Macromolecules 2008. [DOI: 10.1021/ma801869z] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter J. Roth
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Daniel Kessler
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Patrick Theato
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| |
Collapse
|
44
|
Abstract
The oxidation chemistry of thiols and disulfides of biologic relevance is described. The review focuses on the interaction and kinetics of hydrogen peroxide with low-molecular-weight thiols and protein thiols and, in particular, on sulfenic acid groups, which are recognized as key intermediates in several thiol oxidation processes. In particular, sulfenic and selenenic acids are formed during the catalytic cycle of peroxiredoxins and glutathione peroxidases, respectively. In turn, these enzymes are in close redox communication with the thioredoxin and glutathione systems, which are the major controllers of the thiol redox state. Oxidants formed in the cell originate from several different sources, but the major producers are NADPH oxidases and mitochondria. However, a different role of the oxygen species produced by these sources is apparent as oxidants derived from NADPH oxidase are involved mainly in signaling processes, whereas those produced by mitochondria induce cell death in pathways including also the thioredoxin system, presently considered an important target for cancer chemotherapy.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neurosciences (CNR) c/o Department of Biological Chemistry, University of Padova (Italy).
| | | | | |
Collapse
|
45
|
Marraffini LA, Schneewind O. Sortase C-mediated anchoring of BasI to the cell wall envelope of Bacillus anthracis. J Bacteriol 2007; 189:6425-36. [PMID: 17586639 PMCID: PMC1951891 DOI: 10.1128/jb.00702-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vegetative forms of Bacillus anthracis replicate in tissues of an infected host and precipitate lethal anthrax disease. Upon host death, bacilli form dormant spores that contaminate the environment, thereby gaining entry into new hosts where spores germinate and once again replicate as vegetative forms. We show here that sortase C, an enzyme that is required for the formation of infectious spores, anchors BasI polypeptide to the envelope of predivisional sporulating bacilli. BasI anchoring to the cell wall requires the active site cysteine of sortase C and an LPNTA motif sorting signal at the C-terminal end of the BasI precursor. The LPNTA motif of BasI is cleaved between the threonine (T) and the alanine (A) residue; the C-terminal carboxyl group of threonine is subsequently amide linked to the side chain amino group of diaminopimelic acid within the wall peptides of B. anthracis peptidoglycan.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
46
|
Panyi G, Deutsch C. Probing the cavity of the slow inactivated conformation of shaker potassium channels. ACTA ACUST UNITED AC 2007; 129:403-18. [PMID: 17438120 PMCID: PMC2154382 DOI: 10.1085/jgp.200709758] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Slow inactivation involves a local rearrangement of the outer mouth of voltage-gated potassium channels, but nothing is known regarding rearrangements in the cavity between the activation gate and the selectivity filter. We now report that the cavity undergoes a conformational change in the slow-inactivated state. This change is manifest as altered accessibility of residues facing the aqueous cavity and as a marked decrease in the affinity of tetraethylammonium for its internal binding site. These findings have implications for global alterations of the channel during slow inactivation and putative coupling between activation and slow-inactivation gates.
Collapse
Affiliation(s)
- Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary.
| | | |
Collapse
|
47
|
Schirch L. Serine hydroxymethyltransferase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 53:83-112. [PMID: 7036682 DOI: 10.1002/9780470122983.ch3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Kenyon GL, Reed GH. Creatine kinase: structure-activity relationships. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 54:367-426. [PMID: 6342340 DOI: 10.1002/9780470122990.ch6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Machion PD, Pardini VL, Viertler H. An Electrochemical Preparation of Methyl Methanethiolsulfonate. SYNTHETIC COMMUN 2006. [DOI: 10.1080/00397919008052777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pedro D. Machion
- a Instituto de Quírnica, Universidade de São Paulo , C.P. 20.780-01.498, São Paulo , S.P. Brazil
| | - Vera L. Pardini
- a Instituto de Quírnica, Universidade de São Paulo , C.P. 20.780-01.498, São Paulo , S.P. Brazil
| | - Hans Viertler
- a Instituto de Quírnica, Universidade de São Paulo , C.P. 20.780-01.498, São Paulo , S.P. Brazil
| |
Collapse
|
50
|
Zhuang T, Leffler H, Prestegard JH. Enhancement of bound-state residual dipolar couplings: conformational analysis of lactose bound to Galectin-3. Protein Sci 2006; 15:1780-90. [PMID: 16751604 PMCID: PMC2242564 DOI: 10.1110/ps.051994306] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Residual dipolar couplings (RDCs) have proven to be a valuable NMR tool that can provide long-range constraints for molecular structure determination. The constraints are orientational in nature and are, thus, highly complementary to conventional distance constraints from NOE data. This complementarity would seem to extend to the study of the geometry of ligands bound to proteins. However, unlike transferred NOEs, where collection, even with a large excess of free ligand, results in measurements dominated by bound contributions, RDCs of exchanging ligands can be dominated by free-state contributions. Here we present a strategy for enhancement of RDCs from bound states that is based on specifically enhancing the alignment of the protein to which a ligand will bind. The protein is modified by addition of a hydrophobic alkyl tail that anchors it to the bicelles that are a part of the ordering medium needed for RDC measurement. As an illustration, we have added a propyl chain to the C terminus of the carbohydrate recognition domain of the protein, Galectin-3, and report enhanced RDCs that prove consistent with known bound-ligand geometries for this protein.
Collapse
Affiliation(s)
- Tiandi Zhuang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|