1
|
A synthetic mimic of phosphodiesterase type 5 based on corona phase molecular recognition of single-walled carbon nanotubes. Proc Natl Acad Sci U S A 2020; 117:26616-26625. [PMID: 33055208 DOI: 10.1073/pnas.1920352117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular recognition binding sites that specifically identify a target molecule are essential for life science research, clinical diagnoses, and therapeutic development. Corona phase molecular recognition is a technique introduced to generate synthetic recognition at the surface of a nanoparticle corona, but it remains an important question whether such entities can achieve the specificity of natural enzymes and receptors. In this work, we generate and screen a library of 24 amphiphilic polymers, preselected for molecular recognition and based on functional monomers including methacrylic acid, acrylic acid, and styrene, iterating upon a poly(methacrylic acid-co-styrene) motif. When complexed to a single-walled carbon nanotube, some of the resulting corona phases demonstrate binding specificity remarkably similar to that of phosphodiesterase type 5 (PDE5), an enzyme that catalyzes the hydrolysis of secondary messenger. The corona phase binds selectively to a PDE5 inhibitor, Vardenafil, as well as its molecular variant, but not to other potential off-target inhibitors. Our work herein examines the specificity and sensitivity of polymer "mutations" to the corona phase, as well as direct competitions with the native binding PDE5. Using structure perturbation, corona surface characterization, and molecular dynamics simulations, we show that the molecular recognition is associated with the unique three-dimensional configuration of the corona phase formed at the nanotube surface. This work conclusively shows that corona phase molecular recognition can mimic key aspects of biological recognition sites and drug targets, opening up possibilities for pharmaceutical and biological applications.
Collapse
|
2
|
Kumar S, Gillilan RE, Yernool DA. Structure and function of the juxtamembrane GAF domain of potassium biosensor KdpD. Protein Sci 2020; 29:2009-2021. [PMID: 32713093 DOI: 10.1002/pro.3920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022]
Abstract
KdpD/KdpE two-component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C-terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high-resolution crystal structure of KdpD GAF domain (KdpDG ) consisting of five α-helices, four β-sheets and two large loops. KdpDG forms a symmetry-related dimer, wherein parallelly arranged monomers contribute to a four-helix bundle at the dimer-interface, SAXS analysis of KdpD C-terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide-binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.
Collapse
Affiliation(s)
- Shivesh Kumar
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, New York, USA
| | - Dinesh A Yernool
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Schneider EH, Seifert R. Inactivation of Non-canonical Cyclic Nucleotides: Hydrolysis and Transport. Handb Exp Pharmacol 2017; 238:169-205. [PMID: 28204955 DOI: 10.1007/164_2016_5004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This chapter addresses cNMP hydrolysis by phosphodiesterases (PDEs) and export by multidrug resistance associated proteins (MRPs). Both mechanisms are well-established for the canonical cNMPs, cAMP, and cGMP. Increasing evidence shows that non-canonical cNMPs (specifically cCMP, cUMP) are also PDE and MRP substrates. Hydrolysis of cUMP is achieved by PDE 3A, 3B, and 9A, which possibly explains the cUMP-degrading activities previously reported for heart, adipose tissue, and brain. Regarding cCMP, the only known "conventional" (class I) PDE that hydrolyzes cCMP is PDE7A. Older reports describe cCMP-degrading PDE-like activities in mammalian tissues, bacteria, and plants, but the molecular identity of these enzymes is not clear. High K M and V max values, insensitivity to common inhibitors, and unusually broad substrate specificities indicate that these activities probably do not represent class I PDEs. Moreover, the older results have to be interpreted with caution, since the historical analytical methods were not as reliable as modern highly sensitive and specific techniques like HPLC-MS/MS. Besides PDEs, the transporters MRP4 and 5 are of major importance for cAMP and cGMP disposal. Additionally, both MRPs also export cUMP, while cCMP is only exported by MRP5. Much less data are available for the non-canonical cNMPs, cIMP, cXMP, and cTMP. None of these cNMPs has been examined as MRP substrate. It was shown, however, that they are hydrolyzed by several conventional class I PDEs. Finally, this chapter reveals that there are still large gaps in our knowledge about PDE and MRP activities for canonical and non-canonical cNMPs. Future research should perform a comprehensive characterization of the known PDEs and MRPs with the physiologically most important cNMP substrates.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Abstract
Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.
Collapse
|
5
|
Sharma S, Visweswariah SS. Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Wang Y, Zhang P, Xu Z, Yue W, Zhuang Y, Chen Y, Lu Z. S-nitrosylation of PDE5 increases its ubiquitin-proteasomal degradation. Free Radic Biol Med 2015; 86:343-51. [PMID: 26093192 DOI: 10.1016/j.freeradbiomed.2015.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/12/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
Phosphodiesterase type 5 (PDE5) expression is upregulated in human failing heart, and overexpression of PDE5 in transgenic mice exacerbates stress-induced left-ventricular dysfunction, suggesting that increased PDE5 expression might contribute to the development of congestive heart failure. However, the underlying mechanisms for increased PDE5 expression are not totally understood. In the present study, we found that PDE5 activity and expression were regulated by S-nitrosylation, a covalent modification of cysteine residues by nitric oxide (NO). S-nitrosylation of PDE5 occurs at Cys220, which is located in the GAFA domain. Upon S-nitrosylation, PDE5 exhibits reduced activity and degradation via the ubiquitin-proteasome system. The decrease in PDE5 expression induced by NO could be blunted by mutation of Cys220 or the phosphorylation site of PDE5 (S102), as well as by pretreatment with H2O2. Conversely, decreased NO bioavailability by nitric oxide synthase (NOS) inhibitors or knockout of NOS3 increased PDE5 expression in cardiomyocytes. Collectively, to the best of our knowledge, our data demonstrate for the first time that S-nitrosylation is one of the mechanisms for PDE5 degradation. This novel regulatory mechanism probably accounts for the increase in PDE5 in the failing heart and other diseases in which NO bioavailability is decreased by oxidative stress.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Ping Zhang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhiyu Xu
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Wenhui Yue
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Yan Zhuang
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Yingjie Chen
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
7
|
Giorgi M, Pompili A, Cardarelli S, Castelli V, Biagioni S, Sancesario G, Gasbarri A. Zaprinast impairs spatial memory by increasing PDE5 expression in the rat hippocampus. Behav Brain Res 2014; 278:129-36. [PMID: 25281278 DOI: 10.1016/j.bbr.2014.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors.
Collapse
Affiliation(s)
- Mauro Giorgi
- Department of Biology and Biotechnology "Charles Darwin", "Sapienza" University of Rome, Italy.
| | - Assunta Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "Charles Darwin", "Sapienza" University of Rome, Italy
| | - Valentina Castelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "Charles Darwin", "Sapienza" University of Rome, Italy
| | - Giuseppe Sancesario
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Antonella Gasbarri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| |
Collapse
|
8
|
Cabrales P, Friedman JM. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species. Antioxid Redox Signal 2013; 18:2284-97. [PMID: 23249305 PMCID: PMC3638560 DOI: 10.1089/ars.2012.5099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SIGNIFICANCE Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. RECENT ADVANCES HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. CRITICAL ISSUES Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. FUTURE DIRECTIONS Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA, USA.
| | | |
Collapse
|
9
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
10
|
Biswas KH, Visweswariah SS. Distinct allostery induced in the cyclic GMP-binding, cyclic GMP-specific phosphodiesterase (PDE5) by cyclic GMP, sildenafil, and metal ions. J Biol Chem 2010; 286:8545-8554. [PMID: 21193396 DOI: 10.1074/jbc.m110.193185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.
Collapse
Affiliation(s)
- Kabir H Biswas
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sandhya S Visweswariah
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol Cell Biochem 2009; 334:221-32. [PMID: 20012469 DOI: 10.1007/s11010-009-0318-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
The cellular counterpart of the "soluble" guanylyl cyclase found in tissue homogenates over 30 years ago is now recognized as the physiological receptor for nitric oxide (NO). The ligand-binding site is a prosthetic haem group that, when occupied by NO, induces a conformational change in the protein that propagates to the catalytic site, triggering conversion of GTP into cGMP. This review focuses on recent research that takes this basic information forward to the beginnings of a quantitative depiction of NO signal transduction, analogous to that achieved for other major transmitters. At its foundation is an explicit enzyme-linked receptor mechanism for NO-activated guanylyl cyclase that replicates all its main properties. In cells, NO signal transduction is subject to additional, activity-dependent modifications, notably through receptor desensitization and changes in the activity of cGMP-hydrolyzing phosphodiesterases. The measurement of these parameters under varying conditions in rat platelets has made it possible to formulate a cellular model of NO-cGMP signaling. The model helps explain cellular responses to NO and their modification by therapeutic agents acting on the guanylyl cyclase or phosphodiesterase limbs of the pathway.
Collapse
|
12
|
Allosteric-site and catalytic-site ligand effects on PDE5 functions are associated with distinct changes in physical form of the enzyme. Cell Signal 2009; 21:1768-74. [PMID: 19665054 DOI: 10.1016/j.cellsig.2009.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/23/2022]
Abstract
Native phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band. Two point mutations (G659A and G659P) near the catalytic site that reduced affinity for cGMP substrate retained allosteric cGMP-binding affinity like that of WT PDE5 but displayed cGMP-induced gel shift only to the middle-band position. The upper band could represent a form produced by cGMP binding to the catalytic site, while the middle band could represent a form produced by cGMP binding to the allosteric site. Millimolar cGMP was required for gel shift of PDE5 when added to the pre-incubation before Native PAGE, presumably due to removal of most of the cGMP during electrophoresis, but micromolar cGMP was sufficient for this effect if cGMP was included in the native gel buffer. cGMP-induced gel shift was associated with stimulation of PDE5 catalytic activity, and the rates of onset and reversibility of this effect suggested that it was due to cGMP binding to the allosteric site. Incubation of PDE5 with non-hydrolyzable, catalytic site-specific, substrate analogs such as the inhibitors sildenafil and tadalafil, followed by dilution, did not produce activation of catalytic activity like that obtained with cGMP, although both inhibitors produced a similar gel shift to the upper band as that obtained with cGMP. This implied that occupation of the catalytic site alone can produce a gel shift to the upper band. PDE5 activation or gel shift was reversed by lowering cGMP with dilution followed by at least 1h of incubation. Such slow reversibility could prolong effects of cGMP on PDE5 in cells after decline of this nucleotide. Reversal was also achieved by Mg(++) addition to the pre-incubation mixture to promote cGMP degradation, but Mg(++) addition did not reverse the gel shift caused by sildenafil, which is not hydrolyzed by PDE5. Upon extensive dilution, the effect of tadalafil, a potent PDE5 inhibitor, to enhance catalytic-site affinity for this inhibitor was rapidly reversed. Thus, kinetic effect of binding of a high-affinity PDE5 inhibitor to the catalytic site is more readily reversible than that obtained by cGMP binding to the allosteric site. It is concluded that cGMP or PDE5 inhibitor binding to the catalytic site, or ligand binding to both the catalytic site and allosteric site simultaneously, changes PDE5 to a similar physical form; this form is distinct from that produced by cGMP binding to the allosteric site, which activates the enzyme and reverses more slowly.
Collapse
|
13
|
Halvey EJ, Vernon J, Roy B, Garthwaite J. Mechanisms of activity-dependent plasticity in cellular nitric oxide-cGMP signaling. J Biol Chem 2009; 284:25630-41. [PMID: 19605352 PMCID: PMC2757965 DOI: 10.1074/jbc.m109.030338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cellular responsiveness to nitric oxide (NO) is shaped by past history of NO exposure. The mechanisms behind this plasticity were explored using rat platelets in vitro, specifically to determine the relative contributions made by desensitization of NO receptors, which couple to cGMP formation, and by phosphodiesterase-5 (PDE5), which is activated by cGMP and also hydrolyzes it. Repeated delivery of brief NO pulses (50 nm peak) at 1-min intervals resulted in a progressive loss of the associated cGMP responses, which was the combined consequence of receptor desensitization and PDE5 activation, with the former dominating. Delivery of pulses of differing amplitude showed that NO stimulated and desensitized receptors with similar potency (EC50 = 10–20 nm). PDE5 activation was highly sensitive to NO, with a single pulse peaking at 2 nm being sufficient to evoke a 50% loss of response to a subsequent near-maximal NO pulse. However, the activated state of the PDE subsided quickly after removal of NO, the half-time for recovery being 25 s. In contrast, receptor desensitization reverted much more slowly, the half-time being 16 min. Accordingly, with long (20-min) exposures, NO concentrations as low as 600 pm provoked significant desensitization. The results indicate that PDE5 activation and receptor desensitization subserve distinct short term and longer term roles as mediators of plasticity in NO-cGMP signaling. A kinetic model explicitly describing the complex interplay between NO concentration, cGMP synthesis, PDE5 activation, and the resulting cGMP accumulation successfully simulated the present and previous data.
Collapse
Affiliation(s)
- Edward J Halvey
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
14
|
Abstract
The GAF domain is a small-molecule-binding-domain (SMBD) identified in >7400 proteins. However, mostly the ligands are unknown. Here we mainly deal with regulatory N-terminal tandem GAF domains, GAF-A and GAF-B, of four mammalian phosphodiesterases (PDEs) and of two cyanobacterial adenylyl cyclases (ACs) which bind cyclic nucleotides. These tandem GAFs are preceded by N-terminal sequences of variable lengths and a function of their own. In mammals, GAF domains are found only in cyclic nucleotide PDEs 2, 5, 6, 10, and 11. cAMP is the ligand for phosphodiesterase 10, cGMP for the others. Two cyanobacterial ACs, CyaB1 and 2, carry regulatory cAMP-binding tandem GAF domains which are similar in sequence to the mammalian ones. These tandem GAF domains have a prominent NKFDE motif which contributes to ligand binding in an as yet unknown manner. Contradicting structures (parallel vs. antiparallel) are available for the tandem GAF domains of PDE 2 and AC CyaB2. In addition, the structures of phosphodiesterase 5 and 10 GAF monomers with bound ligands have been solved. In all instances, cyclic nucleotide binding involves specific protein-ligand interactions within a tightly closed binding pocket and minimal solvent exposure of the ligand. The PDE tandem GAF domains can functionally substitute for the tandem of the cyanobacterial AC CyaB1; e.g. cGMP-regulation is grafted onto the AC using tandem GAFs from PDEs 2, 5 and 11. Studies of GAF domain-regulated PDEs are hampered by the identities of regulator and substrate molecules. Using AC CyaB1 as a reporter which uses ATP as a substrate solves this issue and makes the tandem GAF domains of mammalian PDEs available for detailed kinetic and mechanistic studies. In addition, drugs which potentially act on PDE regulatory domains may be assayed with such a novel test system.
Collapse
|
15
|
Bessay EP, Blount MA, Zoraghi R, Beasley A, Grimes KA, Francis SH, Corbin JD. Phosphorylation increases affinity of the phosphodiesterase-5 catalytic site for tadalafil. J Pharmacol Exp Ther 2008; 325:62-8. [PMID: 18199808 DOI: 10.1124/jpet.107.133405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphodiesterase-5 (PDE5) is phosphorylated at a single serine residue by cyclic nucleotide-dependent protein kinases. To test for a direct effect of phosphorylation on the PDE5 catalytic site, independent of cGMP binding to the allosteric sites of the enzyme, binding of the catalytic site-specific substrate analog [(3)H]tadalafil to PDE5 was measured. Phosphorylation increased [(3)H]tadalafil binding 3-fold, whereas cGMP caused a 1.6-fold increase. Combination of both treatments caused more than 4-fold increase in [(3)H]tadalafil binding, and effects were additive only at submaximal stimulation. Consistent with the increase in affinity, phosphorylation slowed the [(3)H]tadalafil exchange-dissociation rate from PDE5 more than 6-fold. Finally, phosphorylation increased affinity for hydrolysis of a catalytic site-specific cGMP analog, 2'-O-anthraniloyl-cGMP, by approximately 3-fold. The combined results showed that phosphorylation activates PDE5 catalytic site independently of cGMP binding to the allosteric sites. The results suggested that phosphorylation acts in concert with allosteric cGMP binding to stimulate the PDE5 catalytic site, which should promote negative feedback regulation of the cGMP pathway in intact cells. By increasing the affinity of the catalytic site, phosphorylation should also consequently increase the potency and duration of PDE5 inhibitor action.
Collapse
Affiliation(s)
- Emmanuel P Bessay
- Department of Molecular Physiology and Biophysics, 702 Light Hall, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Halpin DMG. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int J Chron Obstruct Pulmon Dis 2008; 3:543-61. [PMID: 19281073 PMCID: PMC2650605 DOI: 10.2147/copd.s1761] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphodiesterases (PDEs) are important enzymes that hydrolyze the cyclic nucleotides adenosine 3'5'-cyclic monophosphate (cAMP) and guanosine 3'5'-cyclic monophosphate (cGMP) to their inactive 5' monophosphates. They are highly conserved across species and as well as their role in signal termination, they also have a vital role in intra-cellular localization of cyclic nucleotide signaling and integration of the cyclic nucleotide pathways with other signaling pathways. Because of their pivotal role in intracellular signaling, they are now of considerable interest as therapeutic targets in a wide variety diseases, including COPD where PDE inhibitors may have bronchodilator, anti-inflammatory and pulmonary vasodilator actions. This review examines the diversity and cellular localization of the isoforms of PDE, the known and speculative relevance of this to the treatment of COPD, and the range of PDE inhibitors in development together with a discussion of their possible role in treating COPD.
Collapse
|
17
|
Marcoli M, Maura G, Cervetto C, Giacomini C, Oliveri D, Candiani S, Pestarino M. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study. Neurochem Int 2006; 49:683-90. [PMID: 16904241 DOI: 10.1016/j.neuint.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/18/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The cerebellar cells that account for glutamate-dependent cyclic GMP (cGMP) production, involving activation of the ionotropic glutamate receptors/nitric oxide synthase/soluble guanylyl cyclase pathway, are not fully established. In the present paper we have searched for the localisation of the cGMP response to the nitric oxide (NO) donor S-nitroso-penicillamine (SNAP 1muM), expected to generate local NO concentrations in the low nanomolar physiological range and evoking a cGMP response dependent on glutamate release and on the consequent activation of ionotropic glutamate NMDA/non-NMDA receptors, in cerebellar slices from adult rat. We have found that low concentration of exogenous NO evoked cGMP accumulation in Purkinje cells in an ionotropic glutamate receptor-dependent and tetrodotoxin-sensitive manner. Such immunocytochemical localisation appears consistent with functional evidence for physiologically relevant glutamate-dependent cGMP production in Purkinje cells in rat cerebellar cortex.
Collapse
Affiliation(s)
- Manuela Marcoli
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, 16148 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Bruder S, Schultz A, Schultz JE. Characterization of the tandem GAF domain of human phosphodiesterase 5 using a cyanobacterial adenylyl cyclase as a reporter enzyme. J Biol Chem 2006; 281:19969-76. [PMID: 16690614 DOI: 10.1074/jbc.m603374200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed cGMP signaling by the human phosphodiesterase 5 (hPDE5) tandem GAF domain based on a functional activation assay. The C-terminal catalytic domain of the cyanobacterial adenylyl cyclase (AC) cyaB1 was used as a reporter enzyme. We demonstrate functional coupling between the hPDE5 GAF ensemble and the AC resulting in a chimera stimulated 10-fold by cGMP. The hPDE5 GAF domain has an inhibitory effect on AC activity, which is released upon cGMP activation. Removal of 109 amino acids from the N terminus resulted in partial disengagement of the GAF domain and AC, i.e. in a 10-fold increase in basal activity, and affected cGMP affinity. The Ser-102 phosphorylation site of hPDE5 increased cGMP affinity, as shown by a 5-fold lower K(D) for cGMP in a S102D mutant, which mimicked complete modification. The function of the NKFDE motif, which is a signature of all GAF domains with known cyclic nucleotide binding capacity, was elucidated by targeted mutations. Data with either single and double mutants in either GAF A or GAF B or a quadruple mutant affecting both subdomains simultaneously indicated that it is impossible to functionally assign cGMP binding and intramolecular signaling to either GAF A or B of hPDE5. Both subdomains are structurally and functionally interdependent and act in concert in regulating cycaB1 AC and, most likely, also hPDE5.
Collapse
Affiliation(s)
- Sandra Bruder
- Abteilung Pharmazeutische Biochemie, Fakultät für Chemie und Pharmazie, Universität Tübingen, Morgenstelle 8, 72076 Tübingen, Germany
| | | | | |
Collapse
|
19
|
Burnett AL, Bivalacqua TJ, Champion HC, Musicki B. Long-term oral phosphodiesterase 5 inhibitor therapy alleviates recurrent priapism. Urology 2006; 67:1043-8. [PMID: 16698365 DOI: 10.1016/j.urology.2005.11.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/13/2005] [Accepted: 11/22/2005] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Recurrent ischemic priapism describes a disorder of repeated episodes of prolonged penile erection that frequently leads to devastating complications of erectile tissue damage and erectile dysfunction. A mechanistic role for dysregulated phosphodiesterase 5 (PDE5) in the deranged smooth muscle response of the corpus cavernosum of the penis offers new understanding about the pathogenesis of the disorder and suggests that PDE5 may serve as a molecular target for its treatment and prevention. We explored the use of PDE5 inhibitors to treat recurrent priapism, based on the hypothesis that the erection regulatory function of PDE5 would be regularized by this treatment and protect against further episodes. METHODS We administered PDE5 inhibitors using a long-term therapeutic regimen to 3 men with sickle cell disease-associated priapism recurrences and 1 man with idiopathic priapism recurrences. RESULTS Long-term PDE5 inhibitor treatment alleviated priapism recurrences. CONCLUSIONS These observations support the hypothesis that PDE5 dysregulation exerts a pathogenic role for priapism associated with hematologic dyscrasias, as well as idiopathic priapism. Although these preliminary findings suggest that continuous, long-term PDE5 inhibitor therapy may be useful as a preventative strategy for priapism, additional evaluation in the form of a controlled clinical trial is needed.
Collapse
Affiliation(s)
- Arthur L Burnett
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
20
|
Allanson M, Domanski D, Reeve VE. Photoimmunoprotection by UVA (320-400 nm) radiation is determined by UVA dose and is associated with cutaneous cyclic guanosine monophosphate. J Invest Dermatol 2006; 126:191-7. [PMID: 16417236 DOI: 10.1038/sj.jid.5700050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunomodulating properties of UVA radiation remain controversial. Here, we demonstrate in female inbred Skh:hr-1 mice that single subinflammatory UVA exposures between 1.61 and 580.5 kJ/m(2) are not immunosuppressive. Furthermore, UVA exposures between 16.13 and 580.5 kJ/m(2) provided dose-related immunoprotection against UVB-induced immunosuppression. Higher UVA exposures (870.8-1,161 kJ/m(2)) became inflammatory and immunosuppressive alone, and lost the photoimmunoprotective capacity. We previously reported that UVA photoimmunoprotection depends on the induction of cutaneous heme oxygenase-1, particularly its enzymatic product, carbon monoxide (CO). CO was suggested to activate cutaneous guanylyl cyclase (GC), as the specific GC inhibitor, 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ), abrogated CO photoimmunoprotection in the mouse. This study shows that cutaneous cyclic guanosine monophosphate (cGMP) concentration increased only following immunoprotective UVA doses, or immunoprotective topical CO treatment, and cGMP production was inhibited by ODQ. Conversely, cGMP concentration was increased by inhibition of its degradative phosphodiesterase (PDE) with topical sildenafil. The PDE-5 isoform was identified in normal mouse skin. Subsequently, a moderate concentration of sildenafil was shown to simulate the effect of UVA in protecting against photoimmunosuppression by solar-simulated UV radiation or its mediator cis-urocanic acid. Thus, cutaneous cGMP, controlled by its synthesis via CO-activated GC and its degradation by PDE-5, is strongly associated with UVA photoimmunoprotection.
Collapse
Affiliation(s)
- Munif Allanson
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
21
|
Sopory S, Kaur T, Visweswariah SS. The cGMP-binding, cGMP-specific phosphodiesterase (PDE5): intestinal cell expression, regulation and role in fluid secretion. Cell Signal 2005; 16:681-92. [PMID: 15093609 DOI: 10.1016/j.cellsig.2003.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 11/12/2003] [Accepted: 11/12/2003] [Indexed: 11/26/2022]
Abstract
The expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase, PDE5, was studied in intestinal cells. Both PDE5A1 and PDE5A2 splice forms were cloned from the cDNA prepared from human colonic T84 cells, and PDE5 activity was dependent on increases in intracellular cGMP levels which correlated with increased phosphorylation of the enzyme. PDE5 expression was monitored in different regions of the gastrointestinal tract and nearly 50% of the phosphodiesterase activity in the duodenum, jejunum, ileum and colon was inhibited by sildenafil citrate. Administration of the stable toxin to intestinal loops resulted in activation of PDE5. Inhibition of PDE5 by sildenafil citrate led to fluid accumulation in loops, suggesting a possible explanation for the side effect of diarrhoea observed in individuals administered sildenafil citrate. Our results therefore represent the first study on the expression and regulation of PDE5 in intestinal tissue, and indicate that mechanisms to control its activity may have important consequences in intestinal physiology.
Collapse
Affiliation(s)
- Shailaja Sopory
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Malleswaram, Bangalore 560012, India
| | | | | |
Collapse
|
22
|
Zoraghi R, Bessay EP, Corbin JD, Francis SH. Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation. J Biol Chem 2005; 280:12051-63. [PMID: 15677448 DOI: 10.1074/jbc.m413611200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains a catalytic domain that hydrolyzes cGMP and a regulatory (R) domain that contains two GAFs (a and b; GAF is derived from the proteins mammalian cGMP-binding PDEs, Anabaena adenylyl cyclases, and Escherichia coli (FhlA)). The R domain binds cGMP allosterically, provides for dimerization, and is phosphorylated at a site regulated by allosteric cGMP binding. Quaternary structures and cGMP-binding properties of 10 human PDE5A1 constructs containing one or both GAFs were characterized. Results reveal that: 1) high affinity homo-dimerization occurs between GAF a modules (K(D) < 30 nM) and between GAF b modules (K(D) = 1-20 pM), and the sequence between the GAFs (Thr322-Asp403) contributes to dimer stability; 2) 176 amino acids (Val156-Gln331) in GAF a are adequate for cGMP binding; 3) GAF a has higher affinity for cGMP (K(D) < 40 nM) than does the isolated R domain (K(D) = 110 nM) or holoenzyme (K(D) = 200 nM), suggesting that the sequence containing GAF b and its flanking amino acids autoinhibits GAF a cGMP-binding affinity in intact R domain; 4) a mutant (Met1-Glu321) containing only GAF a has high affinity, biphasic cGMP-binding kinetics consistent with structural heterogeneity of GAF a, suggesting that the presence of GAF b is not required for biphasic cGMP-dissociation kinetics observed in holoenzyme or isolated R domain; 5) significant cGMP binding by GAF b was not detected; and 6) the sequence containing GAF b and its flanking amino acids is critical for cGMP stimulation of Ser102 phosphorylation by cyclic nucleotide-dependent protein kinases. Results yield new insights into PDE5 functions, further define boundaries that provide for allosteric cGMP binding, and identify regions that contribute to dimerization.
Collapse
Affiliation(s)
- Roya Zoraghi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
23
|
Giordano D, Giorgi M, Tata AM, Modica A, Augusti-Tocco G. Expression of PDE5 splice variants during ontogenesis of chick dorsal root ganglia. J Neurosci Res 2004; 78:815-23. [PMID: 15505792 DOI: 10.1002/jnr.20337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclic GMP (cGMP)-binding cGMP-specific phosphodiesterase (PDE5) activity was found in chick dorsal root ganglia (DRG). PDE5 expression was studied at different stages of development: in embryonic day 10 (E10) and E18 embryos and in 5-day post-hatching chick (P5). The presence of PDE5 was suggested by the ion exchange chromatography elution profile in E18 DRG extracts, where cGMP-specific hydrolytic calmodulin-independent activity was found; in other stages, this activity coeluted with the PDE1 calmodulin-stimulated isoform characterized previously. Inhibition studies supported the hypothesis that the newly identified PDE activity belongs to the PDE5 isoform. Western blot analysis using a PDE5-specific antibody was also carried out and revealed the presence of three specific immunoreactive bands with apparent molecular weights of 98, 93, and 86 kDa, corresponding to the three described splice variants (PDE5A1, PDE5A2, and PDE5A3). The expression in DRG of the three PDE5 isoforms was also confirmed by RT-PCR. Developmental regulation of PDE5 was revealed by the immunoblot analysis at different stages; expression was very low at E10 but an overall substantial increase occurred between E10-18 (about 12-fold, considering the three PDE5 isoforms together). Differences were revealed, however, when a single PDE5 isoform was considered. PDE5A1 and PDE5A3 showed an increase at all stages although more pronounced between E10-18, whereas PDE5A2 underwent a marked increase (about 38-fold) in the first period and remained nearly constant between E18 and P5. This is the first evidence of PDE5 in sensory neurons, and the distinct temporal expression patterns of enzyme isoforms may indicate different physiologic roles in developing and mature chick DRG.
Collapse
Affiliation(s)
- Daniela Giordano
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
24
|
Navarra M, Baltrons MA, Sardón T, Pedraza CE, García A. HIV-1 coat protein gp120 decreases NO-dependent cyclic GMP accumulation in rat brain astroglia by increasing cyclic GMP phosphodiesterase activity. Neurochem Int 2004; 45:937-46. [PMID: 15312988 DOI: 10.1016/j.neuint.2004.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) coat glycoprotein gp120 has been proposed as a likely etiologic agent of HIV-associated dementia (HAD). The pathogenic mechanisms underlying HAD have not yet been fully elucidated, but different evidences indicate that glial cells play an essential role in the development and amplification of the disease. The NO/cyclic GMP (cGMP) system is a widespread signal transduction pathway in the CNS involved in numerous physiological and pathological functions. Increased expression of NO synthase has been reported in the brain of AIDS patients and in cultured rodent glial cells exposed to gp120. The aim of this study was to investigate if gp120 could cause alterations in the metabolism of the NO physiological messenger cGMP that could contribute to the pathogenesis of HAD. Here, we show that long-term treatment (more than 24 h) of rat cerebellar astrocyte-enriched cultures with gp120 (10 nM) induces changes in the cultured cells--astrocyte stellation and proliferation of ameboid microglia--compatible with the acquisition of a reactive phenotype and reduces the capacity of the astrocytes to accumulate cGMP in response to NO in a time-dependent manner (maximal after 72 h). Measurements in cell extracts show that gp120 enhances Ca2+-independent cGMP phosphodiesterase activity by 80-100% without significantly affecting soluble guanylyl cyclase (sGC). Experiments in whole cells using specific phosphodiesterase inhibitors indicate that the viral protein increases the activity of cGMP specific phosphodiesterase 5.
Collapse
Affiliation(s)
- Michele Navarra
- Instituto de Biotecnología y Biomedicina V. Villar Palasí and Departamento de Bioquímica y Biología Molecular, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
25
|
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers involved in the intracellular signal transduction of a variety of extracellular stimuli in several tissues. In the vascular system, these nucleotides play important roles in the regulation of vascular tone and in the maintenance of the mature contractile phenotype in smooth muscle cells. Given that cyclic nucleotide signaling regulates a wide variety of cellular functions, it is not surprising that cyclic nucleotide phosphodiesterases (PDEs). In paticular, the accumulating data showing that there are a large number of different PDE isozymes have triggered an equally large increase in interest about these enzymes. At least 11 different gene families of PDEs are currently known to exist in mammalian tissues. Most families contain several distinct genes, and many of these genes are expressed in different tissues as functionally unique alternative splice variants. This article reviews many of the important aspects about the structure, cellular localization, and regulation of each family of PDEs. Particular emphasis is placed on new information obtained in the last few years about vascular disease. The development of novel methods to deliver more potent and selective PDE inhibitors to individual cell types and subcellular locations will lead to new therapeutic uses for this class of drugs in diseases of the vascular system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | |
Collapse
|
26
|
Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH, Corbin JD. Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol 2004; 66:144-52. [PMID: 15213306 DOI: 10.1124/mol.66.1.144] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sildenafil, tadalafil, and vardenafil each competitively inhibit cGMP hydrolysis by phosphodiesterase-5 (PDE5), thereby fostering cGMP accumulation and relaxation of vascular smooth muscle. Biochemical potencies (affinities) of these compounds for PDE5 determined by IC(50), K(D) (isotherm), K(D) (dissociation rate), and K(D) ((1/2) EC(50)), respectively, were the following: sildenafil (3.7 +/- 1.4, 4.8 +/- 0.80, 3.7 +/- 0.29, and 11.7 +/- 0.70 nM), tadalafil (1.8 +/- 0.40, 2.4 +/- 0.60, 1.9 +/- 0.37, and 2.7 +/- 0.25 nM); and vardenafil (0.091 +/- 0.031, 0.38 +/- 0.07, 0.27 +/- 0.01, and 0.42 +/- 0.10 nM). Thus, absolute potency values were similar for each inhibitor, and relative potencies were vardenafil >> tadalafil > sildenafil. Binding of each (3)H inhibitor to PDE5 was specific as determined by effects of unlabeled compounds. (3)H Inhibitors did not bind to isolated PDE5 regulatory domain. Close correlation of EC(50) values using all three (3)H inhibitors competing against one another indicated that each occupies the same site on PDE5. Studies of sildenafil and vardenafil analogs demonstrated that higher potency of vardenafil is caused by differences in its double ring. Exchange-dissociation studies revealed two binding components for each inhibitor. Excess unlabeled inhibitor did not significantly affect (3)H inhibitor dissociation after infinite dilution, suggesting the absence of subunit-subunit cooperativity. cGMP addition increased binding affinity of [(3)H]tadalafil or [(3)H]vardenafil, an effect presumably mediated by cGMP binding to PDE5 allosteric sites, implying that either inhibitor potentiates its own binding to PDE5 in intact cells by elevating cGMP. Without inhibitor present, cGMP accumulation would stimulate cGMP degradation, but with inhibitor present, this negative feedback process would be blocked.
Collapse
Affiliation(s)
- Mitsi A Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Mullershausen F, Russwurm M, Koesling D, Friebe A. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation. Mol Biol Cell 2004; 15:4023-30. [PMID: 15240816 PMCID: PMC515337 DOI: 10.1091/mbc.e03-12-0890] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Most effects of the messenger molecule nitric oxide (NO) are mediated by cGMP, which is formed by NO-sensitive guanylyl cyclase (GC) and degraded by phosphodiesterases (PDEs). In platelets, NO elicits a spike-like cGMP response and causes a sustained desensitization. Both characteristics have been attributed to PDE5 activation caused by cGMP binding to its regulatory GAF domain. Activation is paralleled by phosphorylation whose precise function remains unknown. Here, we report reconstitution of all features of the NO-induced cGMP response in human embryonic kidney cells by coexpressing NO-sensitive GC and PDE5. The spike-like cGMP response was blunted when PDE5 phosphorylation was enhanced by additional overexpression of cGMP-dependent protein kinase. Analysis of PDE5 activation in vitro revealed a discrepancy between the cGMP concentrations required for activation (micromolar) and reversal of activation (nanomolar), indicating the conversion of a low-affinity state to a high-affinity state upon binding of cGMP. Phosphorylation even increased the high apparent affinity enabling PDE5 activation to persist at extremely low cGMP concentrations. Our data suggest that the spike-like shape and the desensitization of the cGMP response are potentially inherent to every GC- and PDE5-expressing cell. Phosphorylation of PDE5 seems to act as memory switch for activation leading to long-term desensitization of the signaling pathway.
Collapse
Affiliation(s)
- Florian Mullershausen
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
28
|
Zoraghi R, Corbin JD, Francis SH. Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 2004; 65:267-78. [PMID: 14742667 DOI: 10.1124/mol.65.2.267] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Roya Zoraghi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
29
|
De Young L, Yu D, Freeman D, Brock GB. Effect of PDE5 inhibition combined with free oxygen radical scavenger therapy on erectile function in a diabetic animal model. Int J Impot Res 2003; 15:347-54. [PMID: 14562136 DOI: 10.1038/sj.ijir.3901026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphodiesterase (PDE) inhibitors represent an important advance in the treatment of erectile dysfunction (ED). In spite of widespread use and generally good efficacy, as a class they remain ineffective in 15-57% of men. Specific cohorts of patients with severe vascular or neurogenic basis to their ED, such as diabetic men or those who have undergone radical pelvic surgery, demonstrate lower response rates with PDE inhibition treatment. We believe that circulating levels of nitric oxide (NO) may be enhanced through delivery of adequate concentrations of free oxygen radical scavenger molecules such as vitamin E. Higher levels of NO, theoretically, should produce increased penile blood flow with the potential for a synergistic effect when combined with a PDE5 inhibitor. With this hypothesis in mind, 20 adult male Sprague-Dawley streptozotocin-induced (60 mg/kg i.p.) diabetic rats were divided into four therapeutic groups (n=5). Group I--control animals received peanut oil, group II--vitamin E 20 IU/day, group III--sildenafil 5 mg/kg/day and group IV--vitamin E 20 IU/day plus sildenafil 5 mg/kg/day, by oral gavage daily for 3 weeks. Erectile function was assessed as a rise in intracavernous pressure following cavernous nerve electrostimulation. Penile tissue was harvested to determine the changes in tissue morphology including neuronal nitric oxide synthase, smooth muscle alpha-actin and endothelial cell integrity. PDE5 protein content and activity were measured. Significant increases in intracavernous pressure were measured in the animals receiving combined vitamin E plus sildenafil treatment. Immunohistochemical staining showed increases of neuronal nitric oxide synthase, endothelial cell and smooth muscle cell staining. Western blot analysis did not show significant differences of PDE5 protein between the groups. However, higher PDE5 activity was measured in the sildenafil group and lower activity of PDE5 was recorded in the cohort receiving vitamin E with sildenafil. Vitamin E enhanced the therapeutic effect of the PDE5 inhibitor in a meaningful way in this animal model of diabetes. This study indicates a potential means of salvaging erectile function among patients who are refractory to sildenafil.
Collapse
Affiliation(s)
- L De Young
- Department of Urology, St Joseph's Health Care, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Corbin JD, Blount MA, Weeks JL, Beasley A, Kuhn KP, Ho YSJ, Saidi LF, Hurley JH, Kotera J, Francis SH. [3H]sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol Pharmacol 2003; 63:1364-72. [PMID: 12761347 DOI: 10.1124/mol.63.6.1364] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sildenafil (Viagra) potentiates penile erection by acting as a nonhydrolyzable analog of cGMP and competing with this nucleotide for catalysis by phosphodiesterase-5 (PDE5), but the characteristics of direct binding of radiolabeled sildenafil to PDE5 have not been determined. [3H]Sildenafil binding to PDE5 was retained when filtered through nitrocellulose or glass-fiber membranes. Binding was inhibited by excess sildenafil, 2-(2-methylpyridin-4-yl)methyl-4-(3,4,5-trimethoxyphenyl)-8-(pyrimidin-2-yl)methoxy-1,2-dihydro-1-oxo-2,7-naphthyridine-3-carboxylic acid methyl ester hydrochloride (T-0156), 3-isobutyl-1-methylxanthine, EDTA, or cGMP, but not by cAMP or 5'-GMP. PDE5 was the only [3H]sildenafil binding protein detected in human lung extract. Using purified recombinant PDE5, [3H]sildenafil exchange dissociation yielded two components with t1/2 values of 1 and 14 min and corresponding calculated KD values of 12 and 0.83 nM, respectively. This implied the existence of two conformers of the PDE5 catalytic site. [3H]Sildenafil binding isotherm of PDE5 indicated KD was 8.3 to 13.3 nM, and low cGMP decreased the KD to 4.8 nM but only slightly increased Bmax to a maximum of 0.61 mol/mol-subunit. Results suggest that these effects occur via cGMP binding to the allosteric cGMP binding sites of PDE5. Results imply that by inhibiting PDE5 and thereby increasing cGMP, sildenafil accentuates its own binding affinity for PDE5, which further elevates cGMP. The data also indicate that after physiological elevation, cGMP may directly stimulate the catalytic site by binding to the allosteric cGMP-binding sites of PDE5, thus causing negative feedback on this pathway.
Collapse
Affiliation(s)
- Jackie D Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wielinga PR, van der Heijden I, Reid G, Beijnen JH, Wijnholds J, Borst P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J Biol Chem 2003; 278:17664-71. [PMID: 12637526 DOI: 10.1074/jbc.m212723200] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotides are known to be effluxed from cultured cells or isolated tissues. Two recently described members of the multidrug resistance protein family, MRP4 and MRP5, might be involved in this process, because they transport the 3',5'-cyclic nucleotides, cAMP and cGMP, into inside-out membrane vesicles. We have investigated cGMP and cAMP efflux from intact HEK293 cells overexpressing MRP4 or MRP5. The intracellular production of cGMP and cAMP was stimulated with the nitric oxide releasing compound sodium nitroprusside and the adenylate cyclase stimulator forskolin, respectively. MRP4- and MRP5-overexpressing cells effluxed more cGMP and cAMP than parental cells in an ATP-dependent manner. In contrast to a previous report we found no glutathione requirement for cyclic nucleotide transport. Transport increased proportionally with intracellular cyclic nucleotide concentrations over a calculated range of 20-600 microm, indicating low affinity transport. In addition to several classic inhibitors of organic anion transport, prostaglandins A(1) and E(1), the steroid progesterone and the anti-cancer drug estramustine all inhibited cyclic nucleotide efflux. The efflux mediated by MRP4 and MRP5 did not lead to a proportional decrease in the intracellular cGMP or cAMP levels but reduced cGMP by maximally 2-fold over the first hour. This was also the case when phosphodiesterase-mediated cyclic nucleotide hydrolysis was inhibited by 3-isobutyl-1-methylxanthine, conditions in which efflux was maximal. These data indicate that MRP4 and MRP5 are low affinity cyclic nucleotide transporters that may at best function as overflow pumps, decreasing steep increases in cGMP levels under conditions where cGMP synthesis is strongly induced and phosphodiesterase activity is limiting.
Collapse
Affiliation(s)
- Peter R Wielinga
- Division of Molecular Biology and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Muradov KG, Boyd KK, Martinez SE, Beavo JA, Artemyev NO. The GAFa domains of rod cGMP-phosphodiesterase 6 determine the selectivity of the enzyme dimerization. J Biol Chem 2003; 278:10594-601. [PMID: 12531898 DOI: 10.1074/jbc.m208456200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinal rod cGMP phosphodiesterase (PDE6 family) is the effector enzyme in the vertebrate visual transduction cascade. Unlike other known PDEs that form catalytic homodimers, the rod PDE6 catalytic core is a heterodimer composed of alpha and beta subunits. A system for efficient expression of rod PDE6 is not available. Therefore, to elucidate the structural basis for specific dimerization of rod PDE6, we constructed a series of chimeric proteins between PDE6alphabeta and PDE5, which contain the N-terminal GAFa/GAFb domains, or portions thereof, of the rod enzyme. These chimeras were co-expressed in Sf9 cells in various combinations as His-, myc-, or FLAG-tagged proteins. Dimerization of chimeric PDEs was assessed using gel filtration and sucrose gradient centrifugation. The composition of formed dimeric enzymes was analyzed with Western blotting and immunoprecipitation. Consistent with the selectivity of PDE6 dimerization in vivo, efficient heterodimerization was observed between the GAF regions of PDE6alpha and PDE6beta with no significant homodimerization. In addition, PDE6alpha was able to form dimers with the cone PDE6alpha' subunit. Furthermore, our analysis indicated that the PDE6 GAFa domains contain major structural determinants for the affinity and selectivity of dimerization of PDE6 catalytic subunits. The key dimerization selectivity module of PDE6 has been localized to a small segment within the GAFa domains, PDE6alpha-59-74/PDE6beta-57-72. This study provides tools for the generation of the homodimeric alphaalpha and betabeta enzymes that will allow us to address the question of functional significance of the unique heterodimerization of rod PDE6.
Collapse
Affiliation(s)
- Khakim G Muradov
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
33
|
Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 2003; 22:469-78. [PMID: 12554648 PMCID: PMC140735 DOI: 10.1093/emboj/cdg051] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
cGMP-specific, cGMP-binding phosphodiesterase (PDE5) regulates such physiological processes as smooth muscle relaxation and neuronal survival. PDE5 contains two N-terminal domains (GAF A and GAF B), but the functional roles of these domains have not been determined. Here we show that recombinant PDE5 is activated directly upon cGMP binding to the GAF A domain, and this effect does not require PDE5 phosphorylation. PDE5 exhibited time- and concentration-dependent reversible activation in response to cGMP, with the highest activation (9- to 11-fold) observed at low substrate concentrations (0.1 micro M cGMP). A monoclonal antibody directed against GAF A blocked cGMP binding, prevented PDE5 activation and decreased basal activity, revealing that PDE5 in its non-activated state has low intrinsic catalytic activity. Activated PDE5 showed higher sensitivity towards sildenafil than non-activated PDE5. The stimulatory effect of cGMP binding on the catalytic activity of PDE5 suggests that this mechanism of enzyme activation may be common among other GAF domain-containing proteins. The data also suggest that development of agonists and antagonists of PDE5 activity based on binding to this site might be possible.
Collapse
Affiliation(s)
| | | | | | | | - Joseph A. Beavo
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
Corresponding author e-mail:
| |
Collapse
|