1
|
Huang T, Chamberlain A, Zhu J, Harris ME. A minimal RNA substrate with dual fluorescent probes enables rapid kinetics and provides insight into bacterial RNase P active site interactions. RSC Chem Biol 2024; 5:652-668. [PMID: 38966670 PMCID: PMC11221534 DOI: 10.1039/d4cb00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Bacterial ribonuclease P (RNase P) is a tRNA processing endonuclease that occurs primarily as a ribonucleoprotein with a catalytic RNA subunit (P RNA). As one of the first ribozymes discovered, P RNA is a well-studied model system for understanding RNA catalysis and substrate recognition. Extensive structural and biochemical studies have revealed the structure of RNase P bound to precursor tRNA (ptRNA) and product tRNA. These studies also helped to define active site residues and propose the molecular interactions that are involved in substrate binding and catalysis. However, a detailed quantitative model of the reaction cycle that includes the structures of intermediates and the process of positioning active site metal ions for catalysis is lacking. To further this goal, we used a chemically modified minimal RNA duplex substrate (MD1) to establish a kinetic framework for measuring the functional effects of P RNA active site mutations. Substitution of U69, a critical nucleotide involved in active site Mg2+ binding, was found to reduce catalysis >500-fold as expected, but had no measurable effect on ptRNA binding kinetics. In contrast, the same U69 mutations had little effect on catalysis in Ca2+ compared to reactions containing native Mg2+ ions. CryoEM structures and SHAPE mapping suggested increased flexibility of U69 and adjacent nucleotides in Ca2+ compared to Mg2+. These results support a model in which slow catalysis in Ca2+ is due to inability to engage U69. These studies establish a set of experimental tools to analyze RNase P kinetics and mechanism and can be expanded to gain new insights into the assembly of the active RNase P-ptRNA complex.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | | | - Jiaqiang Zhu
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | - Michael E Harris
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| |
Collapse
|
2
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Wicke D, Neumann P, Gößringer M, Chernev A, Davydov S, Poehlein A, Daniel R, Urlaub H, Hartmann R, Ficner R, Stülke J. The previously uncharacterized RnpM (YlxR) protein modulates the activity of ribonuclease P in Bacillus subtilis in vitro. Nucleic Acids Res 2024; 52:1404-1419. [PMID: 38050972 PMCID: PMC10853771 DOI: 10.1093/nar/gkad1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Gößringer
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swetlana Davydov
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, GZMB, University Medical Centre Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August-University Göttingen, Germany
| | - Roland K Hartmann
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Chamberlain AR, Huynh L, Huang W, Taylor DJ, Harris ME. The specificity landscape of bacterial ribonuclease P. J Biol Chem 2024; 300:105498. [PMID: 38013087 PMCID: PMC10731613 DOI: 10.1016/j.jbc.2023.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Developing quantitative models of substrate specificity for RNA processing enzymes is a key step toward understanding their biology and guiding applications in biotechnology and biomedicine. Optimally, models to predict relative rate constants for alternative substrates should integrate an understanding of structures of the enzyme bound to "fast" and "slow" substrates, large datasets of rate constants for alternative substrates, and transcriptomic data identifying in vivo processing sites. Such data are either available or emerging for bacterial ribonucleoprotein RNase P a widespread and essential tRNA 5' processing endonuclease, thus making it a valuable model system for investigating principles of biological specificity. Indeed, the well-established structure and kinetics of bacterial RNase P enabled the development of high throughput measurements of rate constants for tRNA variants and provided the necessary framework for quantitative specificity modeling. Several studies document the importance of conformational changes in the precursor tRNA substrate as well as the RNA and protein subunits of bacterial RNase P during binding, although the functional roles and dynamics are still being resolved. Recently, results from cryo-EM studies of E. coli RNase P with alternative precursor tRNAs are revealing prospective mechanistic relationships between conformational changes and substrate specificity. Yet, extensive uncharted territory remains, including leveraging these advances for drug discovery, achieving a complete accounting of RNase P substrates, and understanding how the cellular context contributes to RNA processing specificity in vivo.
Collapse
Affiliation(s)
| | - Loc Huynh
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
6
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
7
|
Zeng D, Abzhanova A, Brown BP, Reiter NJ. Dissecting Monomer-Dimer Equilibrium of an RNase P Protein Provides Insight Into the Synergistic Flexibility of 5' Leader Pre-tRNA Recognition. Front Mol Biosci 2021; 8:730274. [PMID: 34540901 PMCID: PMC8447495 DOI: 10.3389/fmolb.2021.730274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P (RNase P) is a universal RNA-protein endonuclease that catalyzes 5' precursor-tRNA (ptRNA) processing. The RNase P RNA plays the catalytic role in ptRNA processing; however, the RNase P protein is required for catalysis in vivo and interacts with the 5' leader sequence. A single P RNA and a P protein form the functional RNase P holoenzyme yet dimeric forms of bacterial RNase P can interact with non-tRNA substrates and influence bacterial cell growth. Oligomeric forms of the P protein can also occur in vitro and occlude the 5' leader ptRNA binding interface, presenting a challenge in accurately defining the substrate recognition properties. To overcome this, concentration and temperature dependent NMR studies were performed on a thermostable RNase P protein from Thermatoga maritima. NMR relaxation (R1, R2), heteronuclear NOE, and diffusion ordered spectroscopy (DOSY) experiments were analyzed, identifying a monomeric species through the determination of the diffusion coefficients (D) and rotational correlation times (τc). Experimental diffusion coefficients and τc values for the predominant monomer (2.17 ± 0.36 * 10-10 m2/s, τ c = 5.3 ns) or dimer (1.87 ± 0.40* 10-10 m2/s, τ c = 9.7 ns) protein assemblies at 45°C correlate well with calculated diffusion coefficients derived from the crystallographic P protein structure (PDB 1NZ0). The identification of a monomeric P protein conformer from relaxation data and chemical shift information enabled us to gain novel insight into the structure of the P protein, highlighting a lack of structural convergence of the N-terminus (residues 1-14) in solution. We propose that the N-terminus of the bacterial P protein is partially disordered and adopts a stable conformation in the presence of RNA. In addition, we have determined the location of the 5' leader RNA in solution and measured the affinity of the 5' leader RNA-P protein interaction. We show that the monomer P protein interacts with RNA at the 5' leader binding cleft that was previously identified using X-ray crystallography. Data support a model where N-terminal protein flexibility is stabilized by holoenzyme formation and helps to accommodate the 5' leader region of ptRNA. Taken together, local structural changes of the P protein and the 5' leader RNA provide a means to obtain optimal substrate alignment and activation of the RNase P holoenzyme.
Collapse
Affiliation(s)
- Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Ainur Abzhanova
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Benjamin P. Brown
- Chemical and Physical Biology Program, Medical Scientist Training Program, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Nicholas J. Reiter
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
8
|
Madrigal-Carrillo EA, Díaz-Tufinio CA, Santamaría-Suárez HA, Arciniega M, Torres-Larios A. A screening platform to monitor RNA processing and protein-RNA interactions in ribonuclease P uncovers a small molecule inhibitor. Nucleic Acids Res 2019; 47:6425-6438. [PMID: 30997498 PMCID: PMC6614837 DOI: 10.1093/nar/gkz285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Ribonucleoprotein (RNP) complexes and RNA-processing enzymes are attractive targets for antibiotic development owing to their central roles in microbial physiology. For many of these complexes, comprehensive strategies to identify inhibitors are either lacking or suffer from substantial technical limitations. Here, we describe an activity-binding-structure platform for bacterial ribonuclease P (RNase P), an essential RNP ribozyme involved in 5' tRNA processing. A novel, real-time fluorescence-based assay was used to monitor RNase P activity and rapidly identify inhibitors using a mini-helix and a pre-tRNA-like bipartite substrate. Using the mini-helix substrate, we screened a library comprising 2560 compounds. Initial hits were then validated using pre-tRNA and the pre-tRNA-like substrate, which ultimately verified four compounds as inhibitors. Biolayer interferometry-based binding assays and molecular dynamics simulations were then used to characterize the interactions between each validated inhibitor and the P protein, P RNA and pre-tRNA. X-ray crystallographic studies subsequently elucidated the structure of the P protein bound to the most promising hit, purpurin, and revealed how this inhibitor adversely affects tRNA 5' leader binding. This integrated platform affords improved structure-function studies of RNA processing enzymes and facilitates the discovery of novel regulators or inhibitors.
Collapse
Affiliation(s)
- Ezequiel-Alejandro Madrigal-Carrillo
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos-Alejandro Díaz-Tufinio
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City, Mexico
| | - Hugo-Aníbal Santamaría-Suárez
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcelino Arciniega
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Torres-Larios
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Colquhoun JM, Ha L, Beckley A, Meyers B, Flaherty DP, Dunman PM. Identification of Small Molecule Inhibitors of Staphylococcus aureus RnpA. Antibiotics (Basel) 2019; 8:antibiotics8020048. [PMID: 31035380 PMCID: PMC6627331 DOI: 10.3390/antibiotics8020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus RnpA is thought to be a unique dual functional antimicrobial target that is required for two essential cellular processes, precursor tRNA processing and messenger RNA degradation. Herein, we used a previously described whole cell-based mupirocin synergy assay to screen members of a 53,000 compound small molecule diversity library and simultaneously enrich for agents with cellular RnpA inhibitory activity. A medicinal chemistry-based campaign was launched to generate a preliminary structure activity relationship and guide early optimization of two novel chemical classes of RnpA inhibitors identified, phenylcarbamoyl cyclic thiophene and piperidinecarboxamide. Representatives of each chemical class displayed potent anti-staphylococcal activity, limited the protein’s in vitro ptRNA processing and mRNA degradation activities, and exhibited favorable therapeutic indexes. The most potent piperidinecarboxamide RnpA inhibitor, JC2, displayed inhibition of cellular RnpA mRNA turnover, RnpA-depletion strain hypersusceptibility, and exhibited antimicrobial efficacy in a wax worm model of S. aureus infection. Taken together, these results establish that the whole cell screening assay used is amenable to identifying small molecule RnpA inhibitors within large chemical libraries and that the chemical classes identified here may represent progenitors of new classes of antimicrobials that target RnpA.
Collapse
Affiliation(s)
- Jennifer M Colquhoun
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Lisha Ha
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA.
| | - Andrew Beckley
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Brinkley Meyers
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47906, USA.
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47906, USA.
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
10
|
Zhao J, Harris ME. Distributive enzyme binding controlled by local RNA context results in 3' to 5' directional processing of dicistronic tRNA precursors by Escherichia coli ribonuclease P. Nucleic Acids Res 2019; 47:1451-1467. [PMID: 30496557 PMCID: PMC6379654 DOI: 10.1093/nar/gky1162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/17/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022] Open
Abstract
RNA processing by ribonucleases and RNA modifying enzymes often involves sequential reactions of the same enzyme on a single precursor transcript. In Escherichia coli, processing of polycistronic tRNA precursors involves separation into individual pre-tRNAs by one of several ribonucleases followed by 5′ end maturation by ribonuclease P. A notable exception are valine and lysine tRNAs encoded by three polycistronic precursors that follow a recently discovered pathway involving initial 3′ to 5′ directional processing by RNase P. Here, we show that the dicistronic precursor containing tRNAvalV and tRNAvalW undergoes accurate and efficient 3′ to 5′ directional processing by RNase P in vitro. Kinetic analyses reveal a distributive mechanism involving dissociation of the enzyme between the two cleavage steps. Directional processing is maintained despite swapping or duplicating the two tRNAs consistent with inhibition of processing by 3′ trailer sequences. Structure-function studies identify a stem–loop in 5′ leader of tRNAvalV that inhibits RNase P cleavage and further enforces directional processing. The results demonstrate that directional processing is an intrinsic property of RNase P and show how RNA sequence and structure context can modulate reaction rates in order to direct precursors along specific pathways.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
11
|
Lan P, Tan M, Zhang Y, Niu S, Chen J, Shi S, Qiu S, Wang X, Peng X, Cai G, Cheng H, Wu J, Li G, Lei M. Structural insight into precursor tRNA processing by yeast ribonuclease P. Science 2018; 362:science.aat6678. [PMID: 30262633 DOI: 10.1126/science.aat6678] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/18/2018] [Indexed: 11/02/2022]
Abstract
Ribonuclease P (RNase P) is a universal ribozyme responsible for processing the 5'-leader of pre-transfer RNA (pre-tRNA). Here, we report the 3.5-angstrom cryo-electron microscopy structures of Saccharomyces cerevisiae RNase P alone and in complex with pre-tRNAPhe The protein components form a hook-shaped architecture that wraps around the RNA and stabilizes RNase P into a "measuring device" with two fixed anchors that recognize the L-shaped pre-tRNA. A universally conserved uridine nucleobase and phosphate backbone in the catalytic center together with the scissile phosphate and the O3' leaving group of pre-tRNA jointly coordinate two catalytic magnesium ions. Binding of pre-tRNA induces a conformational change in the catalytic center that is required for catalysis. Moreover, simulation analysis suggests a two-metal-ion SN2 reaction pathway of pre-tRNA cleavage. These results not only reveal the architecture of yeast RNase P but also provide a molecular basis of how the 5'-leader of pre-tRNA is processed by eukaryotic RNase P.
Collapse
Affiliation(s)
- Pengfei Lan
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Shuangshuang Niu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Juan Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shaohua Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuwan Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xuejuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiangda Peng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Gang Cai
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Jian Wu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai, 201210, China.,Shanghai Science Research Center, CAS, Shanghai, 201204, China
| |
Collapse
|
12
|
Liu X, Chen Y, Fierke CA. Inner-Sphere Coordination of Divalent Metal Ion with Nucleobase in Catalytic RNA. J Am Chem Soc 2017; 139:17457-17463. [PMID: 29116782 PMCID: PMC6020041 DOI: 10.1021/jacs.7b08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identification of the function of metal ions and the RNA moieties, particularly nucleobases, that bind metal ions is important in RNA catalysis. Here we combine single-atom and abasic substitutions to probe functions of conserved nucleobases in ribonuclease P (RNase P). Structural and biophysical studies of bacterial RNase P propose direct coordination of metal ions by the nucleobases of conserved uridine and guanosine in helix P4 of the RNA subunit (P RNA). To biochemically probe the function of metal ion interactions, we substituted the universally conserved bulged uridine (U51) in the P4 helix of circularly permuted Bacillus subtilis P RNA with 4-thiouridine, 4-deoxyuridine, and abasic modifications and G378/379 with 2-aminopurine, N7-deazaguanosine, and 6-thioguanosine. The functional group modifications of U51 decrease RNase P-catalyzed phosphodiester bond cleavage 16- to 23-fold, as measured by the single-turnover cleavage rate constant. The activity of the 4-thiouridine RNase P is partially rescued by addition of Cd(II) or Mn(II) ions. This is the first time a metal-rescue experiment provides evidence for inner-sphere divalent metal ion coordination with a nucleobase. Modifications of G379 modestly decrease the cleavage activity of RNase P, suggesting outer-sphere coordination of O6 on G379 to a metal ion. These data provide biochemical evidence for catalytically important interactions of the P4 helix of P RNA with metal ions, demonstrating that the bulged uridine coordinates at least one catalytic metal ion through an inner-sphere interaction. The combination of single-atom and abasic nucleotide substitutions provides a powerful strategy to probe functions of conserved nucleobases in large RNAs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Klemm BP, Karasik A, Kaitany KJ, Shanmuganathan A, Henley MJ, Thelen AZ, Dewar AJL, Jackson ND, Koutmos M, Fierke CA. Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P. RNA (NEW YORK, N.Y.) 2017; 23:1860-1873. [PMID: 28874505 PMCID: PMC5689006 DOI: 10.1261/rna.061457.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/31/2017] [Indexed: 05/06/2023]
Abstract
Protein-only ribonuclease P (PRORP) is an enzyme responsible for catalyzing the 5' end maturation of precursor transfer ribonucleic acids (pre-tRNAs) encoded by various cellular compartments in many eukaryotes. PRORPs from plants act as single-subunit enzymes and have been used as a model system for analyzing the function of the metazoan PRORP nuclease subunit, which requires two additional proteins for efficient catalysis. There are currently few molecular details known about the PRORP-pre-tRNA complex. Here, we characterize the determinants of substrate recognition by the single subunit Arabidopsis thaliana PRORP1 and PRORP2 using kinetic and thermodynamic experiments. The salt dependence of binding affinity suggests 4-5 contacts with backbone phosphodiester bonds on substrates, including a single phosphodiester contact with the pre-tRNA 5' leader, consistent with prior reports of short leader requirements. PRORPs contain an N-terminal pentatricopeptide repeat (PPR) domain, truncation of which results in a >30-fold decrease in substrate affinity. While most PPR-containing proteins have been implicated in single-stranded sequence-specific RNA recognition, we find that the PPR motifs of PRORPs recognize pre-tRNA substrates differently. Notably, the PPR domain residues most important for substrate binding in PRORPs do not correspond to positions involved in base recognition in other PPR proteins. Several of these residues are highly conserved in PRORPs from algae, plants, and metazoans, suggesting a conserved strategy for substrate recognition by the PRORP PPR domain. Furthermore, there is no evidence for sequence-specific interactions. This work clarifies molecular determinants of PRORP-substrate recognition and provides a new predictive model for the PRORP-substrate complex.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aranganathan Shanmuganathan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Matthew J Henley
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Adam Z Thelen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Allison J L Dewar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nathaniel D Jackson
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
14
|
Singh A, Ubaid-Ullah S, Batra JK. Functional role of putative critical residues in Mycobacterium tuberculosis RNase P protein. Int J Biochem Cell Biol 2016; 78:141-148. [PMID: 27417238 DOI: 10.1016/j.biocel.2016.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/29/2022]
Abstract
RNase P is involved in processing the 5' end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.
Collapse
Affiliation(s)
- Alla Singh
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shah Ubaid-Ullah
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K Batra
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
15
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
16
|
Influence of Conformation of M. tuberculosis RNase P Protein Subunit on Its Function. PLoS One 2016; 11:e0153798. [PMID: 27088505 PMCID: PMC4835064 DOI: 10.1371/journal.pone.0153798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
RNase P is an essential enzyme that processes 5' end leader sequence of pre-tRNA to generate mature tRNA. The bacterial RNase Ps contain a RNA subunit and one protein subunit, where the RNA subunit contains the catalytic activity. The protein subunit which lacks any catalytic activity, relaxes the ionic requirements for holoenzyme reaction and is indispensable for pre-tRNA cleavage in vivo. In the current study, we reconstituted the M. tuberculosis RNase P holoenzyme in vitro. We prepared the RNase P protein through two different strategies that differ in the conditions under which the recombinant M. tuberculosis protein, expressed in E. coli was purified. The mycobacterial RNase P protein which was purified under native conditions subsequent to isolation from inclusion bodies and in vitro renaturation, was capable of cleaving pre-tRNA specifically without the requirement of RNase P RNA. However, the preparation that was purified under denaturing conditions and refolded subsequently lacked any inherent pre-tRNA processing activity and cleaved the substrate only as a component of the holoenzyme with the RNA subunit. We found that the two RNase P protein preparations attained alternative conformations and differed with respect to their stability as well.
Collapse
|
17
|
Singh A, Ramteke AK, Afroz T, Batra JK. Insight into the role of histidine in RNR motif of protein component of RNase P of M. tuberculosis in catalysis. IUBMB Life 2016; 68:178-89. [PMID: 26804985 DOI: 10.1002/iub.1472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Abstract
RNase P, a ribonucleoprotein endoribonuclease, is involved in the 5' end processing of pre-tRNAs, with its RNA component being the catalytic subunit. It is an essential enzyme. All bacterial RNase Ps have one RNA and one protein component. A conserved RNR motif in bacterial RNase P protein components is involved in their interaction with the RNA component. In this work, we have reconstituted the RNase P of M. tuberculosis in vitro and investigated the role of a histidine in the RNR motif in its catalysis. We expressed the protein and RNA components of mycobacterial RNase P in E. coli, purified them, and reconstituted the holoenzyme in vitro. The histidine in RNR motif was mutated to alanine and asparagine by site-directed mutagenesis. The RNA component alone showed activity on pre-tRNA(ala) substrate at high magnesium concentrations. The RNA and protein components associated together to manifest catalytic activity at low magnesium concentrations. The histidine 67 in the RNR motif of M. tuberculosis RNase P protein component was found to be important for the catalytic activity and stability of the enzyme. Generally, the RNase P of M. tuberculosis functions like other bacterial enzymes. The histidine in the RNR motif of M. tuberculosis appears to be able to substitute optimally for asparagine found in the majority of the protein components of other bacterial RNase P enzymes.
Collapse
Affiliation(s)
- Alla Singh
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Anup K Ramteke
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Tariq Afroz
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Janendra K Batra
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
18
|
Howard MJ, Klemm BP, Fierke CA. Mechanistic Studies Reveal Similar Catalytic Strategies for Phosphodiester Bond Hydrolysis by Protein-only and RNA-dependent Ribonuclease P. J Biol Chem 2015; 290:13454-64. [PMID: 25817998 DOI: 10.1074/jbc.m115.644831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Ribonuclease P (RNase P) is an endonuclease that catalyzes the essential removal of the 5' end of tRNA precursors. Until recently, all identified RNase P enzymes were a ribonucleoprotein with a conserved catalytic RNA component. However, the discovery of protein-only RNase P (PRORP) shifted this paradigm, affording a unique opportunity to compare mechanistic strategies used by naturally evolved protein and RNA-based enzymes that catalyze the same reaction. Here we investigate the enzymatic mechanism of pre-tRNA hydrolysis catalyzed by the NYN (Nedd4-BP1, YacP nuclease) metallonuclease of Arabidopsis thaliana, PRORP1. Multiple and single turnover kinetic data support a mechanism where a step at or before chemistry is rate-limiting and provide a kinetic framework to interpret the results of metal alteration, mutations, and pH dependence. Catalytic activity has a cooperative dependence on the magnesium concentration (nH = 2) under kcat/Km conditions, suggesting that PRORP1 catalysis is optimal with at least two active site metal ions, consistent with the crystal structure. Metal rescue of Asp-to-Ala mutations identified two aspartates important for enhancing metal ion affinity. The single turnover pH dependence of pre-tRNA cleavage revealed a single ionization (pKa ∼ 8.7) important for catalysis, consistent with deprotonation of a metal-bound water nucleophile. The pH and metal dependence mirrors that observed for the RNA-based RNase P, suggesting similar catalytic mechanisms. Thus, despite different macromolecular composition, the RNA and protein-based RNase P act as dynamic scaffolds for the binding and positioning of magnesium ions to catalyze phosphodiester bond hydrolysis.
Collapse
Affiliation(s)
| | | | - Carol A Fierke
- From the Departments of Biological Chemistry and Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Skilandat M, Sigel RKO. The role of Mg(II) in DNA cleavage site recognition in group II intron ribozymes: solution structure and metal ion binding sites of the RNA-DNA complex. J Biol Chem 2015; 289:20650-63. [PMID: 24895129 DOI: 10.1074/jbc.m113.542381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Group II intron ribozymes catalyze the cleavage of (and their reinsertion into) DNA and RNA targets using a Mg2(+)-dependent reaction. The target is cleaved 3' to the last nucleotide of intron binding site 1 (IBS1), one of three regions that form base pairs with the intron's exon binding sites (EBS1 to -3).We solved the NMR solution structure of the d3' hairpin of the Sc.ai5γ intron containing EBS1 in its 11-nucleotide loop in complex with the dIBS1 DNA 7-mer and compare it with the analogous RNA-RNA contact. The EBS1-dIBS1 helix is slightly flexible and non-symmetric. NMR data reveal two major groove binding sites for divalent metal ions at the EBS1-dIBS1 helix, and surface plasmon resonance experiments show that low concentrations of Mg2(+) considerably enhance the affinity of dIBS1 for EBS1. Our results indicate that identification of both RNA and DNA IBS1 targets, presentation of the scissile bond, and stabilization of the structure by metal ions are governed by the overall structure of EBS1-dIBS1 and the surrounding loop nucleotides but are irrespective of different EBS1-(d)IBS1 geometries and interstrand affinities.
Collapse
|
20
|
Small-molecule inhibitors of Staphylococcus aureus RnpA-mediated RNA turnover and tRNA processing. Antimicrob Agents Chemother 2015; 59:2016-28. [PMID: 25605356 DOI: 10.1128/aac.04352-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation. Accordingly, we previously used a high-throughput screen to identify small-molecule inhibitors of the RNA-degrading activity of the enzyme and showed that the RnpA inhibitor RNPA1000 is an attractive antimicrobial development candidate. In this study, we used a series of in vitro and cellular assays to characterize a second RnpA inhibitor, RNPA2000, which was identified in our initial screening campaign and is structurally distinct from RNPA1000. In doing so, it was found that S. aureus RnpA does indeed participate in 5'-precursor tRNA processing, as was previously hypothesized. Further, we show that RNPA2000 is a bactericidal agent that inhibits both RnpA-associated RNA degradation and tRNA maturation activities both in vitro and within S. aureus. The compound appears to display specificity for RnpA, as it did not significantly affect the in vitro activities of unrelated bacterial or eukaryotic ribonucleases and did not display measurable human cytotoxicity. Finally, we show that RNPA2000 exhibits antimicrobial activity and inhibits tRNA processing in efflux-deficient Gram-negative pathogens. Taken together, these data support the targeting of RnpA for antimicrobial development purposes, establish that small-molecule inhibitors of both of the functions of the enzyme can be identified, and lend evidence that RnpA inhibitors may have broad-spectrum antimicrobial activities.
Collapse
|
21
|
Wu S, Chen Y, Mao G, Trobro S, Kwiatkowski M, Kirsebom LA. Transition-state stabilization in Escherichia coli ribonuclease P RNA-mediated cleavage of model substrates. Nucleic Acids Res 2014; 42:631-42. [PMID: 24097434 PMCID: PMC3874170 DOI: 10.1093/nar/gkt853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
We have used model substrates carrying modified nucleotides at the site immediately 5' of the canonical RNase P cleavage site, the -1 position, to study Escherichia coli RNase P RNA-mediated cleavage. We show that the nucleobase at -1 is not essential but its presence and identity contribute to efficiency, fidelity of cleavage and stabilization of the transition state. When U or C is present at -1, the carbonyl oxygen at C2 on the nucleobase contributes to transition-state stabilization, and thus acts as a positive determinant. For substrates with purines at -1, an exocyclic amine at C2 on the nucleobase promotes cleavage at an alternative site and it has a negative impact on cleavage at the canonical site. We also provide new insights into the interaction between E. coli RNase P RNA and the -1 residue in the substrate. Our findings will be discussed using a model where bacterial RNase P cleavage proceeds through a conformational-assisted mechanism that positions the metal(II)-activated H2O for an in-line attack on the phosphorous atom that leads to breakage of the phosphodiester bond.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Yu Chen
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Stefan Trobro
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| |
Collapse
|
22
|
Abstract
Ribonuclease P (RNase P) is one of the first ribozymes discovered and it is found in all phylogenetic groups. It is responsible for processing the 5' end of pre-tRNAs as well as other RNA molecules. RNase P is formed by an RNA molecule responsible for catalysis and one or more proteins. Structural studies of the proteins from different organisms, the bacterial RNA component, and a bacterial RNase P holoenzyme/tRNA complex provide insights into the mechanism of this universal ribozyme. Together with the existing wealth of biochemical information, these studies provide atomic-level information on the mechanism of RNase P and continue to expand our understanding of the structure and architecture of large RNA molecules and ribonucleoprotein complexes, the nature of catalysis by ribozymes, the structural basis of recognition of RNA by RNA molecules, and the evolution of enzymes from the prebiotic, RNA-based world to the modern world.
Collapse
Affiliation(s)
- Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
23
|
Biondi E, Poudyal RR, Forgy JC, Sawyer AW, Maxwell AWR, Burke DH. Lewis acid catalysis of phosphoryl transfer from a copper(II)-NTP complex in a kinase ribozyme. Nucleic Acids Res 2013; 41:3327-38. [PMID: 23358821 PMCID: PMC3597699 DOI: 10.1093/nar/gkt039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu2+ for optimal catalysis of thiophosphoryl transfer from GTPγS. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu2+, indicating a specific catalytic role independent of any potential interactions with the GTPγS thiophosphoryl group. In-line probing and ATPγS competition both argue against direct Cu2+ binding by RNA; rather, these data establish that Cu2+ enters the active site within a Cu2+•GTPγS or Cu2+•GTP chelation complex, and that Cu2+•nucleobase interactions further enforce Cu2+ selectivity and position the metal ion for Lewis acid catalysis. Replacing Mg2+ with [Co(NH3)6]3+ significantly reduced product yield, but not kobs, indicating that the role of inner-sphere Mg2+ coordination is structural rather than catalytic. Replacing Mg2+ with alkaline earths of increasing ionic radii (Ca2+, Sr2+ and Ba2+) gave lower yields and approximately linear rates of product accumulation. Finally, we observe that reaction rates increased with pH in log-linear fashion with an apparent pKa = 8.0 ± 0.1, indicating deprotonation in the rate-limiting step.
Collapse
Affiliation(s)
- Elisa Biondi
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
24
|
Reiter NJ, Osterman AK, Mondragón A. The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning. Nucleic Acids Res 2012; 40:10384-93. [PMID: 22904083 PMCID: PMC3488217 DOI: 10.1093/nar/gks744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNase P is an RNA-based enzyme primarily responsible for 5′-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNAPhe revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52–57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the ‘RNR’ region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N−4 and N−5 nucleotides of the pre-tRNA 5′-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr., Evanston, IL 60208, USA.
| | | | | |
Collapse
|
25
|
Assembly of the complex between archaeal RNase P proteins RPP30 and Pop5. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:891531. [PMID: 22162665 PMCID: PMC3227427 DOI: 10.1155/2011/891531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 01/27/2023]
Abstract
RNase P is a highly conserved ribonucleoprotein enzyme that represents a model complex for understanding macromolecular RNA-protein interactions. Archaeal RNase P consists of one RNA and up to five proteins (Pop5, RPP30, RPP21, RPP29, and RPP38/L7Ae). Four of these proteins function in pairs (Pop5-RPP30 and RPP21–RPP29). We have used nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to characterize the interaction between Pop5 and RPP30 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu). NMR backbone resonance assignments of free RPP30 (25 kDa) indicate that the protein is well structured in solution, with a secondary structure matching that observed in a closely related crystal structure. Chemical shift perturbations upon the addition of Pop5 (14 kDa) reveal its binding surface on RPP30. ITC experiments confirm a net 1 : 1 stoichiometry for this tight protein-protein interaction and exhibit complex isotherms, indicative of higher-order binding. Indeed, light scattering and size exclusion chromatography data reveal the complex to exist as a 78 kDa heterotetramer with two copies each of Pop5 and RPP30. These results will inform future efforts to elucidate the functional role of the Pop5-RPP30 complex in RNase P assembly and catalysis.
Collapse
|
26
|
Wu S, Chen Y, Lindell M, Mao G, Kirsebom LA. Functional Coupling between a Distal Interaction and the Cleavage Site in Bacterial RNase-P-RNA-Mediated Cleavage. J Mol Biol 2011; 411:384-96. [DOI: 10.1016/j.jmb.2011.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/26/2023]
|
27
|
Chen WY, Xu Y, Cho IM, Oruganti SV, Foster MP, Gopalan V. Cooperative RNP assembly: complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P. J Mol Biol 2011; 411:368-83. [PMID: 21683084 DOI: 10.1016/j.jmb.2011.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 12/31/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that utilizes a Mg(2+)-dependent RNA catalyst to cleave the 5' leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg(2+) coordination and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5·RPP30 and RPP21·RPP29). Here, we employed a previously characterized substrate-enzyme conjugate [pre-tRNA(Tyr)-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNA(Tyr)-MjaΔU RPR compared to the wild type, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P toward its functional conformation.
Collapse
Affiliation(s)
- Wen-Yi Chen
- Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sinapah S, Wu S, Chen Y, Pettersson BMF, Gopalan V, Kirsebom LA. Cleavage of model substrates by archaeal RNase P: role of protein cofactors in cleavage-site selection. Nucleic Acids Res 2010; 39:1105-16. [PMID: 20935047 PMCID: PMC3035440 DOI: 10.1093/nar/gkq732] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNase P is a catalytic ribonucleoprotein primarily involved in tRNA biogenesis. Archaeal RNase P comprises a catalytic RNase P RNA (RPR) and at least four protein cofactors (RPPs), which function as two binary complexes (POP5•RPP30 and RPP21• RPP29). Exploiting the ability to assemble a functional Pyrococcus furiosus (Pfu) RNase P in vitro, we examined the role of RPPs in influencing substrate recognition by the RPR. We first demonstrate that Pfu RPR, like its bacterial and eukaryal counterparts, cleaves model hairpin loop substrates albeit at rates 90- to 200-fold lower when compared with cleavage by bacterial RPR, highlighting the functionally comparable catalytic cores in bacterial and archaeal RPRs. By investigating cleavage-site selection exhibited by Pfu RPR (±RPPs) with various model substrates missing consensus-recognition elements, we determined substrate features whose recognition is facilitated by either POP5•RPP30 or RPP21•RPP29 (directly or indirectly via the RPR). Our results also revealed that Pfu RPR + RPP21•RPP29 displays substrate-recognition properties coinciding with those of the bacterial RPR-alone reaction rather than the Pfu RPR, and that this behaviour is attributable to structural differences in the substrate-specificity domains of bacterial and archaeal RPRs. Moreover, our data reveal a hierarchy in recognition elements that dictates cleavage-site selection by archaeal RNase P.
Collapse
Affiliation(s)
- Sylvie Sinapah
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University SE-751 24, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
30
|
Hsieh J, Koutmou KS, Rueda D, Koutmos M, Walter NG, Fierke CA. A divalent cation stabilizes the active conformation of the B. subtilis RNase P x pre-tRNA complex: a role for an inner-sphere metal ion in RNase P. J Mol Biol 2010; 400:38-51. [PMID: 20434461 PMCID: PMC2939038 DOI: 10.1016/j.jmb.2010.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 01/25/2023]
Abstract
Metal ions interact with RNA to enhance folding, stabilize structure, and, in some cases, facilitate catalysis. Assigning functional roles to specifically bound metal ions presents a major challenge in analyzing the catalytic mechanisms of ribozymes. Bacillus subtilis ribonuclease P (RNase P), composed of a catalytically active RNA subunit (PRNA) and a small protein subunit (P protein), catalyzes the 5'-end maturation of precursor tRNAs (pre-tRNAs). Inner-sphere coordination of divalent metal ions to PRNA is essential for catalytic activity but not for the formation of the RNase P x pre-tRNA (enzyme-substrate, ES) complex. Previous studies have demonstrated that this ES complex undergoes an essential conformational change (to the ES* conformer) before the cleavage step. Here, we show that the ES* conformer is stabilized by a high-affinity divalent cation capable of inner-sphere coordination, such as Ca(II) or Mg(II). Additionally, a second, lower-affinity Mg(II) activates cleavage catalyzed by RNase P. Structural changes that occur upon binding Ca(II) to the ES complex were determined by time-resolved Förster resonance energy transfer measurements of the distances between donor-acceptor fluorophores introduced at specific locations on the P protein and pre-tRNA 5' leader. These data demonstrate that the 5' leader of pre-tRNA moves 4 to 6 A closer to the PRNA x P protein interface during the ES-to-ES* transition and suggest that the metal-dependent conformational change reorganizes the bound substrate in the active site to form a catalytically competent ES* complex.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - David Rueda
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Markos Koutmos
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
31
|
Li D, Meyer MH, Willkomm DK, Keusgen M, Hartmann RK. Analysis of bacterial RNase P RNA and protein interaction by a magnetic biosensor technique. Biochimie 2010; 92:772-8. [DOI: 10.1016/j.biochi.2010.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/16/2010] [Indexed: 11/30/2022]
|
32
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Cuzic-Feltens S, Weber MHW, Hartmann RK. Investigation of catalysis by bacterial RNase P via LNA and other modifications at the scissile phosphodiester. Nucleic Acids Res 2010; 37:7638-53. [PMID: 19793868 PMCID: PMC2794163 DOI: 10.1093/nar/gkp775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyzed cleavage of precursor tRNAs with an LNA, 2'-OCH(3), 2'-H or 2'-F modification at the canonical (c(0)) site by bacterial RNase P. We infer that the major function of the 2'-substituent at nt -1 during substrate ground state binding is to accept an H-bond. Cleavage of the LNA substrate at the c(0) site by Escherichia coli RNase P RNA demonstrated that the transition state for cleavage can in principle be achieved with a locked C3' -endo ribose and without the H-bond donor function of the 2'-substituent. LNA and 2'-OCH(3) suppressed processing at the major aberrant m(-)(1) site; instead, the m(+1) (nt +1/+2) site was utilized. For the LNA variant, parallel pathways leading to cleavage at the c(0) and m(+1) sites had different pH profiles, with a higher Mg(2+) requirement for c(0) versus m(+1) cleavage. The strong catalytic defect for LNA and 2'-OCH(3) supports a model where the extra methylene (LNA) or methyl group (2'-OCH(3)) causes a steric interference with a nearby bound catalytic Mg(2+) during its recoordination on the way to the transition state for cleavage. The presence of the protein cofactor suppressed the ground state binding defects, but not the catalytic defects.
Collapse
Affiliation(s)
| | | | - Roland K. Hartmann
- *To whom correspondence should be addressed. Tel: +49 6421 2825827; Fax +49 6421 2825854;
| |
Collapse
|
34
|
Koutmou KS, Zahler NH, Kurz JC, Campbell FE, Harris ME, Fierke CA. Protein-precursor tRNA contact leads to sequence-specific recognition of 5' leaders by bacterial ribonuclease P. J Mol Biol 2010; 396:195-208. [PMID: 19932118 PMCID: PMC2829246 DOI: 10.1016/j.jmb.2009.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 12/15/2022]
Abstract
Bacterial ribonuclease P (RNase P) catalyzes the cleavage of 5' leader sequences from precursor tRNAs (pre-tRNAs). Previously, all known substrate nucleotide specificities in this system are derived from RNA-RNA interactions with the RNase P RNA subunit. Here, we demonstrate that pre-tRNA binding affinities for Bacillus subtilis and Escherichia coli RNase P are enhanced by sequence-specific contacts between the fourth pre-tRNA nucleotide on the 5' side of the cleavage site (N(-4)) and the RNase P protein (P protein) subunit. B. subtilis RNase P has a higher affinity for pre-tRNA with adenosine at N(-4), and this binding preference is amplified at physiological divalent ion concentrations. Measurements of pre-tRNA-containing adenosine analogs at N(-4) indicate that specificity arises from a combination of hydrogen bonding to the N6 exocyclic amine of adenosine and steric exclusion of the N2 amine of guanosine. Mutagenesis of B. subtilis P protein indicates that F20 and Y34 contribute to selectivity at N(-4). The hydroxyl group of Y34 enhances selectivity, likely by forming a hydrogen bond with the N(-4) nucleotide. The sequence preference of E. coli RNase P is diminished, showing a weak preference for adenosine and cytosine at N(-4), consistent with the substitution of Leu for Y34 in the E. coli P protein. This is the first identification of a sequence-specific contact between P protein and pre-tRNA that contributes to molecular recognition of RNase P. Additionally, sequence analyses reveal that a greater-than-expected fraction of pre-tRNAs from both E. coli and B. subtilis contains a nucleotide at N(-4) that enhances RNase P affinity. This observation suggests that specificity at N(-4) contributes to substrate recognition in vivo. Furthermore, bioinformatic analyses suggest that sequence-specific contacts between the protein subunit and the leader sequences of pre-tRNAs may be common in bacterial RNase P and may lead to species-specific substrate recognition.
Collapse
Affiliation(s)
- Kristin S. Koutmou
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Nathan H. Zahler
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Jeffrey C. Kurz
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Frank E. Campbell
- Center for RNA Molecular Biology, and Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4973
| | - Michael E. Harris
- Center for RNA Molecular Biology, and Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4973
| | - Carol A. Fierke
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
35
|
Koutmou KS, Casiano-Negroni A, Getz MM, Pazicni S, Andrews AJ, Penner-Hahn JE, Al-Hashimi HM, Fierke CA. NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P. Proc Natl Acad Sci U S A 2010; 107:2479-84. [PMID: 20133747 PMCID: PMC2823894 DOI: 10.1073/pnas.0906319107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Functionally critical metals interact with RNA through complex coordination schemes that are currently difficult to visualize at the atomic level under solution conditions. Here, we report a new approach that combines NMR and XAS to resolve and characterize metal binding in the most highly conserved P4 helix of ribonuclease P (RNase P), the ribonucleoprotein that catalyzes the divalent metal ion-dependent maturation of the 5' end of precursor tRNA. Extended X-ray absorption fine structure (EXAFS) spectroscopy reveals that the Zn(2+) bound to a P4 helix mimic is six-coordinate, with an average Zn-O/N bond distance of 2.08 A. The EXAFS data also show intense outer-shell scattering indicating that the zinc ion has inner-shell interactions with one or more RNA ligands. NMR Mn(2+) paramagnetic line broadening experiments reveal strong metal localization at residues corresponding to G378 and G379 in B. subtilis RNase P. A new "metal cocktail" chemical shift perturbation strategy involving titrations with , Zn(2+), and confirm an inner-sphere metal interaction with residues G378 and G379. These studies present a unique picture of how metals coordinate to the putative RNase P active site in solution, and shed light on the environment of an essential metal ion in RNase P. Our experimental approach presents a general method for identifying and characterizing inner-sphere metal ion binding sites in RNA in solution.
Collapse
|
36
|
McClain WH, Lai LB, Gopalan V. Trials, travails and triumphs: an account of RNA catalysis in RNase P. J Mol Biol 2010; 397:627-46. [PMID: 20100492 DOI: 10.1016/j.jmb.2010.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 12/16/2022]
Abstract
Last December marked the 20th anniversary of the Nobel Prize in Chemistry to Sidney Altman and Thomas Cech for their discovery of RNA catalysts in bacterial ribonuclease P (an enzyme catalyzing 5' maturation of tRNAs) and a self-splicing rRNA of Tetrahymena, respectively. Coinciding with the publication of a treatise on RNase P, this review provides a historical narrative, a brief report on our current knowledge, and a discussion of some research prospects on RNase P.
Collapse
Affiliation(s)
- William H McClain
- Department of Bacteriology, College of Agriculture & Life Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
37
|
Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2009; 584:287-96. [PMID: 19931535 DOI: 10.1016/j.febslet.2009.11.048] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
For an enzyme functioning predominantly in a seemingly housekeeping role of 5' tRNA maturation, RNase P displays a remarkable diversity in subunit make-up across the three domains of life. Despite the protein complexity of this ribonucleoprotein enzyme increasing dramatically from bacteria to eukarya, the catalytic function rests with the RNA subunit during evolution. However, the recent demonstration of a protein-only human mitochondrial RNase P has added further intrigue to the compositional variability of this enzyme. In this review, we discuss some possible reasons underlying the structural diversity of the active sites, and use them as thematic bases for elaborating new directions to understand how functional variations might have contributed to the complex evolution of RNase P.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
38
|
Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair. J Mol Biol 2009; 395:1019-37. [PMID: 19917291 DOI: 10.1016/j.jmb.2009.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/23/2022]
Abstract
The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.
Collapse
|
39
|
Hsieh J, Fierke CA. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA (NEW YORK, N.Y.) 2009; 15:1565-77. [PMID: 19549719 PMCID: PMC2714742 DOI: 10.1261/rna.1639409] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the 5' maturation of precursor tRNAs. To investigate the mechanism of substrate recognition in this enzyme, we characterize the thermodynamics and kinetics of Bacillus subtilis pre-tRNA(Asp) binding to B. subtilis RNase P holoenzyme using fluorescence techniques. Time courses for fluorescein-labeled pre-tRNA binding to RNase P are biphasic in the presence of both Ca(II) and Mg(II), requiring a minimal two-step association mechanism. In the first step, the apparent bimolecular rate constant for pre-tRNA associating with RNase P has a value that is near the diffusion limit and is independent of the length of the pre-tRNA leader. Following formation of the initial enzyme-substrate complex, a unimolecular step enhances the overall affinity of pre-tRNA by eight- to 300-fold as the length of the leader sequence increases from 2 to 5 nucleotides. This increase in affinity is due to a decrease in the reverse rate constant for the conformational change that correlates with the formation of an optimal leader-protein interaction in the RNase P holoenzyme-pre-tRNA complex. Furthermore, the forward rate constant for the conformational change becomes rate limiting for cleavage under single-turnover conditions at high pH, explaining the origin of the observed apparent pK(a) in the RNase P-catalyzed cleavage reaction. These data suggest that a conformational change in the RNase P*pre-tRNA complex is coupled to the interactions between the 5' leader and P protein and aligns essential functional groups at the cleavage active site to enhance efficient cleavage of pre-tRNA.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
40
|
|
41
|
Hsieh J, Walker SC, Fierke CA, Engelke DR. Pre-tRNA turnover catalyzed by the yeast nuclear RNase P holoenzyme is limited by product release. RNA (NEW YORK, N.Y.) 2009; 15:224-234. [PMID: 19095620 PMCID: PMC2648709 DOI: 10.1261/rna.1309409] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/24/2008] [Indexed: 05/27/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the 5' maturation of precursor transfer RNA in the presence of magnesium ions. The bacterial RNase P holoenzyme consists of one catalytically active RNA component and a single essential but catalytically inactive protein. In contrast, yeast nuclear RNase P is more complex with one RNA subunit and nine protein subunits. We have devised an affinity purification protocol to gently and rapidly purify intact yeast nuclear RNase P holoenzyme for transient kinetic studies. In pre-steady-state kinetic studies under saturating substrate concentrations, we observed an initial burst of tRNA formation followed by a slower, linear, steady-state turnover, with the burst amplitude equal to the concentration of the holoenzyme used in the reaction. These data indicate that the rate-limiting step in turnover occurs after pre-tRNA cleavage, such as mature tRNA release. Additionally, the steady-state rate constants demonstrate a large dependence on temperature that results in nonlinear Arrhenius plots, suggesting that a kinetically important conformational change occurs during catalysis. Finally, deletion of the 3' trailer in pre-tRNA has little or no effect on the steady-state kinetic rate constants. These data suggest that, despite marked differences in subunit composition, the minimal kinetic mechanism for cleavage of pre-tRNA catalyzed by yeast nuclear RNase P holoenzyme is similar to that of the bacterial RNase P holoenzyme.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA
| | | | | | | |
Collapse
|
42
|
Hartmann RK, Gössringer M, Späth B, Fischer S, Marchfelder A. The making of tRNAs and more - RNase P and tRNase Z. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:319-68. [PMID: 19215776 DOI: 10.1016/s0079-6603(08)00808-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transfer-RNA (tRNA) molecules are essential players in protein biosynthesis. They are transcribed as precursors, which have to be extensively processed at both ends to become functional adaptors in protein synthesis. Two endonucleases that directly interact with the tRNA moiety, RNase P and tRNase Z, remove extraneous nucleotides on the molecule's 5'- and 3'-side, respectively. The ribonucleoprotein enzyme RNase P was identified almost 40 years ago and is considered a vestige from the "RNA world". Here, we present the state of affairs on prokaryotic RNase P, with a focus on recent findings on its role in RNA metabolism. tRNase Z was only identified 6 years ago, and we do not yet have a comprehensive understanding of its function. The current knowledge on prokaryotic tRNase Z in tRNA 3'-processing is reviewed here. A second, tRNase Z-independent pathway of tRNA 3'-end maturation involving 3'-exonucleases will also be discussed.
Collapse
Affiliation(s)
- Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Vourekas A, Stamatopoulou V, Toumpeki C, Tsitlaidou M, Drainas D. Insights into functional modulation of catalytic RNA activity. IUBMB Life 2008; 60:669-83. [PMID: 18636557 DOI: 10.1002/iub.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
RNA molecules play critical roles in cell biology, and novel findings continuously broaden their functional repertoires. Apart from their well-documented participation in protein synthesis, it is now apparent that several noncoding RNAs (i.e., micro-RNAs and riboswitches) also participate in the regulation of gene expression. The discovery of catalytic RNAs had profound implications on our views concerning the evolution of life on our planet at a molecular level. A characteristic attribute of RNA, probably traced back to its ancestral origin, is the ability to interact with and be modulated by several ions and molecules of different sizes. The inhibition of ribosome activity by antibiotics has been extensively used as a therapeutical approach, while activation and substrate-specificity alteration have the potential to enhance the versatility of ribozyme-based tools in translational research. In this review, we will describe some representative examples of such modulators to illustrate the potential of catalytic RNAs as tools and targets in research and clinical approaches.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Biological Chemistry, School of Medicine, University of Patras, Rio-Patras, Greece
| | | | | | | | | |
Collapse
|
44
|
Li D, Willkomm DK, Hartmann RK. Minor changes largely restore catalytic activity of archaeal RNase P RNA from Methanothermobacter thermoautotrophicus. Nucleic Acids Res 2008; 37:231-42. [PMID: 19036794 PMCID: PMC2615603 DOI: 10.1093/nar/gkn915] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The increased protein proportion of archaeal and eukaryal ribonuclease (RNase) P holoenzymes parallels a vast decrease in the catalytic activity of their RNA subunits (P RNAs) alone. We show that a few mutations toward the bacterial P RNA consensus substantially activate the catalytic (C-) domain of archaeal P RNA from Methanothermobacter, in the absence and presence of the bacterial RNase P protein. Large increases in ribozyme activity required the cooperative effect of at least two structural alterations. The P1 helix of P RNA from Methanothermobacter was found to be extended, which increases ribozyme activity (ca 200-fold) and stabilizes the tertiary structure. Activity increases of mutated archaeal C-domain variants were more pronounced in the context of chimeric P RNAs carrying the bacterial specificity (S-) domain of Escherichia coli instead of the archaeal S-domain. This could be explained by the loss of the archaeal S-domain's capacity to support tight and productive substrate binding in the absence of protein cofactors. Our results demonstrate that the catalytic capacity of archaeal P RNAs is close to that of their bacterial counterparts, but is masked by minor changes in the C-domain and, particularly, by poor function of the archaeal S-domain in the absence of archaeal protein cofactors.
Collapse
Affiliation(s)
- Dan Li
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | |
Collapse
|
45
|
Marszalkowski M, Willkomm DK, Hartmann RK. 5'-end maturation of tRNA in aquifex aeolicus. Biol Chem 2008; 389:395-403. [PMID: 18208351 DOI: 10.1515/bc.2008.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
5'-End maturation of tRNA primary transcripts is thought to be ubiquitously catalyzed by ribonuclease P (RNase P), a ribonucleoprotein enzyme in the vast majority of organisms and organelles. In the hyperthermophilic bacterium Aquifex aeolicus, neither a gene for the RNA nor the protein component of bacterial RNase P has been identified in its sequenced genome. Here, we demonstrate the presence of an RNase P-like activity in cell lysates of A. aeolicus. Detection of activity was sensitive to the buffer conditions during cell lysis and partial purification, explaining why we failed to observe activity in the buffer system applied previously. RNase P-like activity of A. aeolicus depends on the presence of Mg2+ or Mn2+, persists at high temperatures, which inactivate RNase P enzymes from mesophilic bacteria, and is remarkably resistant to micrococcal nuclease treatment. While cellular RNA fractions from other Aquificales (A. pyrophilus, Hydrogenobacter thermophilus and Thermocrinis ruber) could be stimulated by bacterial RNase P proteins to catalyze tRNA 5'-end maturation, no such stimulation was observed with RNA from A. aeolicus. In conclusion, our results point to the possibility that RNase P-like activity in A. aeolicus is devoid of an RNA subunit or may include an RNA subunit with untypical features.
Collapse
Affiliation(s)
- Michal Marszalkowski
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | |
Collapse
|
46
|
Berchanski A, Lapidot A. Bacterial RNase P RNA is a drug target for aminoglycoside-arginine conjugates. Bioconjug Chem 2008; 19:1896-906. [PMID: 18712898 DOI: 10.1021/bc800191u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ribonuclease P (RNase P) holoenzymes are RNPs composed of RNase P RNA (PRNA) and a variable number of P protein subunits. Primary differences in structure and function between bacterial and eukaryotic RNase P and its indispensability for cell viability make the bacterial enzyme an attractive drug target. On the basis of our previous studies, aminoglycoside-arginine conjugates (AACs) bind to HIV-1 TAR and Rev responsive element (RRE) RNAs significantly more efficiently than neomycin B. Their specific inhibition of bacterial rRNA as well as the findings that the hexa-arginine neomycin derivative (NeoR6) is 500-fold more potent than neomycin B in inhibiting bacterial RNase P, led us to explore the structure-function relationships of AACs in comparison to a new set of aminoglycoside-polyarginine conjugates (APACs). We here present predicted binding modes of AACs and APACs to PRNA. We used a multistep docking approach comprising rigid docking full scans and final refinement of the obtained complexes. Our docking results suggest three possible mechanisms of RNase P inhibition by AACs and APACs: competition with the P protein and pre-tRNA on binding to P1-P4 multihelix junction and to J19/4 region (probably including displacement of Mg2+ ions from the P4 helix) of PRNA; competition with Mg2+ ions near the P15 loop; and competition with the P protein and/or pre-tRNA near the P15 helix and interfering with interactions between the P protein and pre-tRNA at this region. The APACs revealed about 10-fold lower intermolecular energy than AACs, indicating stronger interactions of APACs than AACs with PRNA.
Collapse
Affiliation(s)
- Alexander Berchanski
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
47
|
Cuzic S, Heidemann KA, Wöhnert J, Hartmann RK. Escherichia coli RNase P RNA: substrate ribose modifications at G+1, but not nucleotide -1/+73 base pairing, affect the transition state for cleavage chemistry. J Mol Biol 2008; 379:1-8. [PMID: 18452950 DOI: 10.1016/j.jmb.2008.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 03/06/2008] [Accepted: 03/19/2008] [Indexed: 11/16/2022]
Abstract
The temperature dependence of processing of precursor tRNA(Gly) (ptRNA(Gly)) variants carrying a single 2'-OCH(3) or locked nucleic acid (LNA) modification at G+1 by Escherichia coli endoribonuclease P RNA was studied at rate-limiting chemistry. We show, for the first time, that these ribose modifications at nucleotide +1 increase the activation energy and alter the activation parameters for the transition state of hydrolysis at the canonical (c(0)) cleavage site (between nucleotides -1 and +1). The modified substrates, particularly the one with LNA at G+1, caused an increase in the activation enthalpy Delta H(double dagger), which was partly compensated for by a simultaneous increase in the activation entropy DeltaS(double dagger). NMR imino proton spectra of model acceptor stems derived from the same ptRNA variants unveiled that a riboT or U at -1 forms two hydrogen bonds with U+73, thus extending the acceptor stem by 1 bp. The non-canonical base pair is substantially stabilized by LNA substitution at nucleotides -1 or +1. To address if the activation energy increase owing to LNA at G+1 stems from dissociation of the U(-1)-U(+73) base pair as a prerequisite for interaction of U(+73) with U294 in endoribonuclease P RNA, we tested a ptRNA(Gly) variant that is capable of forming an extra C(-1)-G(+73) Watson-Crick base pair. However, compared with a control ptRNA (C at -1, U at +73), no significant change in activation parameters was observed for this ptRNA. Thus, our results argue against the possibility that breaking of an additional base pair at the end of the acceptor stem may present an energetic barrier for reaching the transition state of the chemical step for cleavage at the canonical (c(0)) phosphodiester.
Collapse
Affiliation(s)
- Simona Cuzic
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
48
|
Smith JK, Hsieh J, Fierke CA. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 2007; 87:329-38. [PMID: 17868095 DOI: 10.1002/bip.20846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.
Collapse
Affiliation(s)
- J Kristin Smith
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
49
|
Li D, Willkomm DK, Schön A, Hartmann RK. RNase P of the Cyanophora paradoxa cyanelle: A plastid ribozyme. Biochimie 2007; 89:1528-38. [PMID: 17881113 DOI: 10.1016/j.biochi.2007.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/04/2007] [Indexed: 11/23/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that generates the mature 5' ends of tRNAs. Ubiquitous across all three kingdoms of life, the composition and functional contributions of the RNA and protein components of RNase P differ between the kingdoms. RNA-alone catalytic activity has been reported throughout bacteria, but only for some archaea, and only as trace activity for eukarya. Available information for RNase P from photosynthetic organelles points to large differences to bacterial as well as to eukaryotic RNase P: for spinach chloroplasts, protein-alone activity has been discussed; for RNase P from the cyanelle of the glaucophyte Cyanophora paradoxa, a type of organelle sharing properties of both cyanobacteria and chloroplasts, the proportion of protein was found to be around 80% rather than the usual 10% in bacteria. Furthermore, the latter RNase P was previously found catalytically inactive in the absence of protein under a variety of conditions; however, the RNA could be activated by a cyanobacterial protein, but not by the bacterial RNase P protein from Escherichia coli. Here we demonstrate that, under very high enzyme concentrations, the RNase P RNA from the cyanelle of C. paradoxa displays RNA-alone activity well above the detection level. Moreover, the RNA can be complemented to a functional holoenzyme by the E. coli RNase P protein, further supporting its overall bacterial-like architecture. Mutational analysis and domain swaps revealed that this A,U-rich cyanelle RNase P RNA is globally optimized but conformationally unstable, since changes as little as a single point mutation or a base pair identity switch at positions that are not part of the universally conserved catalytic core led to a complete loss of RNA-alone activity. Likely related to this low robustness, extensive structural changes towards an E. coli-type P5-7/P15-17 subdomain as a canonical interaction site for tRNA 3'-CCA termini could not be coaxed into increased ribozyme activity.
Collapse
MESH Headings
- Base Sequence
- Cyanobacteria/enzymology
- Enzyme Activation
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Kinetics
- Nucleic Acid Conformation
- Organelles/enzymology
- Plasmids
- Plastids/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/metabolism
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Templates, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Dan Li
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
50
|
Gösringer M, Hartmann RK. Function of heterologous and truncated RNase P proteins in Bacillus subtilis. Mol Microbiol 2007; 66:801-13. [PMID: 17919279 DOI: 10.1111/j.1365-2958.2007.05962.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial RNase P is composed of an RNA subunit and a single protein (encoded by the rnpB and rnpA genes respectively). The Bacillus subtilis rnpA knockdown strain d7 was used to screen for functional conservation among bacterial RNase P proteins from a representative spectrum of bacterial subphyla. We demonstrate conserved function of bacterial RNase P (RnpA) proteins despite low sequence conservation. Even rnpA genes from psychrophilic and thermophilic bacteria rescued growth of B. subtilis d7 bacteria; likewise, terminal extensions and insertions between beta strands 2 and 3, in the so-called metal binding loop, were compatible with RnpA function in B. subtilis. A deletion analysis of B. subtilis RnpA defined the structural elements essential for bacterial RNase P function in vivo. We further extended our complementation analysis in B. subtilis strain d7 to the four individual RNase P protein subunits from three different Archaea, as well as to human Rpp21 and Rpp29 as representatives of eukaryal RNase P. None of these non-bacterial RNase P proteins showed any evidence of being able to replace the B. subtilis RNase P protein in vivo, supporting the notion that archaeal/eukaryal RNase P proteins are evolutionary unrelated to the bacterial RnpA protein.
Collapse
Affiliation(s)
- Markus Gösringer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | | |
Collapse
|