1
|
Jiang F, Takagi Y, Shams A, Heissler SM, Friedman TB, Sellers JR, Bird JE. The ATPase mechanism of myosin 15, the molecular motor mutated in DFNB3 human deafness. J Biol Chem 2021; 296:100243. [PMID: 33372036 PMCID: PMC7948958 DOI: 10.1074/jbc.ra120.014903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Cochlear hair cells each possess an exquisite bundle of actin-based stereocilia that detect sound. Unconventional myosin 15 (MYO15) traffics and delivers critical molecules required for stereocilia development and thus is essential for building the mechanosensory hair bundle. Mutations in the human MYO15A gene interfere with stereocilia trafficking and cause hereditary hearing loss, DFNB3, but the impact of these mutations is not known, as MYO15 itself is poorly characterized. To learn more, we performed a kinetic study of the ATPase motor domain to characterize its mechanochemical cycle. Using the baculovirus-Sf9 system, we purified a recombinant minimal motor domain (S1) by coexpressing the mouse MYO15 ATPase, essential and regulatory light chains that bind its IQ domains, and UNC45 and HSP90A chaperones required for correct folding of the ATPase. MYO15 purified with either UNC45A or UNC45B coexpression had similar ATPase activities (kcat = ∼ 6 s-1 at 20 °C). Using stopped-flow and quenched-flow transient kinetic analyses, we measured the major rate constants describing the ATPase cycle, including ATP, ADP, and actin binding; hydrolysis; and phosphate release. Actin-attached ADP release was the slowest measured transition (∼12 s-1 at 20 °C), although this did not rate-limit the ATPase cycle. The kinetic analysis shows the MYO15 motor domain has a moderate duty ratio (∼0.5) and weak thermodynamic coupling between ADP and actin binding. These findings are consistent with MYO15 being kinetically adapted for processive motility when oligomerized. Our kinetic characterization enables future studies into how deafness-causing mutations affect MYO15 and disrupt stereocilia trafficking necessary for hearing.
Collapse
Affiliation(s)
- Fangfang Jiang
- Department of Pharmacology and Therapeutics, and the Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, and the Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
2
|
Unfolding of the myosin head by purealin in glycerol. Anat Sci Int 2017; 93:197-202. [PMID: 28078539 DOI: 10.1007/s12565-017-0389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
Purealin is a small bioactive compound obtained from the marine sponge. The compound modulates various types of ATPase activity of myosin from skeletal muscle, cardiac muscle, and smooth muscle. To elucidate the structural basis of these effects of purealin on myosin ATPases, we examined the effect of purealin on the conformation of skeletal muscle myosin in aqueous solution and in glycerol. Analysis of the circular dichroism spectrum of subfragment 1, a single-headed fragment of myosin, revealed that in 10% glycerol purealin decreased the β-sheet content of S1, but in aqueous solution it had little effect on the secondary structure of S1. A myosin monomer conforms to two pear-like globular heads attached to a long tail. Electron microscopy observations with rotary shadowing revealed that purealin unfolded each globular head to an extended single strand. The tips of the unfolded strand bound each other and formed a ring in one molecule. These results suggest that binding of purealin affects the critical parameters of myosin folding.
Collapse
|
3
|
Tkachev YV, Ge J, Negrashov IV, Nesmelov YE. Metal cation controls myosin and actomyosin kinetics. Protein Sci 2013; 22:1766-74. [PMID: 24115140 DOI: 10.1002/pro.2376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/26/2013] [Accepted: 09/08/2013] [Indexed: 11/07/2022]
Abstract
We have perturbed myosin nucleotide binding site with magnesium-, manganese-, or calcium-nucleotide complexes, using metal cation as a probe to examine the pathways of myosin ATPase in the presence of actin. We have used transient time-resolved FRET, myosin intrinsic fluorescence, fluorescence of pyrene labeled actin, combined with the steady state myosin ATPase activity measurements of previously characterized D.discoideum myosin construct A639C:K498C. We found that actin activation of myosin ATPase does not depend on metal cation, regardless of the cation-specific kinetics of nucleotide binding and dissociation. The rate limiting step of myosin ATPase depends on the metal cation. The rate of the recovery stroke and the reverse recovery stroke is directly proportional to the ionic radius of the cation. The rate of nucleotide release from myosin and actomyosin, and ATP binding to actomyosin depends on the cation coordination number.
Collapse
Affiliation(s)
- Yaroslav V Tkachev
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina, 28223; Engelhardt Institute of Molecular Biology RAS, Moscow, 119991, Russia
| | | | | | | |
Collapse
|
4
|
Katayama T, Watanabe M, Tanaka H, Hino M, Miyakawa T, Ohki T, Ye LH, Xie C, Yoshiyama S, Nakamura A, Ishikawa R, Tanokura M, Oiwa K, Kohama K. Stimulatory effects of arachidonic acid on myosin ATPase activity and contraction of smooth muscle via myosin motor domain. Am J Physiol Heart Circ Physiol 2010; 298:H505-14. [DOI: 10.1152/ajpheart.00577.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have been searching for a mechanism to induce smooth muscle contraction that is not associated with phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin (Nakamura A, Xie C, Zhang Y, Gao Y, Wang HH, Ye LH, Kishi H, Okagaki T, Yoshiyama S, Hayakawa K, Ishikawa R, Kohama K. Biochem Biophys Res Commun 369: 135–143, 2008). In this article, we report that arachidonic acid (AA) stimulates ATPase activity of unphosphorylated smooth muscle myosin with maximal stimulation (Rmax) of 6.84 ± 0.51 relative to stimulation by the vehicle and with a half-maximal effective concentration (EC50) of 50.3 ± 4.2 μM. In the presence of actin, Rmax was 1.72 ± 0.08 and EC50 was 26.3 ± 2.3 μM. Our experiments with eicosanoids consisting of the AA cascade suggested that they neither stimulated nor inhibited the activity. Under conditions that did not allow RLC to be phosphorylated, AA stimulated contraction of smooth muscle tissue with an Rmax of 1.45 ± 0.07 and an EC50 of 27.0 ± 4.4 μM. In addition to the ATPase activities of the myosin, AA stimulated those of heavy meromyosin, subfragment 1 (S1), S1 from which the RLC was removed, and a recombinant heavy chain consisting of the myosin head. The stimulatory effects of AA on these preparations were about twofold. The site of AA action was indicated to be the step-releasing inorganic phosphate (Pi) from the reaction intermediate of the myosin-ADP-Pi complex. The enhancement of Pi release by AA was supported by computer simulation indicating that AA docked in the actin-binding cleft of the myosin motor domain. The stimulatory effect of AA was detectable with both unphosphorylated myosin and the myosin in which RLC was fully phosphorylated. The AA effect on both myosin forms was suggested to cause excess contraction such as vasospasm.
Collapse
Affiliation(s)
- Takeshi Katayama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | | | - Hideyuki Tanaka
- Department of Research Science, Gunma University School of Health Sciences, Gunma
| | - Mizuki Hino
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Takashi Ohki
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo
| | - Li-Hong Ye
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China; and
| | - Ce Xie
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Shinji Yoshiyama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Akio Nakamura
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Ryoki Ishikawa
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | | | - Kazuhiro Kohama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
- Department of Biological Sciences, Marshall University, Huntington, West Virginia
| |
Collapse
|
5
|
Onishi H. Yuji Tonomura: A Pioneer in the Field of Energy Transduction in Muscle Contraction. J Biochem 2009; 146:7-11. [DOI: 10.1093/jb/mvp081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Abstract
Spectroscopy of myosin and actin has entered a golden age. High-resolution crystal structures of isolated actin and myosin have been used to construct detailed models for the dynamic actomyosin interactions that move muscle. Improved protein mutagenesis and expression technologies have facilitated site-directed labeling with fluorescent and spin probes. Spectroscopic instrumentation has achieved impressive advances in sensitivity and resolution. Here we highlight the contributions of site-directed spectroscopic probes to understanding the structural dynamics of myosin II and its actin complexes in solution and muscle fibers. We emphasize studies that probe directly the movements of structural elements within the myosin catalytic and light-chain domains, and changes in the dynamics of both actin and myosin due to their alternating strong and weak interactions in the ATPase cycle. A moving picture emerges in which single biochemical states produce multiple structural states, and transitions between states of order and dynamic disorder power the actomyosin engine.
Collapse
Affiliation(s)
- David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Kast
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Vicci L. Korman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
7
|
Nesmelov YE, Agafonov RV, Burr AR, Weber RT, Thomas DD. Structure and dynamics of the force-generating domain of myosin probed by multifrequency electron paramagnetic resonance. Biophys J 2008; 95:247-56. [PMID: 18339764 PMCID: PMC2426653 DOI: 10.1529/biophysj.107.124305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/20/2008] [Indexed: 11/18/2022] Open
Abstract
Spin-labeling and multifrequency EPR spectroscopy were used to probe the dynamic local structure of skeletal myosin in the region of force generation. Subfragment 1 (S1) of rabbit skeletal myosin was labeled with an iodoacetamide spin label at C707 (SH1). X- and W-band EPR spectra were recorded for the apo state and in the presence of ADP and nucleotide analogs. EPR spectra were analyzed in terms of spin-label rotational motion within myosin by fitting them with simulated spectra. Two models were considered: rapid-limit oscillation (spectrum-dependent on the orientational distribution only) and slow restricted motion (spectrum-dependent on the rotational correlation time and the orientational distribution). The global analysis of spectra obtained at two microwave frequencies (9.4 GHz and 94 GHz) produced clear support for the second model and enabled detailed determination of rates and amplitudes of rotational motion and resolution of multiple conformational states. The apo biochemical state is well-described by a single structural state of myosin (M) with very restricted slow motion of the spin label. The ADP-bound biochemical state of myosin also reveals a single structural state (M*, shown previously to be the same as the post-powerstroke ATP-bound state), with less restricted slow motion of the spin label. In contrast, the extra resolution available at 94 GHz reveals that the EPR spectrum of the S1.ADP.V(i)-bound biochemical state of myosin, which presumably mimics the S1.ADP.P(i) state, is resolved clearly into three spectral components (structural states). One state is indistinguishable from that of the ADP-bound state (M*) and is characterized by moderate restriction and slow motion, with a mole fraction of 16%. The remaining 84% (M**) contains two additional components and is characterized by fast rotation about the x axis of the spin label. After analyzing EPR spectra, myosin ATPase activity, and available structural information for myosin II, we conclude that post-powerstroke and pre-powerstroke structural states (M* and M**) coexist in the S1.ADP.V(i) biochemical state. We propose that the pre-powerstroke state M** is characterized by two structural states that could reflect flexibility between the converter and N-terminal domains of myosin.
Collapse
Affiliation(s)
- Yuri E Nesmelov
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN55455, USA.
| | | | | | | | | |
Collapse
|
8
|
Highsmith S, Jardetzky O. Actin-Induced Changes in the Dynamics of Myosin Subfragment-1 Detected by Nuclear Magnetic Resonance. ACTA ACUST UNITED AC 2008; 93:156-8. [PMID: 6551227 DOI: 10.1002/9780470720752.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Analysis of high resolution 1H NMR spectra for myosin and myosin subfragment-1 (S-1) indicates that S-1 has an unusual structure, about 20% of which is mobile. The rest of the myosin molecule and F-actin are rigid by comparison. A wide variety of perturbations do not affect the S-1 internal mobility and suggest that the mobile structure is located in the interior of S-1. Actin binding uniquely quenches the internal motions entirely. The F and G forms have a similar effect. Nucleotide binding restores the internal motions under conditions known to cause dissociation of the acto-S-1 complex. A model of force generation by the actomyosin-nucleotide system, which incorporates this striking actin-induced change in S-1 structural dynamics, is proposed and discussed.
Collapse
|
9
|
Halstead MF, Ajtai K, Penheiter AR, Spencer JD, Zheng Y, Morrison EA, Burghardt TP. An unusual transduction pathway in human tonic smooth muscle myosin. Biophys J 2007; 93:3555-66. [PMID: 17704147 PMCID: PMC2072059 DOI: 10.1529/biophysj.106.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motor protein myosin binds actin and ATP, producing work by causing relative translation of the proteins while transducing ATP free energy. Smooth muscle myosin has one of four heavy chains encoded by the MYH11 gene that differ at the C-terminus and in the active site for ATPase due to alternate splicing. A seven-amino-acid active site insert in phasic muscle myosin is absent from the tonic isoform. Fluorescence increase in the nucleotide sensitive tryptophan (NST) accompanies nucleotide binding and hydrolysis in several myosin isoforms implying it results from a common origin within the motor. A wild-type tonic myosin (smA) construct of the enzymatic head domain (subfragment 1 or S1) has seven tryptophan residues and nucleotide-induced fluorescence enhancement like other myosins. Three smA mutants probe the molecular basis for the fluorescence enhancement. W506+ contains one tryptophan at position 506 homologous to the NST in other myosins. W506F has the native tryptophans except phenylalanine replaces W506, and W506+(Y499F) is W506+ with phenylalanine replacing Y499. W506+ lacks nucleotide-induced fluorescence enhancement probably eliminating W506 as the NST. W506F has impaired ATPase activity but retains nucleotide-induced fluorescence enhancement. Y499F replacement in W506+ partially rescues nucleotide sensitivity demonstrating the role of Y499 as an NST facilitator. The exceptional response of W506 to active site conformation opens the possibility that phasic and tonic isoforms differ in how influences from active site ATPase propagate through the protein network.
Collapse
Affiliation(s)
- Miriam F Halstead
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Vertebrate myosin Va is a typical processive motor with high duty ratio. Recent studies have revealed that the actin-activated ATPase activity of the full-length myosin Va (M5aFull) is inhibited at a low [Ca(2+)], which is due to the formation of a folded conformation of M5aFull. To clarify the underlying inhibitory mechanism, we analyzed the actin-activated ATP hydrolysis mechanism of the M5aFull at the inhibited and the activated states, respectively. Marked differences were found in the hydrolysis, P(i) release, and ADP release steps between the activated and the inhibited states. The kinetic constants of these steps of the activated state were similar to those of the unregulated S1 construct, in which the rate-limiting step was the ADP release step. On the other hand, the P(i) release rate from acto-M5aFull was decreased in EGTA by >1,000-fold, which makes this step the rate-limiting step for the actin-activated ATP hydrolysis cycle of M5aFull. The ADP off rate from acto-M5aFull was decreased by approximately 10-fold, and the equilibrium between the prehydrolysis state and the post hydrolysis state was shifted toward the former state in the inhibited state of M5aFull. Because of these changes, M5aFull spends a majority of the ATP hydrolysis cycling time in the weak actin binding state. The present results indicate that M5aFull molecules at a low [Ca(2+)] is inhibited as a cargo transporter not only due to the decrease in the cross-bridge cycling rate but also due to the decrease in the duty ratio thus being dissociated from actin.
Collapse
Affiliation(s)
- Osamu Sato
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachueetts 01655, USA
| | | | | |
Collapse
|
11
|
Gawalapu RK, Root DD. Fluorescence labeling and computational analysis of the strut of myosin’s 50kDa cleft. Arch Biochem Biophys 2006; 456:102-11. [PMID: 16949551 DOI: 10.1016/j.abb.2006.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 07/12/2006] [Accepted: 07/18/2006] [Indexed: 12/01/2022]
Abstract
A new fluorescent labeling procedure specific for the strut sequence of myosin subfragment-1's 50kDa cleft was developed using CY3 N-hydroxy succinimidyl ester as a hydrophobic tag and hydrophobic interaction chromatography to purify the major labeled species which retained actin-activated ATPase activity. Stern-Volmer analysis suggests that the CY3 is in close proximity to basic residues, consistent with inspection of the mapped labeling site in the atomic model. Fluorescence polarization indicates that the CY3 becomes more mobile upon actin binding, supporting a location near the actomyosin interface. In contrast, nucleotide binding to myosin had little impact on the CY3. Molecular mechanics and stochastic dynamics simulations suggest that this labeling site is sensitive to forced cleft opening and closure, but the upper 50kDa cleft does not move easily. In addition, there appear to be some long-range effects of forced cleft opening and closing that could impact the lever arm position.
Collapse
|
12
|
|
13
|
Wakelin S, Conibear PB, Woolley RJ, Floyd DN, Bagshaw CR, Kovács M, Málnási-Csizmadia A. Engineering Dictyostelium discoideum myosin II for the introduction of site-specific fluorescence probes. J Muscle Res Cell Motil 2003; 23:673-83. [PMID: 12952066 DOI: 10.1023/a:1024411208497] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dictyostelium discoideum is a useful host for the production of constructs for the analysis of structure-function relationships of myosin. Here we describe the use of myosin II constructs containing a single tryptophan residue, at different locations, for probing events at the nucleotide binding site, the relay loop and the communication path between them. GFP fusions have also been expressed at the N- and C-termini of the myosin motor to provide sensitive probes of the actomyosin dissociation reaction in microscope-based kinetic assays. We report on the fluorescence anisotropy of these constructs in the context of their use as resonance energy transfer probes.
Collapse
Affiliation(s)
- Stuart Wakelin
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Hydrostatic pressure-induced structural changes in subfragment-1 (S1) of myosin molecule were studied. ATP-induced emission spectra of S1 were used to detect global structural change of S1 by pressure treatment. The fluorescence intensity of unpressurized S1 increased by addition of ATP. The increment of fluorescence of pressurized S1 up to 150 MPa was almost the same as control, whereas it became smaller above 200 MPa. ATP binding ability of S1 examined using 1, N(6)-ethenoadenosine 5'-diphosphate (epsilon -ADP) indicated that the binding of epsilon -ADP to S1 decreased in the range of 250-300 MPa. S1 pressurized below 250 MPa and unpressurized S1 similarly bound to F-actin, although binding of S1 pressurized above 250 MPa decreased. Electron microscopic observation revealed arrowhead structure in control acto-S1, while disordered arrowhead structure was observed in acto-S1 prepared from pressurized S1 at 300 MPa. S1 pressurized below 250 MPa retained the same actin activated ATPase activity as the control, whereas the activity decreased to 60% at 300 MPa. Pressure treated S1 was easily cleaved by tryptic digestion into three domains, i.e. 27 kDa (N-terminal), 50 and 20 kDa (C-terminal) fragments, which were the same as those in unpressurized one. It is concluded that pressure-induced global structural changes of S1 begin to occur about 150 MPa, and the local structural changes in ATPase and actin binding sites followed with elevating pressure to 250-300 MPa.
Collapse
Affiliation(s)
- Tomohito Iwasaki
- Department of Food Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | | |
Collapse
|
15
|
Abstract
On binding to myosin subfragment 1 (S1), the gamma-amido derivative of ATP (ATPgammaNH2), an isomer of adenosine 5'-[beta,gamma-imido]-triphosphate (AMPPNP), induces a larger increase in the intrinsic (tryptophan) fluorescence than is seen with ATP. A binding constant of 1.7x10(7) M(-1) was measured for ATPgammaNH2, compared to 2.1-2.4x10(7) M(-1) for AMPPNP. ATPgammaNH2 was hydrolyzed only very slowly by S1. ATPgammaNH2 appears to stabilize the 'closed' conformation of S1, and does so without cleavage of the beta-gamma phosphate bond. The dissociation of actin-S1 by ATPgammaNH2 and that of S1.ATPgammaNH2 by actin are both strikingly slow.
Collapse
Affiliation(s)
- John Wray
- Abteilung Biophysik, Max-Planck-Institut für Medizinische Forschung, Jahnstr. 29, 69120, Heidelberg, Germany.
| | | |
Collapse
|
16
|
Structural changes in chicken myosin subfragment-1 induced by high hydrostatic pressure. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0921-0423(02)80087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
|
18
|
Peyser YM, Ajtai K, Burghardt TP, Muhlrad A. Effect of ionic strength on the conformation of myosin subfragment 1-nucleotide complexes. Biophys J 2001; 81:1101-14. [PMID: 11463651 PMCID: PMC1301579 DOI: 10.1016/s0006-3495(01)75767-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of ionic strength on the conformation and stability of S1 and S1-nucleotide-phosphate analog complexes in solution was studied. It was found that increasing concentration of KCl enhances the reactivity of Cys(707) (SH1 thiol) and Lys(84) (reactive lysyl residue) and the nucleotide-induced tryptophan fluorescence increment. In contrast, high KCl concentration lowers the structural differences between the intermediate states of ATP hydrolysis in the vicinity of Cys(707), Trp(510) and the active site, possibly by increasing the flexibility of the molecule. High concentrations of neutral salts inhibit both the formation and the dissociation of the M**.ADP.Pi analog S1.ADP.Vi complex. High ionic strength profoundly affects the structure of the stable S1.ADP.BeF(x) complex, by destabilizing the M*.ATP intermediate, which is the predominant form of the complex at low ionic strength, and shifting the equilibrium to favor the M**.ADP.Pi state. The M*.ATP intermediate is destabilized by perturbation of ionic interactions possibly by disruption of salt bridges. Two salt-bridge pairs, Glu(501)-Lys(505) in the Switch II helix and Glu(776)-Lys(84) connecting the catalytic domain to the lever arm, seem most appropriate to consider for participating in the ionic strength-induced transition of the open M*.ATP to the closed M**.ADP.Pi state of S1.
Collapse
Affiliation(s)
- Y M Peyser
- Hebrew University Hadassah School of Dental Medicine, Institute of Dental Sciences, Department of Oral Biology, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
19
|
Malnasi-Csizmadia A, Kovacs M, Woolley RJ, Botchway SW, Bagshaw CR. The dynamics of the relay loop tryptophan residue in the Dictyostelium myosin motor domain and the origin of spectroscopic signals. J Biol Chem 2001; 276:19483-90. [PMID: 11278775 DOI: 10.1074/jbc.m010886200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steady-state and time-resolved fluorescence measurements were performed on a Dictyostelium discoideum myosin II motor domain construct retaining a single tryptophan residue at position 501, located on the relay loop. Other tryptophan residues were mutated to phenylalanine. The Trp-501 residue showed a large enhancement in fluorescence in the presence of ATP and a small quench in the presence of ADP as a result of perturbing both the ground and excited state processes. Fluorescence lifetime and quantum yield measurements indicated that at least three microstates of Trp-501 were present in all nucleotide states examined, and these could not be assigned to a particular gross conformation of the motor domain. Enhancement in emission intensity was associated with a reduction of the contribution from a statically quenched component and an increase in a component with a 5-ns lifetime, with little change in the contribution from a 1-ns lifetime component. Anisotropy measurements indicated that the Trp-501 side chain was relatively immobile in all nucleotide states, and the fluorescence was effectively depolarized by rotation of the whole motor domain with a correlation time on 50-70 ns. Overall these data suggest that the backbone of the relay loop remains structured throughout the myosin ATPase cycle but that the Trp-501 side chain experiences a different weighting in local environments provided by surrounding residues as the adjacent converter domain rolls around the relay loop.
Collapse
Affiliation(s)
- A Malnasi-Csizmadia
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Abstract
Molecular motors are enzymes that couple the energy from nucleoside triphosphate hydrolysis to movement along a filament lattice. The three cytoskeletal motor superfamilies include myosin, dynein, and kinesin. However, in the last decade it has become apparent that the nucleic acid-based enzymes (DNA and RNA polymerases as well as the DNA helicases) share a number of mechanistic features in common with the microtubule and actin motors despite the fact that their cellular functions are so different. This review addresses the mechanistic approaches that have been used to study molecular motors. We discuss the basic biochemical techniques used to characterize a protein preparation, including active site determination and steady-state kinetics. In addition, we present the transient-state kinetic approaches used to define a mechanochemical cycle. We attempt to integrate the information obtained from kinetic studies within the context of motility results to provide a better understanding of the contribution of each approach for dissecting unidirectional force generation.
Collapse
Affiliation(s)
- S P Gilbert
- Department of Biological Sciences, University of Pittsburgh, 518 Langley Hall, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
21
|
Onishi H, Konishi K, Fujiwara K, Hayakawa K, Tanokura M, Martinez HM, Morales MF. On the tryptophan residue of smooth muscle myosin that responds to binding of nucleotide. Proc Natl Acad Sci U S A 2000; 97:11203-8. [PMID: 11016961 PMCID: PMC17178 DOI: 10.1073/pnas.200362897] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initially, we asked which (of 10) smooth muscle myosin head residues responds to MgADP or MgATP binding with enhanced fluorescence emission (Trp-441 and Trp-512 were leading candidates)? To decide, we prepared sham-mutated smooth muscle heavy meromyosin (HMM), W441F HMM, and W512F HMM. On adding MgATP, emission of wild-type and W441F HMMs increased by 25-27%, but that of W512F HMM by 5%. So, in myosin, 512 is the "sensitive Trp." Unexpectedly, properties of W512F HMM [elevated Ca(2+)-ATPase, depressed EDTA (K(+))-ATPase, no regulation of its basal or actin-activated Mg(2+)-ATPase by phosphorylation of its "regulatory" light chain, limited actin activation, and inability to move actin filaments in a motility assay] are strikingly like those of smooth muscle myosin reacted at Cys-717 with thiol reagent. From crystallography-based [Houdusse, A., Kalabakis, V. N., Himmel, D., Szent-Györgyi, A. G. & Cohen, C. (1999) Cell 97, 459-470] simulations, we found that in wild-type HMM with MgADP added, Trp-512 is in a "hydrophobic pocket," but that pocket becomes distorted in W512F HMM. We think that there is a "path of influence" from 512 to 717 to the active site. We suggest that the mutational changes at 512 are transmitted along this path to Cys-717, where they induce changes similar to those caused by reacting wild-type HMM with thiol reagent.
Collapse
Affiliation(s)
- H Onishi
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Yengo CM, Chrin LR, Rovner AS, Berger CL. Tryptophan 512 is sensitive to conformational changes in the rigid relay loop of smooth muscle myosin during the MgATPase cycle. J Biol Chem 2000; 275:25481-7. [PMID: 10827189 DOI: 10.1074/jbc.m002910200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine the structural basis of the intrinsic fluorescence changes that occur during the MgATPase cycle of myosin, we generated three mutants of smooth muscle myosin motor domain essential light chain (MDE) containing a single conserved tryptophan residue located at Trp-441 (W441-MDE), Trp-512 (W512-MDE), or Trp-597 (W597-MDE). Although W441- and W597-MDE were insensitive to nucleotide binding, the fluorescence intensity of W512-MDE increased in the presence of MgADP-berellium fluoride (BeF(X)) (31%), MgADP-AlF(4)(-) (31%), MgATP (36%), and MgADP (30%) compared with the nucleotide-free environment (rigor), which was similar to the results of wild type-MDE. Thus, Trp-512 may be the sole ATP-sensitive tryptophan residue in myosin. In addition, acrylamide quenching indicated that Trp-512 was more protected from solvent in the presence of MgATP or MgADP-AlF(4)(-) than in the presence of MgADP-BeF(X), MgADP, or in rigor. Furthermore, the degree of energy transfer from Trp-512 to 2'(3')-O-(N-methylanthraniloyl)-labeled nucleotides was greater in the presence of MgADP-BeF(X), MgATP, or MgADP-AlF(4)(-) than MgADP. We conclude that the conformation of the rigid relay loop containing Trp-512 is altered upon MgATP hydrolysis and during the transition from weak to strong actin binding, establishing a communication pathway from the active site to the actin-binding and converter/lever arm regions of myosin during muscle contraction.
Collapse
Affiliation(s)
- C M Yengo
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington 05405-0068, USA
| | | | | | | |
Collapse
|
23
|
Reshetnyak YK, Andreev OA, Borejdo J, Toptygin DD, Brand L, Burstein EA. The identification of tryptophan residues responsible for ATP-induced increase in intrinsic fluorescence of myosin subfragment 1. J Biomol Struct Dyn 2000; 18:113-25. [PMID: 11021656 DOI: 10.1080/07391102.2000.10506651] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ATP binding to myosin subfragment 1 (S1) induces an increase in tryptophan fluorescence. Chymotryptic rabbit skeletal S1 has 5 tryptophan residues (Trp113, 131, 440, 510 and 595), and therefore the identification of tryptophan residues perturbed by ATP is quite complex. To solve this problem we resolved the complex fluorescence spectra into log-normal and decay-associated components, and carried out the structural analysis of the microenvironment of each tryptophan in S1. The decomposition of fluorescence spectra of S1 and S1-ATP complex revealed 3 components with maxima at ca. 318, 331 and 339-342 nm. The comparison of structural parameters of microenvironment of 5 tryptophan residues with the same parameters of single-tryptophan-containing proteins with well identified fluorescence properties applying statistical method of cluster analysis, enabled us to assign Trp595 to 318 nm, Trp440 to 331 nm, and Trp 13, 131 and 510 to 342 nm spectral components. ATP induced an almost equal increase in the intensities of the intermediate (331 nm) and long-wavelength (342 nm) components, and a small decrease in the short component (318 nm). The increase in the intermediate component fluorescence most likely results from an immobilization of some quenching groups (Met437, Met441 and/or Arg444) in the environment of Trp440. The increase in the intensity and a blue shift of the long component might be associated with conformational changes in the vicinity of Trp510. However, these conclusions can not be extended directly to the other types of myosins due to the diversity in the tryptophan content and their microenvironments.
Collapse
Affiliation(s)
- Y K Reshetnyak
- Institute of Theoretical and Experimental Biophysics, Russia Academy of Science, Moscow Region
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The sequences of several members of the myosin family of molecular motors are evaluated using ASP (Ambivalent Structure Predictor), a new computational method. ASP predicts structurally ambivalent sequence elements by analyzing the output from a secondary structure prediction algorithm. These ambivalent sequence elements form secondary structures that are hypothesized to function as switches by undergoing conformational rearrangement. For chicken skeletal muscle myosin, 13 discrete structurally ambivalent sequence elements are identified. All 13 are located in the heavy chain motor domain. When these sequence elements are mapped into the myosin tertiary structure, they form two compact regions that connect the actin binding site to the adenosine 5'-triphosphate (ATP) site, and the ATP site to the fulcrum site for the force-producing bending of the motor domain. These regions, predicted by the new algorithm to undergo conformational rearrangements, include the published known and putative switches of the myosin motor domain, and they form plausible allosteric connections between the three main functional sites of myosin. The sequences of several other members of the myosin I and II families are also analyzed.
Collapse
Affiliation(s)
- K Kirshenbaum
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
25
|
Batra R, Manstein DJ. Functional characterisation of Dictyostelium myosin II with conserved tryptophanyl residue 501 mutated to tyrosine. Biol Chem 1999; 380:1017-23. [PMID: 10494855 DOI: 10.1515/bc.1999.126] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We created a Dictyostelium discoideum myosin II mutant in which the highly conserved residue Trp-501 was replaced by a tyrosine residue. The mutant myosin alone, when expressed in a Dictyostelium strain lacking the functional myosin II heavy chain gene, supported cytokinesis and multicellular development, processes which require a functional myosin in Dictyostelium. Additionally, we expressed the W501 Y mutant in the soluble myosin head fragment M761-2R (W501Y-2R) to characterise the kinetic properties of the mutant myosin motor domain. The affinity of the mutant myosin for actin was approximately 6-fold decreased, but other kinetic properties of the protein were changed less than 2-fold by the W501Y mutation. Based on spectroscopic studies and structural considerations, Trp-501, corresponding to Trp-510 in chicken fast skeletal muscle myosin, has been proposed to be the primary ATP-sensitive tryptophanyl residue. Our results confirm these conclusions. While the wild-type construct displayed a 10% fluorescence increase, addition of ATP to W501Y-2R was not followed by an increase in tryptophan fluorescence emission.
Collapse
Affiliation(s)
- R Batra
- Max-Planck-Institut für Medizinische Forschung, Heidelberg, Germany
| | | |
Collapse
|
26
|
Peyser YM, Muhlrad A. Actin and nucleotide induced conformational changes in the vicinity of Lys553 in myosin subfragment 1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:511-7. [PMID: 10406961 DOI: 10.1046/j.1432-1327.1999.00530.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bertrand et al. [Bertrand, R., Derancourt, J. & Kassab, R. (1995) Biochemistry 34, 9500-9507] reported that 6-[fluoresceine-5(and 6)-carboxamido] hexanoic acid succinimidyl ester (FHS) selectively modifies Lys553, which is part of the strong actin-binding site of myosin subfragment 1 (S1). We found that the reaction of FHS with Lys533 is accompanied by a decrease in the fluorescence intensity of the reagent. The rate of the FHS reaction increased with increasing pH implying that the unprotonated form of the epsilon-amino group of Lys553 reacts with FHS. Addition of 0.4 M KCl reduced the rate of reaction significantly, which indicates ionic strength-dependent changes in the structure of S1. Limited trypsinolysis of S1 before the FHS reaction also decreased the rate of the reaction showing that the structural integrity of S1 is needed for the reactivity of Lys553. ATP, ADP, ADP.BeF(x), ADP.AlF(4), ADP.V(i) and pyrophosphate significantly decreased the rate of Lys553 labelling, suggesting nucleotide-induced conformational changes in the environment of Lys553. The fluorescence emission spectrum of the Lys553-bound FH moiety and the quenching of its fluorescence by nitromethane was not influenced by nucleotides, implying that the chemical reactivity but not the accessibility of Lys553 was decreased by the nucleotide-induced conformational change. In the presence of ATP when the M(**)ADP.P(i) state of the ATPase cycle is predominantly populated, the reaction rate decreased more than in the case of the S1.ADP.AlF(4)(-) and S1.ADP.V(i) complexes, which are believed to mimic the M(**)ADP.P(i) state. This indicates that the conformation of the S1-ADP.AlF(4)(-) and S1.ADP.V(i) complexes in the vicinity of Lys553 does not resemble the structure of the M(**)ADP.P(i) state. The rate of Lys553 labelling decreased strongly in the presence of actin. The nitromethane quenching of the Lys553-bound FHS was not influenced by actin, which indicates that the reduced reaction rate is not due to steric hindrance caused by the bulky protein but by actin induced conformational changes in the vicinity of Lys553.
Collapse
Affiliation(s)
- Y M Peyser
- Department of Oral Biology, Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | | |
Collapse
|
27
|
Park S, Ajtai K, Burghardt TP. Inhibition of myosin ATPase by metal fluoride complexes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:127-40. [PMID: 10082941 DOI: 10.1016/s0167-4838(98)00262-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Magnesium (Mg2+) is the physiological divalent cation stabilizing nucleotide or nucleotide analog in the active site of myosin subfragment 1 (S1). In the presence of fluoride, Mg2+ and MgADP form a complex that traps the active site of S1 and inhibits myosin ATPase. The ATPase inactivation rate of the magnesium trapped S1 is comparable but smaller than the other known gamma-phosphate analogs at 1.2 M-1 s-1 with 1 mM MgCl2. The observed molar ratio of Mg/S1 in this complex of 1.58 suggests that magnesium occupies the gamma-phosphate position in the ATP binding site of S1 (S1-MgADP-MgFx). The stability of S1-MgADP-MgFx at 4 degrees C was studied by EDTA chase experiments but decomposition was not observed. However, removal of excess fluoride causes full recovery of the K+-EDTA ATPase activity indicating that free fluoride is necessary for maintaining a stable trap and suggesting that the magnesium fluoride complex is bonded to the bridging oxygen of beta-phosphate more loosely than the other known phosphate analogs. The structure of S1 in S1-MgADP-MgFx was studied with near ultraviolet circular dichroism, total tryptophan fluorescence, and tryptophan residue 510 quenching measurements. These data suggest that S1-MgADP-MgFx resembles the M**.ADP.Pi steady-state intermediate of myosin ATPase. Gallium fluoride was found to compete with MgFx for the gamma-phosphate site in S1-MgADP-MgFx. The ionic radius and coordination geometry of magnesium, gallium and other known gamma-phosphate analogs were compared and identified as important in determining which myosin ATPase intermediate the analog mimics.
Collapse
Affiliation(s)
- S Park
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street Southwest, Rochester, MN 55905, USA
| | | | | |
Collapse
|
28
|
Yengo CM, Fagnant PM, Chrin L, Rovner AS, Berger CL. Smooth muscle myosin mutants containing a single tryptophan reveal molecular interactions at the actin-binding interface. Proc Natl Acad Sci U S A 1998; 95:12944-9. [PMID: 9789020 PMCID: PMC23664 DOI: 10.1073/pnas.95.22.12944] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Indexed: 11/18/2022] Open
Abstract
Elucidation of the molecular details of the cyclic actomyosin interaction requires the ability to examine structural changes at specific sites in the actin-binding interface of myosin. To study these changes dynamically, we have expressed two mutants of a truncated fragment of chicken gizzard smooth muscle myosin, which includes the motor domain and essential light chain (MDE). These mutants were engineered to contain a single tryptophan at (Trp-546) or near (Trp-625) the putative actin-binding interface. Both 546- and 625-MDE exhibited actin-activated ATPase and actin-binding activities similar to wild-type MDE. Fluorescence emission spectra and acrylamide quenching of 546- and 625-MDE suggest that Trp-546 is nearly fully exposed to solvent and Trp-625 is less than 50% exposed in the presence and absence of ATP, in good agreement with the available crystal structure data. The spectrum of 625-MDE bound to actin was quite similar to the unbound spectrum indicating that, although Trp-625 is located near the 50/20-kDa loop and the 50-kDa cleft of myosin, its conformation does not change upon actin binding. However, a 10-nm blue shift in the peak emission wavelength of 546-MDE observed in the presence of actin indicates that Trp-546, located in the A-site of the lower 50-kDa subdomain of myosin, exists in a more buried environment and may directly interact with actin in the rigor acto-S1 complex. This change in the spectrum of Trp-546 constitutes direct evidence for a specific molecular interaction between residues in the A-site of myosin and actin.
Collapse
Affiliation(s)
- C M Yengo
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
29
|
Onishi H, Kojima S, Katoh K, Fujiwara K, Martinez HM, Morales MF. Functional transitions in myosin: formation of a critical salt-bridge and transmission of effect to the sensitive tryptophan. Proc Natl Acad Sci U S A 1998; 95:6653-8. [PMID: 9618467 PMCID: PMC22585 DOI: 10.1073/pnas.95.12.6653] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For analyzing the mechanism of energy transduction in the "motor" protein, myosin, it is opportune both to model the structural change in the hydrolytic transition, ATP (myosin-bound) + H2O --> ADP.Pi (myosin-bound) and to check the plausibility of the model by appropriate site-directed mutations in the functional system. Here, we made a series of mutations to investigate the role of the salt-bridge between Glu-470 and Arg-247 (of chicken smooth muscle myosin) that has been inferred from crystallography to be a central feature of the transition [Fisher, A. J., Smith, C. A., Thoden, J. B. , Smith, R., Sutoh, K., Holden, H. M., & Rayment, I. (1995) Biochemistry 34, 8960-8972]. Our results suggest that whether in the normal, or in the inverted, direction an intact salt-bridge is necessary for ATP hydrolysis, but when the salt-bridge is in the inverted direction it does not support actin activation. Normally, fluorescence changes result from adding nucleotides to myosin; these signals are reported by Trp-512 (of chicken smooth muscle myosin). Our results also suggest that structural impairments in the 470-247 region interfere with the transmission of these signals to the responsive Trp.
Collapse
Affiliation(s)
- H Onishi
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Highsmith S, Duignan K, Franks-Skiba K, Polosukhina K, Cooke R. Reversible inactivation of myosin subfragment 1 activity by mechanical immobilization. Biophys J 1998; 74:1465-72. [PMID: 9512042 PMCID: PMC1299492 DOI: 10.1016/s0006-3495(98)77858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Mg-ATPase activity of skeletal muscle myosin subfragment 1 (S1) is reversibly eliminated when it is aggregated by the force of osmotic pressure dehydration using polyethylene glycol (PEG). Several experiments indicate nucleotides bind aggregated S1, but the effects of binding are attenuated. Compared with S1 in solution, epsilonADP binds aggregated S1 with reduced affinity, and the bound epsilonADP fluorescence intensity is more effectively quenched by acrylamide. When ATP binds aggregated S1, the tryptophan intensity increases to only 50% of the solution level. Chemical cross-linking of cys-707 to cys-697 by p-phenylenedimaleimide is less efficient for aggregated S1 x MgADP. The data are consistent with aggregated S1 being able to bind nucleotide but not being able to complete the usual conformation change(s) in response to binding. If S1 is kept from aggregating by increasing the ionic strength at the same osmotic pressure, its Mg-ATPase activity and ATP-induced tryptophan fluorescence intensity increase are normal. The combined data are consistent with an ATP hydrolysis mechanism in which S1 segmental motion is coupled to its enzymatic activity. In this model, segmental motion is mechanically constrained by aggregation; the constrained S1 can bind ATP, but it cannot complete the hydrolysis mechanism.
Collapse
Affiliation(s)
- S Highsmith
- Department of Biochemistry, School of Dentistry, University of the Pacific, San Francisco, California 94115-2399, USA.
| | | | | | | | | |
Collapse
|
31
|
Bobkov AA, Sutoh K, Reisler E. Nucleotide and actin binding properties of the isolated motor domain from Dictyostelium discoideum myosin. J Muscle Res Cell Motil 1997; 18:563-71. [PMID: 9350009 DOI: 10.1023/a:1018667319386] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nucleotide and actin binding properties of the truncated myosin head (S1dC) from Dictyostelium myosin II were studied in solution using rabbit skeletal myosin subfragment 1 as a reference material. S1dC and subfragment 1 had similar affinities for ADP analogues, epsilon ADP and TNP-ADP. The complexes of epsilon ADP and BeFx or AIF4- were less stable with S1dC than with subfragment 1. Stern-Volmer constants for acrylamide quenching of S1dC complexes with epsilon ADP, epsilon ADP.AIF4- and epsilon ADP.BeFx were 2.6, 2.9 and 2.2 M-1, respectively. The corresponding values for subfragment 1 were 2.6, 1.5 and 1.1 M-1. The environment of the nucleotide binding site was probed by using a hydrophobic fluorescent probe, PPBA. PPBA was a competitive inhibitor of S1dC Ca(2+)-ATPase (Ki = 1.6 microM). The binding of nucleotides to subfragment 1 enhanced PPBA fluorescence and caused blue shifts in the wavelength of its maximum emission in the order: ATP approximately ADP.AIF4- approximately ADP.BeFx > ATP gamma S > ADP > PPi. In the case of S1dC, the effects of different nucleotides were smaller and indistinguishable from each other. S1dC bound actin tighter than S1 (Kd = 7 nM and 60 nM, respectively). The actin activated MgATPase activity of S1dC varied between preparations, and the Vmax and K(m) values ranged between 3 and 7 s-1 and 60 and 190 microM, respectively. S1dC showed lower structural stability than S1 as revealed by their thermal inactivations at 35 degrees C. These results show that the nucleotide and actin binding of S1dC and subfragment 1 are similar but there are some differences in nucleotide and phosphate analogue-induced changes and the communication between the nucleotide and actin binding sites in these proteins.
Collapse
Affiliation(s)
- A A Bobkov
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA
| | | | | |
Collapse
|
32
|
Park S, Ajtai K, Burghardt TP. Optical activity of a nucleotide-sensitive tryptophan in myosin subfragment 1 during ATP hydrolysis. Biophys Chem 1996; 63:67-80. [PMID: 8981751 DOI: 10.1016/s0301-4622(96)02203-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The xanthene probes 5'-iodoacetamido-fluorescein and -tetramethylrhodamine specifically modify skeletal muscle myosin subfragment 1 (S1) at the reactive thiol residue (SH1) and fully quench the fluorescence emission from tryptophan residue 510 (Trp510) in S1 (T.P. Burghardt and K. Ajtai, Biophys. Chem., 60 (1996) 119; K. Ajtai and T.P. Burghardt, Biochemistry, 34 (1995) 15943). The difference between the fluorescence intensity obtained from S1 and probe-modified S1 comes solely from Trp510 in chymotryptic S1, a protein fragment that contains five tryptophan residues. The rotary strength and quantum efficiency of Trp510 were measured using difference signals from fluorescence detected circular dichroism (FDCD) and fluorescence emission spectroscopy. These structure-sensitive signals indicate that the binding of nucleotide or nucleotide analogs to the active site of S1 causes structural changes in S1 at Trp510 and that a one-to-one correspondence exists between Trp510 conformation and transient states of myosin during contraction. The Trp510 rotary strength and quantum efficiency were interpreted structurally in terms of the indole side-chain conformation using model structures and established computational methods.
Collapse
Affiliation(s)
- S Park
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
33
|
Park S, Ajtai K, Burghardt TP. Cleft containing reactive thiol of myosin closes during ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:1-4. [PMID: 8765220 DOI: 10.1016/0167-4838(96)00086-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The probe binding cleft of myosin subfragment 1 (S1) contains the reactive thiol, SH1, and tryptophan 510 (Trp-510). Solvent accessibility to Trp-510, measured using the acrylamide quenching of its fluorescence, is highest in rigor and decreases during the ATPase cycle prior to force generation. These data suggest the probe binding cleft closes during ATP hydrolysis and opens during force generation. The closing of the probe binding cleft may be the origin of the shape change of S1 during ATP hydrolysis.
Collapse
Affiliation(s)
- S Park
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
34
|
Highsmith S, Duignan K, Cooke R, Cohen J. Osmotic pressure probe of actin-myosin hydration changes during ATP hydrolysis. Biophys J 1996; 70:2830-7. [PMID: 8744320 PMCID: PMC1225262 DOI: 10.1016/s0006-3495(96)79852-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Osmotic stress in the 0.5-5 x 10(6) dyne/cm2 range was used to perturb the hydration of actin-myosin-ATP intermediates during steady-state hydrolysis. Polyethylene glycol (PEG) (1000 to 4000 Da), in the 1 to 10 wt% range, which does not cause protein precipitation, did not significantly affect the apparent KM or the Vmax for MgATP hydrolysis by myosin subfragment 1 (S1) alone, nor did it affect the value for the phosphate burst. Consistent with the kinetic data, osmotic stress did not affect nucleotide-induced changes in the fluorescence intensities of S1 tryptophans or of fluorescein attached to Cys-707. The accessibility of the fluorescent ATP analog, epsilon ADP, to acrylamide quenching was also unchanged. These data suggest that none of the steps in the ATP hydrolysis cycle involve substantial hydration changes, which might occur for the opening or closing of the ATP site or of other crevices in the S1 structure. In contrast, KM for the interaction of S1.MgADP.Pi with actin decreased tenfold in this range of osmotic pressure, suggesting that formation of actin.S1.MgADP.Pi involves net dehydration of the proteins. The dehydration volume increases as the size of the PEG is increased, as expected for a surface-excluded osmolyte. The measured dehydration volume for the formation of actin.S1.MgADP.Pi was used to estimate the surface area of the binding interface. This estimate was consistent with the area determined from the atomic structures of actin and myosin, indicating that osmotic stress is a reliable probe of actin.myosin.ATP interactions. The approach developed here should be useful for determining osmotic stress and excluded volume effects in situ, which are much larger than those of typical in vitro conditions.
Collapse
Affiliation(s)
- S Highsmith
- Department of Biochemistry, School of Dentistry, University of the Pacific, San Francisco, California 94115-2399, USA.
| | | | | | | |
Collapse
|
35
|
Ponomarev MA, Timofeev VP, Levitsky DI. The difference between ADP-beryllium fluoride and ADP-aluminium fluoride complexes of the spin-labeled myosin subfragment 1. FEBS Lett 1995; 371:261-3. [PMID: 7556605 DOI: 10.1016/0014-5793(95)00898-j] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy was used for investigation of the structure of spin-labeled myosin subfragment 1 (S1) containing ADP and phosphate analogues, such as orthovanadate, aluminium fluoride (AlF4), and beryllium fluoride (BeFx). It has been shown that the local conformational changes in the region of Cys-707, induced by formation of the S1-ADP-BeFx complex, differ from those of S1 containing ADP-AlF4 or other phosphate analogues but are similar to the changes which occur in the presence of ADP or ATP gamma S. It is suggested that S1-ADP-AlF4 and S1-ADP-BeFx complexes represent structural analogues of different transition states of the ATPase cycle, namely the intermediate states S1**-ADP-P(i) and S1*-ATP, respectively.
Collapse
Affiliation(s)
- M A Ponomarev
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | |
Collapse
|
36
|
Bobkov AA, Levitsky DI. Differential scanning calorimetric study of the complexes of myosin subfragment 1 with nucleoside diphosphates and vanadate or beryllium fluoride. Biochemistry 1995; 34:9708-13. [PMID: 7626641 DOI: 10.1021/bi00030a008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been recently shown by differential scanning calorimetry (DSC) that the formation of stable complexes of myosin subfragment 1 (S1) with Mg-ADP and orthovanadate (Vi) or beryllium fluoride (BeFx) causes a global conformational change in the S1 molecule which is reflected in a pronounced increase of S1 thermal stability and in a significant change of S1 domain structure [Shriver, J. W., & Kamath U. (1990) Biochemistry 29, 2556-2564; Levitsky, D. I., Shnyrov, V. L., Khvorov, N. V., Bukatina, A. E., Vedenkina, N. S., Permyakov, E. A., Nikolaeva, O. P., & Poglazov, B. F. (1992) Eur. J. Biochem. 209, 829-835; Bobkov, A. A., Khvorov, N. V., Golitsina, N. L., & Levitsky, D. I. (1993) FEBS Lett. 332, 64-66]. In this work, which continues the previous investigations, we report on a DSC study of the complexes of S1 with various nucleoside diphosphates (NDP). In the absence of Vi or BeFx the various Mg(2+)-NDP and Mg(2+)-PPi had a similar effect on the S1 conformation. All of them had practically no influence on the temperature of the thermal transition but increased its sharpness. However, in the presence of Vi or BeFx the effects of Mg(2+)-NDP complexes were quite different from each other and strongly depended on the base structure of NDP; their effectiveness in inducing conformational changes in S1 and the stability of these complexes decreased in the following order: ADP > CDP >> UDP >> IDP > GDP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A A Bobkov
- A. N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
37
|
Ostap EM, Barnett VA, Thomas DD. Resolution of three structural states of spin-labeled myosin in contracting muscle. Biophys J 1995; 69:177-88. [PMID: 7669895 PMCID: PMC1236236 DOI: 10.1016/s0006-3495(95)79888-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used electron paramagnetic resonance (EPR) spectroscopy to detect ATP- and calcium-induced changes in the structure of spin-labeled myosin heads in glycerinated rabbit psoas muscle fibers in key physiological states. The probe was a nitroxide iodoacetamide derivative attached selectively to myosin SH1 (Cys 707), the conventional EPR spectra of which have been shown to resolve several conformational states of the myosin ATPase cycle, on the basis of nanosecond rotational motion within the protein. Spectra were acquired in rigor and during the steady-state phases of relaxation and isometric contraction. Spectral components corresponding to specific conformational states and biochemical intermediates were detected and assigned by reference to EPR spectra of trapped kinetic intermediates. In the absence of ATP, all of the myosin heads were rigidly attached to the thin filament, and only a single conformation was detected, in which there was no sub-microsecond probe motion. In relaxation, the EPR spectrum resolved two conformations of the myosin head that are distinct from rigor. These structural states were virtually identical to those observed previously for isolated myosin and were assigned to the populations of the M*.ATP and M**.ADP.Pi states. During isometric contraction, the EPR spectrum resolves the same two conformations observed in relaxation, plus a small fraction (20-30%) of heads in the oriented actin-bound conformation that is observed in rigor. This rigor-like component is a calcium-dependent, actin-bound state that may represent force-generating cross-bridges. As the spin label is located near the nucleotide-binding pocket in a region proposed to be pivotal for large-scale force-generating structural changes in myosin, we propose that the observed spectroscopic changes indicate directly the key steps in energy transduction in the molecular motor of contracting muscle.
Collapse
Affiliation(s)
- E M Ostap
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
38
|
Dumont-Miscopein A, Lavergne JP, Guillot D, Sontag B, Reboud JP. Interaction of phosphorylated elongation factor EF-2 with nucleotides and ribosomes. FEBS Lett 1994; 356:283-6. [PMID: 7805855 DOI: 10.1016/0014-5793(94)01272-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intrinsic fluorescence emission spectrum of elongation factor EF-2 due to the 7 Trp residues was not modified after complete phosphorylation of the factor by the specific Ca2+/Calmodulin-dependent kinase III. The effect of nucleotide binding on this fluorescence revealed differences between phosphorylated and unmodified EF-2. Low concentrations of GTP had a smaller quenching effect on the fluorescence of phosphorylated EF-2 than on the fluorescence of unmodified EF-2, whereas GDP had exactly the same quenching effect on the fluorescence of both samples. These results suggest that phosphorylation of EF-2 decreased its affinity for GTP but not for GDP. Ability of phosphorylated EF-2 to form a ternary complex with ribosomes in the presence of a non-hydrolysable GTP analog and its ability to protect ribosomes against ricin-inactivation were both decreased to the same extent. The lower affinity of phosphorylated EF-2 for GTP could be responsible for a weaker and/or incorrect interaction of the factor with the ribosome, in particular with the ricin-site of the 28-S rRNA assumed to be involved in translocation initiation.
Collapse
Affiliation(s)
- A Dumont-Miscopein
- Laboratoire de Biochimie Médicale, Institut de Biologie et Chimie des Protéines, UPR CNRS 412, 7, Lyon, France
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Ruppel K, Uyeda T, Spudich J. Role of highly conserved lysine 130 of myosin motor domain. In vivo and in vitro characterization of site specifically mutated myosin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32235-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Bobkov AA, Khvorov NV, Golitsina NL, Levitsky DI. Calorimetric characterization of the stable complex of myosin subfragment 1 with ADP and beryllium fluoride. FEBS Lett 1993; 332:64-6. [PMID: 8405450 DOI: 10.1016/0014-5793(93)80485-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thermal unfolding of the myosin subfragment 1 (S1) in its stable complex with ADP and beryllium fluoride (S1.ADP.BeF3-) was studied by differential scanning calorimetry. It has been shown that the structure of the S1 molecule in the S1.ADP.BeF3- complex is similar to that of S1 in its complex with ADP and orthovanadate (S1.ADP.Vi) but differs radically from that of nucleotide-free S1 and S1 in the S1.ADP complex. It is concluded that the S1.ADP.BeF3- complex can be considered, like the S1.ADP.Vi complex, a stable structural analogue of the myosin head.ADP.Pi transition state of the myosin-catalyzed ATP hydrolysis.
Collapse
Affiliation(s)
- A A Bobkov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
42
|
Guillot D, Penin F, Di Pietro A, Sontag B, Lavergne J, Reboud J. GTP binding to elongation factor eEF-2 unmasks a tryptophan residue required for biological activity. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36873-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Papp SJ, Highsmith S. The ATP-induced myosin subfragment-1 fluorescence intensity increase is due to one tryptophan. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1202:169-72. [PMID: 8373821 DOI: 10.1016/0167-4838(93)90079-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The irradiation of skeletal muscle myosin subfragment 1 (S1) in the presence of 2,2,2-trichloroethanol (TCE) reduces S1 fluorescence intensity in two phases. In the first phase, there is an increase in MgATPase activity, and no significant change in the fluorescence intensity increase upon ATP binding. In the second phase, the activity remains elevated, but there is a complete loss of the ATP-induced intensity increase. Measurements on denatured S1 indicate that fluorescence intensity reductions of one fifth of the total occur during each of the two phases, consistent with the fluorescence intensity increase upon forming S1.MgADP.P(i) being due to one of the five heavy-chain tryptophans.
Collapse
Affiliation(s)
- S J Papp
- Department of Biochemistry, University of the Pacific School of Dentistry, San Francisco, CA 94115
| | | |
Collapse
|
44
|
Kirshenbaum K, Papp S, Highsmith S. Cross-linking myosin subfragment 1 Cys-697 and Cys-707 modifies ATP and actin binding site interactions. Biophys J 1993; 65:1121-9. [PMID: 8241391 PMCID: PMC1225829 DOI: 10.1016/s0006-3495(93)81162-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Skeletal muscle myosin is an enzyme that interacts allosterically with MgATP and actin to transduce the chemical energy from ATP hydrolysis into work. By modifying myosin structure, one can change this allosteric interaction and gain insight into its mechanism. Chemical cross-linking with N,N'-p-phenylenedimaleimide (pPDM) of Cys-697 to Cys-707 of the myosin-ADP complex eliminates activity and produces a species that resembles myosin with ATP bound (Burke et al., 1976). Nucleotide-free pPDM-modified myosin subfragment 1 (S1) was prepared, and its structural and allosteric properties were investigated by comparing the nucleotide and actin interactions of S1 to those of pPDM-S1. The structural properties of the nucleotide-free pPDM-S1 are different from those of S1 in several respects. pPDM-S1 intrinsic tryptophan fluorescence intensity is reduced 28%, indicating a large increase of an internal quenching reaction (the fluorescence intensity of the related vanadate complex of S1, S1-MgADP-Vi, is reduced by a similar degree). Tryptophan fluorescence anisotropy increases from 0.168 for S1 to 0.192 for pPDM-S1, indicating that the unquenched tryptophan population in pPDM-S1 has reduced local freedom of motion. The actin affinity of pPDM-S1 is over 6,000-fold lower than that of S1, and the absolute value of the product of the net effective electric charges at the acto-S1 interface is reduced from 8.1 esu2 for S1 to 1.6 esu2 for pPDM-S1. In spite of these changes, the structural response of pPDM-S1 to nucleotide and the allosteric communication between its ATP and actin sites remain intact. Compared to pPDM-S1, the fluorescence intensity of pPDM-S1 *MgADP is increased 50%(compared to 8 and 31% increases, respectively, for MgADP and MgATP binding to S1). Compared to acto-pPDM-S1, the absolute value of the product of the net effective electric charge at the actin binding interface of acto-pPDM-S1 *MgADP increases 7.3 esu2 (compared to a 0.9 esu2 decrease and an 11.0 esu2 increase, respectively, for MgADP and MgATP binding to acto-Sl).The interaction free energy for the ligands MgADP and actin, is -2.0 kcal/mol for pPDM-S1, compared to -1.2 kcal/mol for unmodified S1.
Collapse
Affiliation(s)
- K Kirshenbaum
- Department of Biochemistry, University of the Pacific School of Dentistry, San Francisco, California 94115-2399
| | | | | |
Collapse
|
45
|
Ostap EM, White HD, Thomas DD. Transient detection of spin-labeled myosin subfragment 1 conformational states during ATP hydrolysis. Biochemistry 1993; 32:6712-20. [PMID: 8392368 DOI: 10.1021/bi00077a026] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have used time-resolved electron paramagnetic resonance spectroscopy and caged ATP to detect nucleotide-induced changes in the conformational state of spin-labeled myosin heads (IASL-S1). Changes in the internal rotational dynamics of IASL-S1 were monitored with millisecond time resolution during the pre-steady-state phase of ATP hydrolysis. The changes in the internal protein dynamics were rigorously correlated with specific biochemical kinetic transitions, allowing us to observe directly the dynamic sequence of structural changes in IASL-S1 during the binding and hydrolysis of ATP. When caged ATP was photolyzed (producing 500 microM ATP) in the presence of 100 microM IASL-S1, the EPR signal intensity rose transiently to the steady-state ATPase level, indicating increased rotational motion about the SH1 region of the myosin head. Kinetic and spectral analyses have resolved two phases of this transient, one representing the population of the M*.ATP state and the other representing the population of the M**.ADP.Pi state. We conclude that two motionally distinct states of the myosin head are present during ATP hydrolysis and that these states represent distinct conformational states that can be correlated with specific biochemical intermediates. Since specific labeling of myosin heads with IASL has been achieved in skinned muscle fibers, this study establishes the feasibility for the first direct detection and resolution of myosin's conformational transients during muscle contraction.
Collapse
Affiliation(s)
- E M Ostap
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455
| | | | | |
Collapse
|
46
|
Highsmith S, Kubinec M, Jaiswal DK, Morimoto H, Williams PG, Wemmer DE. [2-3H]ATP synthesis and 3H NMR spectroscopy of enzyme-nucleotide complexes: ADP and ADP.Vi bound to myosin subfragment 1. JOURNAL OF BIOMOLECULAR NMR 1993; 3:325-334. [PMID: 8358234 DOI: 10.1007/bf00212518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The synthesis of [2-3H]ATP with specific activity high enough to use for 3H NMR spectroscopy at micromolar concentrations was accomplished by tritiodehalogenation of 2-Br-ATP. ATP with greater than 80% substitution at the 2-position and negligible tritium levels at other positions had a single 3H NMR peak at 8.20 ppm in 1D spectra obtained at 533 MHz. This result enables the application of tritium NMR spectroscopy to ATP utilizing enzymes. The proteolytic fragment of skeletal muscle myosin, called S1, consists of a heavy chain (95 kDa) and one alkali light chain (16 or 21 kDa) complex that retains myosin ATPase activity. In the presence of Mg2+, S1 converts [2-3H]ATP to [2-3H]ADP and the complex S1.Mg[2-3H]ADP has ADP bound in the active site. At 0 degrees C, 1D 3H NMR spectra of S1.Mg[2-3H]ADP have two broadened peaks shifted 0.55 and 0.90 ppm upfield from the peak due to free [2-3H]ADP. Spectra with good signal-to-noise for 0.10 mM S1.Mg[2-3H]ADP were obtained in 180 min. The magnitude of the chemical shift caused by binding is consistent with the presence of an aromatic side chain being in the active site. Spectra were the same for S1 with either of the alkali light chains present, suggesting that the alkali light chains do not interact differently with the active site. The two broad peaks appear to be due to the two conformations of S1 that have been observed previously by other techniques. Raising the temperature to 20 degrees C causes small changes in the chemical shifts, narrows the peak widths from 150 to 80 Hz, and increases the relative area under the more upfield peak. Addition of orthovanadate (Vi) to produce S1.Mg[2-2H]ADP.Vi shifts both peaks slightly more upfield without changing their widths or relative areas.
Collapse
Affiliation(s)
- S Highsmith
- Department of Biochemistry, University of the Pacific, San Francisco, CA 94115
| | | | | | | | | | | |
Collapse
|
47
|
Blotnick E, Muhlrad A. Effect of actin on the tryptic digestion of myosin subfragment 1 in the weakly attached state. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:873-9. [PMID: 1483470 DOI: 10.1111/j.1432-1033.1992.tb17491.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure of myosin subfragment 1 (S1) in the weakly attached complex with actin was studied at three specific sites, at the 50-kDa/20-kDa and 27-kDa/50-kDa junctions, and at the N-terminal region, using tryptic digestion as a structure-exploring tool. The structure of S1 at the vicinity of the 50-kDa/20-kDa junction is pH dependent in the weakly attached state because the tryptic cleavage at this site was fully protected by actin at pH 6.2, but the protection was only partial at pH 8.0. Since the actin protection is complete in rigor at both pH values, the results indicate that the structure of S1 at the 50-kDa/20-kDa junction differs in the two states at pH 8.0, but not at pH 6.2. Actin restores the ADP-suppressed tryptic cleavage after Lys213 at the 27-kDa/50-kDa junction in the strongly attached state, but not in the weakly attached state, which indicates structural difference between the two states at this site. ATP and ADP open a new site for tryptic cleavage in the N-terminal region of the S1 heavy chain between Arg23 and Ile24. Actin was found to suppress this cleavage in both weakly and strongly attached states, which shows that, in the vicinity of this site, the structure of S1 is similar in both states. The results indicate that the binding of S1 to actin induces localized changes in the S1 structure, and the extent of these changes is different in the various actin-S1 complexes.
Collapse
Affiliation(s)
- E Blotnick
- Department of Oral Biology, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel
| | | |
Collapse
|
48
|
Levitsky DI, Shnyrov VL, Khvorov NV, Bukatina AE, Vedenkina NS, Permyakov EA, Nikolaeva OP, Poglazov BF. Effects of nucleotide binding on thermal transitions and domain structure of myosin subfragment 1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:829-35. [PMID: 1425691 DOI: 10.1111/j.1432-1033.1992.tb17354.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermal unfolding and domain structure of myosin subfragment 1 (S1) from rabbit skeletal muscles and their changes induced by nucleotide binding were studied by differential scanning calorimetry. The binding of ADP to S1 practically does not influence the position of the thermal transition (maximum at 47.2 degrees C), while the binding of the non-hydrolysable analogue of ATP, adenosine 5'-[beta, gamma-imido]triphosphate (AdoPP[NH]P) to S1, or trapping of ADP in S1 by orthovanadate (Vi), shift the maximum of the heat adsorption curve for S1 up to 53.2 and 56.1 degrees C, respectively. Such an increase of S1 thermostability in the complexes S1-AdoPP[NH]P and S1-ADP-Vi is confirmed by results of turbidity and tryptophan fluorescence measurements. The total heat adsorption curves for S1 and its complexes with nucleotides were decomposed into elementary peaks corresponding to the melting of structural domains in the S1 molecule. Quantitative analysis of the data shows that the domain structure of S1 in the complexes S1-AdoPP[NH]P and S1-ADP-Vi is similar and differs radically from that of nucleotide-free S1 and S1 in the S1-ADP complex. These data are the first direct evidence that the S1 molecule can be in two main conformations which may correspond to different states during the ATP hydrolysis: one of them corresponds to nucleotide-free S1 and to the complex S1-ADP, and the other corresponds to the intermediate complexes S1-ATP and S1-ADP-Pi. Surprisingly it turned out that the domain structure of S1 with ADP trapped by p-phenylene-N, N'-dimaleimide (pPDM) thiol cross-linking almost does not differ from that of the nucleotide-free S1. This means that pPDM-cross-linked S1 in contrast to S1-AdoPP[NH]P and S1-ADP-Vi can not be considered a structural analogue of the intermediate complexes S1-ATP and S1-ADP-Pi.
Collapse
Affiliation(s)
- D I Levitsky
- A.N. Bach Institute of Biochemistry of Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Papp S, Eden D, Highsmith S. Nucleotide- and temperature-induced changes in myosin subfragment-1 structure. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1159:267-73. [PMID: 1390932 DOI: 10.1016/0167-4838(92)90055-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of nucleotide binding and temperature on the internal structural dynamics of myosin subfragment 1 (S1) were monitored by intrinsic tryptophan phosphorescence lifetime and fluorescence anisotropy measurements. Changes in the global conformation of S1 were monitored by measuring its rate of rotational diffusion using transient electric birefringence techniques. At 5 degrees C, the binding of MgADP, MgADP,P and MgADP,V (vanadate) progressively reduce the rotational freedom of S1 tryptophans, producing what appear to be increasingly more rigidified S1-nucleotide structures. The changes in the luminescence properties of the tryptophans suggest that at least one is located at the interface of two S1 subdomains. Increasing the temperature from 0 to 25 degrees C increases the apparent internal mobility of S1 tryptophans in all cases and, in addition, a reversible temperature-dependent transition centered near 15 degrees C was observed for S1, S1-MgADP and S1-MgADP,P, but not for S1-MgADP,V. The rotational diffusion constants of S1 and S1-MgADP were measured at temperatures between 0 and 25 degrees C. After adjusting for the temperature and viscosity of the solvent, the data indicate that the thermally induced transition at 15 degrees C comprises local conformational changes, but no global conformational change. Structural features of S1-MgADP,P, which may relate to its role in force generation while bound to actin, are presented.
Collapse
Affiliation(s)
- S Papp
- Department of Biochemistry, School of Dentistry, University of the Pacific, San Francisco, CA 94115
| | | | | |
Collapse
|
50
|
Hiratsuka T. Spatial proximity of ATP-sensitive tryptophanyl residue(s) and Cys-697 in myosin ATPase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42132-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|