1
|
Brunetta HS, Jung AS, Valdivieso-Rivera F, de Campos Zani SC, Guerra J, Furino VO, Francisco A, Berçot M, Moraes-Vieira PM, Keipert S, Jastroch M, Martinez LO, Sponton CH, Castilho RF, Mori MA, Bartelt A. IF1 is a cold-regulated switch of ATP synthase hydrolytic activity to support thermogenesis in brown fat. EMBO J 2024; 43:4870-4891. [PMID: 39284909 DOI: 10.1038/s44318-024-00215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 11/06/2024] Open
Abstract
While mechanisms controlling uncoupling protein-1 (UCP1) in thermogenic adipocytes play a pivotal role in non-shivering thermogenesis, it remains unclear whether F1Fo-ATP synthase function is also regulated in brown adipose tissue (BAT). Here, we show that inhibitory factor 1 (IF1, encoded by Atp5if1), an inhibitor of ATP synthase hydrolytic activity, is a critical negative regulator of brown adipocyte energy metabolism. In vivo, IF1 levels are diminished in BAT of cold-adapted mice compared to controls. Additionally, the capacity of ATP synthase to generate mitochondrial membrane potential (MMP) through ATP hydrolysis (the so-called "reverse mode" of ATP synthase) is increased in brown fat. In cultured brown adipocytes, IF1 overexpression results in an inability of mitochondria to sustain the MMP upon adrenergic stimulation, leading to a quiescent-like phenotype in brown adipocytes. In mice, adeno-associated virus-mediated IF1 overexpression in BAT suppresses adrenergic-stimulated thermogenesis and decreases mitochondrial respiration in BAT. Taken together, our work identifies downregulation of IF1 upon cold as a critical event for the facilitation of the reverse mode of ATP synthase as well as to enable energetic adaptation of BAT to effectively support non-shivering thermogenesis.
Collapse
Affiliation(s)
- Henver S Brunetta
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna S Jung
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joel Guerra
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Vanessa O Furino
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | | | - Marcelo Berçot
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
| | - Pedro M Moraes-Vieira
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Laurent O Martinez
- LiMitAging Team, Institute of Metabolic and Cardiovascular Diseases, I2MC UMR1297, IHU HealthAge, INSERM, University of Toulouse, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Carlos H Sponton
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Roger F Castilho
- Department of Pathology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| |
Collapse
|
2
|
Lynch EM, Hansen H, Salay L, Cooper M, Timr S, Kollman JM, Webb BA. Structural basis for allosteric regulation of human phosphofructokinase-1. Nat Commun 2024; 15:7323. [PMID: 39183237 PMCID: PMC11345425 DOI: 10.1038/s41467-024-51808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively. Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Lauren Salay
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Madison Cooper
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Stepan Timr
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Bradley A Webb
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
3
|
Lynch EM, Hansen H, Salay L, Cooper M, Timr S, Kollman JM, Webb BA. Structural basis for allosteric regulation of human phosphofructokinase-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585110. [PMID: 38559074 PMCID: PMC10980016 DOI: 10.1101/2024.03.15.585110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University
| | - Lauren Salay
- Department of Biochemistry, University of Washington
| | - Madison Cooper
- Department of Biochemistry and Molecular Medicine, West Virginia University
| | - Stepan Timr
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences
| | | | - Bradley A Webb
- Department of Biochemistry and Molecular Medicine, West Virginia University
| |
Collapse
|
4
|
Sivadas A, McDonald EF, Shuster SO, Davis CM, Plate L. Site-specific crosslinking reveals Phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions. Adv Biol Regul 2023; 90:100987. [PMID: 37806136 PMCID: PMC11108229 DOI: 10.1016/j.jbior.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton.
Collapse
Affiliation(s)
- Athira Sivadas
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Caitlin M Davis
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Chen LF, Cai JX, Zhang JJ, Tang YJ, Chen JY, Xiong S, Li YL, Zhang H, Liu Z, Li MM. Respiratory syncytial virus co-opts hypoxia-inducible factor-1α-mediated glycolysis to favor the production of infectious virus. mBio 2023; 14:e0211023. [PMID: 37796013 PMCID: PMC10653832 DOI: 10.1128/mbio.02110-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.
Collapse
Affiliation(s)
- Li-Feng Chen
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jun-Xing Cai
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jing-Jing Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yu-Jun Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jia-Yi Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Si Xiong
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhong Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Man-Mei Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Sivadas A, McDonald EF, Shuster SO, Davis CM, Plate L. Site-Specific Crosslinking Reveals Phosphofructokinase-L Inhibition Drives Self-Assembly and Attenuation of Protein Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558525. [PMID: 37781627 PMCID: PMC10541129 DOI: 10.1101/2023.09.19.558525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton.
Collapse
Affiliation(s)
- Athira Sivadas
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Voronkova MA, Hansen HL, Cooper MP, Miller J, Sukumar N, Geldenhuys WJ, Robart AR, Webb BA. Cancer-associated somatic mutations in human phosphofructokinase-1 reveal a critical electrostatic interaction for allosteric regulation of enzyme activity. Biochem J 2023; 480:1411-1427. [PMID: 37622331 PMCID: PMC10586780 DOI: 10.1042/bcj20230207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/26/2023]
Abstract
Metabolic reprogramming, including increased glucose uptake and lactic acid excretion, is a hallmark of cancer. The glycolytic 'gatekeeper' enzyme phosphofructokinase-1 (PFK1), which catalyzes the step committing glucose to breakdown, is dysregulated in cancers. While altered PFK1 activity and expression in tumors have been demonstrated, little is known about the effects of cancer-associated somatic mutations. Somatic mutations in PFK1 inform our understanding of allosteric regulation by identifying key amino acid residues involved in the regulation of enzyme activity. Here, we characterized mutations disrupting an evolutionarily conserved salt bridge between aspartic acid and arginine in human platelet (PFKP) and liver (PFKL) isoforms. Using purified recombinant proteins, we showed that disruption of the Asp-Arg pair in two PFK1 isoforms decreased enzyme activity and altered allosteric regulation. We determined the crystal structure of PFK1 to 3.6 Å resolution and used molecular dynamic simulations to understand molecular mechanisms of altered allosteric regulation. We showed that PFKP-D564N had a decreased total system energy and changes in the electrostatic surface potential of the effector site. Cells expressing PFKP-D564N demonstrated a decreased rate of glycolysis, while their ability to induce glycolytic flux under conditions of low cellular energy was enhanced compared with cells expressing wild-type PFKP. Taken together, these results suggest that mutations in Arg-Asp pair at the interface of the catalytic-regulatory domains stabilizes the t-state and presents novel mechanistic insight for therapeutic development in cancer.
Collapse
Affiliation(s)
- Maria A. Voronkova
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Heather L. Hansen
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Madison P. Cooper
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Jacob Miller
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Narayanasami Sukumar
- Northeastern Collaborative Access Team Center for Advanced Macromolecular Crystallography, Argonne National Laboratory, Lemont, IL 60439, U.S.A
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, U.S.A
| | - Aaron R. Robart
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Bradley A. Webb
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| |
Collapse
|
8
|
Vasse GF, Russo S, Barcaru A, Oun AAA, Dolga AM, van Rijn P, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Collagen type I alters the proteomic signature of macrophages in a collagen morphology-dependent manner. Sci Rep 2023; 13:5670. [PMID: 37024614 PMCID: PMC10079972 DOI: 10.1038/s41598-023-32715-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease that causes scarring and loss of lung function. Macrophages play a key role in fibrosis, but their responses to altered morphological and mechanical properties of the extracellular matrix in fibrosis is relatively unexplored. Our previous work showed functional changes in murine fetal liver-derived alveolar macrophages on fibrous or globular collagen morphologies. In this study, we applied differential proteomics to further investigate molecular mechanisms underlying the observed functional changes. Macrophages cultured on uncoated, fibrous, or globular collagen-coated plastic were analyzed by liquid chromatography-mass spectrometry. The presence of collagen affected expression of 77 proteins, while 142 were differentially expressed between macrophages grown on fibrous or globular collagen. Biological process and pathway enrichment analysis revealed that culturing on any type of collagen induced higher expression of enzymes involved in glycolysis. However, this did not lead to a higher rate of glycolysis, probably because of a concomitant decrease in activity of these enzymes. Our data suggest that macrophages sense collagen morphologies and can respond with changes in expression and activity of metabolism-related proteins. These findings suggest intimate interactions between macrophages and their surroundings that may be important in repair or fibrosis of lung tissue.
Collapse
Affiliation(s)
- Gwenda F Vasse
- Biomedical Engineering Department-FB40, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, Groningen, The Netherlands.
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.
| | - Sara Russo
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Andrei Barcaru
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Asmaa A A Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Patrick van Rijn
- Biomedical Engineering Department-FB40, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, Groningen, The Netherlands
| | - Marcel Kwiatkowski
- Functional Proteo-Metabolomics, Department of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. PLoS Comput Biol 2021; 17:e1009234. [PMID: 34297714 PMCID: PMC8336858 DOI: 10.1371/journal.pcbi.1009234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/04/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response. Deciphering the essential events in the reprogramming of metabolic networks subjected to complex perturbations, including the response to pharmacological treatments in multifactorial diseases like cancer, is crucial for the design of efficient therapies. Yet, tools to infer the molecular drivers sustaining such metabolic responses remain elusive for large metabolic networks. Here we develop an efficient computational strategy that integrates measured changes at systemic and molecular levels and combines metabolic control analysis with linear programming tools to infer key molecular drivers sustaining the metabolic adaptations to complex perturbations, such as an antitumoral drug therapy. The collective behavior is approximated using linear expressions where the adaptation of systemic concentrations and fluxes to a perturbation is described as a function of the molecular reprogramming of transport and enzyme activities. Starting from measured changes in fluxes and concentrations, we identify changes in the reprogramming of transporter and enzyme activities that are required to orchestrate the metabolic adaptation of colon cancer cells to a cell cycle inhibitor.
Collapse
|
10
|
Snášel J, Machová I, Šolínová V, Kašička V, Krečmerová M, Pichová I. Phosphofructokinases A and B from Mycobacterium tuberculosis Display Different Catalytic Properties and Allosteric Regulation. Int J Mol Sci 2021; 22:1483. [PMID: 33540748 PMCID: PMC7867265 DOI: 10.3390/ijms22031483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains one of the major health concerns worldwide. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can flexibly change its metabolic processes during different life stages. Regulation of key metabolic enzyme activities by intracellular conditions, allosteric inhibition or feedback control can effectively contribute to Mtb survival under different conditions. Phosphofructokinase (Pfk) is one of the key enzymes regulating glycolysis. Mtb encodes two Pfk isoenzymes, Pfk A/Rv3010c and Pfk B/Rv2029c, which are differently expressed upon transition to the hypoxia-induced non-replicating state of the bacteria. While pfkB gene and protein expression are upregulated under hypoxic conditions, Pfk A levels decrease. Here, we present biochemical characterization of both Pfk isoenzymes, revealing that Pfk A and Pfk B display different kinetic properties. Although the glycolytic activity of Pfk A is higher than that of Pfk B, it is markedly inhibited by an excess of both substrates (fructose-6-phosphate and ATP), reaction products (fructose-1,6-bisphosphate and ADP) and common metabolic allosteric regulators. In contrast, synthesis of fructose-1,6-bisphosphatase catalyzed by Pfk B is not regulated by higher levels of substrates, and metabolites. Importantly, we found that only Pfk B can catalyze the reverse gluconeogenic reaction. Pfk B thus can support glycolysis under conditions inhibiting Pfk A function.
Collapse
Affiliation(s)
| | | | | | | | | | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic; (J.S.); (I.M.); (V.Š.); (V.K.); (M.K.)
| |
Collapse
|
11
|
Temperature effect on water dynamics in tetramer phosphofructokinase matrix and the super-arrhenius respiration rate. Sci Rep 2021; 11:383. [PMID: 33431895 PMCID: PMC7801438 DOI: 10.1038/s41598-020-79271-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
Advances in understanding the temperature effect on water dynamics in cellular respiration are important for the modeling of integrated energy processes and metabolic rates. For more than half a century, experimental studies have contributed to the understanding of the catalytic role of water in respiration combustion, yet the detailed water dynamics remains elusive. We combine a super-Arrhenius model that links the temperature-dependent exponential growth rate of a population of plant cells to respiration, and an experiment on isotope labeled 18O2 uptake to H218O transport role and to a rate-limiting step of cellular respiration. We use Phosphofructokinase (PFK-1) as a prototype because this enzyme is known to be a pacemaker (a rate-limiting enzyme) in the glycolysis process of respiration. The characterization shows that PFK-1 water matrix dynamics are crucial for examining how respiration (PFK-1 tetramer complex breathing) rates respond to temperature change through a water and nano-channel network created by the enzyme folding surfaces, at both short and long (evolutionary) timescales. We not only reveal the nano-channel water network of PFK-1 tetramer hydration topography but also clarify how temperature drives the underlying respiration rates by mapping the channels of water diffusion with distinct dynamics in space and time. The results show that the PFK-1 assembly tetramer possesses a sustainable capacity in the regulation of the water network toward metabolic rates. The implications and limitations of the reciprocal-activation-reciprocal-temperature relationship for interpreting PFK-1 tetramer mechanisms are briefly discussed.
Collapse
|
12
|
Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol 2020; 599:23-37. [PMID: 33006160 DOI: 10.1113/jp280572] [Citation(s) in RCA: 395] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Under conditions of hypoxia, most eukaryotic cells can shift their primary metabolic strategy from predominantly mitochondrial respiration towards increased glycolysis to maintain ATP levels. This hypoxia-induced reprogramming of metabolism is key to satisfying cellular energetic requirements during acute hypoxic stress. At a transcriptional level, this metabolic switch can be regulated by several pathways including the hypoxia inducible factor-1α (HIF-1α) which induces an increased expression of glycolytic enzymes. While this increase in glycolytic flux is beneficial for maintaining bioenergetic homeostasis during hypoxia, the pathways mediating this increase can also be exploited by cancer cells to promote tumour survival and growth, an area which has been extensively studied. It has recently become appreciated that increased glycolytic metabolism in hypoxia may also have profound effects on cellular physiology in hypoxic immune and endothelial cells. Therefore, understanding the mechanisms central to mediating this reprogramming are of importance from both physiological and pathophysiological standpoints. In this review, we highlight the role of HIF-1α in the regulation of hypoxic glycolysis and its implications for physiological processes such as angiogenesis and immune cell effector function.
Collapse
Affiliation(s)
- S J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - C T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Plasma Membrane Ca 2+ ATPase Isoform 4 (PMCA4) Has an Important Role in Numerous Hallmarks of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010218. [PMID: 31963119 PMCID: PMC7016988 DOI: 10.3390/cancers12010218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is largely resistant to standard treatments leading to poor patient survival. The expression of plasma membrane calcium ATPase-4 (PMCA4) is reported to modulate key cancer hallmarks including cell migration, growth, and apoptotic resistance. Data-mining revealed that PMCA4 was over-expressed in pancreatic ductal adenocarcinoma (PDAC) tumors which correlated with poor patient survival. Western blot and RT-qPCR revealed that MIA PaCa-2 cells almost exclusively express PMCA4 making these a suitable cellular model of PDAC with poor patient survival. Knockdown of PMCA4 in MIA PaCa-2 cells (using siRNA) reduced cytosolic Ca2+ ([Ca2+]i) clearance, cell migration, and sensitized cells to apoptosis, without affecting cell growth. Knocking down PMCA4 had minimal effects on numerous metabolic parameters (as assessed using the Seahorse XF analyzer). In summary, this study provides the first evidence that PMCA4 is over-expressed in PDAC and plays a role in cell migration and apoptotic resistance in MIA PaCa-2 cells. This suggests that PMCA4 may offer an attractive novel therapeutic target in PDAC.
Collapse
|
14
|
Guggisberg AM, Frasse PM, Jezewski AJ, Kafai NM, Gandhi AY, Erlinger SJ, Odom John AR. Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites. mBio 2018; 9:e01193-18. [PMID: 30425143 PMCID: PMC6234871 DOI: 10.1128/mbio.01193-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance. Enzymatic characterization revealed that HAD2, a member of the haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Harnessing a growth defect in resistant parasites, we selected for suppression of HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Metabolic profiling demonstrated that FSM resistance is achieved via increased steady-state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermediates and confirmed reduced PFK9 function in the suppressed strains. We identified HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our report informs the biological functions of an evolutionarily conserved family of metabolic regulators and reveals a previously undescribed strategy by which malaria parasites adapt to cellular metabolic dysregulation.IMPORTANCE Unique and essential aspects of parasite metabolism are excellent targets for development of new antimalarials. An improved understanding of parasite metabolism and drug resistance mechanisms is urgently needed. The antibiotic fosmidomycin targets the synthesis of essential isoprenoid compounds from glucose and is a candidate for antimalarial development. Our report identifies a novel mechanism of drug resistance and further describes a family of metabolic regulators in the parasite. Using a novel forward genetic approach, we also uncovered mutations that suppress drug resistance in the glycolytic enzyme PFK9. Thus, we identify an unexpected genetic mechanism of adaptation to metabolic insult that influences parasite fitness and tolerance of antimalarials.
Collapse
Affiliation(s)
- Ann M Guggisberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Philip M Frasse
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J Jezewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Natasha M Kafai
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aakash Y Gandhi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel J Erlinger
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Li H, Hurlburt AJ, Tennessen JM. A Drosophila model of combined D-2- and L-2-hydroxyglutaric aciduria reveals a mechanism linking mitochondrial citrate export with oncometabolite accumulation. Dis Model Mech 2018; 11:dmm.035337. [PMID: 30108060 PMCID: PMC6177012 DOI: 10.1242/dmm.035337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
The enantiomers of 2-hydroxyglutarate (2HG) are potent regulators of metabolism, chromatin modifications and cell fate decisions. Although these compounds are associated with tumor metabolism and commonly referred to as oncometabolites, both D- and L-2HG are also synthesized by healthy cells and likely serve endogenous functions. The metabolic mechanisms that control 2HG metabolism in vivo are poorly understood. One clue towards how cells regulate 2HG levels has emerged from an inborn error of metabolism known as combined D- and L-2HG aciduria (D-/L-2HGA), which results in elevated D- and L-2HG accumulation. Because this disorder is caused by mutations in the mitochondrial citrate transporter (CIC), citrate must somehow govern 2HG metabolism in healthy cells. The mechanism linking citrate and 2HG, however, remains unknown. Here, we use the fruit fly Drosophila melanogaster to elucidate a metabolic link between citrate transport and L-2HG accumulation. Our study reveals that the Drosophila gene scheggia (sea), which encodes the fly CIC homolog, dampens glycolytic flux and restricts L-2HG accumulation. Moreover, we find that sea mutants accumulate excess L-2HG owing to elevated lactate production, which inhibits L-2HG degradation by interfering with L-2HG dehydrogenase activity. This unexpected result demonstrates that citrate indirectly regulates L-2HG stability and reveals a feedback mechanism that coordinates L-2HG metabolism with glycolysis and the tricarboxylic acid cycle. Finally, our study also suggests a potential strategy for preventing L-2HG accumulation in human patients with CIC deficiency. This article has an associated First Person interview with the first author of the paper. Summary: This study reveals a mechanism that links export of mitochondrial citrate to accumulation of the oncometabolite L-2-hydroxyglutarate, suggesting a potential treatment for individuals with combined D-2- and L-2-hydroxyglutaric aciduria, a rare inborn error of metabolism.
Collapse
Affiliation(s)
- Hongde Li
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Alexander J Hurlburt
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Trousil S, Kaliszczak M, Schug Z, Nguyen QD, Tomasi G, Favicchio R, Brickute D, Fortt R, Twyman FJ, Carroll L, Kalusa A, Navaratnam N, Adejumo T, Carling D, Gottlieb E, Aboagye EO. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget 2016; 7:37103-37120. [PMID: 27206796 PMCID: PMC5095062 DOI: 10.18632/oncotarget.9466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
The glycerophospholipid phosphatidylcholine is the most abundant phospholipid species of eukaryotic membranes and essential for structural integrity and signaling function of cell membranes required for cancer cell growth. Inhibition of choline kinase alpha (CHKA), the first committed step to phosphatidylcholine synthesis, by the selective small-molecule ICL-CCIC-0019, potently suppressed growth of a panel of 60 cancer cell lines with median GI50 of 1.12 μM and inhibited tumor xenograft growth in mice. ICL-CCIC-0019 decreased phosphocholine levels and the fraction of labeled choline in lipids, and induced G1 arrest, endoplasmic reticulum stress and apoptosis. Changes in phosphocholine cellular levels following treatment could be detected non-invasively in tumor xenografts by [18F]-fluoromethyl-[1,2-2H4]-choline positron emission tomography. Herein, we reveal a previously unappreciated effect of choline metabolism on mitochondria function. Comparative metabolomics demonstrated that phosphatidylcholine pathway inhibition leads to a metabolically stressed phenotype analogous to mitochondria toxin treatment but without reactive oxygen species activation. Drug treatment decreased mitochondria function with associated reduction of citrate synthase expression and AMPK activation. Glucose and acetate uptake were increased in an attempt to overcome the metabolic stress. This study indicates that choline pathway pharmacological inhibition critically affects the metabolic function of the cell beyond reduced synthesis of phospholipids.
Collapse
Affiliation(s)
- Sebastian Trousil
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Maciej Kaliszczak
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Zachary Schug
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | - Quang-De Nguyen
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Giampaolo Tomasi
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Rosy Favicchio
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Robin Fortt
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Frazer J. Twyman
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Andrew Kalusa
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Naveenan Navaratnam
- Cellular Stress Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - Thomas Adejumo
- Cellular Stress Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - David Carling
- Cellular Stress Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | - Eyal Gottlieb
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
17
|
Chesney J, Clark J, Lanceta L, Trent JO, Telang S. Targeting the sugar metabolism of tumors with a first-in-class 6-phosphofructo-2-kinase (PFKFB4) inhibitor. Oncotarget 2016. [PMID: 26221874 PMCID: PMC4627231 DOI: 10.18632/oncotarget.4534] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human tumors exhibit increased glucose uptake and metabolism as a result of high demand for ATP and anabolic substrates and this metabolotype is a negative prognostic indicator for survival. Recent studies have demonstrated that cancer cells from several tissue origins and genetic backgrounds require the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4), a regulatory enzyme that synthesizes an allosteric activator of glycolysis, fructose-2,6-bisphosphate. We report the discovery of a first-in-class PFKFB4 inhibitor, 5-(n-(8-methoxy-4-quinolyl)amino)pentyl nitrate (5MPN), using structure-based virtual computational screening. We find that 5MPN is a selective inhibitor of PFKFB4 that suppresses the glycolysis and proliferation of multiple human cancer cell lines but not non-transformed epithelial cells in vitro. Importantly, 5MPN has high oral bioavailability and per os administration of a non-toxic dose of 5MPN suppresses the glucose metabolism and growth of tumors in mice.
Collapse
Affiliation(s)
- Jason Chesney
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Jennifer Clark
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Lilibeth Lanceta
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - John O Trent
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Sucheta Telang
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
18
|
Nunes RD, Romeiro NC, De Carvalho HT, Moreira JR, Sola-Penna M, Silva-Neto MAC, Braz GRC. Unique PFK regulatory property from some mosquito vectors of disease, and from Drosophila melanogaster. Parasit Vectors 2016; 9:107. [PMID: 26911930 PMCID: PMC4766633 DOI: 10.1186/s13071-016-1391-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arthropod-borne diseases are some of the most rapidly spreading diseases. Reducing the vector population is currently the only effective way to reduce case numbers. Central metabolic pathways are potential targets to control vector populations, but have not been well explored to this aim. The information available on energy metabolism, as a way to control lifespan and dispersion through flight of dipteran vectors, is inadequate. METHODS Phosphofructokinase (PFK) activity was measured in the presence of both of its substrates, fructose-6-phosphate (F6P) and ATP, as well as some allosteric effectors: Fructose- 2,6 - bisphosphate (F2, 6BP), citrate and AMP. Aedes aegypti phosphofructokinase sequence (AaPFK) was aligned with many other insects and also vertebrate sequences. A 3D AaPFK model was produced and docking experiments were performed with AMP and citrate. RESULTS The kinetic parameters of AaPFK were determined for both substrates: F6P (V = 4.47 ± 0.15 μmol of F1, 6BP/min, K0.5 = 1.48 ± 0.22 mM) and ATP (V = 4.73 ± 0.57 μmol of F1, 6BP/min, K0.5 = 0.43 ± 0.10 mM). F2,6P was a powerful activator of AaPFK, even at low ATP concentrations. AaPFK inhibition by ATP was not enhanced by citrate, consistent with observations in other insects. After examining the sequence alignment of insect and non-insect PFKs, the hypothesis is that a modification of the citrate binding site is responsible for this unique behavior. AMP, a well-known positive effector of PFK, was not capable of reverting ATP inhibition. Aedes, Anopheles and Culex are dengue, malaria and filariasis vectors, respectively, and are shown to have this distinct characteristic in phosphofructokinase control. The alignment of several insect PFKs suggested a difference in the AMP binding site and a significant change in local charges, which introduces a highly negative charge in this part of the protein, making the binding of AMP unlikely. This hypothesis was supported by 3D modeling of PFK with AMP docking, which suggested that the AMP molecule binds in a reverse orientation due to the electrostatic environment. The present findings imply a potential new way to control PFK activity and are a unique feature of these Diptera. CONCLUSIONS The present findings provide the first molecular explanation for citrate insensitivity in insect PFKs, as well as demonstrating for the first time AMP insensitivity in dipterans. It also identified a potential target for novel insecticides for the control of arthropod-borne diseases.
Collapse
Affiliation(s)
- Rodrigo Dutra Nunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Nelilma Correia Romeiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,NUPEM-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Hugo Tremonte De Carvalho
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Riode Janeiro, RJ, Brazil.
| | - Jean Ribeiro Moreira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Riode Janeiro, RJ, Brazil.
| | - Mauro Sola-Penna
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Mário Alberto C Silva-Neto
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Glória Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Riode Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Van Schaftingen E, Veiga-da-Cunha M, Linster CL. Enzyme complexity in intermediary metabolism. J Inherit Metab Dis 2015; 38:721-7. [PMID: 25700988 DOI: 10.1007/s10545-015-9821-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
A good appraisal of the function of enzymes is essential for the understanding of inborn errors of metabolism. However, it is clear now that the 'one gene, one enzyme, one catalytic function' rule oversimplifies the actual situation. Genes often encode several related proteins, which may differ in their subcellular localisation, regulation or function. Furthermore, enzymes often show several catalytic activities. In some cases, this is because they are multifunctional, possessing two or more different active sites that catalyse different, physiologically related reactions. In enzymes with broad specificity or in multispecificity enzymes, a single type of catalytic site performs the same reaction on different physiological substrates at similar rates. Enzymes that act physiologically in only one reaction often show nonetheless substrate promiscuity: they act at low rates on compounds that resemble their physiological substrate(s), thus forming non-classical metabolites, which are in some cases eliminated by metabolite repair. In addition to their catalytic role, enzymes may have moonlighting functions, i.e. non-catalytic functions that are most often not related with their catalytic activity. Deficiency in such functions may participate in the phenotype of inborn errors of metabolism. Evolution has also made that some enzymes have lost their catalytic activity to become allosteric proteins.
Collapse
Affiliation(s)
- Emile Van Schaftingen
- Welbio and de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium,
| | | | | |
Collapse
|
20
|
Abstract
Phosphofructokinase-1 (Pfk) acts as the main control point of flux through glycolysis. It is involved in complex allosteric regulation and Pfk mutations have been linked to cancer development. Whereas the 3D structure and structural basis of allosteric regulation of prokaryotic Pfk has been studied in great detail, our knowledge about the molecular basis of the allosteric behaviour of the more complex mammalian Pfk is still very limited. To characterize the structural basis of allosteric regulation, the subunit interfaces and the functional consequences of modifications in Tarui's disease and cancer, we analysed the physiological homotetramer of human platelet Pfk at up to 2.67 Å resolution in two crystal forms. The crystallized enzyme is permanently activated by a deletion of the 22 C-terminal residues. Complex structures with ADP and fructose-6-phosphate (F6P) and with ATP suggest a role of three aspartates in the deprotonation of the OH-nucleophile of F6P and in the co-ordination of the catalytic magnesium ion. Changes at the dimer interface, including an asymmetry observed in both crystal forms, are the primary mechanism of allosteric regulation of Pfk by influencing the F6P-binding site. Whereas the nature of this conformational switch appears to be largely conserved in bacterial, yeast and mammalian Pfk, initiation of these changes differs significantly in eukaryotic Pfk.
Collapse
|
21
|
McGresham MS, Lovingshimer M, Reinhart GD. Allosteric regulation in phosphofructokinase from the extreme thermophile Thermus thermophilus. Biochemistry 2014; 53:270-8. [PMID: 24328040 PMCID: PMC3982590 DOI: 10.1021/bi401402j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An investigation into the kinetics and regulatory properties of the type-1 phosphofructokinase (PFK) from the extreme thermophile Thermus thermophilus (TtPFK) reveals an enzyme that is inhibited by PEP and activated by ADP by modifying the affinity exhibited for the substrate fructose 6-phosphate (Fru-6-P) in a manner analogous to other prokaryotic PFKs. However, TtPFK binds both of these allosteric ligands significantly more tightly than other bacterial PFKs while effecting a substantially more modest extent of inhibition or activation at 25 °C, reinforcing the principle that binding affinity and effectiveness can be both independent and uncorrelated to one another. These properties have allowed us to establish rigorously that PEP only inhibits by antagonizing the binding of Fru-6-P and not by influencing turnover, a conclusion that requires kcat to be determined under conditions in which both inhibitor and substrate are saturating simultaneously. In addition, the temperature dependence of the allosteric effects on Fru-6-P binding indicate that the coupling free energies are entropy-dominated, as observed previously for PFK from Bacillus stearothermophilus but not for PFK from Escherichia coli , supporting the hypothesis that entropy-dominated allosteric effects may be a characteristic of enzymes derived from thermostable organisms. For such enzymes, the root cause of the allosteric effect may not be easily discerned from static structural information such as that obtained from X-ray crystallography.
Collapse
Affiliation(s)
| | - Michelle Lovingshimer
- Department of Biochemistry and Biophysics, Texas A&M University and
Texas AgriLife Research, College Station, TX 77843-2128
| | - Gregory D. Reinhart
- Department of Biochemistry and Biophysics, Texas A&M University and
Texas AgriLife Research, College Station, TX 77843-2128
| |
Collapse
|
22
|
Stine ZE, Dang CV. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. Crit Rev Biochem Mol Biol 2013; 48:609-19. [PMID: 24099138 DOI: 10.3109/10409238.2013.844093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cancer cells reprogram metabolism to maintain rapid proliferation under often stressful conditions. Glycolysis and glutaminolysis are two central pathways that fuel cancer metabolism. Allosteric regulation and metabolite driven post-translational modifications of key metabolic enzymes allow cancer cells glycolysis and glutaminolysis to respond to changes in nutrient availability and the tumor microenvironment. While increased aerobic glycolysis (the Warburg effect) has been a noted part of cancer metabolism for over 80 years, recent work has shown that the elevated levels of glycolytic intermediates are critical to cancer growth and metabolism due to their ability to feed into the anabolic pathways branching off glycolysis such as the pentose phosphate pathway and serine biosynthesis pathway. The key glycolytic enzymes phosphofructokinase-1 (PFK1), pyruvate kinase (PKM2) and phosphoglycerate mutase 1 (PGAM1) are regulated by upstream and downstream metabolites to balance glycolytic flux with flux through anabolic pathways. Glutamine regulation is tightly controlled by metabolic intermediates that allosterically inhibit and activate glutamate dehydrogenase, which fuels the tricarboxylic acid cycle by converting glutamine derived glutamate to α-ketoglutarate. The elucidation of these key allosteric regulatory hubs in cancer metabolism will be essential for understanding and predicting how cancer cells will respond to drugs that target metabolism. Additionally, identification of the structures involved in allosteric regulation will inform the design of anti-metabolism drugs which bypass the off-target effects of substrate mimics. Hence, this review aims to provide an overview of allosteric control of glycolysis and glutaminolysis.
Collapse
Affiliation(s)
- Zachary E Stine
- Abramson Cancer Center, Abramson Family Cancer Research Institute, University of Pennsylvania , Philadelphia, PA , USA
| | | |
Collapse
|
23
|
Yoshida S, Tsutsumi S, Muhlebach G, Sourbier C, Lee MJ, Lee S, Vartholomaiou E, Tatokoro M, Beebe K, Miyajima N, Mohney RP, Chen Y, Hasumi H, Xu W, Fukushima H, Nakamura K, Koga F, Kihara K, Trepel J, Picard D, Neckers L. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci U S A 2013; 110:E1604-12. [PMID: 23564345 PMCID: PMC3637790 DOI: 10.1073/pnas.1220659110] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TRAP1 (TNF receptor-associated protein), a member of the HSP90 chaperone family, is found predominantly in mitochondria. TRAP1 is broadly considered to be an anticancer molecular target. However, current inhibitors cannot distinguish between HSP90 and TRAP1, making their utility as probes of TRAP1-specific function questionable. Some cancers express less TRAP1 than do their normal tissue counterparts, suggesting that TRAP1 function in mitochondria of normal and transformed cells is more complex than previously appreciated. We have used TRAP1-null cells and transient TRAP1 silencing/overexpression to show that TRAP1 regulates a metabolic switch between oxidative phosphorylation and aerobic glycolysis in immortalized mouse fibroblasts and in human tumor cells. TRAP1-deficiency promotes an increase in mitochondrial respiration and fatty acid oxidation, and in cellular accumulation of tricarboxylic acid cycle intermediates, ATP and reactive oxygen species. At the same time, glucose metabolism is suppressed. TRAP1-deficient cells also display strikingly enhanced invasiveness. TRAP1 interaction with and regulation of mitochondrial c-Src provide a mechanistic basis for these phenotypes. Taken together with the observation that TRAP1 expression is inversely correlated with tumor grade in several cancers, these data suggest that, in some settings, this mitochondrial molecular chaperone may act as a tumor suppressor.
Collapse
Affiliation(s)
| | | | - Guillaume Muhlebach
- Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | - Min-Jung Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Sunmin Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | | | - Manabu Tatokoro
- Urologic Oncology Branch and
- Department of Urology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | | | | | | | | | | | | | - Hiroshi Fukushima
- Department of Urology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, University of California at San Francisco School of Medicine, San Francisco, CA 94158
| | - Fumitaka Koga
- Department of Urology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Kazunori Kihara
- Department of Urology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Jane Trepel
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Didier Picard
- Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
24
|
Distinct functional roles of the two terminal halves of eukaryotic phosphofructokinase. Biochem J 2012; 445:213-8. [PMID: 22530721 DOI: 10.1042/bj20120173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eukaryotic PFK (phosphofructokinase), a key regulatory enzyme in glycolysis, has homologous N- and C-terminal domains thought to result from duplication, fusion and divergence of an ancestral prokaryotic gene. It has been suggested that both the active site and the Fru-2,6-P2 (fructose 2,6-bisphosphate) allosteric site are formed by opposing N- and C-termini of subunits orientated antiparallel in a dimer. In contrast, we show in the present study that in fact the N-terminal halves form the active site, since expression of the N-terminal half of the enzymes from Dictyostelium discoideum and human muscle in PFK-deficient yeast restored growth on glucose. However, the N-terminus alone was not stable in vitro. The C-terminus is not catalytic, but is needed for stability of the enzyme, as is the connecting peptide that normally joins the two domains (here included in the N-terminus). Co-expression of homologous, but not heterologous, N- and C-termini yielded stable fully active enzymes in vitro with sizes and kinetic properties similar to those of the wild-type tetrameric enzymes. This indicates that the separately translated domains can fold sufficiently well to bind to each other, that such binding of complementary domains is stable and that the alignment is sufficiently accurate and tight as to preserve metabolite binding sites and allosteric interactions.
Collapse
|
25
|
Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol 2012; 8:e1002612. [PMID: 22807670 PMCID: PMC3395594 DOI: 10.1371/journal.pcbi.1002612] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/29/2012] [Indexed: 12/04/2022] Open
Abstract
Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux. Design of allosterically regulatable enzyme is essential to develop a highly efficient metabolite production. However, mutations on allosteric ligand binding sites often disrupt the catalytic activity of enzyme. To aid the design process of allosterically controllable enzymes, we develop an effective computational strategy to deregulate the allosteric inhibition of enzymes based on sequence evolution analysis of allosteric ligand-binding sites. We analyzed the molecular evolution and amino acid composition of catalytic and allosteric sites of enzymes, and discovered that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We then experimentally tested our strategy of enzyme allosteric regulation and found that the designed mutations effectively deregulated allosteric inhibition of FBPase. We believe that our method will aid the rational design of enzyme allosteric regulation and help to facilitate control of metabolic flux.
Collapse
|
26
|
Brüser A, Kirchberger J, Kloos M, Sträter N, Schöneberg T. Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase. J Biol Chem 2012; 287:17546-17553. [PMID: 22474333 DOI: 10.1074/jbc.m112.347153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
6-Phosphofructokinases (Pfk) are homo- and heterooligomeric, allosteric enzymes that catalyze one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk revealed several adenine nucleotide binding sites. Herein, we determined the functional relevance of two adenine nucleotide binding sites through site-directed mutagenesis and enzyme kinetic studies. Subsequent characterization of Pfk mutants allowed the identification of the activating (AMP, ADP) and inhibitory (ATP, ADP) allosteric binding sites. Mutation of one binding site reciprocally influenced the allosteric regulation through nucleotides interacting with the other binding site. Such reciprocal linkage between the activating and inhibitory binding sites is in agreement with current models of allosteric enzyme regulation. Because the allosteric nucleotide binding sites in eukaryotic Pfk did not evolve from prokaryotic ancestors, reciprocal linkage of functionally opposed allosteric binding sites must have developed independently in prokaryotic and eukaryotic Pfk (convergent evolution).
Collapse
Affiliation(s)
- Antje Brüser
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig
| | - Jürgen Kirchberger
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig
| | - Marco Kloos
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig.
| |
Collapse
|
27
|
Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis. Cell Death Dis 2012; 3:e278. [PMID: 22402602 PMCID: PMC3317342 DOI: 10.1038/cddis.2012.20] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The skeletal elements of embryonic limb are prefigured by prechondrogenic condensation in which secreted molecules such as adhesion molecules and extracellular matrix have crucial roles. However, how the secreted molecules are controlled to organize the condensation remains unclear. In this study, we examined metabolic regulation of secretion in prechondrogenic condensation, using bioluminescent monitoring systems. We here report on ATP oscillations in the early step of chondrogenesis. The ATP oscillations depended on both glycolysis and mitochondrial respiration, and their synchronization among cells were achieved via gap junctions. In addition, the ATP oscillations were driven by Ca(2+) oscillations and led to oscillatory secretion in chondrogenesis. Blockade of the ATP oscillations prevented cellular condensation. Furthermore, the degree of cellular condensation increased with the frequency of ATP oscillations. We conclude that ATP oscillations have a critical role in prechondrogenic condensation by inducing oscillatory secretion.
Collapse
|
28
|
Lavorato SN, Andrade SF, Silva THA, Alves RJ, Oliveira RB. Phosphofructokinase: structural and functional aspects and design of selective inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20122d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Šmerc A, Sodja E, Legiša M. Posttranslational modification of 6-phosphofructo-1-kinase as an important feature of cancer metabolism. PLoS One 2011; 6:e19645. [PMID: 21573193 PMCID: PMC3087806 DOI: 10.1371/journal.pone.0019645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/12/2011] [Indexed: 01/12/2023] Open
Abstract
Background Human cancers consume larger amounts of glucose compared to normal tissues with most being converted and excreted as lactate despite abundant oxygen availability (Warburg effect). The underlying higher rate of glycolysis is therefore at the root of tumor formation and growth. Normal control of glycolytic allosteric enzymes appears impaired in tumors; however, the phenomenon has not been fully resolved. Methodology/Principal Findings In the present paper, we show evidence that the native 85-kDa 6-phosphofructo-1-kinase (PFK1), a key regulatory enzyme of glycolysis that is normally under the control of feedback inhibition, undergoes posttranslational modification. After proteolytic cleavage of the C-terminal portion of the enzyme, an active, shorter 47-kDa fragment was formed that was insensitive to citrate and ATP inhibition. In tumorigenic cell lines, only the short fragments but not the native 85-kDa PFK1 were detected by immunoblotting. Similar fragments were detected also in a tumor tissue that developed in mice after the subcutaneous infection with tumorigenic B16-F10 cells. Based on limited proteolytic digestion of the rabbit muscle PFK-M, an active citrate inhibition-resistant shorter form was obtained, indicating that a single posttranslational modification step was possible. The exact molecular masses of the active shorter PFK1 fragments were determined by inserting the truncated genes constructed from human muscle PFK1 cDNA into a pfk null E. coli strain. Two E. coli transformants encoding for the modified PFK1s of 45,551 Da and 47,835 Da grew in glucose medium. The insertion of modified truncated human pfkM genes also stimulated glucose consumption and lactate excretion in stable transfectants of non-tumorigenic human HEK cell, suggesting the important role of shorter PFK1 fragments in enhancing glycolytic flux. Conclusions/Significance Posttranslational modification of PFK1 enzyme might be the pivotal factor of deregulated glycolytic flux in tumors that in combination with altered signaling mechanisms essentially supports fast proliferation of cancer cells.
Collapse
Affiliation(s)
- Andreja Šmerc
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Eva Sodja
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matic Legiša
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
30
|
Banaszak K, Mechin I, Obmolova G, Oldham M, Chang SH, Ruiz T, Radermacher M, Kopperschläger G, Rypniewski W. The crystal structures of eukaryotic phosphofructokinases from baker's yeast and rabbit skeletal muscle. J Mol Biol 2011; 407:284-97. [PMID: 21241708 DOI: 10.1016/j.jmb.2011.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/07/2011] [Accepted: 01/09/2011] [Indexed: 11/17/2022]
Abstract
Phosphofructokinase 1 (PFK) is a multisubunit allosteric enzyme that catalyzes the principal regulatory step in glycolysis-the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate by ATP. The activity of eukaryotic PFK is modulated by a number of effectors in response to the cell's needs for energy and building blocks for biosynthesis. The crystal structures of eukaryotic PFKs-from Saccharomyces cerevisiae and rabbit skeletal muscle-demonstrate how successive gene duplications and fusion are reflected in the protein structure and how they allowed the evolution of new functionalities. The basic framework inherited from prokaryotes is conserved, and additional levels of structural and functional complexity have evolved around it. Analysis of protein-ligand complexes has shown how PFK is activated by fructose 2,6-bisphosphate (a powerful PFK effector found only in eukaryotes) and reveals a novel nucleotide binding site. Crystallographic results have been used as the basis for structure-based effector design.
Collapse
Affiliation(s)
- Katarzyna Banaszak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Arechaga I, Martínez-Costa OH, Ferreras C, Carrascosa JL, Aragón JJ. Electron microscopy analysis of mammalian phosphofructokinase reveals an unusual 3‐dimensional structure with significant implications for enzyme function. FASEB J 2010. [DOI: 10.1096/fj.10.165845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ignacio Arechaga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientIficas (CSIC) Madrid Spain
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autönoma de Madrid–CSICFacultad de Medicina, Universidad Autónoma de Madrid Madrid Spain
| | - Cristina Ferreras
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autönoma de Madrid–CSICFacultad de Medicina, Universidad Autónoma de Madrid Madrid Spain
| | - José L. Carrascosa
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientIficas (CSIC) Madrid Spain
| | - Juan J. Aragón
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autönoma de Madrid–CSICFacultad de Medicina, Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
32
|
Arechaga I, Martínez-Costa OH, Ferreras C, Carrascosa JL, Aragón JJ. Electron microscopy analysis of mammalian phosphofructokinase reveals an unusual 3-dimensional structure with significant implications for enzyme function. FASEB J 2010; 24:4960-8. [DOI: 10.1096/fj.10-165845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ignacio Arechaga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), and
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid–CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Ferreras
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid–CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - José L. Carrascosa
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), and
| | - Juan J. Aragón
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid–CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Usenik A, Legiša M. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase. PLoS One 2010; 5:e15447. [PMID: 21124851 PMCID: PMC2990764 DOI: 10.1371/journal.pone.0015447] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022] Open
Abstract
As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A) as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V) of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.
Collapse
Affiliation(s)
- Aleksandra Usenik
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matic Legiša
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
34
|
Peracchi A, Mozzarelli A. Exploring and exploiting allostery: Models, evolution, and drug targeting. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:922-33. [PMID: 21035570 DOI: 10.1016/j.bbapap.2010.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/11/2022]
Abstract
The concept of allostery was elaborated almost 50years ago by Monod and coworkers to provide a framework for interpreting experimental studies on the regulation of protein function. In essence, binding of a ligand at an allosteric site affects the function at a distant site exploiting protein flexibility and reshaping protein energy landscape. Both monomeric and oligomeric proteins can be allosteric. In the past decades, the behavior of allosteric systems has been analyzed in many investigations while general theoretical models and variations thereof have been steadily proposed to interpret the experimental data. Allostery has been established as a fundamental mechanism of regulation in all organisms, governing a variety of processes that range from metabolic control to receptor function and from ligand transport to cell motility. A number of studies have shed light on how evolutionary pressures have favored and molded the development of allosteric features in specific macromolecular systems. The widespread occurrence of allostery has been recently exploited for the development and design of allosteric drugs that bind to either physiological or non-physiological allosteric sites leading to gain of function or loss of function. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy.
| | | |
Collapse
|
35
|
Sträter N, Marek S, Kuettner EB, Kloos M, Keim A, Brüser A, Kirchberger J, Schöneberg T. Molecular architecture and structural basis of allosteric regulation of eukaryotic phosphofructokinases. FASEB J 2010; 25:89-98. [PMID: 20833871 DOI: 10.1096/fj.10-163865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Eukaryotic ATP-dependent 6-phosphofructokinases (Pfks) differ from their bacterial counterparts in a much more complex structural organization and allosteric regulation. Pichia pastoris Pfk (PpPfk) is, with ∼ 1 MDa, the most complex and probably largest eukaryotic Pfk. We have determined the crystal structure of full-length PpPfk to 3.05 Å resolution in the T state. PpPfk forms a (αβγ)(4) dodecamer of D(2) symmetry with dimensions of 161 × 157 × 233 Å mainly via interactions of the α chains. The N-terminal domains of the α and β chains have folds that are distantly related to glyoxalase I, but the active sites are no longer functional. Interestingly, these domains located at the 2 distal ends of this protein along the long 2-fold axis form a (αβ)(2) dimer as does the core Pfk domains; however, the domains are swapped across the tetramerization interface. In PpPfk, the unique γ subunit participates in oligomerization of the αβ chains. This modulator protein was acquired from an ancient S-adenosylmethionine-dependent methyltransferase. The identification of novel ATP binding sites, which do not correspond to the bacterial catalytic or effector binding sites, point to marked structural and functional differences between bacterial and eukaryotic Pfks.
Collapse
Affiliation(s)
- Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mony BM, Mehta M, Jarori GK, Sharma S. Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes. Int J Parasitol 2009; 39:1441-53. [PMID: 19505469 DOI: 10.1016/j.ijpara.2009.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/23/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022]
Abstract
Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK beta and alpha subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene beta and alpha regions were cloned and expressed as His(6)- and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9beta possessed catalytic activity. Monoclonal antibodies against the recombinant beta protein confirmed that the PfPFK9 protein has beta and alpha domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.
Collapse
Affiliation(s)
- Binny M Mony
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India.
| | | | | | | |
Collapse
|
37
|
Ferreras C, Hernández ED, Martínez-Costa OH, Aragón JJ. Subunit interactions and composition of the fructose 6-phosphate catalytic site and the fructose 2,6-bisphosphate allosteric site of mammalian phosphofructokinase. J Biol Chem 2009; 284:9124-31. [PMID: 19218242 DOI: 10.1074/jbc.m807737200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phosphofructokinase originated by duplication, fusion, and divergence of a primitive prokaryotic gene, with the duplicated fructose 6-phosphate catalytic site in the C-terminal half becoming an allosteric site for the activator fructose 2,6-bisphosphate. It has been suggested that both sites are shared across the interface between subunits aligned in an antiparallel orientation, the N-terminal half of one subunit facing the C-terminal half of the other. The composition of these binding sites and the way in which subunits interact to form the dimer within the tetrameric enzyme have been reexamined by systematic point mutations to alanine of key amino acid residues of human muscle phosphofructokinase. We found that residues His-199, His-298, Arg-201, and Arg-292 contribute to the catalytic site and not to the allosteric site, because their mutation decreased the affinity for fructose 6-phosphate without affecting the activation by fructose 2,6-bisphosphate or its binding affinity. In contrast, residues Arg-566, Arg-655, and His-661 were critical components of the fructose bisphosphate allosteric site, because their mutation strongly reduced the action and affinity of the activator, with no alteration of substrate binding to the active site. Our results suggest that mammalian phosphofructokinase subunits associate with the N-terminal halves facing each other to form the two catalytic sites/dimer and the C-terminal halves forming the allosteric sites. Additionally, mutation of certain residues eliminated activation by fructose 1,6-bisphosphate, but not its binding, with little effect on activation by fructose 2,6-bisphosphate, indicating a divergence in the signal transduction route despite their binding to the same site.
Collapse
Affiliation(s)
- Cristina Ferreras
- Departamento de Bioquímica, Facultad de Medicina de la Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity. Biochem Pharmacol 2009; 77:46-53. [DOI: 10.1016/j.bcp.2008.09.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/14/2008] [Accepted: 09/15/2008] [Indexed: 11/23/2022]
|
39
|
Lee CC. Constant darkness is a mammalian biological signal. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:287-91. [PMID: 18419285 DOI: 10.1101/sqb.2007.72.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Environmental light is a potent modulator of mammalian circadian rhythm and expression of clock genes. Constant darkness (DD) is regarded as a "free-running" circadian state. In nature, hibernating mammals encounter constant darkness (DD) seasonally. Circadian expression of enzymes involved in fat catabolism, procolipase (CLP) and pancreatic-lipase-related protein 2 (PLRP2), were identified in many peripheral organs of mice during DD but not during regular light/dark (LD) cycles. Circulating 5'-adenosine monophosphate (5'-AMP) was associated with DD-activated gene expression. Synthetic 5'-AMP, when injected into LD mice, activated procolipase expression in their peripheral organs and the animals become severely hypothermic, both key features of hibernating mammals. These findings identified a circadian-regulated metabolic cycle in mammals that may be associated with hypometabolic behaviors such as hibernation and torpor.
Collapse
Affiliation(s)
- C C Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Su Y, Blake-Palmer KG, Sorrell S, Javid B, Bowers K, Zhou A, Chang SH, Qamar S, Karet FE. Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J Physiol Renal Physiol 2008; 295:F950-8. [PMID: 18632794 PMCID: PMC2576143 DOI: 10.1152/ajprenal.90258.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vacuolar-type ATPase (H+ATPase) is a ubiquitously expressed multisubunit pump whose regulation is poorly understood. Its membrane-integral a-subunit is involved in proton translocation and in humans has four forms, a1-a4. This study investigated two naturally occurring point mutations in a4's COOH terminus that cause recessive distal renal tubular acidosis (dRTA), R807Q and G820R. Both lie within a domain that binds the glycolytic enzyme phosphofructokinase-1 (PFK-1). We recreated these disease mutations in yeast to investigate effects on protein expression, H+ATPase assembly, targeting and activity, and performed in vitro PFK-1 binding and activity studies of mammalian proteins. Mammalian studies revealed complete loss of binding between the COOH terminus of a4 containing the G-to-R mutant and PFK-1, without affecting PFK-1's catalytic activity. In yeast expression studies, protein levels, H+ATPase assembly, and targeting of this mutant were all preserved. However, severe (78%) loss of proton transport but less decrease in ATPase activity (36%) were observed in mutant vacuoles, suggesting a requirement for the a-subunit/PFK-1 binding to couple these two functions. This role for PFK in H+ATPase function was supported by similar functional losses and uncoupling ratio between the two proton pump domains observed in vacuoles from a PFK-null strain, which was also unable to grow at alkaline pH. In contrast, the R-to-Q mutation dramatically reduced a-subunit production, abolishing H+ATPase function completely. Thus in the context of dRTA, stability and function of the metabolon composed of H+ATPase and glycolytic components can be compromised by either loss of required PFK-1 binding (G820R) or loss of pump protein (R807Q).
Collapse
Affiliation(s)
- Ya Su
- Department of Medical Genetics, Cambridge University, Cambridge Institute for Medical Research, Addenbrooke's Hospital Box 139, Cambridge, CB2 0XY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mediavilla D, Metón I, Baanante IV. Purification and kinetic characterization of 6-phosphofructo-1-kinase from the liver of gilthead sea bream (Sparus aurata). J Biochem 2008; 144:235-44. [PMID: 18483063 DOI: 10.1093/jb/mvn066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
6-phosphofructo-1-kinase (PFK) was purified to homogeneity from liver of gilthead sea bream (Sparus aurata) and kinetic properties of the enzyme were determined. The native enzyme had an apparent molecular mass of 510 kDa and was composed of 86 kDa subunits, suggesting homohexameric structure. At pH 7, S. aurata liver PFK (PFKL) showed sigmoidal kinetics for fructose-6-phosphate (fru-6-P) and hyperbolic kinetics for ATP. Fructose-2,6-bisphosphate (fru-2,6-P2) converted saturation curves for fru-6-P to hyperbolic and activated PFKL synergistically with AMP. Fru-2,6-P2 counteracted the inhibition caused by ATP, ADP and citrate. Compared to the S. aurata muscle isozyme, PFKL had lower affinity for fru-6-P, higher cooperativity, hyperbolic kinetics in relation to ATP, increased susceptibility to inhibition by ATP, and was less affected by AMP, ADP and inhibition by 3-phosphoglycerate, phosphoenolpyruvate, 6-phosphogluconate or phosphocreatine. The effect of starvation-refeeding on PFKL expression was studied at the levels of enzyme activity and protein content in the liver of S. aurata. Our findings indicate that short-term recovery of PFKL activity after refeeding previously starved fish, may result from allosteric regulation by fru-2,6-P2, whereas combination of activation by fru-2,6-P2 and increase in protein content may determine the long-term recovery of the enzyme activity.
Collapse
Affiliation(s)
- Dominica Mediavilla
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | | | | |
Collapse
|
42
|
Kamp G, Schmidt H, Stypa H, Feiden S, Mahling C, Wegener G. Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa. Reproduction 2007; 133:29-40. [PMID: 17244730 DOI: 10.1530/rep-06-0082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycolysis is crucial for sperm functions (motility and fertilization), but how this pathway is regulated in spermatozoa is not clear. This prompted to study the location and the regulatory properties of 6-phosphofructokinase (PFK, EC 2.7.1.11), the most important element for control of glycolytic flux. Unlike some other glycolytic enzymes, PFK showed no tight binding to sperm structures. It could readily be extracted from ejaculated boar spermatozoa by sonication and was then chromatographically purified. At physiological pH, the enzyme was allosterically inhibited by near-physiological concentrations of its co-substrate ATP, which induced co-operativity, i.e. reduced the affinity for the substrate fructose 6-phosphate. Inhibition by ATP was reinforced by citrate and H+. Above pH 8, PFK lost all its regulatory properties and showed maximum activity. However, in the physiological pH range, PFK activity was very sensitive to small changes in effectors. At near-physiological substrate concentrations, PFK activity requires activators (de-inhibitors) of which the combination of AMP and fructose 2,6-bisphosphate (F2,6P2) was most efficient as a result of synergistic effects. The kinetics of PFK suggest AMP, F2,6P2, H+, and citrate as allosteric effectors controlling PFK activity in boar spermatozoa. Using immunogold labeling, PFK was localized in the mid-piece and principal piece of the flagellum as well as in the acrosomal area at the top of the head and in the cytoplasmic droplets released from the mid-piece after ejaculation.
Collapse
Affiliation(s)
- G Kamp
- Institut für Zoologie, Johannes Gutenberg-Universität, Becherweg 9-11, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Martínez-Costa OH, Sánchez-Martínez C, Sánchez V, Aragón JJ. Chimeric phosphofructokinases involving exchange of the N- and C-terminal halves of mammalian isozymes: implications for ligand binding sites. FEBS Lett 2007; 581:3033-8. [PMID: 17544406 DOI: 10.1016/j.febslet.2007.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/10/2007] [Accepted: 05/18/2007] [Indexed: 02/01/2023]
Abstract
Two phosphofructokinase (PFK) chimeras were constructed by exchanging the N- and C-terminal halves of the mammalian M- and C-type isozymes, to investigate the contribution of each terminus to the catalytic site and the fructose-2,6-P(2)/fructose-1,6-P(2) allosteric site. The homogeneously-purified chimeric enzymes organized into tetramers, and exhibited kinetic properties for fructose-6-P and MgATP similar to those of the native enzyme that furnished the N-terminal domain in each case, whereas their fructose-2,6-P(2) activatory characteristics coincided with those of the isozyme that provided the C-terminal half. This reflected the role of each domain in the formation of the corresponding binding site. Grafting the N-terminus of PFK-M onto the C-terminus of the fructose-1,6-P(2) insensitive PFK-C restored transduction of this signal to the catalytic site, which significance is also discussed.
Collapse
Affiliation(s)
- Oscar H Martínez-Costa
- Departamento de Bioquímica de la UAM, Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Tanneberger K, Kirchberger J, Bär J, Schellenberger W, Rothemund S, Kamprad M, Otto H, Schöneberg T, Edelmann A. A novel form of 6-phosphofructokinase. Identification and functional relevance of a third type of subunit in Pichia pastoris. J Biol Chem 2007; 282:23687-97. [PMID: 17522059 DOI: 10.1074/jbc.m611547200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classically, 6-phosphofructokinases are homo- and hetero-oligomeric enzymes consisting of alpha subunits and alpha/beta subunits, respectively. Herein, we describe a new form of 6-phosphofructokinase (Pfk) present in several Pichia species, which is composed of three different types of subunit, alpha, beta, and gamma. The sequence of the gamma subunit shows no similarity to classic Pfk subunits or to other known protein sequences. In-depth structural and functional studies revealed that the gamma subunit is a constitutive component of Pfk from Pichia pastoris (PpPfk). Analyses of the purified PpPfk suggest a heterododecameric assembly from the three different subunits. Accordingly, it is the largest and most complex Pfk identified yet. Although, the gamma subunit is not required for enzymatic activity, the gamma subunit-deficient mutant displays a decreased growth on nutrient limitation and reduced cell flocculation when compared with the P. pastoris wild-type strain. Subsequent characterization of purified Pfks from wild-type and gamma subunit-deficient strains revealed that the allosteric regulation of the PpPfk by ATP, fructose 2,6-bisphosphate, and AMP is fine-tuned by the gamma subunit. Therefore, we suggest that the gamma subunit contributes to adaptation of P. pastoris to energy resources.
Collapse
Affiliation(s)
- Katrin Tanneberger
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mediavilla D, Metón I, Baanante IV. Purification and kinetic properties of 6-phosphofructo-1-kinase from gilthead sea bream muscle. Biochim Biophys Acta Gen Subj 2006; 1770:706-15. [PMID: 17229526 DOI: 10.1016/j.bbagen.2006.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
The kinetic properties of 6-phosphofructo-1-kinase (PFK) from skeletal muscle (PFKM) of gilthead sea bream (Sparus aurata) were studied, after 10,900-fold purification to homogeneity. The native enzyme had an apparent molecular mass of 662 kDa and is composed of 81 kDa subunits, suggesting a homooctameric structure. At physiological pH, S. aurata PFKM exhibited sigmoidal kinetics for the substrates, fructose-6-phosphate (fru-6-P) and ATP. Fructose-2,6-bisphosphate (fru-2,6-P(2)) converted the saturation curves for fru-6-P to hyperbolic, activated PFKM synergistically with other positive effectors of the enzyme such as AMP and ADP, and counteracted ATP and citrate inhibition. The fish enzyme showed differences regarding other animal PFKs: it is active as a homooctamer, and fru-2,6-P(2) and pH affected affinity for ATP. By monitoring incorporation of (32)P from ATP, we show that fish PFKM is a substrate for the cAMP-dependent protein kinase. The mechanism involved in PFKM activation by phosphorylation contrasts with previous observations in other species: it increased V(max) and did not affect affinity for fru-6-P. Unlike the mammalian muscle enzyme, our findings support that phosphorylation of PFKM may exert a major role during starvation in fish muscle.
Collapse
Affiliation(s)
- Dominica Mediavilla
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | | | | |
Collapse
|
46
|
Martinez-Oyanedel J, McNae IW, Nowicki MW, Keillor JW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. The first crystal structure of phosphofructokinase from a eukaryote: Trypanosoma brucei. J Mol Biol 2006; 366:1185-98. [PMID: 17207816 DOI: 10.1016/j.jmb.2006.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/20/2022]
Abstract
The crystal structure of the ATP-dependent phosphofructokinase (PFK) from Trypanosoma brucei provides the first detailed description of a eukaryotic PFK, and enables comparisons to be made with the crystal structures of bacterial ATP-dependent and PPi-dependent PFKs. The structure reveals that two insertions (the 17-20 and 329-348 loops) that are characteristic of trypanosomatid PFKs, but absent from bacterial and mammalian ATP-dependent PFKs, are located within and adjacent to the active site, and are in positions to play important roles in the enzyme's mechanism. The 90 residue N-terminal extension forms a novel domain that includes an "embracing arm" across the subunit boundary to the symmetry-related subunit in the tetrameric enzyme. Comparisons with the PPi-dependent PFK from Borrelia burgdorferi show that several features thought to be characteristic of PPi-dependent PFKs are present in the trypanosome ATP-dependent PFK. These two enzymes are generally more similar to each other than to the bacterial or mammalian ATP-dependent PFKs. However, there are critical differences at the active site of PPi-dependent PFKs that are sufficient to prevent the binding of ATP. This crystal structure of a eukaryotic PFK has enabled us to propose a detailed model of human muscle PFK that shows active site and other differences that offer opportunities for structure-based drug discovery for the treatment of sleeping sickness and other diseases caused by the trypanosomatid family of protozoan parasites.
Collapse
Affiliation(s)
- José Martinez-Oyanedel
- Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, Scotland
| | | | | | | | | | | | | |
Collapse
|
47
|
Mlakar T, Legisa M. citrate inhibition-resistant form of 6-phosphofructo-1-kinase from Aspergillus niger. Appl Environ Microbiol 2006; 72:4515-21. [PMID: 16820438 PMCID: PMC1489355 DOI: 10.1128/aem.00539-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 04/11/2006] [Indexed: 11/20/2022] Open
Abstract
Two forms of Aspergillus niger 6-phosphofructo-1-kinase (PFK1) have been described recently, the 85-kDa native enzyme and 49-kDa shorter fragment that is formed from the former by posttranslational modification. So far, kinetic characteristics have never been determined on the enzyme purified to near homogeneity. For the first time, kinetic parameters were determined for individual enzymes with respect to citrate inhibition. The native 85-kDa enzyme was found to be moderately inhibited by citrate, with the Ki value determined to be 1.5 mM, in the system with 5 mM Mg2+ ions, while increasing magnesium concentrations relieved the negative effect of citrate. An identical inhibition coefficient was determined also in the presence of ammonium ions, although ammonium acted as a strong activator of enzyme activity. On the other hand, the shorter fragment of PFK1 proved to be completely resistant to inhibition by citrate. Allosteric citrate binding sites were most probably lost after the truncation of the C-terminal part of the native protein, in which region some binding sites for inhibitor are known to be located. At near physiological conditions, characterized by low fructose-6-phosphate concentrations, a much higher efficiency of the shorter fragment was observed during an in vitro experiment. Since the enzyme became more susceptible to the positive control by specific ligands, while the negative control was lost after posttranslational modification, the shorter PFK1 fragment seems to be the enzyme most responsible for generating undisturbed metabolic flow through glycolysis in A. niger cells.
Collapse
Affiliation(s)
- Tina Mlakar
- National Institute of Chemistry, Department of Biotechnology, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | | |
Collapse
|
48
|
Lee WM, Elliott JE, Brownsey RW. Inhibition of acetyl-CoA carboxylase isoforms by pyridoxal phosphate. J Biol Chem 2005; 280:41835-43. [PMID: 16249179 DOI: 10.1074/jbc.m510728200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mammalian isoforms of acetyl-CoA carboxylase (ACC-1 and ACC-2) play important roles in synthesis, elongation, and oxidation of long-chain fatty acids, and the possible significance of ACC in the development of obesity has led to interest in the development of inhibitors. Here, we demonstrate that pyridoxal phosphate (PLP) is a linear and reversible inhibitor of ACC-1 and ACC-2. ACC from rat liver and white adipose tissue (largely ACC-1) exhibited an IC50 of approximately 200 microm, whereas ACC-2 from heart or skeletal muscle exhibited an IC50 exceeding 500 microm. ACC from rat liver was equally sensitive to PLP following extensive purification by avidin affinity chromatography. When added before citrate, PLP inhibited ACC with a Ki of approximately 100 microm, reducing maximal activity >90% and increasing the Ka for citrate approximately 5-fold but having little effect on substrate Km values. Pre-treatment with citrate increased the apparent Ki for ACC inhibition by PLP by approximately 4-fold. Inhibition of ACC was reversed by removal of PLP, either by washing or by reaction with hydroxylamine or amino-oxyacetate. ACC was irreversibly inhibited and radiolabeled, to a stoichiometry of approximately 0.4 mol[H]/mol subunit, in the presence of PLP plus [3H]borohydride. Studies with structurally related compounds demonstrated that the reactive aldehyde and negatively charged substituents of PLP contribute importantly to ACC inhibition. The studies reported here suggest a rationale to develop ACC inhibitors that are not structurally related to the substrates or products of the reaction and an approach to probe the citrate-binding site of the enzyme.
Collapse
Affiliation(s)
- Weissy M Lee
- Department of Biochemistry and Molecular Biology & Life Sciences Institute, Diabetes Research Group, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
49
|
Kulkarni G, Sabnis NA, Bhat KS, Harris BG. CLONING AND NUCLEOTIDE SEQUENCE OF A FULL-LENGTH cDNA ENCODING ASCARIS SUUM PHOSPHOFRUCTOKINASE. J Parasitol 2005; 91:585-90. [PMID: 16108551 DOI: 10.1645/ge-369r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The nucleotide sequence of a full-length cDNA encoding phosphofructokinase (PFK) enzyme from the parasitic nematode Ascaris suum was determined. The entire sequence of 2,653 bases comprises a single open reading frame of 2,452 bases and a noncoding region of 201 bases after the stop codon. The mature protein contains 812 amino acids and has a molecular mass of 90,900 Da. The amino acid sequences of several peptides derived from the purified protein show excellent correspondence with the translated nucleotide sequence. Comparison of the amino acid sequence of the protein with those of 3 other worms as well as those of human, rabbit, and bacterial enzymes reveals highly conserved regions interrupted with stretches of lesser sequence similarity. Analyses of the subunit primary structure reveal, as in other eukaryotic PFKs, that the amino-terminal half is homologous to the carboxy-terminal half, supporting the hypothesis that the PFK gene evolved by duplication of the prokaryotic gene and that the allosteric sites arose by mutations at the catalytic site. The location of the phosphorylation site is unique and different compared with other PFKs and plays a key role in regulation of the enzyme activity. Structural motifs such as the putative substrate and effector binding domains and also the key amino acids involved therein are clearly identified by alignment of all the PFK protein sequences.
Collapse
Affiliation(s)
- Gopal Kulkarni
- Department of Molecular Biology and Immunology, University of North Texas, Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | |
Collapse
|
50
|
Mesojednik S, Legisa M. Posttranslational modification of 6-phosphofructo-1-kinase in Aspergillus niger. Appl Environ Microbiol 2005; 71:1425-32. [PMID: 15746345 PMCID: PMC1065176 DOI: 10.1128/aem.71.3.1425-1432.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/05/2004] [Indexed: 11/20/2022] Open
Abstract
Two different enzymes exhibiting 6-phosphofructo-1-kinase (PFK1) activity were isolated from the mycelium of Aspergillus niger: the native enzyme with a molecular mass of 85 kDa, which corresponded to the calculated molecular mass of the deduced amino acid sequence of the A. niger pfkA gene, and a shorter protein of approximately 49 kDa. A fragment of identical size also was obtained in vitro by the proteolytic digestion of the partially purified native PFK1 with proteinase K. When PFK1 activity was measured during the proteolytic degradation of the native protein, it was found to be lost after 1 h of incubation, but it was reestablished after induction of phosphorylation by adding the catalytic subunit of cyclic AMP-dependent protein kinase to the system. By determining kinetic parameters, different ratios of activities measured at ATP concentrations of 0.1 and 1 mM were detected with fragmented PFK1, as with the native enzyme. Fructose-2,6-biphosphate significantly increased the Vmax of the fragmented protein, while it had virtually no effect on the native protein. The native enzyme could be purified only from the early stages of growth on a minimal medium, while the 49-kDa fragment appeared later and was activated at the time of a sudden change in the growth rate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of sequential purifications of PFK1 enzymes by affinity chromatography during the early stages of the fungal development suggested spontaneous posttranslational modification of the native PFK1 in A. niger cells, while from the kinetic parameters determined for both isolated forms it could be concluded that the fragmented enzyme might be more efficient under physiological conditions.
Collapse
Affiliation(s)
- Suzana Mesojednik
- National Institute of Chemistry, Hajdrihova 19, PO Box 660, Si-1001 Ljubljana, Slovenia
| | | |
Collapse
|