1
|
Bacurio JHT, Yawson P, Thomforde J, Zhang Q, Kumar HV, Den Hartog H, Tretyakova NY, Basu AK. 5-Formylcytosine mediated DNA-peptide cross-link induces predominantly semi-targeted mutations in both Escherichia coli and human cells. J Biol Chem 2024; 300:105786. [PMID: 38401843 PMCID: PMC10966706 DOI: 10.1016/j.jbc.2024.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Histone proteins can become trapped on DNA in the presence of 5-formylcytosine (5fC) to form toxic DNA-protein conjugates. Their repair may involve proteolytic digestion resulting in DNA-peptide cross-links (DpCs). Here, we have investigated replication of a model DpC comprised of an 11-mer peptide (NH2-GGGKGLGK∗GGA) containing an oxy-lysine residue (K∗) conjugated to 5fC in DNA. Both CXG and CXT (where X = 5fC-DpC) sequence contexts were examined. Replication of both constructs gave low viability (<10%) in Escherichia coli, whereas TLS efficiency was high (72%) in HEK 293T cells. In E. coli, the DpC was bypassed largely error-free, inducing only 2 to 3% mutations, which increased to 4 to 5% with SOS. For both sequences, semi-targeted mutations were dominant, and for CXG, the predominant mutations were G→T and G→C at the 3'-base to the 5fC-DpC. In HEK 293T cells, 7 to 9% mutations occurred, and the dominant mutations were the semi-targeted G → T for CXG and T → G for CXT. These mutations were reduced drastically in cells deficient in hPol η, hPol ι or hPol ζ, suggesting a role of these TLS polymerases in mutagenic TLS. Steady-state kinetics studies using hPol η confirmed that this polymerase induces G → T and T → G transversions at the base immediately 3' to the DpC. This study reveals a unique replication pattern of 5fC-conjugated DpCs, which are bypassed largely error-free in both E. coli and human cells and induce mostly semi-targeted mutations at the 3' position to the lesion.
Collapse
Affiliation(s)
| | - Priscilla Yawson
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Jenna Thomforde
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Zhang
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Honnaiah Vijay Kumar
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Holly Den Hartog
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
2
|
Chancharoen M, Yang Z, Dalvie ED, Gubina N, Ruchirawat M, Croy RG, Fedeles BI, Essigmann JM. 5-Chloro-2'-deoxycytidine Induces a Distinctive High-Resolution Mutational Spectrum of Transition Mutations In Vivo. Chem Res Toxicol 2024; 37:486-496. [PMID: 38394377 PMCID: PMC10952010 DOI: 10.1021/acs.chemrestox.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
The biomarker 5-chlorocytosine (5ClC) appears in the DNA of inflamed tissues. Replication of a site-specific 5ClC in a viral DNA genome results in C → T mutations, which is consistent with 5ClC acting as a thymine mimic in vivo. Direct damage of nucleic acids by immune-cell-derived hypochlorous acid is one mechanism by which 5ClC could appear in the genome. A second, nonmutually exclusive mechanism involves damage of cytosine nucleosides or nucleotides in the DNA precursor pool, with subsequent utilization of the 5ClC deoxynucleotide triphosphate as a precursor for DNA synthesis. The present work characterized the mutagenic properties of 5ClC in the nucleotide pool by exposing cells to the nucleoside 5-chloro-2'-deoxycytidine (5CldC). In both Escherichia coli and mouse embryonic fibroblasts (MEFs), 5CldC in the growth media was potently mutagenic, indicating that 5CldC enters cells and likely is erroneously incorporated into the genome from the nucleotide pool. High-resolution sequencing of DNA from MEFs derived from the gptΔ C57BL/6J mouse allowed qualitative and quantitative characterization of 5CldC-induced mutations; CG → TA transitions in 5'-GC(Y)-3' contexts (Y = a pyrimidine) were dominant, while TA → CG transitions appeared at a much lower frequency. The high-resolution mutational spectrum of 5CldC revealed a notable similarity to the Catalogue of Somatic Mutations in Cancer mutational signatures SBS84 and SBS42, which appear in human lymphoid tumors and in occupationally induced cholangiocarcinomas, respectively. SBS84 is associated with the expression of activation-induced cytidine deaminase (AID), a cytosine deaminase associated with inflammation, as well as immunoglobulin gene diversification during antibody maturation. The similarity between the spectra of AID activation and 5CldC could be coincidental; however, the administration of 5CldC did induce some AID expression in MEFs, which have no inherent expression of its gene. In summary, this work shows that 5CldC induces a distinct pattern of mutations in cells. Moreover, that pattern resembles human mutational signatures induced by inflammatory processes, such as those triggered in certain malignancies.
Collapse
Affiliation(s)
- Marisa Chancharoen
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Zhiyu Yang
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Esha D. Dalvie
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nina Gubina
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Mathuros Ruchirawat
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Robert G. Croy
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Bogdan I. Fedeles
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - John M. Essigmann
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Armijo AL, Thongararm P, Fedeles BI, Yau J, Kay J, Corrigan JJ, Chancharoen M, Chawanthayatham S, Samson L, Carrasco S, Engelward B, Fox J, Croy R, Essigmann J. Molecular origins of mutational spectra produced by the environmental carcinogen N-nitrosodimethylamine and S N1 chemotherapeutic agents. NAR Cancer 2023; 5:zcad015. [PMID: 36992846 PMCID: PMC10041537 DOI: 10.1093/narcan/zcad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
DNA-methylating environmental carcinogens such as N-nitrosodimethylamine (NDMA) and certain alkylators used in chemotherapy form O 6-methylguanine (m6G) as a functionally critical intermediate. NDMA is a multi-organ carcinogen found in contaminated water, polluted air, preserved foods, tobacco products, and many pharmaceuticals. Only ten weeks after exposure to NDMA, neonatally-treated mice experienced elevated mutation frequencies in liver, lung and kidney of ∼35-fold, 4-fold and 2-fold, respectively. High-resolution mutational spectra (HRMS) of liver and lung revealed distinctive patterns dominated by GC→AT mutations in 5'-Pu-G-3' contexts, very similar to human COSMIC mutational signature SBS11. Commonly associated with alkylation damage, SBS11 appears in cancers treated with the DNA alkylator temozolomide (TMZ). When cells derived from the mice were treated with TMZ, N-methyl-N-nitrosourea, and streptozotocin (two other therapeutic methylating agents), all displayed NDMA-like HRMS, indicating mechanistically convergent mutational processes. The role of m6G in shaping the mutational spectrum of NDMA was probed by removing MGMT, the main cellular defense against m6G. MGMT-deficient mice displayed a strikingly enhanced mutant frequency, but identical HRMS, indicating that the mutational properties of these alkylators is likely owed to sequence-specific DNA binding. In sum, the HRMS of m6G-forming agents constitute an early-onset biomarker of exposure to DNA methylating carcinogens and drugs.
Collapse
Affiliation(s)
- Amanda L Armijo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pennapa Thongararm
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Judy Yau
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marisa Chancharoen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Supawadee Chawanthayatham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY 10065, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Abstract
DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, The University of Connecticut Storrs, Storrs, Connecticut 06269, United States
| | - John M Essigmann
- Departments of Chemistry, Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Aralov AV, Gubina N, Cabrero C, Tsvetkov VB, Turaev AV, Fedeles BI, Croy RG, Isaakova EA, Melnik D, Dukova S, Ryazantsev DY, Khrulev AA, Varizhuk AM, González C, Zatsepin TS, Essigmann JM. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli. Nucleic Acids Res 2022; 50:3056-3069. [PMID: 35234900 PMCID: PMC8989528 DOI: 10.1093/nar/gkac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.
Collapse
Affiliation(s)
- Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Nina Gubina
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia
| | - Cristina Cabrero
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Anton V Turaev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Bogdan I Fedeles
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ekaterina A Isaakova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Denis Melnik
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Svetlana Dukova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Alexei A Khrulev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Timofei S Zatsepin
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow 119992, Russia
| | - John M Essigmann
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Bacurio JHT, Yang H, Naldiga S, Powell BV, Ryan BJ, Freudenthal BD, Greenberg MM, Basu AK. Sequence context effects of replication of Fapy•dG in three mutational hot spot sequences of the p53 gene in human cells. DNA Repair (Amst) 2021; 108:103213. [PMID: 34464900 DOI: 10.1016/j.dnarep.2021.103213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023]
Abstract
Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells. TLS efficiencies for the Fapy•dG containing plasmids varied from 72 to 89%, and were further reduced in polymerase-deficient cells. The mutation frequency (MF) of Fapy•dG ranged from 7.3 to 11.6%, with G→T and G→A as major mutations in codons 248 and 249 compared to primarily G→T in codon 273. Increased MF in hPol ι-, hPol κ-, and hPol ζ-deficient cells suggested that these polymerases more frequently insert the correct nucleotide dC opposite Fapy•dG, whereas decreased G→A in codons 248 and 249 and reduction of all mutations in codon 273 in hPol λ-deficient cells indicated hPol λ's involvement in Fapy•dG mutagenesis. In vitro kinetic analysis using isolated translesion synthesis polymerases and hPol λ incompletely corroborated the mutagenesis experiments, indicating codependence on other proteins in the cellular milieu. In conclusion, Fapy•dG mutagenesis is dependent on the DNA sequence context, but its bypass by the TLS polymerases is largely error-free.
Collapse
Affiliation(s)
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Spandana Naldiga
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Brent V Powell
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
7
|
Thongararm P, Fedeles BI, Khumsubdee S, Armijo AL, Kim L, Thiantanawat A, Promvijit J, Navasumrit P, Ruchirawat M, Croy RG, Essigmann JM. Modulation of N-Methyl- N-nitrosourea Mutagenesis in Mouse Embryo Fibroblasts Derived from the gpt Delta Mouse by an Inhibitor of the O6-Methylguanine Methyltransferase, MGMT. Chem Res Toxicol 2020; 33:625-633. [PMID: 31841318 PMCID: PMC7033946 DOI: 10.1021/acs.chemrestox.9b00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylating agents are abundant in the environment and are sometimes used in cancer chemotherapy. They react with DNA to form methyl-DNA adducts and byproduct lesions that can be both toxic and mutagenic. Foremost among the mutagenic lesions is O6-methylguanine (m6G), which base pairs with thymine during replication to cause GC → AT mutations. The gpt delta C57BL/6J mouse strain of Nohmi et al. (Mol. Mutagen 1996, 28, 465-70) reliably produces mutational spectra of many DNA damaging agents. In this work, mouse embryo fibroblasts (MEFs) were made from gpt delta C57BL/6J mice and evaluated as a screening tool to determine the qualitative and quantitative features of mutagenesis by N-methyl-N-nitrosourea (MNU), a direct-acting DNA alkylator that serves as a model for environmental N-nitrosamines, such as N-nitrosodimethylamine and therapeutic agents such as Temozolomide. The DNA repair protein MGMT (O6-methylguanine DNA methyltransferase) protects against environmental mutagenesis by DNA methylating agents and, by removing m6G, limits the therapeutic potential of Temozolomide in cancer therapy. The gpt delta MEFs were treated with MNU to establish dose-dependent toxicity. In parallel, MNU mutagenicity was determined in the presence and absence of the MGMT inhibitor AA-CW236 (4-(2-(5-(chloromethyl)-4-(4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-1-yl)ethyl)-3,5-dimethylisoxazole). With and without the inhibitor, the principal mutagenic event of MNU was GC → AT, but more mutations were observed when the inhibitor was present. Evidence that the mutagenic lesion was m6G was based on mass spectral data collected using O6-methyl-d3-guanine as an internal standard; m6G levels were higher in AA-CW236 treated MEFs by an amount proportional to the higher mutation frequency seen in the same cells. This work establishes gpt delta MEFs as a versatile tool for probing mutagenesis by environmental and therapeutic agents and as a cell culture model in which chemical genetics can be used to determine the impact of DNA repair on biological responses to DNA damaging agents.
Collapse
Affiliation(s)
- Pennapa Thongararm
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Bogdan I. Fedeles
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sakunchai Khumsubdee
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Amanda L. Armijo
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lina Kim
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | - Robert G. Croy
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M. Essigmann
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Biological Evaluation of DNA Biomarkers in a Chemically Defined and Site-Specific Manner. TOXICS 2019; 7:toxics7020036. [PMID: 31242562 PMCID: PMC6631660 DOI: 10.3390/toxics7020036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
As described elsewhere in this Special Issue on biomarkers, much progress has been made in the detection of modified DNA within organisms at endogenous and exogenous levels of exposure to chemical species, including putative carcinogens and chemotherapeutic agents. Advances in the detection of damaged or unnatural bases have been able to provide correlations to support or refute hypotheses between the level of exposure to oxidative, alkylative, and other stresses, and the resulting DNA damage (lesion formation). However, such stresses can form a plethora of modified nucleobases, and it is therefore difficult to determine the individual contribution of a particular modification to alter a cell's genetic fate, as measured in the form of toxicity by stalled replication past the damage, by subsequent mutation, and by lesion repair. Chemical incorporation of a modification at a specific site within a vector (site-specific mutagenesis) has been a useful tool to deconvolute what types of damage quantified in biologically relevant systems may lead to toxicity and/or mutagenicity, thereby allowing researchers to focus on the most relevant biomarkers that may impact human health. Here, we will review a sampling of the DNA modifications that have been studied by shuttle vector techniques.
Collapse
|
9
|
Wang P, Wang Y. Cytotoxic and mutagenic properties of O6-alkyl-2'-deoxyguanosine lesions in Escherichia coli cells. J Biol Chem 2018; 293:15033-15042. [PMID: 30068548 PMCID: PMC6166734 DOI: 10.1074/jbc.ra118.004676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2018] [Indexed: 11/06/2022] Open
Abstract
Environmental exposure and cellular metabolism can give rise to DNA alkylation, which can occur on the nitrogen and oxygen atoms of nucleobases, as well as on the phosphate backbone. Although O6-alkyl-2'-deoxyguanosine (O6-alkyl-dG) lesions are known to be associated with cancer, not much is known about how the alkyl group structures in these lesions affect their repair and replicative bypass in vivo or how translesion synthesis DNA polymerases influence the latter process. To answer these questions, here we synthesized oligodeoxyribonucleotides harboring seven O6-alkyl-dG lesions, with the alkyl group being Me, Et, nPr, iPr, nBu, iBu, or sBu, and examined the impact of these lesions on DNA replication in Escherichia coli cells. We found that replication past all the O6-alkyl-dG lesions was highly efficient and that SOS-induced DNA polymerases play redundant roles in bypassing these lesions. Moreover, these lesions directed exclusively the G → A mutation, the frequency of which increased with the size of the alkyl group on the DNA. This could be attributed to the varied repair efficiencies of these lesions by O6-alkylguanine DNA alkyltransferase (MGMT) in cells, which involve the MGMT Ogt and, to a lesser extent, Ada. In conclusion, our study provides important new knowledge about the repair of the O6-alkyl-dG lesions and their recognition by the E. coli DNA replication machinery. Our results suggest that the lesions' carcinogenic potentials may be attributed, at least in part, to their strong mutagenic potential and their efficient bypass by the DNA replication machinery.
Collapse
Affiliation(s)
- Pengcheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
10
|
Fedeles BI, Essigmann JM. Impact of DNA lesion repair, replication and formation on the mutational spectra of environmental carcinogens: Aflatoxin B 1 as a case study. DNA Repair (Amst) 2018; 71:12-22. [PMID: 30309820 DOI: 10.1016/j.dnarep.2018.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In a multicellular organism, somatic mutations represent a permanent record of the past chemical and biochemical perturbations experienced by a cell in its local microenvironment. Akin to a perpetual recording device, with every replication, genomic DNA accumulates mutations in patterns that reflect: i) the sequence context-dependent formation of DNA damage, due to environmental or endogenous reactive species, including spontaneous processes; ii) the activity of DNA repair pathways, which, depending on the type of lesion, can erase, ignore or exacerbate the mutagenic consequences of that DNA damage; and iii) the choice of replication machinery that synthesizes the nascent genomic copy. These three factors result in a richly contoured sequence context-dependent mutational spectrum that, from appearances, is distinct for most individual forms of DNA damage. Such a mutagenic legacy, if appropriately decoded, can reveal the local history of genome-altering events such as chemical or pathogen exposures, metabolic stress, and inflammation, which in turn can provide an indication of the underlying causes and mechanisms of genetic disease. Modern tools have positioned us to develop a deep mechanistic understanding of the cellular factors and pathways that modulate a mutational process and, in turn, provide opportunities for better diagnostic and prognostic biomarkers, better exposure risk assessment and even actionable therapeutic targets. The goal of this Perspective is to present a bottom-up, lesion-centric framework of mutagenesis that integrates the contributions of lesion replication, lesion repair and lesion formation to explain the complex mutational spectra that emerge in the genome following exposure to mutagens. The mutational spectra of the well-studied hepatocarcinogen aflatoxin B1 are showcased here as specific examples, but the implications are meant to be generalizable.
Collapse
Affiliation(s)
- Bogdan I Fedeles
- Departments of Biological Engineering, Chemistry and The Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - John M Essigmann
- Departments of Biological Engineering, Chemistry and The Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
O6-methylguanine-induced transcriptional mutagenesis reduces p53 tumor-suppressor function. Proc Natl Acad Sci U S A 2018; 115:4731-4736. [PMID: 29666243 PMCID: PMC5939098 DOI: 10.1073/pnas.1721764115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The impact of DNA lesions on replication and mutagenesis is of high relevance for human health; however, the role of lesion-induced transcriptional mutagenesis (TM) in disease development is unknown. Here, the impact of O6-methylguanine–induced TM on p53 function as a tumor suppressor was investigated in human cells. Results showed that TM in 15% of the transcripts resulted in a reduced ability of p53 protein to transactivate genes that regulate cell-cycle arrest and induction of apoptosis. This resulted in the loss of functional cell-cycle checkpoints and in impaired activation of apoptosis, both canonical p53 tumor-suppressor functions. This work provides evidence that TM can induce phenotypic changes in mammalian cells that have important implications for its role in tumorigenesis. Altered protein function due to mutagenesis plays an important role in disease development. This is perhaps most evident in tumorigenesis and the associated loss or gain of function of tumor-suppressor genes and oncogenes. The extent to which lesion-induced transcriptional mutagenesis (TM) influences protein function and its contribution to the development of disease is not well understood. In this study, the impact of O6-methylguanine on the transcription fidelity of p53 and the subsequent effects on the protein’s function as a regulator of cell death and cell-cycle arrest were examined in human cells. Levels of TM were determined by RNA-sequencing. In cells with active DNA repair, misincorporation of uridine opposite the lesion occurred in 0.14% of the transcripts and increased to 14.7% when repair by alkylguanine–DNA alkyltransferase was compromised. Expression of the dominant-negative p53 R248W mutant due to TM significantly reduced the transactivation of several established p53 target genes that mediate the tumor-suppressor function, including CDKN1A (p21) and BBC3 (PUMA). This resulted in deregulated signaling through the retinoblastoma protein and loss of G1/S cell-cycle checkpoint function. In addition, we observed impaired activation of apoptosis coupled to the reduction of the tumor-suppressor functions of p53. Taking these findings together, this work provides evidence that TM can induce phenotypic changes in mammalian cells that have important implications for the role of TM in tumorigenesis.
Collapse
|
12
|
Suzuki T, Kuramoto Y, Kamiya H. Reduction of Werner Syndrome Protein Enhances G:C → A:T Transition byO6-Methylguanine in Human Cells. Chem Res Toxicol 2018; 31:319-324. [DOI: 10.1021/acs.chemrestox.8b00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshie Kuramoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
13
|
Kimsey IJ, Szymanski ES, Zahurancik WJ, Shakya A, Xue Y, Chu CC, Sathyamoorthy B, Suo Z, Al-Hashimi HM. Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature 2018; 554:195-201. [PMID: 29420478 PMCID: PMC5808992 DOI: 10.1038/nature25487] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
Tautomeric and anionic Watson-Crick-like mismatches have important roles in replication and translation errors through mechanisms that are not fully understood. Here, using NMR relaxation dispersion, we resolve a sequence-dependent kinetic network connecting G•T/U wobbles with three distinct Watson-Crick mismatches: two rapidly exchanging tautomeric species (Genol•T/UG•Tenol/Uenol; population less than 0.4%) and one anionic species (G•T-/U-; population around 0.001% at neutral pH). The sequence-dependent tautomerization or ionization step was inserted into a minimal kinetic mechanism for correct incorporation during replication after the initial binding of the nucleotide, leading to accurate predictions of the probability of dG•dT misincorporation across different polymerases and pH conditions and for a chemically modified nucleotide, and providing mechanisms for sequence-dependent misincorporation. Our results indicate that the energetic penalty for tautomerization and/or ionization accounts for an approximately 10-2 to 10-3-fold discrimination against misincorporation, which proceeds primarily via tautomeric dGenol•dT and dG•dTenol, with contributions from anionic dG•dT- dominant at pH 8.4 and above or for some mutagenic nucleotides.
Collapse
Affiliation(s)
- Isaac J Kimsey
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Eric S Szymanski
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anisha Shakya
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yi Xue
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Chemistry, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
14
|
Gutierrez R, Thompson Y, R. O’Connor T. DNA direct repair pathways in cancer. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
You C, Dai X, Wang Y. Position-dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Res 2017; 45:9059-9067. [PMID: 28591780 PMCID: PMC5587754 DOI: 10.1093/nar/gkx515] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 01/30/2023] Open
Abstract
Reversible methylation of the N6 or N1 position of adenine in RNA has recently been shown to play significant roles in regulating the functions of RNA. RNA can also be alkylated upon exposure to endogenous and exogenous alkylating agents. Here we examined how regio-specific methylation at the hydrogen bonding edge of adenine and guanine in mRNA affects translation. When situated at the third codon position, the methylated nucleosides did not compromise the speed or accuracy of translation under most circumstances. When located at the first or second codon position, N1-methyladenosine (m1A) and m1G constituted robust blocks to both Escherichia coli and wheat germ extract translation systems, whereas N2-methylguanosine (m2G) moderately impeded translation. While m1A, m2G and N6-methyladenosine (m6A) did not perturb translational fidelity, O6-methylguanosine (m6G) at the first and second codon positions was strongly and moderately miscoding, respectively, and it was decoded as an adenosine in both systems. The effects of methylated ribonucleosides on translation could be attributed to the methylation-elicited alterations in base pairing properties of the nucleobases, and the mechanisms of ribosomal decoding contributed to the position-dependent effects. Together, our study afforded important new knowledge about the modulation of translation by methylation of purine nucleobases in mRNA.
Collapse
Affiliation(s)
- Changjun You
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.,State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
16
|
Trantakis IA, Sturla SJ. Gold nanoprobes for detecting DNA adducts. Chem Commun (Camb) 2014; 50:15517-20. [PMID: 25354716 DOI: 10.1039/c4cc07184k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A colorimetric probe for the detection of a mutagenic DNA adduct within a sequence was created. The probe involves incorporation of a synthetic nucleoside that selectively pairs opposite a target DNA adduct into oligonucleotides conjugated to gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Ioannis A Trantakis
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland.
| | | |
Collapse
|
17
|
Li D, Fedeles BI, Shrivastav N, Delaney JC, Yang X, Wong C, Drennan CL, Essigmann JM. Removal of N-alkyl modifications from N(2)-alkylguanine and N(4)-alkylcytosine in DNA by the adaptive response protein AlkB. Chem Res Toxicol 2013; 26:1182-7. [PMID: 23773213 PMCID: PMC3748507 DOI: 10.1021/tx400096m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The
AlkB enzyme is an Fe(II)- and α-ketoglutarate-dependent
dioxygenase that repairs DNA alkyl lesions by a direct reversal of
damage mechanism as part of the adaptive response in E. coli. The reported substrate scope of AlkB includes simple DNA alkyl
adducts, such as 1-methyladenine, 3-methylcytosine, 3-ethylcytosine,
1-methylguanine, 3-methylthymine, and N6-methyladenine, as well as more complex DNA adducts, such as 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 1,N6-ethanoadenine.
Previous studies have revealed, in a piecemeal way, that AlkB has
an impressive repertoire of substrates. The present study makes two
additions to this list, showing that alkyl adducts on the N2 position of guanine and N4 position of cytosine are also substrates for AlkB. Using
high resolution ESI-TOF mass spectrometry, we show that AlkB has the
biochemical capability to repair in vitroN2-methylguanine, N2-ethylguanine, N2-furan-2-yl-methylguanine, N2-tetrahydrofuran-2-yl-methylguanine, and N4-methylcytosine in ssDNA but not in dsDNA.
When viewed together with previous work, the experimental data herein
demonstrate that AlkB is able to repair all simple N-alkyl adducts occurring at the Watson–Crick base
pairing interface of the four DNA bases, confirming AlkB as a versatile
gatekeeper of genomic integrity under alkylation stress.
Collapse
Affiliation(s)
- Deyu Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
19
|
Herzig MCS, Hildreth K, Huamani J, Perez M, Goins BA, McMahan CA, Reddick RL, Walter CA. Human O6 -methylguanine-DNA methyltransferase containing C145A does not prevent hepatocellular carcinoma in C3HeB/FeJ transgenic mice. Mol Carcinog 2012; 52:275-85. [PMID: 22213062 DOI: 10.1002/mc.21855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/04/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023]
Abstract
The prevalence of hepatocellular carcinoma (HCC) was diminished from 60% to 18% at 15 months of age in C3HeB/FeJ male transgenic mice expressing hMGMT in our previous studies. To directly test if the methyltransferase activity is required for diminished tumor prevalence, two separate lines of transgenic mice bearing an enzymatically inactive form of hMGMT were used. In these lines, cysteine 145 was substituted with alanine (C145A). Expression of the hMGMT C145A transgene in liver was demonstrated by Northern blots and Western blots. Immunohistochemistry revealed predominantly nuclear localization of the hMGMT C145A protein. hMGMT C145A transgenic mice were crossed with lacI transgenic mice to assess mutant frequencies in the presence of the mutant protein. Mutant frequencies were similar among livers of lacI × hMGMT C145A bi-transgenic mice and lacI × wild-type (WT) mice. DNA sequence analysis of recovered lacI mutants revealed similar mutation spectra for hMGMT C145A and WT mice. The prevalence of HCC was also similar for the two tested lines of hMGMT C145A mice, 45% and 48% prevalence with median tumor sizes of 11 and 8 mm, and WT mice, 40% prevalence and median tumor size of 10 mm. These results provide evidence that residue C145 in hMGMT is required to reduce the prevalence of HCC in C3HeB/FeJ mice transgenic for hMGMT.
Collapse
Affiliation(s)
- Maryanne C S Herzig
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Burns JA, Dreij K, Cartularo L, Scicchitano DA. O6-methylguanine induces altered proteins at the level of transcription in human cells. Nucleic Acids Res 2010; 38:8178-87. [PMID: 20702424 PMCID: PMC3001077 DOI: 10.1093/nar/gkq706] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/20/2010] [Accepted: 07/27/2010] [Indexed: 11/14/2022] Open
Abstract
O(6)-Methylguanine (O(6)-meG), which is produced in DNA following exposure to methylating agents, instructs human RNA polymerase II to mis-insert bases opposite the lesion during transcription. In this study, we examined the effect of O(6)-meG on transcription in human cells and investigated the subsequent effects on protein function following translation of the resulting mRNA. In HEK293 cells, O(6)-meG induced incorporation of uridine or cytidine in nascent RNA opposite the adduct. In cells containing active O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs O(6)-meG, 3% misincorporation of uridine was observed opposite the lesion. In cells where AGT function was compromised by addition of the AGT inhibitor O(6)-benzylguanine, ∼ 58% of the transcripts contained a uridine misincorporation opposite the lesion. Furthermore, the altered mRNA induced changes to protein function as demonstrated through recovery of functional red fluorescent protein (RFP) from DNA coding for a non-fluorescent variant of RFP. These data show that O(6)-meG is highly mutagenic at the level of transcription in human cells, leading to an altered protein load, especially when AGT is inhibited.
Collapse
Affiliation(s)
| | | | | | - David A. Scicchitano
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
21
|
Li D, Delaney JC, Page CM, Chen AS, Wong C, Drennan CL, Essigmann JM. Repair of DNA Alkylation Damage by the Escherichia coli Adaptive Response Protein AlkB as Studied by ESI-TOF Mass Spectrometry. J Nucleic Acids 2010; 2010:369434. [PMID: 21048928 PMCID: PMC2965429 DOI: 10.4061/2010/369434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/15/2010] [Indexed: 11/20/2022] Open
Abstract
DNA alkylation can cause mutations, epigenetic changes, and even cell death. All living organisms have evolved enzymatic and non-enzymatic strategies for repairing such alkylation damage. AlkB, one of the Escherichia coli adaptive response proteins, uses an α-ketoglutarate/Fe(II)-dependent mechanism that, by chemical oxidation, removes a variety of alkyl lesions from DNA, thus affording protection of the genome against alkylation. In an effort to understand the range of acceptable substrates for AlkB, the enzyme was incubated with chemically synthesized oligonucleotides containing alkyl lesions, and the reaction products were analyzed by electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. Consistent with the literature, but studied comparatively here for the first time, it was found that 1-methyladenine, 1,N (6)-ethenoadenine, 3-methylcytosine, and 3-ethylcytosine were completely transformed by AlkB, while 1-methylguanine and 3-methylthymine were partially repaired. The repair intermediates (epoxide and possibly glycol) of 3,N (4)-ethenocytosine are reported for the first time. It is also demonstrated that O (6)-methylguanine and 5-methylcytosine are refractory to AlkB, lending support to the hypothesis that AlkB repairs only alkyl lesions attached to the nitrogen atoms of the nucleobase. ESI-TOF mass spectrometry is shown to be a sensitive and efficient tool for probing the comparative substrate specificities of DNA repair proteins in vitro.
Collapse
Affiliation(s)
- Deyu Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Mazon G, Philippin G, Cadet J, Gasparutto D, Modesti M, Fuchs RP. Alkyltransferase-like protein (eATL) prevents mismatch repair-mediated toxicity induced by O6-alkylguanine adducts in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:18050-5. [PMID: 20921378 PMCID: PMC2964255 DOI: 10.1073/pnas.1008635107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O(6)-alkylG adducts are highly mutagenic due to their capacity to efficiently form O(6)-alkylG:T mispairs during replication, thus triggering G→A transitions. Mutagenesis is largely prevented by repair strategies such as reversal by alkyltransferases or excision by nucleotide excision repair (NER). Moreover, methyl-directed mismatch repair (MMR) is known to trigger sensitivity to methylating agents via a mechanism that involves recognition by MutS of the O(6)-mG:T replication intermediates. We wanted to investigate the mechanism by which MMR controls the genotoxicity of environmentally relevant O(6)-alkylG adducts formed by ethylene oxide and propylene oxide. Recently, the alkyltransferase-like gene ybaZ (eATL) was shown to enhance repair of these slightly larger O(6)-alkylG adducts by NER. We analyzed the toxicity and mutagenesis induced by these O(6)-alkylG adducts using single-adducted plasmid probes. We show that the eATL gene product prevents MMR-mediated attack of the O(6)-alkylG:T replication intermediate for the larger alkyl groups but not for methyl. In vivo data are compatible with the occurrence of repeated cycles of MMR attack of the O(6)-alkylG:T intermediate. In addition, in vitro, the eATL protein efficiently prevents binding of MutS to the O(6)-alkylG:T mispairs formed by the larger alkyl groups but not by methyl. In conclusion, eATL not only enhances the efficiency of repair of these larger adducts by NER, it also shields these adducts from MMR-mediated toxicity.
Collapse
Affiliation(s)
- Gerard Mazon
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Gaëlle Philippin
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Jean Cadet
- Institut Nanosciences et Cryogénie/Service de Chimie Inorganique et Biologique-Unité Mixte de Recherche E3 Commissariat à l'Énergie Atomique (CEA)-Université Joseph Fourier, Federation de Recherche en Evolution 3200 CEA-CNRS/CEA Grenoble, F-38054 Grenoble Cedex 9, France
| | - Didier Gasparutto
- Institut Nanosciences et Cryogénie/Service de Chimie Inorganique et Biologique-Unité Mixte de Recherche E3 Commissariat à l'Énergie Atomique (CEA)-Université Joseph Fourier, Federation de Recherche en Evolution 3200 CEA-CNRS/CEA Grenoble, F-38054 Grenoble Cedex 9, France
| | - Mauro Modesti
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Robert P. Fuchs
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| |
Collapse
|
23
|
Shrivastav N, Li D, Essigmann JM. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis 2009; 31:59-70. [PMID: 19875697 DOI: 10.1093/carcin/bgp262] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA lesions to the biological effects of low molecular weight alkylating agents.
Collapse
Affiliation(s)
- Nidhi Shrivastav
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
24
|
Upadhyaya P, Lindgren BR, Hecht SS. Comparative levels of O6-methylguanine, pyridyloxobutyl-, and pyridylhydroxybutyl-DNA adducts in lung and liver of rats treated chronically with the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Drug Metab Dispos 2009; 37:1147-51. [PMID: 19324941 PMCID: PMC2683686 DOI: 10.1124/dmd.109.027078] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/23/2009] [Indexed: 11/22/2022] Open
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a lung carcinogen in rats and may be a cause of lung cancer in smokers. NNK is metabolized by cytochromes P450 to intermediates that react with DNA forming methyl, pyridyloxobutyl (POB), and pyridylhydroxybutyl (PHB) adducts, which are critical in carcinogenesis. The methyl adduct O(6)-methylguanine (O(6)-methyl-G) has miscoding properties, but there are no reports on levels of this adduct in rats treated chronically with NNK in the drinking water, nor has its levels been compared with those of POB- and PHB-DNA adducts. We used liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring to quantify O(6)-methyl-G in lung and liver DNA of rats treated with a carcinogenic dose of 10 ppm of NNK in the drinking water and sacrificed after 1, 2, 5, 10, 16, and 20 weeks. The maximal level of O(6)-methyl-G in lung DNA, 2550 +/- 263 fmol/mg DNA, was reached at 5 weeks and was significantly greater (P < 0.05) at that point than all other adducts (measured previously) except O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine. Overall levels of O(6)-methyl-G in lung were intermediate between those of total POB- and PHB-DNA adducts. In liver, the wave of O(6)-methyl-G peaked at 2 weeks while that of total POB-DNA adducts peaked at 10 weeks, and levels of total PHB-DNA adducts were low throughout. The results of this study demonstrate that substantial amounts of O(6)-methyl-G are formed at various time points in lung and liver DNA of rats treated chronically with NNK, supporting its role in carcinogenesis.
Collapse
Affiliation(s)
- Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
25
|
Mazon G, Philippin G, Cadet J, Gasparutto D, Fuchs RP. The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli. DNA Repair (Amst) 2009; 8:697-703. [PMID: 19269902 DOI: 10.1016/j.dnarep.2009.01.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/16/2022]
Abstract
O(6)-methylguanine adducts are potent pre-mutagenic lesions owing to their high capacity to direct mis-insertion of thymine when bypassed by replicative DNA polymerases. The strong mutagenic potential of these adducts is prevented by alkyltransferases such as Ada and Ogt in Escherichia coli that transfer the methyl group to one of their cysteine residues. Alkyl residues larger than methyl are generally weak substrates for reversion by alkyltransferases. In this paper we have investigated the genotoxic potential of the O(6)-alkylguanine adducts formed by ethylene and propylene oxide using single-adducted plasmid probes. Our work shows that the ybaZ gene product, a member of the alkyltransferase-like protein family, strongly enhances the repair by nucleotide excision repair of the larger O(6)-alkylguanine adducts that are otherwise poor substrates for alkyltransferases. The YbaZ protein is shown to interact with UvrA. This factor may thus enhance the efficiency of nucleotide excision repair in a way similar to the Transcription-Repair Coupling factor Mfd, by recruiting the UvrA(2).UvrB complex to the adduct site via its interaction with UvrA.
Collapse
Affiliation(s)
- Gerard Mazon
- CNRS, UPR 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 31, Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
26
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
27
|
Rye PT, Delaney JC, Netirojjanakul C, Sun DX, Liu JZ, Essigmann JM. Mismatch repair proteins collaborate with methyltransferases in the repair of O(6)-methylguanine. DNA Repair (Amst) 2007; 7:170-6. [PMID: 17951114 DOI: 10.1016/j.dnarep.2007.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/09/2007] [Accepted: 09/11/2007] [Indexed: 11/16/2022]
Abstract
DNA repair is essential for combatting the adverse effects of damage to the genome. One example of base damage is O(6)-methylguanine (O(6)mG), which stably pairs with thymine during replication and thereby creates a promutagenic O(6)mG:T mismatch. This mismatch has also been linked with cellular toxicity. Therefore, in the absence of repair, O(6)mG:T mismatches can lead to cell death or result in G:C-->A:T transition mutations upon the next round of replication. Cysteine thiolate residues on the Ada and Ogt methyltransferase (MTase) proteins directly reverse the O(6)mG base damage to yield guanine. When a cytosine is opposite the lesion, MTase repair restores a normal G:C pairing. However, if replication past the lesion has produced an O(6)mG:T mismatch, MTase conversion to a G:T mispair must still undergo correction to avoid mutation. Two mismatch repair pathways in E. coli that convert G:T mispairs to native G:C pairings are methyl-directed mismatch repair (MMR) and very short patch repair (VSPR). This work examined the possible roles that proteins in these pathways play in coordination with the canonical MTase repair of O(6)mG:T mismatches. The possibility of this repair network was analyzed by probing the efficiency of MTase repair of a single O(6)mG residue in cells deficient in individual mismatch repair proteins (Dam, MutH, MutS, MutL, or Vsr). We found that MTase repair in cells deficient in Dam or MutH showed wild-type levels of MTase repair. In contrast, cells lacking any of the VSPR proteins MutS, MutL, or Vsr showed a decrease in repair of O(6)mG by the Ada and Ogt MTases. Evidence is presented that the VSPR pathway positively influences MTase repair of O(6)mG:T mismatches, and assists the efficiency of restoring these mismatches to native G:C base pairs.
Collapse
Affiliation(s)
- Peter T Rye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hong H, Cao H, Wang Y. Formation and genotoxicity of a guanine-cytosine intrastrand cross-link lesion in vivo. Nucleic Acids Res 2007; 35:7118-27. [PMID: 17942427 PMCID: PMC2175358 DOI: 10.1093/nar/gkm851] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) can be induced by both endogenous and exogenous processes, and they can damage biological molecules including nucleic acids. Exposure of isolated DNA to X/gamma-rays and Fenton reagents was shown to lead to the formation of intrastrand cross-link lesions where the neighboring nucleobases in the same DNA strand are covalently bonded. By employing HPLC coupled with tandem mass spectrometry (LC-MS/MS) with the isotope dilution method, we assessed quantitatively the formation of a guanine-cytosine (G[8-5]C) intrastrand cross-link lesion in HeLa-S3 cells upon exposure to gamma-rays. The yield of the G[8-5]C cross-link was 0.037 lesions per 10(9) nucleosides per Gy, which was approximately 300 times lower than that of 5-formyl-2'-deoxyuridine (0.011 lesions per 10(6) nucleosides per Gy) under identical exposure conditions. We further constructed a single-stranded M13 genome harboring a site-specifically incorporated G[8-5]C lesion and developed a novel mass spectrometry-based method for interrogating the products emanating from the replication of the genome in Escherichia coli cells. The results demonstrated that G[8-5]C blocked considerably DNA replication as represented by a 20% bypass efficiency, and the lesion was significantly mutagenic in vivo, which included a 8.7% G-->T and a 1.2% G-->C transversion mutations. DNA replication in E. coli hosts deficient in SOS-induced polymerases revealed that polymerase V was responsible for the error-prone translesion synthesis in vivo.
Collapse
Affiliation(s)
- Haizheng Hong
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| | | | | |
Collapse
|
29
|
Jeuken JWM, Cornelissen SJB, Vriezen M, Dekkers MMG, Errami A, Sijben A, Boots-Sprenger SHE, Wesseling P. MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. J Transl Med 2007; 87:1055-65. [PMID: 17700563 DOI: 10.1038/labinvest.3700664] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Expression of the DNA repair protein O6-alkylguanine-DNA-alkyltransferase (AGT), encoded by the O6-methylguanine (O6-mG) -DNA-methyltransferase (MGMT) DNA repair gene, results in resistance to alkylating agents, and hypermethylation of the MGMT promoter is associated with chemosensitivity as it prevents AGT expression. As the interpretation of the results of immunohistochemistry to evaluate AGT expression proved to be difficult, the aim of our present study is to establish a feasible, reliable, and robust method for MGMT promoter hypermethylation testing that can be easily implemented in a diagnostic setting and is applicable to routinely processed tissue. MGMT hypermethylation analysis using methylation-specific (MS-) multiplex ligation-dependent probe amplification (MLPA) was performed on 62 glioma samples of 55 individual tumors (including 12 cell lines) and compared to the more conventionally used, but improved, MS-polymerase chain reaction (PCR). In contrast to MS-PCR, MS-MLPA (i) is not based on bisulfite conversion of unmethylated cytosines (a somewhat troublesome step in MS-PCR), (ii) provided methylation status of all samples, (iii) proved to be semiquantitative, (iv) can be used to evaluate methylation status of multiple sequences (CpG dinucleotides) simultaneously, and (v) allows for a combined copy number detection and methylation specific analysis. The potential therapeutic value of MGMT hypermethylation evaluation using MS-MLPA was shown in a group of 20 glioblastoma patients receiving temozolomide chemotherapy. We conclude that MS-MLPA is a robust and reliable method that can be easily applied to differently processed tissues, including those fixed in formalin and embedded in paraffin. The semiquantitative aspect of MS-MLPA may prove to be of great value, especially in predicting response to alkylating agents, not only for gliomas as evaluated in this study but also for tumors in general.
Collapse
Affiliation(s)
- Judith W M Jeuken
- Department of Pathology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang W, Bouffard GG, Wallace SS, Bond JP. Estimation of DNA sequence context-dependent mutation rates using primate genomic sequences. J Mol Evol 2007; 65:207-14. [PMID: 17676366 DOI: 10.1007/s00239-007-9000-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
It is understood that DNA and amino acid substitution rates are highly sequence context-dependent, e.g., C --> T substitutions in vertebrates may occur much more frequently at CpG sites and that cysteine substitution rates may depend on support of the context for participation in a disulfide bond. Furthermore, many applications rely on quantitative models of nucleotide or amino acid substitution, including phylogenetic inference and identification of amino acid sequence positions involved in functional specificity. We describe quantification of the context dependence of nucleotide substitution rates using baboon, chimpanzee, and human genomic sequence data generated by the NISC Comparative Sequencing Program. Relative mutation rates are reported for the 96 classes of mutations of the form 5' alphabetagamma 3' --> 5' alphadeltagamma 3', where alpha, beta, gamma, and delta are nucleotides and beta not equal delta, based on maximum likelihood calculations. Our results confirm that C --> T substitutions are enhanced at CpG sites compared with other transitions, relatively independent of the identity of the preceding nucleotide. While, as expected, transitions generally occur more frequently than transversions, we find that the most frequent transversions involve the C at CpG sites (CpG transversions) and that their rate is comparable to the rate of transitions at non-CpG sites. A four-class model of the rates of context-dependent evolution of primate DNA sequences, CpG transitions > non-CpG transitions approximately CpG transversions > non-CpG transversions, captures qualitative features of the mutation spectrum. We find that despite qualitative similarity of mutation rates among different genomic regions, there are statistically significant differences.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicine, University of Chicago, 515 CLSC, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
31
|
Eoff RL, Irimia A, Egli M, Guengerich FP. Sulfolobus solfataricus DNA Polymerase Dpo4 Is Partially Inhibited by “Wobble” Pairing between O6-Methylguanine and Cytosine, but Accurate Bypass Is Preferred. J Biol Chem 2007; 282:1456-67. [PMID: 17105728 DOI: 10.1074/jbc.m609661200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the effect of a single O6-methylguanine (O6-MeG) template residue on catalysis by a model Y family polymerase, Dpo4 from Sulfolobus solfataricus. Mass spectral analysis of Dpo4-catalyzed extension products revealed that the enzyme accurately bypasses O6-MeG, with C being the major product (approximately 70%) and T or A being the minor species (approximately 20% or approximately 10%, respectively), consistent with steady-state kinetic parameters. Transient-state kinetic experiments revealed that kpol, the maximum forward rate constant describing polymerization, for dCTP incorporation opposite O6-MeG was approximately 6-fold slower than observed for unmodified G, and no measurable product was observed for dTTP incorporation in the pre-steady state. The lack of any structural information regarding how O6-MeG paired in a polymerase active site led us to perform x-ray crystallographic studies, which show that "wobble" pairing occurs between C and O6-MeG. A structure containing T opposite O6-MeG was solved, but much of the ribose and pyrimidine base density was disordered, in accordance with a much higher Km,dTTP that drives the difference in efficiency between C and T incorporation. The more stabilized C:O6-MeG pairing reinforces the importance of hydrogen bonding with respect to nucleotide selection within a geometrically tolerant polymerase active site.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
32
|
McLuckie KIE, Lamb JH, Sandhu JK, Pearson HL, Brown K, Farmer PB, Jones DJL. Development of a novel site-specific mutagenesis assay using MALDI-ToF MS (SSMA-MS). Nucleic Acids Res 2006; 34:e150. [PMID: 17130165 PMCID: PMC1761429 DOI: 10.1093/nar/gkl745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We have developed and validated a novel site-specific mutagenesis assay, termed SSMA-MS, which incorporates MALDI-ToF mass spectrometry (MALDI-MS) analysis as a means of determining the mutations induced by a single DNA adduct. The assay involves ligating an adducted deoxyoligonucleotide into supF containing pSP189 plasmid. The plasmid is transfected into human Ad293 kidney cells allowing replication and therefore repair or a mutagenic event to occur. Escherichia coli indicator bacteria are transformed with recovered plasmid and plasmids containing the insert are identified colormetrically, as they behave as frameshift mutations. The plasmid is then amplified and digested using a restriction cocktail of Mbo11 and Mnl1 to yield 12 bp deoxyoligonucleotides, which are characterized by MALDI-MS. MALDI-MS takes advantage of the difference in molecular weight between bases to identify any induced mutations. This analysis method therefore provides qualitative and quantitative information regarding the type and frequency of mutations induced. This assay was developed and validated using an O6-methyl-2′-deoxyguanosine adduct, which induced the expected GC→AT substitutions, when replicated in human or bacterial cells. This approach can be applied to the study of any DNA adduct in any biologically relevant gene sequence (e.g. p53) in human cells and would be particularly amenable to high-throughput analysis.
Collapse
Affiliation(s)
- Keith I E McLuckie
- Cancer Biomarkers and Prevention Group, The Biocentre, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Mijal RS, Kanugula S, Vu CC, Fang Q, Pegg AE, Peterson LA. DNA sequence context affects repair of the tobacco-specific adduct O(6)-[4-Oxo-4-(3-pyridyl)butyl]guanine by human O(6)-alkylguanine-DNA alkyltransferases. Cancer Res 2006; 66:4968-74. [PMID: 16651455 DOI: 10.1158/0008-5472.can-05-3803] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) protects cells from the mutagenic and carcinogenic effects of alkylating agents by removing O(6)-alkylguanine adducts from DNA. Recently, we established that AGT protects against the mutagenic effects of pyridyloxobutylation resulting from the metabolic activation of the tobacco-specific nitrosamines (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine by repairing O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-pobG). There have been several epidemiologic studies examining the association between the I143V/K178R AGT genotype and lung cancer risk. Two studies have found positive associations, suggesting that AGT proteins differ in their repair of DNA damage caused by TSNA. However, it is not known how this genotype alters the biochemical activity of AGT. We proposed that AGT proteins may differ in their ability to remove large O(6)-alkylguanine adducts, such as O(6)-pobG, from DNA. Therefore, we examined the repair of O(6)-pobG by wild-type (WT) human, I143V/K178R, and L84F AGT proteins when contained in multiple sequence contexts, including the twelfth codon of H-ras, a mutational hotspot within this oncogene. The AGT-mediated repair of O(6)-pobG was more profoundly influenced by sequence context than that of O(6)-methylguanine. These differences are not the result of secondary structure (hairpin) formation in DNA. In addition, the I143V/K178R variant seems less sensitive to the effects of sequence context than the WT or L84F proteins. These studies indicate that the sequence dependence of O(6)-pobG repair by human AGT (hAGT) varies with subtle changes in protein structure. These data establish a novel functional difference between the I143V/K178R protein and other hAGTs in the repair of a toxicologically relevant substrate, O(6)-pobG.
Collapse
Affiliation(s)
- Renée S Mijal
- Division of Environmental Health Sciences and The Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
34
|
Roberts A, Pelton JG, Wemmer DE. Structural studies of MJ1529, an O6-methylguanine-DNA methyltransferase. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S71-82. [PMID: 16826543 DOI: 10.1002/mrc.1823] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The structure of an O6-methylguanine-DNA methyltransferase (MGMT) from the thermophile Methanococcus jannaschii has been determined using multinuclear multidimensional NMR spectroscopy. The structure is similar to homologs from other organisms that have been determined by crystallography, with some variation in the N-terminal domain. The C-terminal domain is more highly conserved in both sequence and structure. Regions of the protein show broadening, reflecting conformational flexibility that is likely related to function.
Collapse
Affiliation(s)
- Anne Roberts
- Department of Chemistry, University of California and Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720-1460, USA
| | | | | |
Collapse
|
35
|
Kroeger KM, Kim J, Goodman MF, Greenberg MM. Replication of an oxidized abasic site in Escherichia coli by a dNTP-stabilized misalignment mechanism that reads upstream and downstream nucleotides. Biochemistry 2006; 45:5048-56. [PMID: 16605273 PMCID: PMC1447609 DOI: 10.1021/bi052276v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abasic sites (AP) and oxidized abasic lesions are often referred to as noninstructive lesions because they cannot participate in Watson-Crick base pairing. The aptness of the term noninstructive for describing AP site replication has been called into question by recent investigations in E. coli using single-stranded shuttle vectors. These studies revealed that the replication of templates containing AP sites or the oxidized abasic lesions resulting from C1'- (L) and C4'-oxidation (C4-AP) are distinct from one another, suggesting that structural features other than Watson-Crick hydrogen bonds contribute to controlling replication. The first description of the replication of the abasic site resulting from formal C2'-oxidation (C2-AP) is presented here. Full-length and single-nucleotide deletion products are observed when templates containing C2-AP are replicated in E. coli. Single nucleotide deletion formation is largely dependent upon the concerted effort of pol II and pol IV, whereas pol V suppresses frameshift product formation. Pol V utilizes the A-rule when bypassing C2-AP. In contrast, pol II and pol IV utilize a dNTP-stabilized misalignment mechanism to read the upstream and downstream nucleotides when bypassing C2-AP. This is the first example in which the identity of the 3'-adjacent nucleotide is read during the replication of a DNA lesion. The results raise further questions as to whether abasic lesions are noninstructive lesions. We suggest that abasic site bypass is affected by the local biopolymer structure in addition to the structure of the lesion.
Collapse
Affiliation(s)
| | | | | | - Marc M. Greenberg
- * To whom correspondence should addressed. Tel: 410-516-8095. Fax: 410-516-7044. E-mail:
| |
Collapse
|
36
|
Tompkins EM, Farmer PB, Lamb JH, Jukes R, Dingley K, Ubick E, Turteltaub KW, Martin EA, Brown K. A novel 14C-postlabeling assay using accelerator mass spectrometry for the detection of O6-methyldeoxy-guanosine adducts. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:883-91. [PMID: 16470516 DOI: 10.1002/rcm.2370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Accelerator mass spectrometry (AMS) is currently one of the most sensitive methods available for the trace detection of DNA adducts and is particularly valuable for measuring adducts in humans or animal models. However, the standard approach requires administration of a radiolabeled compound. As an alternative, we have developed a preliminary 14C-postlabeling assay for detection of the highly mutagenic O6-methyldeoxyguanosine (O6-MedG), by AMS. Procedures were developed for derivatising O6-MedG using unlabeled acetic anhydride. Using conventional liquid chromatography/mass spectrometry (LC/MS) analysis, the limit of detection (LOD) for the major product, triacetylated O6-MedG, was 10 fmol. On reaction of O6-MedG with 14C-acetic anhydride, using a specially designed enclosed system, the predominant product was 14C-di-acetyl O6-MedG. This change in reaction profile was due to a modification of the reaction procedure, introduced as a necessary safety precaution. The LOD for 14C-di-acetyl O6-MedG by AMS was determined as 79 amol, approximately 18,000-fold lower than that achievable by liquid scintillation counting (LSC). Although the assay has so far only been carried out with labeled standards, the degree of sensitivity obtained illustrates the potential of this assay for measuring O6-MedG levels in humans.
Collapse
Affiliation(s)
- Elaine M Tompkins
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, The Biocentre, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Delaney JC, Essigmann JM. Assays for determining lesion bypass efficiency and mutagenicity of site-specific DNA lesions in vivo. Methods Enzymol 2006; 408:1-15. [PMID: 16793359 DOI: 10.1016/s0076-6879(06)08001-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA damage, if left unrepaired, may hinder translesion synthesis, leading to cytotoxicity, and instruct a DNA polymerase to incorporate an incorrect incipient base opposite the damage, leading to mutagenicity. This chapter describes technology used to measure quantitatively the degree to which a specific type of DNA damage impedes DNA replication. The technology also quantifies the mutation frequency and specificity of such damage after replication within cells. If cells with defined defects in DNA repair are used as hosts for replication, one can pinpoint the specific enzymes or pathways of repair that are operative on specific types of DNA damage.
Collapse
Affiliation(s)
- James C Delaney
- Department of Chemistry and Biological Engineering Division, Massachusetts Institute of Technology, USA
| | | |
Collapse
|
38
|
Calmann MA, Marinus M. Differential effects of cisplatin and MNNG on dna mutants of Escherichia coli. Mutat Res 2005; 578:406-16. [PMID: 16144703 PMCID: PMC2927670 DOI: 10.1016/j.mrfmmm.2005.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/09/2005] [Accepted: 06/09/2005] [Indexed: 02/08/2023]
Abstract
DNA mismatch repair (MMR) in mammalian cells or Escherichia coli dam mutants increases the cytotoxic effects of cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We found that, unlike wildtype, the dnaE486 (alpha catalytic subunit of DNA polymerase III holoenzyme) mutant, and a DnaX (clamp loader subunits) over-producer, are sensitive to cisplatin but resistant to MNNG at the permissive temperature for growth. Survival of dam-13 dnaN159 (beta sliding clamp) bacteria to cisplatin was significantly less than dam cells, suggesting decreased MMR, which may be due to reduced MutS-beta clamp interaction. We also found an elevated spontaneous mutant frequency to rifampicin resistance in dnaE486 (10-fold), dnaN159 (35-fold) and dnaX36 (10-fold) strains. The mutation spectrum in the dnaN159 strain was consistent with increased SOS induction and not indicative of MMR deficiency.
Collapse
Affiliation(s)
| | - M.G. Marinus
- Corresponding author: Dr M.G. Marinus, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605, Tel 508 856 3330, Fax 508 856 2003,
| |
Collapse
|
39
|
Affiliation(s)
- Stanton L Gerson
- Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA.
| |
Collapse
|
40
|
Kamiya H. Mutagenic potentials of damaged nucleic acids produced by reactive oxygen/nitrogen species: approaches using synthetic oligonucleotides and nucleotides: survey and summary. Nucleic Acids Res 2003; 31:517-31. [PMID: 12527759 PMCID: PMC140503 DOI: 10.1093/nar/gkg137] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA and DNA precursors (deoxyribonucleotides) suffer damage by reactive oxygen/nitrogen species. They are important mutagens for organisms, due to their endogenous formation. Damaged DNA and nucleotides cause alterations of the genetic information by the mispairing properties of the damaged bases, such as 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) and 2-hydroxyadenine. Here, the author reviews the mutagenic potentials of damaged bases in DNA and of damaged DNA precursors formed by reactive oxygen/nitrogen species, focusing on the results obtained with synthetic oligonucleotides and 2'-deoxyribonucleoside 5'-triphosphates.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|