1
|
Lagani GD, Sha M, Lin W, Natarajan S, Kankkunen M, Kistler SA, Lampl N, Waxman H, Harper ER, Emili A, Beffert U, Ho A. Beyond Glycolysis: Aldolase A Is a Novel Effector in Reelin-Mediated Dendritic Development. J Neurosci 2024; 44:e0072242024. [PMID: 39227156 PMCID: PMC11484552 DOI: 10.1523/jneurosci.0072-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with noncanonical receptors and unidentified coreceptors; however, the effects of which are less understood. Using high-throughput tandem mass tag (TMT) liquid chromatography tandem mass spectrometry (LC-MS/MS)-based proteomics and gene set enrichment analysis (GSEA), we identified both shared and unique intracellular pathways activated by Reelin through its canonical and noncanonical signaling in primary murine neurons of either sex during dendritic growth and arborization. We observed pathway cross talk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the noncanonical Reelin pathway including protein translation, mRNA metabolic process, and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin-binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for dendritic development.
Collapse
Affiliation(s)
- Gavin D Lagani
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Mingqi Sha
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Sahana Natarajan
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Marcus Kankkunen
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Sabrina A Kistler
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Noah Lampl
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Hannah Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Evelyn R Harper
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
2
|
Lagani GD, Lin W, Natarajan S, Lampl N, Harper ER, Emili A, Beffert U, Ho A. Beyond Glycolysis: Aldolase A is a Novel Effector in Reelin Mediated Dendritic Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575269. [PMID: 38260505 PMCID: PMC10802565 DOI: 10.1101/2024.01.12.575269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with non-canonical receptors and unidentified co-receptors; however, the effects of which are less understood. Using high-throughput tandem mass tag LC-MS/MS-based proteomics and gene set enrichment analysis, we identified both shared and unique intracellular pathways activated by Reelin through its canonical and non-canonical signaling in primary murine neurons during dendritic growth and arborization. We observed pathway crosstalk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the non-canonical Reelin pathway including protein translation, mRNA metabolic process and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for actin remodeling and dendritic development. Significance Reelin is an extracellular glycoprotein and exerts its function primarily by binding to the canonical lipoprotein receptors Apoer2 and Vldlr. Reelin is best known for its role in neuronal migration during prenatal brain development. Reelin also signals through a non-canonical pathway outside of Apoer2/Vldlr; however, these receptors and signal transduction pathways are less defined. Here, we examined Reelin's role during dendritic outgrowth in primary murine neurons and identified shared and distinct pathways activated by canonical and non-canonical Reelin signaling. We also found aldolase A as a novel effector of Reelin signaling, that functions independently of its known metabolic role, highlighting Reelin's influence on actin dynamics and neuronal structure and growth.
Collapse
|
3
|
Shang B, Lu F, Jiang S, Xing M, Mao X, Yang G, Zhang H. ALDOC promotes non-small cell lung cancer through affecting MYC-mediated UBE2N transcription and regulating Wnt/β-catenin pathway. Aging (Albany NY) 2023; 15:9614-9632. [PMID: 37724906 PMCID: PMC10564444 DOI: 10.18632/aging.205038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Despite advancements in therapeutic options, the overall prognosis for non-small cell lung cancer (NSCLC) remains poor. Therefore, it is crucial to further explore the etiology and targets for novel treatments to effectively manage NSCLC. In this study, immunohistochemistry was used to analyze the expression of aldolase, fructose-bisphosphate C (ALDOC) protein in tumor tissues and adjacent non-malignant tissues from 79 NSCLC patients. Our findings revealed that ALDOC was overexpressed in NSCLC tissues. ALDOC expression was associated with lymph node metastasis, lymphatic metastasis and pathological stage. In addition, Kaplan-Meier analysis showed that higher ALDOC levels were indicative of a poorer prognosis. Additionally, we observed elevated ALDOC mRNA levels in NSCLC cell lines relative to normal cells. To investigate the functional roles of ALDOC, we infected cells with small interfering RNA against ALDOC, which led to attenuated proliferation and migration, as well as ameliorated apoptosis. Furthermore, through our investigations, we discovered that ubiquitin-conjugating enzyme E2N (UBE2N) acts as a downstream factor of ALDOC. ALDOC promoted NSCLC through affecting MYC-mediated UBE2N transcription and regulating the Wnt pathway. More importantly, we found that downregulation of UBE2N or the use of Wnt pathway inhibitor could reverse the promoting effects of ALDOC elevation on NSCLC development in vitro and in vivo. Based on these findings, our study highlights the potential of ALDOC as a future therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Fengjuan Lu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Mengmeng Xing
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Xinyu Mao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hao Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
4
|
Santoro L, Pjetraj D, Velmishi V, Campana C, Catassi C, Dionisi-Vici C, Maiorana A. A new phenotype of aldolase a deficiency in a 14 year-old boy with epilepsy and rhabdomyolysis - case report. Ital J Pediatr 2022; 48:39. [PMID: 35246226 PMCID: PMC8895104 DOI: 10.1186/s13052-022-01228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Glycogen storage disease type XII is a rare metabolic disease resulting from Aldolase A deficiency that causes muscle glycogen accumulation, with crisis of rhabdomyolysis and hemolytic anemia. In the very few cases described, rhabdomyolysis crises are caused by fever and/or exercise and can accompany acute hemolytic anemia. Although currently there is no therapy available for this disease, the guidelines for the management of other forms of glycogen storage diseases recommend a nutritional therapy in order to avoid hypoglycemia or prevent exercise-induced rhabdomyolysis. Case presentation In this case report we describe a new phenotype of the disease in a 14-year-old boy, characterized by seizures and rhabdomyolysis. Beside an antiepileptic treatment, we propose a new therapeutic approach based on ketogenic diet in order to supply an energetic substrate for skeletal muscle and neurons. Conclusions The anti-epileptic therapy and the dietetic approach were well tolerated by the patient who showed good compliance. This led to a deceleration of the disease with no other acute episodes of seizures and rhabdomyolysis, without any side effects observed.
Collapse
Affiliation(s)
- Lucia Santoro
- Division of Pediatrics, Polytechnic University of Marche, Ospedale Pediatrico "G. Salesi", Ancona, Italy
| | - Dorina Pjetraj
- Division of Pediatrics, Polytechnic University of Marche, Ospedale Pediatrico "G. Salesi", Ancona, Italy.
| | - Virtut Velmishi
- Pediatric Service Nr 2 "Mother Teresa" Hospital-Trina, Tirana, Albania
| | - Carmen Campana
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Catassi
- Division of Pediatrics, Polytechnic University of Marche, Ospedale Pediatrico "G. Salesi", Ancona, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Arianna Maiorana
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
5
|
Li ZQ, Zhang Y, Li H, Su TT, Liu CG, Han ZC, Wang AY, Zhu JB. Genome-Wide Characterization and Expression Analysis Provide Basis to the Biological Function of Cotton FBA Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:696698. [PMID: 34490001 PMCID: PMC8416763 DOI: 10.3389/fpls.2021.696698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Fructose-1,6-biphosphate aldolase (FBA) is a multifunctional enzyme in plants, which participates in the process of Calvin-Benson cycle, glycolysis and gluconeogenesis. Despite the importance of FBA genes in regulating plant growth, development and abiotic stress responses, little is known about their roles in cotton. In the present study, we performed a genome-wide identification and characterization of FBAs in Gossypium hirsutum. Totally seventeen GhFBA genes were identified. According to the analysis of functional domain, phylogenetic relationship, and gene structure, GhFBA genes were classified into two subgroups. Furthermore, nine GhFBAs were predicted to be in chloroplast and eight were located in cytoplasm. Moreover, the promoter prediction showed a variety of abiotic stresses and phytohormone related cis-acting elements exist in the 2k up-stream region of GhFBA. And the evolutionary characteristics of cotton FBA genes were clearly presented by synteny analysis. Moreover, the results of transcriptome and qRT-PCR analysis showed that the expression of GhFBAs were related to the tissue distribution, and further analysis suggested that GhFBAs could respond to various abiotic stress and phytohormonal treatments. Overall, our systematic analysis of GhFBA genes would not only provide a basis for the understanding of the evolution of GhFBAs, but also found a foundation for the further function analysis of GhFBAs to improve cotton yield and environmental adaptability.
Collapse
|
6
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
7
|
Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. ACTA ACUST UNITED AC 2020; 1:735-747. [DOI: 10.1038/s43018-020-0086-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
8
|
Fujiwara K, Tsukada T, Horiguchi K, Fujiwara Y, Takemoto K, Nio-Kobayashi J, Ohno N, Inoue K. Aldolase C is a novel molecular marker for folliculo-stellate cells in rodent pituitary. Cell Tissue Res 2020; 381:273-284. [DOI: 10.1007/s00441-020-03200-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
|
9
|
Ruan W, Hu J, Zhou H, Li Y, Xu C, Luo Y, Chen T, Xu B, Yan F, Chen G. Intranasal wnt-3a alleviates neuronal apoptosis in early brain injury post subarachnoid hemorrhage via the regulation of wnt target PPAN mediated by the moonlighting role of aldolase C. Neurochem Int 2020; 134:104656. [DOI: 10.1016/j.neuint.2019.104656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
|
10
|
Zhao W, Liu H, Zhang L, Hu Z, Liu J, Hua W, Xu S, Liu J. Genome-Wide Identification and Characterization of FBA Gene Family in Polyploid Crop Brassica napus. Int J Mol Sci 2019; 20:E5749. [PMID: 31731804 PMCID: PMC6888112 DOI: 10.3390/ijms20225749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) is a versatile metabolic enzyme involved in multiple important processes of glycolysis, gluconeogenesis, and Calvin cycle. Despite its significance in plant biology, the identity of this gene family in oil crops is lacking. Here, we performed genome-wide identification and characterization of FBAs in an allotetraploid species, oilseed rape Brassica napus. Twenty-two BnaFBA genes were identified and divided into two groups based on integrative analyses of functional domains, phylogenetic relationships, and gene structures. Twelve and ten B. napus FBAs (BnaFBAs) were predicted to be localized in the chloroplast and cytoplasm, respectively. Notably, synteny analysis revealed that Brassica-specific triplication contributed to the expansion of the BnaFBA gene family during the evolution of B. napus. Various cis-acting regulatory elements pertinent to abiotic and biotic stresses, as well as phytohormone responses, were detected. Intriguingly, each of the BnaFBA genes exhibited distinct sequence polymorphisms. Among them, six contained signatures of selection, likely having experienced breeding selection during adaptation and domestication. Importantly, BnaFBAs showed diverse expression patterns at different developmental stages and were preferentially highly expressed in photosynthetic tissues. Our data thus provided the foundation for further elucidating the functional roles of individual BnaFBA and also potential targets for engineering to improve photosynthetic productivity in B. napus.
Collapse
Affiliation(s)
- Wei Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Hongfang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Liang Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Zhiyong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Jun Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Shouming Xu
- Henan key laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| |
Collapse
|
11
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Pamidimukkala NV, Leonard MK, Snyder D, McCorkle JR, Kaetzel DM. Metastasis Suppressor NME1 Directly Activates Transcription of the ALDOC Gene in Melanoma Cells. Anticancer Res 2018; 38:6059-6068. [PMID: 30396920 DOI: 10.21873/anticanres.12956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/05/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM NME/NM23 nucleoside diphosphate kinase 1 (NME1) is a metastasis suppressor gene, exhibiting reduced expression in metastatic cancers and the ability to suppress metastatic activity of cancer cells. We previously identified NME1-regulated genes with prognostic value in human melanoma. This study was conducted in melanoma cell lines aiming to elucidate the mechanism through which NME regulates one of these genes, aldolase C (ALDOC). MATERIALS AND METHODS ALDOC mRNA and protein expression was measured using qRT-PCR and immunoblot analyses. Promoter-luciferase constructs and chromatin immunoprecipitation were employed to measure the impact of NME1 on ALDOC transcription. RESULTS NME1 enhanced ALDOC transcription, evidenced by increased expression of ALDOC pre-mRNA and activity of an ALDOC promoter-luciferase module. NME1 was detected at the ALDOC promoter, and forced NME1 expression resulted in enhanced occupancy of the promoter by NME1, increased presence of epigenetic activation markers (H3K4me3 and H3K27ac), and recruitment of RNA polymerase II. CONCLUSION This is the first study to indicate that NME1 induces transcription through its direct binding to the promoter region of a target gene.
Collapse
Affiliation(s)
- Nidhi V Pamidimukkala
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, U.S.A
| | - Mary Kathryn Leonard
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, U.S.A
| | - Devin Snyder
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, U.S.A
| | | | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, U.S.A. .,Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, MD, U.S.A
| |
Collapse
|
13
|
Lv GY, Guo XG, Xie LP, Xie CG, Zhang XH, Yang Y, Xiao L, Tang YY, Pan XL, Guo AG, Xu H. Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1030. [PMID: 28659962 PMCID: PMC5470051 DOI: 10.3389/fpls.2017.01030] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/29/2017] [Indexed: 05/17/2023]
Abstract
Fructose-1, 6-bisphosphate aldolase (FBA) is a key plant enzyme that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. It plays significant roles in biotic and abiotic stress responses, as well as in regulating growth and development processes. In the present paper, 21 genes encoding TaFBA isoenzymes were identified, characterized, and categorized into three groups: class I chloroplast/plastid FBA (CpFBA), class I cytosol FBA (cFBA), and class II chloroplast/plastid FBA. By using a prediction online database and genomic PCR analysis of Chinese Spring nulli-tetrasomic lines, we have confirmed the chromosomal location of these genes in 12 chromosomes of four homologous groups. Sequence and genomic structure analysis revealed the high identity of the allelic TaFBA genes and the origin of different TaFBA genes. Numerous putative environment stimulus-responsive cis-elements have been identified in 1,500-bp regions of TaFBA gene promoters, of which the most abundant are the light-regulated elements (LREs). Phylogenetic reconstruction using the deduced protein sequence of 245 FBA genes indicated an independent evolutionary pathway for the class I and class II groups. Although, earlier studies have indicated that class II FBA only occurs in prokaryote and fungi, our results have demonstrated that a few class II CpFBAs exist in wheat and other closely related species. Class I TaFBA was predicted to be tetramers and class II to be dimers. Gene expression analysis based on microarray and transcriptome databases suggested the distinct role of TaFBAs in different tissues and developmental stages. The TaFBA 4-9 genes were highly expressed in leaves and might play important roles in wheat development. The differential expression patterns of the TaFBA genes in light/dark and a few abiotic stress conditions were also analyzed. The results suggested that LRE cis-elements of TaFBA gene promoters were not directly related to light responses. Most TaFBA genes had higher expression levels in the roots than in the shoots when under various stresses. Class I cytosol TaFBA genes, particularly TaFBA10/12/18 and TaFBA13/16, and three class II TaFBA genes are involved in responses to various abiotic stresses. Class I CpFBA genes in wheat are apparently sensitive to different stress conditions.
Collapse
Affiliation(s)
- Geng-Yin Lv
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Xiao-Guang Guo
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Li-Ping Xie
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Chang-Gen Xie
- College of Life Sciences, Northwest A & F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - Xiao-Hong Zhang
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Yuan Yang
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Lei Xiao
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Yu-Ying Tang
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Xing-Lai Pan
- Department of Food Crop Science, Cotton Research Institute, Shanxi Academy of Agricultural Sciences (CAAS)Yuncheng, China
| | - Ai-Guang Guo
- College of Life Sciences, Northwest A & F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - Hong Xu
- College of Life Sciences, Northwest A & F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
- *Correspondence: Hong Xu
| |
Collapse
|
14
|
Han X, Zhu X, Zhu S, Wei L, Hong Z, Guo L, Chen H, Chi B, Liu Y, Feng L, Ren Y, Wan J. A Rational Design, Synthesis, Biological Evaluation and Structure--Activity Relationship Study of Novel Inhibitors against Cyanobacterial Fructose-1,6-bisphosphate Aldolase. J Chem Inf Model 2015; 56:73-81. [PMID: 26669534 DOI: 10.1021/acs.jcim.5b00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, a series of novel maleimide derivatives were rationally designed and optimized, and their inhibitory activities against cyanobacteria class-II fructose-1,6-bisphosphate aldolase (Cy-FBA-II) and Synechocystis sp. PCC 6803 were further evaluated. The experimental results showed that the introduction of a bigger group (Br, Cl, CH3, or C6H3-o-F) on the pyrrole-2',5'-dione ring resulted in a decrease in the Cy-FBA-II inhibitory activity of the hit compounds. Generally, most of the hit compounds with high Cy-FBA-II inhibitory activities could also exhibit high in vivo activities against Synechocystis sp. PCC 6803. Especially, compound 10 not only shows a high Cy-FBA-II activity (IC50 = 1.7 μM) but also has the highest in vivo activity against Synechocystis sp. PCC 6803 (EC50 = 0.6 ppm). Thus, compound 10 was selected as a representative molecule, and its probable interactions with the surrounding important residues in the active site of Cy-FBA-II were elucidated by the joint use of molecular docking, molecular dynamics simulations, ONIOM calculations, and enzymatic assays to provide new insight into the binding mode of the inhibitors and Cy-FBA-II. The positive results indicate that the design strategy used in the present study is very likely to be a promising way to find novel lead compounds with high inhibitory activities against Cy-FBA-II in the future. The enzymatic and algal inhibition assays suggest that Cy-FBA-II is very likely to be a promising target for the design, synthesis, and development of novel specific algicides to solve cyanobacterial harmful algal blooms.
Collapse
Affiliation(s)
- Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Xiuyun Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Shuaihua Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Lin Wei
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Zongqin Hong
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Li Guo
- Hubei Environmental Monitoring Central Station , Wuhan, Hubei 430072, China
| | - Haifeng Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Bo Chi
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Yan Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| |
Collapse
|
15
|
Parente DJ, Ray JCJ, Swint-Kruse L. Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores. Proteins 2015; 83:2293-306. [PMID: 26503808 DOI: 10.1002/prot.24948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/21/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022]
Abstract
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions.
Collapse
Affiliation(s)
- Daniel J Parente
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - J Christian J Ray
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66047
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| |
Collapse
|
16
|
A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase. Biochem J 2015; 472:225-37. [PMID: 26417114 DOI: 10.1042/bj20150269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022]
Abstract
Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.
Collapse
|
17
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
18
|
Zhang L, Guo Z, Huang J, Liu M, Wang Y, Ji C. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of fructose-1,6-bisphosphate aldolase from Escherichia coli. Acta Crystallogr F Struct Biol Commun 2014; 70:1376-9. [PMID: 25286943 PMCID: PMC4188083 DOI: 10.1107/s2053230x14018408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/12/2014] [Indexed: 11/11/2022] Open
Abstract
Fructose-1,6-bisphosphate aldolase is one of the most important enzymes in the glycolytic pathway and catalyzes the reversible cleavage of fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The full-length fbaB gene encoding fructose-1,6-bisphosphate aldolase class I (FBPA I) was cloned from Escherichia coli strain BL21. FBPA I was overexpressed in E. coli and purified. Biochemical analysis found that the optimum reaction temperature of FBPA I is 330.5 K and that the enzyme has a high temperature tolerance. Crystals of recombinant FBPA I were obtained by the sitting-drop vapour-diffusion technique in a condition consisting of 19 mg ml(-1) FBPA I in 0.1 M Tris pH 9.0, 10%(w/v) polyethylene glycol 8000 and diffracted to 2.0 Å resolution. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 217.7, b = 114.9, c = 183.9 Å, β = 124.6°. The asymmetric unit of these crystals may contain ten molecules, giving a Matthews coefficient of 2.48 Å(3) Da(-1) and a solvent content of 50.5%.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zheng Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People’s Republic of China
| | - Meiruo Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yuandong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People’s Republic of China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200433, People’s Republic of China
| |
Collapse
|
19
|
Fujita H, Aoki H, Ajioka I, Yamazaki M, Abe M, Oh-Nishi A, Sakimura K, Sugihara I. Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus knock-in mice. PLoS One 2014; 9:e86679. [PMID: 24475166 PMCID: PMC3903578 DOI: 10.1371/journal.pone.0086679] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022] Open
Abstract
Aldolase C (Aldoc, also known as "zebrin II"), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments.
Collapse
Affiliation(s)
- Hirofumi Fujita
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hanako Aoki
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Arata Oh-Nishi
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Hou Q, Sheng X, Liu Y. QM/MM studies of the mechanism of unusual bifunctional fructose-1,6-bisphosphate aldolase/phosphatase. Phys Chem Chem Phys 2014; 16:11366-73. [DOI: 10.1039/c3cp55263b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Yang Y, Tarabra E, Yang GS, Vaitheesvaran B, Palacios G, Kurland IJ, Pessin JE, Bastie CC. Alteration of de novo glucose production contributes to fasting hypoglycaemia in Fyn deficient mice. PLoS One 2013; 8:e81866. [PMID: 24312371 PMCID: PMC3842980 DOI: 10.1371/journal.pone.0081866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/20/2013] [Indexed: 11/19/2022] Open
Abstract
Previous studies have demonstrated that glucose disposal is increased in the Fyn knockout (FynKO) mice due to increased insulin sensitivity. FynKO mice also display fasting hypoglycaemia despite decreased insulin levels, which suggested that hepatic glucose production was unable to compensate for the increased basal glucose utilization. The present study investigates the basis for the reduction in plasma glucose levels and the reduced ability for the liver to produce glucose in response to gluconeogenic substrates. FynKO mice had a 5-fold reduction in phosphoenolpyruvate carboxykinase (PEPCK) gene and protein expression and a marked reduction in pyruvate, pyruvate/lactate-stimulated glucose output. Remarkably, de novo glucose production was also blunted using gluconeogenic substrates that bypass the PEPCK step. Impaired conversion of glycerol to glucose was observed in both glycerol tolerance test and determination of the conversion of (13)C-glycerol to glucose in the fasted state. α-glycerol phosphate levels were reduced but glycerol kinase protein expression levels were not changed. Fructose-driven glucose production was also diminished without alteration of fructokinase expression levels. The normal levels of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate observed in the FynKO liver extracts suggested normal triose kinase function. Fructose-bisphosphate aldolase (aldolase) mRNA or protein levels were normal in the Fyn-deficient livers, however, there was a large reduction in liver fructose-6-phosphate (30-fold) and fructose-1,6-bisphosphate (7-fold) levels as well as a reduction in glucose-6-phosphate (2-fold) levels. These data suggest a mechanistic defect in the allosteric regulation of aldolase activity.
Collapse
Affiliation(s)
- Yingjuan Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Elena Tarabra
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gong-She Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- * E-mail: (CCB); (GSY)
| | - Bhavapriya Vaitheesvaran
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gustavo Palacios
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Irwin J. Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Claire C. Bastie
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail: (CCB); (GSY)
| |
Collapse
|
22
|
Dawson NJ, Biggar KK, Storey KB. Characterization of fructose-1,6-bisphosphate aldolase during anoxia in the tolerant turtle, Trachemys scripta elegans: an assessment of enzyme activity, expression and structure. PLoS One 2013; 8:e68830. [PMID: 23874782 PMCID: PMC3715522 DOI: 10.1371/journal.pone.0068830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022] Open
Abstract
One of the most adaptive facultative anaerobes among vertebrates is the freshwater turtle, Trachemys scripta elegans. Upon a decrease in oxygen supply and oxidative phosphorylation, these turtles are able to reduce their metabolic rate and recruit anaerobic glycolysis to meet newly established ATP demands. Within the glycolytic pathway, aldolase enzymes cleave fructose-1,6-bisphosphate to triose phosphates facilitating an increase in anaerobic production of ATP. Importantly, this enzyme exists primarily as tissue-specific homotetramers of aldolase A, B or C located in skeletal muscle, liver and brain tissue, respectively. The present study characterizes aldolase activity and structure in the liver tissue of a turtle whose survival greatly depends on increased glycolytic output during anoxia. Immunoblot and mass spectrometry analysis verified the presence of both aldolase A and B in turtle liver tissue, and results from co-immunoprecipitation experiments suggested that in the turtle aldolase proteins may exist as an uncommon heterotetramer. Expression levels of aldolase A protein increased significantly in liver tissue to 1.59±0.11-fold after 20 h anoxia, when compared to normoxic control values (P<0.05). A similar increase was seen for aldolase B expression. The overall kinetic properties of aldolase, when using fructose-1,6-bisphosphate as substrate, were similar to that of a previously studied aldolase A and aldolase B heterotetramer, with a Km of 240 and 180 nM (for normoxic and anoxic turtle liver, respectively). Ligand docking of fructose-1,6-bisphosphate to the active site of aldolase A and B demonstrated minor differences in both protein:ligand interactions compared to rabbit models. It is likely that the turtle is unique in its ability to regulate a heterotetramer of aldolase A and B, with a higher overall enzymatic activity, to achieve greater rates of glycolytic output and support anoxia survival.
Collapse
Affiliation(s)
- Neal J. Dawson
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K. Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Prasad CVSS, Gupta S, Kumar H, Tiwari M. Evolutionary and functional analysis of fructose bisphosphate aldolase of plant parasitic nematodes. Bioinformation 2013; 9:1-8. [PMID: 23390337 PMCID: PMC3563409 DOI: 10.6026/97320630009001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022] Open
Abstract
The essential and ubiquitous enzyme fructose bisphosphate aldolase (FBPA) has been a good target for controlling the various types of infections caused by pathogens and parasites. The parasitic infections of nematodes are the major concern of scientific community, leading to biochemical characterization of this enzyme. In this work we have developed a small dataset of all types of FBPA sequences collected from publically available databases (EMBL, NCBI and Uni-Port). The Phylogenetic study shows that evolutionary relationships among sequences of FBPA are clustered into three main groups. FBPA sequences of Globodera rostochiensis (FBPA_GR) and Heterodera glycines (FBPA_HG) are placed in group II, sharing the similar evolutionary relationship. The catalytic mechanism of these enzymes depends upon which class of aldolase, it belongs. The class of enzyme has been confirmed on the basis of sequences and structural similarity with template structure of class I FBPA. To confirm catalytic mechanism of above said model structures, the known substrate fructose-1, 6-bisphosphate (FBP) and competitive inhibitor Mannitol-1, 6 bisphosphate (MBP) were docked at known catalytic site of enzyme of interest. The comparative docking analysis shows that enzyme-substrate complex is forming similar Schiff base intermediate and conducts C(3)-C(4) bond cleavage by forming Hydrogen bonding with reaction catalyzing Glu-191, reactive Lys-150, and Schiff base forming Lys-233. On the other hand enzymeinhibitor noncovalent complex is forming cabinolamine precursor and the proton transfer by the formation of hydrogen bond between MBP O(2) with Glu191 enabling stabilization of cabinolamine transition state, which confirms the similar inhibition mechanism. Thus we conclude that Plant Parasitic Nematodes (PPNs) have evolutionary and functional relationship with the class I aldolase enzyme. Hence, FBPA can be targeted to control plant parasitic nematodes.
Collapse
Affiliation(s)
- CVS Siva Prasad
- Division of Applied Sciences & IRCB, Indian Institute of Information Technology, Deoghat, Jhalwa, Allahabad 211012, India
| | - Saurabh Gupta
- Division of Applied Sciences & IRCB, Indian Institute of Information Technology, Deoghat, Jhalwa, Allahabad 211012, India
| | - Himansu Kumar
- Division of Applied Sciences & IRCB, Indian Institute of Information Technology, Deoghat, Jhalwa, Allahabad 211012, India
| | - Murlidhar Tiwari
- Division of Applied Sciences & IRCB, Indian Institute of Information Technology, Deoghat, Jhalwa, Allahabad 211012, India
| |
Collapse
|
24
|
Active-site remodelling in the bifunctional fructose-1,6-bisphosphate aldolase/phosphatase. Nature 2011; 478:534-7. [PMID: 21983965 DOI: 10.1038/nature10458] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/13/2011] [Indexed: 11/08/2022]
Abstract
Fructose-1,6-bisphosphate (FBP) aldolase/phosphatase is a bifunctional, thermostable enzyme that catalyses two subsequent steps in gluconeogenesis in most archaea and in deeply branching bacterial lineages. It mediates the aldol condensation of heat-labile dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP) to FBP, as well as the subsequent, irreversible hydrolysis of the product to yield the stable fructose-6-phosphate (F6P) and inorganic phosphate; no reaction intermediates are released. Here we present a series of structural snapshots of the reaction that reveal a substantial remodelling of the active site through the movement of loop regions that create different catalytic functionalities at the same location. We have solved the three-dimensional structures of FBP aldolase/phosphatase from thermophilic Thermoproteus neutrophilus in a ligand-free state as well as in complex with the substrates DHAP and FBP and the product F6P to resolutions up to 1.3 Å. In conjunction with mutagenesis data, this pinpoints the residues required for the two reaction steps and shows that the sequential binding of additional Mg(2+) cations reversibly facilitates the reaction. FBP aldolase/phosphatase is an ancestral gluconeogenic enzyme optimized for high ambient temperatures, and our work resolves how consecutive structural rearrangements reorganize the catalytic centre of the protein to carry out two canonical reactions in a very non-canonical type of bifunctionality.
Collapse
|
25
|
Stopa JD, Chandani S, Tolan DR. Stabilization of the predominant disease-causing aldolase variant (A149P) with zwitterionic osmolytes. Biochemistry 2011; 50:663-71. [PMID: 21166391 DOI: 10.1021/bi101523x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary fructose intolerance (HFI) is a disease of carbohydrate metabolism that can result in hyperuricemia, hypoglycemia, liver and kidney failure, coma, and death. Currently, the only treatment for HFI is a strict fructose-free diet. HFI arises from aldolase B deficiency, and the most predominant HFI mutation is an alanine to proline substitution at position 149 (A149P). The resulting aldolase B with the A149P substitution (AP-aldolase) has activity that is <100-fold that of the wild type. The X-ray crystal structure of AP-aldolase at both 4 and 18 °C reveals disordered adjacent loops of the (α/β)(8) fold centered around the substitution, which leads to a dimeric structure as opposed to the wild-type tetramer. The effects of osmolytes were tested for restoration of structure and function. An initial screen of osmolytes (glycerol, sucrose, polyethylene glycol, 2,4-methylpentanediol, glutamic acid, arginine, glycine, proline, betaine, sarcosine, and trimethylamine N-oxide) reveals that glycine, along with similarly structured compounds, betaine and sarcosine, protects AP-aldolase structure and activity from thermal inactivation. The concentration and functional moieties required for thermal protection show a zwitterion requirement. The effects of osmolytes in restoring structure and function of AP-aldolase are described. Testing of zwitterionic osmolytes of increasing size and decreasing fractional polar surface area suggests that osmolyte-mediated AP-aldolase stabilization occurs neither primarily through excluded volume effects nor through transfer free energy effects. These data suggest that AP-aldolase is stabilized by binding to the native structure, and they provide a foundation for developing stabilizing compounds for potential therapeutics for HFI.
Collapse
Affiliation(s)
- Jack D Stopa
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, United States
| | | | | |
Collapse
|
26
|
Sekar Y, Moon TC, Slupsky CM, Befus AD. Protein tyrosine nitration of aldolase in mast cells: a plausible pathway in nitric oxide-mediated regulation of mast cell function. THE JOURNAL OF IMMUNOLOGY 2010; 185:578-87. [PMID: 20511553 DOI: 10.4049/jimmunol.0902720] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NO is a short-lived free radical that plays a critical role in the regulation of cellular signaling. Mast cell (MC)-derived NO and exogenous NO regulate MC activities, including the inhibition of MC degranulation. At a molecular level, NO acts to modify protein structure and function through several mechanisms, including protein tyrosine nitration. To begin to elucidate the molecular mechanisms underlying the effects of NO in MCs, we investigated protein tyrosine nitration in human MC lines HMC-1 and LAD2 treated with the NO donor S-nitrosoglutathione. Using two-dimensional gel Western blot analysis with an anti-nitrotyrosine Ab, together with mass spectrometry, we identified aldolase A, an enzyme of the glycolytic pathway, as a target for tyrosine nitration in MCs. The nitration of aldolase A was associated with a reduction in the maximum velocity of aldolase in HMC-1 and LAD2. Nuclear magnetic resonance analysis showed that despite these changes in the activity of a critical enzyme in glycolysis, there was no significant change in total cellular ATP content, although the AMP/ATP ratio was altered. Elevated levels of lactate and pyruvate suggested that S-nitrosoglutathione treatment enhanced glycolysis. Reduced aldolase activity was associated with increased intracellular levels of its substrate, fructose 1,6-bisphosphate. Interestingly, fructose 1,6-bisphosphate inhibited IgE-mediated MC degranulation in LAD2 cells. Thus, for the first time we report evidence of protein tyrosine nitration in human MC lines and identify aldolase A as a prominent target. This posttranslational nitration of aldolase A may be an important pathway that regulates MC phenotype and function.
Collapse
Affiliation(s)
- Yokananth Sekar
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
27
|
Bouteldja N, Timson DJ. The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis 2010; 33:105-12. [PMID: 20162364 DOI: 10.1007/s10545-010-9053-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/10/2009] [Accepted: 01/18/2010] [Indexed: 12/11/2022]
Abstract
Hereditary fructose intolerance is a rare, but potentially lethal, inherited disorder of fructose metabolism, caused by mutation of the aldolase B gene. Treatment currently relies solely on dietary restriction of problematic sugars. Biochemical study of defective aldolase B enzymes is key to revealing the molecular basis of the disease and providing a stronger basis for improved treatment and diagnosis. Such studies have revealed changes in enzyme activity, stability and oligomerisation. However, linking these changes to disease phenotypes has not always been straightforward. This review gives a general overview of the features of hereditary fructose intolerance, then concentrates on the biochemistry of the AP variant (Ala149Pro variant of aldolase B) and molecular pathological consequences of mutation of the aldolase B gene.
Collapse
Affiliation(s)
- Nadia Bouteldja
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | |
Collapse
|
28
|
Funari VA, Voevodski K, Leyfer D, Yerkes L, Cramer D, Tolan DR. Quantitative gene expression profiles in real time from expressed sequence tag databases. Gene Expr 2010; 14:321-36. [PMID: 20635574 PMCID: PMC2954622 DOI: 10.3727/105221610x12717040569820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An accumulation of expressed sequence tag (EST) data in the public domain and the availability of bioinformatic programs have made EST gene expression profiling a common practice. However, the utility and validity of using EST databases (e.g., dbEST) has been criticized, particularly for quantitative assessment of gene expression. Problems with EST sequencing errors, library construction, EST annotation, and multiple paralogs make generation of specific and sensitive qualitative arid quantitative expression profiles a concern. In addition, most EST-derived expression data exists in previously assembled databases. The Virtual Northern Blot (VNB) (http: //tlab.bu.edu/vnb.html) allows generation, evaluation, and optimization of expression profiles in real time, which is especially important for alternatively spliced, novel, or poorly characterized genes. Representative gene families with variable nucleotide sequence identity, tissue specificity, and levels of expression (bcl-xl, aldoA, and cyp2d9) are used to assess the quality of VNB's output. The profiles generated by VNB are more sensitive and specific than those constructed with ESTs listed in preindexed databases at UCSC and NCBI. Moreover, quantitative expression profiles produced by VNB are comparable to quantization obtained from Northern blots and qPCR. The VNB pipeline generates real-time gene expression profiles for single-gene queries that are both qualitatively and quantitatively reliable.
Collapse
Affiliation(s)
| | | | - Dimitry Leyfer
- †Bioinformatics Program, Boston University, Boston, MA, USA
| | - Laura Yerkes
- *Biology Department, Boston University, Boston, MA, USA
| | - Donald Cramer
- *Biology Department, Boston University, Boston, MA, USA
| | - Dean R. Tolan
- *Biology Department, Boston University, Boston, MA, USA
- †Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
29
|
Judelson HS, Tani S, Narayan RD. Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers and artificial media. MOLECULAR PLANT PATHOLOGY 2009; 10:843-55. [PMID: 19849790 PMCID: PMC6640522 DOI: 10.1111/j.1364-3703.2009.00570.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Efficient nutrient acquisition is critical to the fitness of plant pathogens. To address how the late blight agent Phytophthora infestans adapts to nutrients offered by its hosts, genes in glycolytic, gluconeogenic and amino acid pathways were mined from its genome and their expression in different plant tissues and artificial media was measured. Evidence for conventional glycolytic and gluconeogenic processes was obtained, although several steps involved pyrophosphate-linked transformations which are uncommon in eukaryotes. In media manipulation studies, nearly all genes in the pathways were subject to strong transcriptional control. However in rye-sucrose media, tomato leaflets, potato tubers and, at both early and late stages of infection, most glycolytic genes were expressed similarly, which indicated that each plant tissue presented a nutrient-rich environment. Biochemical analyses also demonstrated that sporulation occurred from host material in which sugars were abundant, with fructose and glucose increasing at the expense of sucrose late in the disease cycle. The expression of only a few genes changed late in infection, with the most notable example being lower invertase levels in the sucrose-reduced leaves. Interestingly, most gluconeogenic genes were up-regulated in tubers compared with other tissues. Rather than reflecting a starvation response, this probably reveals the role of such enzymes in converting carbon skeletons from the abundant free amino acids of tubers into citric acid cycle and glycolysis intermediates, as genes involved in amino acid catabolism were also more highly expressed in tubers. The corresponding enzymes also displayed higher activities in defined media when amino acids were abundant, as in tubers.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
30
|
Carrera M, Barros L, Cañas B, Gallardo JM. Discrimination of South African Commercial Fish Species (Merluccius capensisandMerluccius paradoxus) by LC-MS/MS Analysis of the Protein Aldolase. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2009. [DOI: 10.1080/10498850802581369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Yang HY, Pu XP. Chronic morphine administration induces over-expression of aldolase C with reduction of CREB phosphorylation in the mouse hippocampus. Eur J Pharmacol 2009; 609:51-7. [PMID: 19289113 DOI: 10.1016/j.ejphar.2009.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 01/13/2023]
Abstract
In recent studies, alterations in the activity and expression of metabolic enzymes, such as those involved in glycolysis, have been detected in morphine-dependent patients and animals. Increasing evidence demonstrates that the hippocampus is an important brain region associated with morphine dependence, but the molecular events occurring in the hippocampus following chronic exposure to morphine are poorly understood. Aldolase C is the brain-specific isoform of fructose-1, 6-bisphosphate aldolase which is a glycolytic enzyme catalyzing reactions in the glycolytic, gluconeogenic, and fructose metabolic pathways. Using Western blot and immunofluorescence assays, we found the expression of aldolase C was markedly increased in the mouse hippocampus following chronic morphine treatment. Naloxone pretreatment before morphine administration suppressed withdrawal jumping, weight loss, and overexpression of aldolase C. CREB is a transcription factor regulated through phosphorylation on Ser133, which is known to play a key role in the mechanism of morphine dependence. When detecting the expression of phosphorylated CREB (p-CREB) in the mouse hippocampus using Western blot and immunohistochemistry, we found CREB phosphorylation was clearly decreased following chronic morphine treatment. Interestingly, laser-confocal microscopy showed that overexpression of aldolase C in mouse hippocampal neurons was concomitant with the decreased immunoreactivity of p-CREB. The results suggest potential links between the morphine-induced alteration of aldolase C and the regulation of CREB phosphorylation, a possible mechanism of morphine dependence.
Collapse
Affiliation(s)
- Hai-Yu Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | | |
Collapse
|
32
|
MOMIN MANSOORA, MOMIN VIDYAM. Histochemical localization of glycogen and some representative enzymes of glycolytic cycle in the cheliped muscle of Scylla serrata (Forskål) (Brachyura: Decapoda). Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.1977.tb00841.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Purev M, Kim MK, Samdan N, Yang DC. Isolation of a novel fructose-1,6-bisphosphate aldolase gene from Codonopsis lanceolata and analysis of the response of this gene to abiotic stresses. Mol Biol 2008. [DOI: 10.1134/s0026893308020027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Pezza JA, Stopa JD, Brunyak EM, Allen KN, Tolan DR. Thermodynamic analysis shows conformational coupling and dynamics confer substrate specificity in fructose-1,6-bisphosphate aldolase. Biochemistry 2007; 46:13010-8. [PMID: 17935305 DOI: 10.1021/bi700713s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational flexibility is emerging as a central theme in enzyme catalysis. Thus, identifying and characterizing enzyme dynamics are critical for understanding catalytic mechanisms. Herein, coupling analysis, which uses thermodynamic analysis to assess cooperativity and coupling between distal regions on an enzyme, is used to interrogate substrate specificity among fructose-1,6-(bis)phosphate aldolase (aldolase) isozymes. Aldolase exists as three isozymes, A, B, and C, distinguished by their unique substrate preferences despite the fact that the structures of the active sites of the three isozymes are nearly identical. While conformational flexibility has been observed in aldolase A, its function in the catalytic reaction of aldolase has not been demonstrated. To explore the role of conformational dynamics in substrate specificity, those residues associated with isozyme specificity (ISRs) were swapped and the resulting chimeras were subjected to steady-state kinetics. Thermodynamic analyses suggest cooperativity between a terminal surface patch (TSP) and a distal surface patch (DSP) of ISRs that are separated by >8.9 A. Notably, the coupling energy (DeltaGI) is anticorrelated with respect to the two substrates, fructose 1,6-bisphosphate and fructose 1-phosphate. The difference in coupling energy with respect to these two substrates accounts for approximately 70% of the energy difference for the ratio of kcat/Km for the two substrates between aldolase A and aldolase B. These nonadditive mutational effects between the TSP and DSP provide functional evidence that coupling interactions arising from conformational flexibility during catalysis are a major determinant of substrate specificity.
Collapse
Affiliation(s)
- John A Pezza
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.
Collapse
Affiliation(s)
- Vincent A Funari
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
36
|
|
37
|
Lenaerts K, Bouwman FG, Lamers WH, Renes J, Mariman EC. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics 2007; 8:91. [PMID: 17407598 PMCID: PMC1852558 DOI: 10.1186/1471-2164-8-91] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 04/03/2007] [Indexed: 12/31/2022] Open
Abstract
Background In vitro models are indispensable study objects in the fields of cell and molecular biology, with advantages such as accessibility, homogeneity of the cell population, reproducibility, and growth rate. The Caco-2 cell line, originating from a colon carcinoma, is a widely used in vitro model for small intestinal epithelium. Cancer cells have an altered metabolism, making it difficult to infer their representativity for the tissue from which they are derived. This study was designed to compare the protein expression pattern of Caco-2 cells with the patterns of intestinal epithelial cells from human small and large intestine. HT-29 intestinal cells, Hep G2 liver cells and TE 671 muscle cells were included too, the latter two as negative controls. Results Two-dimensional gel electrophoresis was performed on each tissue and cell line protein sample. Principal component and cluster analysis revealed that global expression of intestinal epithelial scrapings differed from that of intestinal epithelial cell lines. Since all cultured cell lines clustered together, this finding was ascribed to an adaptation of cells to culture conditions and their tumor origin, and responsible proteins were identified by mass spectrometry. When investigating the profiles of Caco-2 cells and small intestinal cells in detail, a considerable overlap was observed. Conclusion Numerous proteins showed a similar expression in Caco-2 cells, HT-29 cells, and both the intestinal scrapings, of which some appear to be characteristic to human intestinal epithelium in vivo. In addition, several biologically significant proteins are expressed at comparable levels in Caco-2 cells and small intestinal scrapings, indicating the usability of this in vitro model. Caco-2 cells, however, appear to over-express as well as under-express certain proteins, which needs to be considered by scientists using this cell line. Hence, care should be taken to prevent misinterpretation of in vitro obtained findings when translating them to the in vivo situation.
Collapse
Affiliation(s)
- Kaatje Lenaerts
- Maastricht Proteomics Center, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Freek G Bouwman
- Maastricht Proteomics Center, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Wouter H Lamers
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
| | - Johan Renes
- Maastricht Proteomics Center, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Edwin C Mariman
- Maastricht Proteomics Center, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
38
|
Stefanizzi I, Cañete-Soler R. Coregulation of light neurofilament mRNA by poly(A)-binding protein and aldolase C: Implications for neurodegeneration. Brain Res 2007; 1139:15-28. [PMID: 17276415 DOI: 10.1016/j.brainres.2006.12.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/14/2006] [Accepted: 12/31/2006] [Indexed: 11/16/2022]
Abstract
The multifunctional proteins aldolase C and poly (A)-binding protein (PABP) undergo competitive interactions in cells coexpressing aldolase C and NF-L. A specific in vivo interaction between aldolase C and NF-L mRNA had been localized to a 68 nt segment of the transcript spanning the translation termination signal. It is shown here that the poly (A)-binding protein (PABP) binds the body of the NF-L transcript and increases its levels of expression when an excess of PABP is transiently provided in trans. Immunoprecipitation of PABP-associated ribonucleoprotein complexes of human spinal cord pulls down the dimeric form of aldolase C suggesting that their co-regulation of NF-L expression could be linked to the oligomerization status of aldolase C. An ex vivo model of mRNA decay has assessed mechanisms whereby aldolase C and PABP control NF-L expression. This model shows that aldolase C is a zinc-activated ribonuclease that cleaves the transcript at sites closed to the end-terminal structures. Immunological and biochemical depletion of endogenous PABP increases the instability of the transcript suggesting that PABP shields the NF-L mRNA from aldolase attack. An in vitro model shows that a mutant NF-L 68, in which the 45 nt of proximal 3'-UTR is replaced with unrelated sequence, is not degraded by aldolase C. Taken together, the findings might have important consequences for understanding causal mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Ida Stefanizzi
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 608 Stellar Chance, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | |
Collapse
|
39
|
Loughman JA, Caparon MG. A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes. EMBO J 2006; 25:5414-22. [PMID: 17066081 PMCID: PMC1636624 DOI: 10.1038/sj.emboj.7601393] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 09/26/2006] [Indexed: 11/09/2022] Open
Abstract
Regulation of virulence factor expression is critical for pathogenic microorganisms that must sense and adapt to a dynamic host environment; yet, the signal transduction pathways that enable this process are generally poorly understood. Here, we identify LacD.1 as a global regulator of virulence factor expression in the versatile human pathogen, Streptococcus pyogenes. LacD.1 is derived from a class I tagatose-1,6-bisphosphate aldolase homologous to those involved in lactose and galactose metabolism in related prokaryotes. However, regulation of transcription by LacD.1 is not dependent on this enzymatic activity or the canonical catabolite repression pathway, but likely does require substrate recognition. Our results suggest that LacD.1 has been adapted as a metabolic sensor, and raise the possibility that regulation of gene expression by metabolic enzymes may be a novel mechanism by which Gram-positive bacteria, including S. pyogenes, coordinate multiple environmental cues, allowing essential transcription programs to be coupled with perceived nutritional status.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St Louis, MO 63110-1093, USA. Tel.: +1 314 362 1485; Fax: +1 314 362 3203; E-mail:
| |
Collapse
|
40
|
Linke S, Goertz P, Baader SL, Gieselmann V, Siebler M, Junghans U, Kappler J. Aldolase C/Zebrin II is Released to the Extracellular Space after Stroke and Inhibits the Network Activity of Cortical Neurons. Neurochem Res 2006; 31:1297-303. [PMID: 17053973 DOI: 10.1007/s11064-006-9169-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023]
Abstract
Cell death after stroke involves apoptotic, autophagocytic and necrotic mechanisms which may cause the release of cytosolic proteins to the extracellular space. Aldolase C (AldC) is the brain specific isoform of the glycolytic enzyme fructose-1,6-bisphosphate aldolase. According to its characteristic striped expression pattern in the adult cerebellum AldC is also termed zebrin II. Here, we demonstrate release of AldC into the cerebrospinal fluid (CSF) after stroke in vivo. Studies with cell cultures confirmed that AldC is released to the extracellular space after hypoxia. Moreover, addition of purified recombinant AldC to networks of cortical neurons plated on multielectrode arrays reversibly inhibited the spontaneous generation of action potentials at AldC concentrations which can be expected to occur after lesions of the human cerebral cortex. This mechanism could be relevant in the pathogenesis of the electrophysiological changes in the penumbra region after stroke.
Collapse
Affiliation(s)
- Stephanie Linke
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, D-53115, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Cañete-Soler R, Reddy KS, Tolan DR, Zhai J. Aldolases a and C are ribonucleolytic components of a neuronal complex that regulates the stability of the light-neurofilament mRNA. J Neurosci 2005; 25:4353-64. [PMID: 15858061 PMCID: PMC6725117 DOI: 10.1523/jneurosci.0885-05.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/16/2005] [Accepted: 03/22/2005] [Indexed: 01/26/2023] Open
Abstract
A 68 nucleotide segment of the light neurofilament (NF-L) mRNA, spanning the translation termination signal, participates in regulating the stability of the transcript in vivo. Aldolases A and C, but not B, interact specifically with this segment of the transcript in vitro. Aldolases A and C are glycolytic enzymes expressed in neural cells, and their mRNA binding activity represents a novel function of these isozymes. This unsuspected new activity was first uncovered by Northwestern blotting of a brainstem/spinal cord cDNA library. It was confirmed by two-dimensional fractionation of mouse brain cytosol followed by Northwestern hybridization and protein sequencing. Both neuronal aldolases interact specifically with the NF-L but not the heavy neurofilament mRNA, and their binding to the transcript excludes the poly(A)-binding protein (PABP) from the complex. Constitutive ectopic expression of aldolases A and C accelerates the decay of a neurofilament transgene (NF-L) driven by a tetracycline inducible system. In contrast, mutant transgenes lacking mRNA sequence for aldolase binding are stabilized. Our findings strongly suggest that aldolases A and C are regulatory components of a light neurofilament mRNA complex that modulates the stability of NF-L mRNA. This modulation likely involves endonucleolytic cleavage and a competing interaction with the PABP. Interactions of aldolases A and C in NF-L expression may be linked to regulatory pathways that maintain the highly asymmetrical form and function of large neurons.
Collapse
Affiliation(s)
- Rafaela Cañete-Soler
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19103, USA.
| | | | | | | |
Collapse
|
42
|
Yañez AJ, Ludwig HC, Bertinat R, Spichiger C, Gatica R, Berlien G, Leon O, Brito M, Concha II, Slebe JC. Different involvement for aldolase isoenzymes in kidney glucose metabolism: aldolase B but not aldolase A colocalizes and forms a complex with FBPase. J Cell Physiol 2005; 202:743-53. [PMID: 15389646 DOI: 10.1002/jcp.20183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The expression of aldolase A and B isoenzyme transcripts was confirmed by RT-PCR in rat kidney and their cell distribution was compared with characteristic enzymes of the gluconeogenic and glycolytic metabolic pathway: fructose-1,6-bisphosphatase (FBPase), phosphoenol pyruvate carboxykinase (PEPCK), and pyruvate kinase (PK). We detected aldolase A isoenzyme in the thin limb and collecting ducts of the medulla and in the distal tubules and glomerula of the cortex. The same pattern of distribution was found for PK, but not for aldolase B, PEPCK, and FBPase. In addition, co-localization studies confirmed that aldolase B, FBPase, and PEPCK are expressed in the same proximal cells. This segregated cell distribution of aldolase A and B with key glycolytic and gluconeogenic enzymes, respectively, suggests that these aldolase isoenzymes participate in different metabolic pathways. In order to test if FBPase interacts with aldolase B, FBPase was immobilized on agarose and subjected to binding experiments. The results show that only aldolase B is specifically bound to FBPase and that this interaction was specifically disrupted by 60 microM Fru-1,6-P2. These data indicate the presence of a modulated enzyme-enzyme interaction between FBPase and isoenzyme B. They affirm that in kidney, aldolase B specifically participates, along the gluconeogenic pathway and aldolase A in glycolysis.
Collapse
Affiliation(s)
- Alejandro J Yañez
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Elshafei AM, Elsayed MA, Abdel-Fatah OM, Ali NH, Mohamed LA. Some properties of two aldolases in extracts ofAspergillus oryzae. J Basic Microbiol 2005; 45:31-40. [PMID: 15678561 DOI: 10.1002/jobm.200410440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fructose 1,6-diphosphate (FDP) aldolase and 2-keto-3-deoxy-D-gluconate (KDG) aldolase the two key enzymes of Embden-Meyerhof-Parnas (EMP) and the nonphosphorolytic Entner-Doudoroff (ED) pathways respectively, were identified in cell-free extracts of four Aspergillus oryzae strains grown on D-glucose as sole source of carbon. A. oryzae NRRL 3435 gave the highest enzymatic activity for the two enzymes and selected for further studies. Studies on the properties of the two key enzymes indicated that the optimum conditions for the activities of FDP aldolase and KDG aldolases occurred at pH 8.5, 45 degrees C and pH 8.0, 55 degrees C, respectively. Tris-acetate buffer and phosphate buffer showed the highest enzymatic activity for these two enzymes respectively. KDG aldolase was stable at 55 degrees C for 60 minutes however FDP aldolase was found to be less stable above 45 degrees C. On the other hand the two aldolases showed a high degree of stability towards frequent freezing and thawing. Dialysis of the extracts caused a decrease in the enzymatic activity of KDG aldolase, and an increase in FDP aldolase activity. The addition of ethylene diamine tetraacetate to the crude extracts caused an inhibition of KDG aldolase, whileas FDP aldolase was not affected. Addition of MnCl(2), CoSO(4), MgCl(2) and ZnSO(4) to the dialyzed extracts increased the activity of KDG aldolase by 67%, 54%, 61% and 37%, respectively. On the other hand the addition of some metal salts caused an inhibition of FDP aldolase. The results obtained indicate the absence of evidence for the involvement of sulfhydryl groups in the catalytic sites of the two aldolases.
Collapse
Affiliation(s)
- Ali M Elshafei
- Department of Microbial Chemistry, National Research Centre, El-Tahrir Street, Dokki, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
44
|
Malay AD, Allen KN, Tolan DR. Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. J Mol Biol 2005; 347:135-44. [PMID: 15733923 DOI: 10.1016/j.jmb.2005.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/22/2004] [Accepted: 01/03/2005] [Indexed: 11/28/2022]
Abstract
Hereditary fructose intolerance (HFI) is a potentially lethal inborn error in metabolism caused by mutations in the aldolase B gene, which is critical for gluconeogenesis and fructose metabolism. The most common mutation, which accounts for 53% of HFI alleles identified worldwide, results in substitution of Pro for Ala at position 149. Structural and functional investigations of human aldolase B with the A149P substitution (AP-aldolase) have shown that the mutation leads to losses in thermal stability, quaternary structure, and activity. X-ray crystallography is used to reveal the structural basis of these perturbations. Crystals of AP-aldolase are grown at two temperatures (4 degrees C and 18 degrees C), and the structure solved to 3.0 angstroms resolution, using the wild-type structure as the phasing model. The structures reveal that the single residue substitution, A149P, causes molecular disorder around the site of mutation (residues 148-159), which is propagated to three adjacent beta-strand and loop regions (residues 110-129, 189-199, 235-242). Disorder in the 110-129-loop region, which comprises one subunit-subunit interface, provides an explanation for the disrupted quaternary structure and thermal instability. Greater structural perturbation, particularly at a Glu189-Arg148 salt bridge in the active-site architecture, is observed in the structure determined at 18 degrees C, which could explain the temperature-dependent loss in activity. The disorder revealed in these structures is far greater than that predicted by homology modeling and underscores the difficulties in predicting perturbations of protein structure and function by homology modeling alone. The AP-aldolase structure reveals the molecular basis of a hereditary disease and represents one of only a few structures known for mutant proteins at the root of the thousands of other inherited disorders.
Collapse
Affiliation(s)
- Ali D Malay
- Biology Department, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
45
|
Arakaki TL, Pezza JA, Cronin MA, Hopkins CE, Zimmer DB, Tolan DR, Allen KN. Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. Protein Sci 2004; 13:3077-84. [PMID: 15537755 PMCID: PMC2287316 DOI: 10.1110/ps.04915904] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.0 A resolution. Structural differences between the isozymes were expected to account for isozyme-specific activity. However, the structures of isozymes A, B, and C are the same in their overall fold and active site structure. The subtle changes observed in active site residues Arg42, Lys146, and Arg303 are insufficient to completely account for the tissue-specific isozymic differences. Consequently, the structural analysis has been extended to the isozyme-specific residues (ISRs), those residues conserved among paralogs. A complete analysis of the ISRs in the context of this structure demonstrates that in several cases an amino acid residue that is conserved among aldolase C orthologs prevents an interaction that occurs in paralogs. In addition, the structure confirms the clustering of ISRs into discrete patches on the surface and reveals the existence in aldolase C of a patch of electronegative residues localized near the C terminus. Together, these structural changes highlight the differences required for the tissue and kinetic specificity among aldolase isozymes.
Collapse
Affiliation(s)
- Tracy L Arakaki
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Albarracín JL, Fernández-Novell JM, Ballester J, Rauch MC, Quintero-Moreno A, Peña A, Mogas T, Rigau T, Yañez A, Guinovart JJ, Slebe JC, Concha II, Rodríguez-Gil JE. Gluconeogenesis-Linked Glycogen Metabolism Is Important in the Achievement of In Vitro Capacitation of Dog Spermatozoa in a Medium Without Glucose1. Biol Reprod 2004; 71:1437-45. [PMID: 15215203 DOI: 10.1095/biolreprod.104.029041] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In vitro capacitation of dog spermatozoa in a medium without sugars and with lactate as the metabolic substrate (l-CCM) was accompanied by a progressive increase of intracellular glycogen during the first 2 h of incubation, which was followed by a subsequent decrease of glycogen levels after up to 4 h of incubation. Lactate from the medium is the source for the observed glycogen synthesis, as the presence of [(14)C]glycogen after the addition to l-CCM with [(14)C]lactate was demonstrated. The existence of functional gluconeogenesis in dog sperm was also sustained by the presence of key enzymes of this metabolic pathway, such as fructose 1,6-bisphophatase and aldolase B. On the other hand, glycogen metabolism from gluconeogenic sources was important in the maintenance of a correct in vitro fertilization after incubation in the l-CCM. This was demonstrated after the addition of phenylacetic acid (PAA) to l-CCM. In the presence of PAA, in vitro capacitation of dog spermatozoa suffered alterations, which translated into changes in capacitation functional markers, like the increase in the percentage of altered acrosomes, a distinct motion pattern, decrease or even disappearance of capacitation-induced tyrosine phosphorylation, and increased heterogeneity of the chlorotetracycline pattern in capacitated cells. Thus, this is the first report indicating the existence of a functional glyconeogenesis in mammalian spermatozoa. Moreover, gluconeogenesis-linked glycogen metabolism seems to be of importance in the maintenance of a correct in vitro capacitation in dog sperm in the absence of hexoses in the medium.
Collapse
Affiliation(s)
- J L Albarracín
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, School of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Koeck T, Levison B, Hazen SL, Crabb JW, Stuehr DJ, Aulak KS. Tyrosine Nitration Impairs Mammalian Aldolase A Activity. Mol Cell Proteomics 2004; 3:548-57. [PMID: 14978198 DOI: 10.1074/mcp.m300141-mcp200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine nitration increases in vivo as a result of oxidative stress and is elevated in numerous inflammatory-associated diseases. Mammalian fructose-1,6-bisphosphate aldolases are tyrosine nitrated in lung epithelial cells and liver, as well as in retina under different inflammatory conditions. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we now show that aldolase A is nitrated in human skin fibroblasts. To reveal the consequences of tyrosine nitration, we studied the impact of peroxynitrite on the glycolytic functions of aldolase A. A peroxynitrite concentration-dependent decrease in fructose-1,6-bisphosphate cleavage activity was observed with a concomitant increase in nitrotyrosine immunoreactivity. Both V(max) and the K(m) for fructose-1,6-bisphosphate decreased after incubation with peroxynitrite. Aldolase nitrotyrosine immunoreactivity diminished following carboxypeptidase Y digestion, demonstrating that tyrosine residues in the carboxyl-terminal region of aldolase are major targets of nitration. Aldolase A contains a carboxyl-terminal tyrosine residue, Tyr(363), that is critical for its catalytic activity. Indeed, tandem mass spectrometric analysis of trypsin-digested aldolase showed that Tyr(363) is the most susceptible to nitration, with a modification of Tyr(342) occurring only after nitration of Tyr(363). These tyrosine nitrations likely result in altered interactions between the carboxyl-terminal region and enzyme substrate or reaction intermediates causing the decline in activity. The results suggest that tyrosine nitration of aldolase A can contribute to an impaired cellular glycolytic activity.
Collapse
Affiliation(s)
- Thomas Koeck
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Lorentzen E, Pohl E, Zwart P, Stark A, Russell RB, Knura T, Hensel R, Siebers B. Crystal structure of an archaeal class I aldolase and the evolution of (betaalpha)8 barrel proteins. J Biol Chem 2003; 278:47253-60. [PMID: 12941964 DOI: 10.1074/jbc.m305922200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway. FBPAs from archaeal organisms have recently been identified and characterized as a divergent family of proteins. Here, we report the first crystal structure of an archaeal FBPA at 1.9-A resolution. The structure of this 280-kDa protein complex was determined using single wavelength anomalous dispersion followed by 10-fold non-crystallographic symmetry averaging and refined to an R-factor of 14.9% (Rfree 17.9%). The protein forms a dimer of pentamers, consisting of subunits adopting the ubiquitous (betaalpha)8 barrel fold. Additionally, a crystal structure of the archaeal FBPA covalently bound to dihydroxyacetone phosphate was solved at 2.1-A resolution. Comparison of the active site residues with those of classical FBPAs, which share no significant sequence identity but display the same overall fold, reveals a common ancestry between these two families of FBPAs. Structural comparisons, furthermore, establish an evolutionary link to the triosephosphate isomerases, a superfamily hitherto considered independent from the superfamily of aldolases.
Collapse
Affiliation(s)
- Esben Lorentzen
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Poelarends GJ, Johnson WH, Murzin AG, Whitman CP. Mechanistic characterization of a bacterial malonate semialdehyde decarboxylase: identification of a new activity on the tautomerase superfamily. J Biol Chem 2003; 278:48674-83. [PMID: 14506256 DOI: 10.1074/jbc.m306706200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malonate semialdehyde decarboxylase (MSAD) has been identified as the protein encoded by the orf130 gene from Pseudomonas pavonaceae 170 on the basis of the genomic context of the gene as well as its ability to catalyze the decarboxylation of malonate semialdehyde to generate acetaldehyde. The enzyme is found in a degradative pathway for the xenobiotic nematocide trans-1,3-dichloropropene. MSAD has no sequence homology to previously characterized decarboxylases, but the presence of a conserved motif (Pro1-(X)8 -Gly-Arg11-X-Asp-X-Gln) in its N-terminal region suggested a relationship to the tautomerase superfamily. Sequence analysis identified Pro1 and Arg75 as potential active site residues that might be involved in the MSAD activity. The results of site-directed mutagenesis experiments confirmed the importance of these residues to activity and provided further evidence to implicate MSAD as a new member of the tautomerase superfamily. MSAD is the first identified decarboxylase in the superfamily and is possibly the first characterized member of a new and distinct family within this superfamily. Malonate semialdehyde is analogous to a beta-keto acid, and enzymes that catalyze the decarboxylation of these acids generally utilize metal ion catalysis, a Schiff base intermediate, or polarization of the carbonyl group by hydrogen bonding and/or electrostatic interactions. A mechanistic analysis shows that the rate of the reaction is not affected by the presence of a metal ion or EDTA while the incubation of MSAD with the substrate in the presence of sodium cyanoborohydride results in the irreversible inactivation of the enzyme. The site of modification is Pro1. These observations are consistent with the latter two mechanisms, but do not exclude the first mechanism. Based on the sequence analysis, the outcome of the mutagenesis and mechanistic experiments, and the roles determined for Pro1 and the conserved arginine in all tautomerase superfamily members characterized thus far, two mechanistic scenarios are proposed for the MSAD-catalyzed reaction in which Pro1 and Arg75 play prominent roles.
Collapse
Affiliation(s)
- Gerrit J Poelarends
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712-1074, USA
| | | | | | | |
Collapse
|
50
|
Pezza JA, Choi KH, Berardini TZ, Beernink PT, Allen KN, Tolan DR. Spatial clustering of isozyme-specific residues reveals unlikely determinants of isozyme specificity in fructose-1,6-bisphosphate aldolase. J Biol Chem 2003; 278:17307-13. [PMID: 12611890 DOI: 10.1074/jbc.m209185200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate fructose-1,6-bisphosphate aldolase exists as three isozymes (A, B, and C) that demonstrate kinetic properties that are consistent with their physiological role and tissue-specific expression. The isozymes demonstrate specific substrate cleavage efficiencies along with differences in the ability to interact with other proteins; however, it is unknown how these differences are conferred. An alignment of 21 known vertebrate aldolase sequences was used to identify all of the amino acids that are specific to each isozyme, or isozyme-specific residues (ISRs). The location of ISRs on the tertiary and quaternary structures of aldolase reveals that ISRs are found largely on the surface (24 out of 27) and are all outside of hydrogen bonding distance to any active site residue. Moreover, ISRs cluster into two patches on the surface of aldolase with one of these patches, the terminal surface patch, overlapping with the actin-binding site of aldolase A and overlapping an area of higher than average temperature factors derived from the x-ray crystal structures of the isozymes. The other patch, the distal surface patch, comprises an area with a different electrostatic surface potential when comparing isozymes. Despite their location distal to the active site, swapping ISRs between aldolase A and B by multiple site mutagenesis on recombinant expression plasmids is sufficient to convert the kinetic properties of aldolase A to those of aldolase B. This implies that ISRs influence catalysis via changes that alter the structure of the active site from a distance or via changes that alter the interaction of the mobile C-terminal portion with the active site. The methods used in the identification and analysis of ISRs discussed here can be applied to other protein families to reveal functionally relevant residue clusters not accessible by conventional primary sequence alignment methods.
Collapse
Affiliation(s)
- John A Pezza
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|