1
|
Martin J, Michaelis M, Petrović S, Lehnen AC, Müllers Y, Wendler P, Möller HM, Hartlieb M, Glebe U. Application of Sortase-Mediated Ligation for the Synthesis of Block Copolymers and Protein-Polymer Conjugates. Macromol Biosci 2024:e2400316. [PMID: 39360589 DOI: 10.1002/mabi.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Sortase-mediated ligation (SML) has become a powerful tool for site-specific protein modification. However, sortase A (SrtA) suffers from low catalytic efficiency and mediates an equilibrium reaction. Therefore, ligations with large macromolecules may be challenging. Here, the synthesis of polymeric building blocks for sortase-mediated ligation constituting peptide-polymers with either the recognition sequence for sortase A (LPX1TGX2) or its nucleophilic counterpart (Gx) is demonstrated. The peptide-polymers are synthesized by solid-phase peptide synthesis followed by photo-iniferter (PI) reversible addition-fragmentation chain-transfer (RAFT) polymerization of various monomers. The building blocks are subsequently utilized to investigate possibilities and limitations when using macromolecules in SML. In particular, diblock copolymers are obtained even when using the orthogonal building blocks in equimolar ratio by exploiting a technique to shift the reaction equilibrium. However, ligations of two polymers can not be achieved when the degree of polymerization exceeds 100. Subsequently, C-terminal protein-polymer conjugates are synthesized. Several polymers are utilized that can replace the omnipresent polyethylene glycol (PEG) in future therapeutics. The conjugation is exemplified with a nanobody that is known for efficient neutralization of SARS-CoV-2. The study demonstrates a universal approach to polymer-LPX1TGX2 and Gx-polymer building blocks and gives insight into their application in SML.
Collapse
Affiliation(s)
- Johannes Martin
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Marcus Michaelis
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Saša Petrović
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Anne-Catherine Lehnen
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Yannic Müllers
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Petra Wendler
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Heiko M Möller
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Liu G, Gao F, Yang X, Zhang J, Yang S, Li Y, Liu L. Aggregation-induced emission for the detection of peptide ligases with improving ligation efficiency. Anal Chim Acta 2023; 1284:341994. [PMID: 37996157 DOI: 10.1016/j.aca.2023.341994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Monitoring peptide ligase activity is of great significance for biological research, medical diagnosis, and drug discovery. The current methods for the detection of peptide ligases suffer from the limitations of high background signal, elaborate design of substrate, and high reversibility of ligation reaction. In this work, we proposed a simple and sensitive method for ligase detection with reducing ligation reversibility on the basis of aggregation-induced emission (AIE) mechanism. RESULTS The peptide probes labeled with AIE luminogens (AIEgens) were water-soluble and emitted weak fluorescence. After ligation reaction, the enzymatic products with AIEgens showed high hydrophobicity and could readily assembly into aggregates, thus lighting up the fluorescence. More interestingly, the formation of aggregates pushed the equilibrium to the generation of the desired ligation products, thus improving the catalytic efficiency by driving the reaction towards completion. The ligation reaction conversion rate (>80 %) is significantly higher than that without blocking the reversibility with additional treatment. With sortase A (SrtA) as the analyte example, the detection limit of this method was found to be 0.01 nM with a linear range of 0-50 nM. The system was applied to evaluate the inhibition efficiency of berberine chloride and quercetin and determine the activity of SrtA in serum, lysate and Staphylococcus aureus with satisfactory results. SIGNIFICANCE This study indicated that the ligation efficiency and detection sensitivity can be improved by reducing ligation reversibility through AIE phenomenon. The proposed strategy could be used for the detection of other peptide ligases by adopting sequence-specific peptide substrates.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Jingyi Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Suling Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
3
|
Tian L, Wang L, Yang F, Zhou T, Jiang H. Exploring the modulatory impact of isosakuranetin on Staphylococcus aureus: Inhibition of sortase A activity and α-haemolysin expression. Virulence 2023; 14:2260675. [PMID: 37733916 PMCID: PMC10543341 DOI: 10.1080/21505594.2023.2260675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
The ubiquity of methicillin-resistant Staphylococcus aureus (MRSA) and the mounting prevalence of antibiotic resistance necessitate the identification of novel therapeutic approaches to reduce the selective pressure of antibiotics. Targeting bacterial virulence factors, such as the pivotal Sortase A (SrtA) in S. aureus for adhesion and invasion, and the salient toxin α-Hemolysin (Hla), offers a sophisticated approach to attenuate pathogenicity without bacterial elimination. Herein, we report the discovery of a flavonoid, isosakuranetin, which inhibits the activity of S. aureus SrtA. A fluorescence resonance energy transfer assay revealed that isosakuranetin exhibited a low IC50 of 21.20 μg/mL. Furthermore, isosakuranetin significantly inhibited SrtA-related virulence properties, such as bacterial adhesion to fibrinogen, biofilm formation, and invasion of A549 cells. We employed fluorescence quenching and molecular docking to determine the interactions between isosakuranetin and SrtA, revealing the key amino acid sites for binding. Importantly, isosakuranetin inhibited the haemolytic activity of S. aureus in vitro at a concentration of 32 μg/mL. Moreover, isosakuranetin effectively suppressed the transcription and expression of Hla in a dose-dependent manner and regulated the transcription of RNAIII, the upstream operator of Hla. Notably, isosakuranetin demonstrated in vivo efficacy in a mouse model of S. aureus-induced pneumonia by significantly improving survival rates and reducing lung damage. This is a valuable finding, as isosakuranetin's dual inhibitory effects on SrtA and haemolytic activity, as well as its anti-virulence activity against MRSA, make it an excellent candidate for therapeutic development.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Chen F, Di H, Wang Y, Peng C, Chen R, Pan H, Yang CG, Liang H, Lan L. The enzyme activity of sortase A is regulated by phosphorylation in Staphylococcus aureus. Virulence 2023; 14:2171641. [PMID: 36694285 PMCID: PMC9928477 DOI: 10.1080/21505594.2023.2171641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In many Gram-positive bacteria, the transpeptidase enzyme sortase A (SrtA) anchors surface proteins to cell wall and plays a critical role in the bacterial pathogenesis. Here, we show that in Staphylococcus aureus, an important human pathogen, the SrtA is phosphorylated by serine/threonine protein kinase Stk1. S. aureus SrtA can also be phosphorylated by small-molecule phosphodonor acetyl phosphate (AcP) in vitro. We determined that various amino acid residues of S. aureus SrtA are subject to phosphorylation, primarily on its catalytic site residue cysteine-184 in the context of a bacterial cell lysate. Both Stk1 and AcP-mediated phosphorylation inhibited the enzyme activity of SrtA in vitro. Consequently, deletion of gene (i.e. stp1) encoding serine/threonine phosphatase Stp1, the corresponding phosphatase of Stk1, caused an increase in the phosphorylation level of SrtA. The stp1 deletion mutant mimicked the phenotypic traits of srtA deletion mutant (i.e. attenuated growth where either haemoglobin or haem as a sole iron source and reduced liver infections in a mouse model of systemic infection). Importantly, the phenotypic defects of the stp1 deletion mutant can be alleviated by overexpressing srtA. Taken together, our finding suggests that phosphorylation plays an important role in modulating the activity of SrtA in S. aureus.
Collapse
Affiliation(s)
- Feifei Chen
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongxia Di
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Rongrong Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China,Haihua Liang School of Medicine Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Lefu Lan
| |
Collapse
|
5
|
Jia X, Chin YKY, Zhang AH, Crawford T, Zhu Y, Fletcher NL, Zhou Z, Hamilton BR, Stroet M, Thurecht KJ, Mobli M. Self-cyclisation as a general and efficient platform for peptide and protein macrocyclisation. Commun Chem 2023; 6:48. [PMID: 36871076 PMCID: PMC9985607 DOI: 10.1038/s42004-023-00841-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Macrocyclisation of proteins and peptides results in a remarkable increase in structural stability, making cyclic peptides and proteins of great interest in drug discovery-either directly as drug leads or as in the case of cyclised nanodiscs (cNDs), as tools for studies of trans-membrane receptors and membrane-active peptides. Various biological methods have been developed that are capable of yielding head-to-tail macrocyclised products. Recent advances in enzyme-catalysed macrocyclisation include discovery of new enzymes or design of new engineered enzymes. Here, we describe the engineering of a self-cyclising "autocyclase" protein, capable of performing a controllable unimolecular reaction for generation of cyclic biomolecules in high yield. We characterise the self-cyclisation reaction mechanism, and demonstrate how the unimolecular reaction path provides alternative avenues for addressing existing challenges in enzymatic cyclisation. We use the method to produce several notable cyclic peptides and proteins, demonstrating how autocyclases offer a simple, alternative way to access a vast diversity of macrocyclic biomolecules.
Collapse
Affiliation(s)
- Xinying Jia
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Yanni K-Y Chin
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alan H Zhang
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Theo Crawford
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yifei Zhu
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zihan Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Martin Stroet
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
A novel strategy for designing the antioxidant and adhesive bifunctional protein using the Lactobacillus strain-derived LPxTG motif structure. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev 2022; 51:4121-4145. [PMID: 35510539 PMCID: PMC9126251 DOI: 10.1039/d0cs01148g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases. We highlight chemical and biochemical strategies taken to optimise peptide and protein modification using peptide ligases.![]()
Collapse
Affiliation(s)
- Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Zhang CH, Shao XX, Wang XB, Shou LL, Liu YL, Xu ZG, Guo ZY. Development of a general bioluminescent activity assay for peptide ligases. FEBS J 2022; 289:5241-5258. [PMID: 35239242 DOI: 10.1111/febs.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
In recent years, some peptide ligases have been identified, such as bacterial sortases and certain plant asparaginyl or prolyl endopeptidases. Peptide ligases have wide applications in protein labelling and cyclic peptide synthesis. To characterize various known peptide ligases or identify new ones, we propose a general bioluminescent activity assay via the genetic fusion of a recognition motif of peptide ligase(s) to the C-terminus of an inactive large NanoLuc fragment (LgBiT) and the chemical introduction of a nucleophilic motif preferred by the peptide ligase(s) to the N-terminus of the low-affinity SmBiT complementation tag. After the inactive ligation version LgBiT protein was ligated with the low-affinity ligation version SmBiT tag by the expected peptide ligase(s), its luciferase activity would be restored and could be quantified sensitively according to the measured bioluminescence. In the present study, we first validated the bioluminescent activity assay using bacterial sortase A and plant-derived butelase-1. Subsequently, we screened novel peptide ligases from crude extracts of selected plants using two LgBiT-SmBiT ligation pairs. Among 80 common higher plants, we identified that five of them likely express asparaginyl endopeptidase-type peptide ligase and four of them likely express prolyl endopeptidase-type peptide ligase, suggesting that peptide ligases are not so rare in higher plants and more of them await discovery. The present bioluminescent activity assay is ultrasensitive, convenient for use, and resistant to protease interference, and thus would have wide applications for characterizing known peptide ligases or screening new ones from various sources in future studies.
Collapse
Affiliation(s)
- Cong-Hui Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Bo Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Gao M, Johnson DA, Piper IM, Kodama HM, Svendsen JE, Tahti E, Longshore‐Neate F, Vogel B, Antos JM, Amacher JF. Structural and biochemical analyses of selectivity determinants in chimeric Streptococcus Class A sortase enzymes. Protein Sci 2022; 31:701-715. [PMID: 34939250 PMCID: PMC8862441 DOI: 10.1002/pro.4266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/22/2023]
Abstract
Sequence variation in related proteins is an important characteristic that modulates activity and selectivity. An example of a protein family with a large degree of sequence variation is that of bacterial sortases, which are cysteine transpeptidases on the surface of gram-positive bacteria. Class A sortases are responsible for attachment of diverse proteins to the cell wall to facilitate environmental adaption and interaction. These enzymes are also used in protein engineering applications for sortase-mediated ligations (SML) or sortagging of protein targets. We previously investigated SrtA from Streptococcus pneumoniae, identifying a number of putative β7-β8 loop-mediated interactions that affected in vitro enzyme function. We identified residues that contributed to the ability of S. pneumoniae SrtA to recognize several amino acids at the P1' position of the substrate motif, underlined in LPXTG, in contrast to the strict P1' Gly recognition of SrtA from Staphylococcus aureus. However, motivated by the lack of a structural model for the active, monomeric form of S. pneumoniae SrtA, here, we expanded our studies to other Streptococcus SrtA proteins. We solved the first monomeric structure of S. agalactiae SrtA which includes the C-terminus, and three others of β7-β8 loop chimeras from S. pyogenes and S. agalactiae SrtA. These structures and accompanying biochemical data support our previously identified β7-β8 loop-mediated interactions and provide additional insight into their role in Class A sortase substrate selectivity. A greater understanding of individual SrtA sequence and structural determinants of target selectivity may also facilitate the design or discovery of improved sortagging tools.
Collapse
Affiliation(s)
- Melody Gao
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - D. Alex Johnson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Isabel M. Piper
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Hanna M. Kodama
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Justin E. Svendsen
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Elise Tahti
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | - Brandon Vogel
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - John M. Antos
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
10
|
Berguer PM, Blaustein M, Bredeston LM, Craig PO, D’Alessio C, Elias F, Farré PC, Fernández NB, Gentili HG, Gándola YB, Gasulla J, Gudesblat GE, Herrera MG, Ibañez LI, Idrovo-Hidalgo T, Nadra AD, Noseda DG, Paván CH, Pavan MF, Pignataro MF, Roman EA, Ruberto LAM, Rubinstein N, Sanchez MV, Santos J, Wetzler DE, Zelada AM. Covalent coupling of Spike's receptor binding domain to a multimeric carrier produces a high immune response against SARS-CoV-2. Sci Rep 2022; 12:692. [PMID: 35027583 PMCID: PMC8758758 DOI: 10.1038/s41598-021-03675-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
Abstract
The receptor binding domain (RBD) of the Spike protein from SARS-CoV-2 is a promising candidate to develop effective COVID-19 vaccines since it can induce potent neutralizing antibodies. We have previously reported the highly efficient production of RBD in Pichia pastoris, which is structurally similar to the same protein produced in mammalian HEK-293T cells. In this work we designed an RBD multimer with the purpose of increasing its immunogenicity. We produced multimeric particles by a transpeptidation reaction between RBD expressed in P. pastoris and Lumazine Synthase from Brucella abortus (BLS), which is a highly immunogenic and very stable decameric 170 kDa protein. Such particles were used to vaccinate mice with two doses 30 days apart. When the particles ratio of RBD to BLS units was high (6-7 RBD molecules per BLS decamer in average), the humoral immune response was significantly higher than that elicited by RBD alone or by RBD-BLS particles with a lower RBD to BLS ratio (1-2 RBD molecules per BLS decamer). Remarkably, multimeric particles with a high number of RBD copies elicited a high titer of neutralizing IgGs. These results indicate that multimeric particles composed of RBD covalent coupled to BLS possess an advantageous architecture for antigen presentation to the immune system, and therefore enhancing RBD immunogenicity. Thus, multimeric RBD-BLS particles are promising candidates for a protein-based vaccine.
Collapse
|
11
|
Alharthi S, Ziora ZM, Moyle PM. Optimized protocols for assessing libraries of poorly soluble sortase A inhibitors for antibacterial activity against medically-relevant bacteria, toxicity and enzyme inhibition. Bioorg Med Chem 2021; 52:116527. [PMID: 34839159 DOI: 10.1016/j.bmc.2021.116527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Increasing antimicrobial resistance is a major global health concern. Conventional antibiotics apply selection pressures, which promote the accumulation of resistant microbes. Anti-virulence strategies, in contrast, are less potent antimicrobials, but are less likely to select for resistance, can be combined with existing antibiotics to improve their activity, and in some cases can overcome antimicrobial resistance towards other antimicrobials. Sortase A inhibitors (SrtAIs) represent an exciting example of this class; however, many reported examples demonstrate poor water solubility, which complicates their biological assessment and activity. This includes reports that use antimicrobial concentrations of organic solvents or conditions that fail to solubilise these compounds for minimal inhibitory concentration (MIC) assessments. Herein, we report the first study to optimise screening processes for a library of prospective SrtAIs (trans-chalcone (TC), berberine (BR), curcumin (CUR), and quercetin (QC)), including comparative assessment of the effects of various co-solvent concentrations, along with comparative assessment of their antimicrobial activities against multiple disease relevant bacterial strains (methicillin-sensitive and resistant S. aureus, E. coli, and P. aeruginosa), inhibition of the sortase A enzyme, and toxicity towards mammalian cells (HEK-293), using these optimised conditions. Optimal solubility with minimal effect on bacterial viability was observed in the presence of 5% (v/v) dimethyl sulfoxide (DMSO)-Mueller-Hinton Broth. Three antimicrobial susceptibility tests (broth microdilution, agar dilution, and disk diffusion) were assessed for their ability to accurately determine minimal inhibitory concentration (MIC) data for each SrtAI. Broth microdilution and agar dilution were both effective; however, the broth microdilution assay required the addition of a colorimetric metabolic indicator (resazurin) to enable simple and reliable MIC determination due to the development of precipitants over time. In contrast, disk diffusion did not provide reliable zone of inhibition data. Identical MIC data was observed with methicillin-sensitive and -resistant S. aureus (MRSA; ATCC43300), with lower potency activity against E. coli and P. aeruginosa. Under these conditions, TC and CUR demonstrated significant toxicity towards human embryonic kidney (HEK-293) cells, with QC showing less toxicity and BR limited-to-no toxicity at its MIC. Overall, the findings of this work provide optimised processes, which will prove useful for the study of other poorly soluble antimicrobial agents and SrtAIs. The obtained data suggests that BR should be considered in preference to the other SrtAIs for the development of new antimicrobial formulations, based on its superior antimicrobial and SrtA inhibition potency, and greatly reduced toxicity.
Collapse
Affiliation(s)
- Sitah Alharthi
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Zyta Maria Ziora
- Institute for Molecular Bioscience, the University of Queensland, St Lucia 4072, Queensland, Australia
| | - Peter Michael Moyle
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba 4102, Queensland, Australia.
| |
Collapse
|
12
|
N Vijayan A, Refaei MA, Silva RN, Tsang P, Zhang P. Detection of Sortase A and Identification of Its Inhibitors by Paramagnetic Nanoparticle-Assisted Nuclear Relaxation. Anal Chem 2021; 93:15430-15437. [PMID: 34757710 DOI: 10.1021/acs.analchem.1c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sortase A is a virulence factor responsible for the attachment of surface proteins to Staphylococcus aureus and other Gram-positive bacteria. Inhibitors of this enzyme are potential anti-infective agents. Herein, a new highly selective magnetic relaxation-based method for screening potential sortase A inhibitors is described. A 13-amino acid-long peptide substrate of sortase A is conjugated to SiO2-EDTA-Gd NPs. In the presence of sortase A, the LPXTG motif on the peptide strand is cleaved resulting in a shortened peptide as well as a reduced water T2 value whose magnitude is dependent on the concentration of sortase A. The detection limit is determined to be 76 pM. In contrast, the presence of sortase A inhibitors causes the T2 to remain at a higher value. The proposed method is used to characterize inhibition of sortase A by curcumin and 4-(hydroxymercuri)benzoic acid with an IC50 value of 12.9 ± 1.6 μM and 130 ± 1.76 μM, respectively. Furthermore, this method was successfully applied to detect sortase A activity in bacterial suspensions. The feasibility to screen different inhibitors in Escherichia coli and S. aureus suspensions was demonstrated. This method is fast and potentially useful to rapidly screen possible inhibitors of sortase A in bacterial suspensions, thereby aiding in the development of antibacterial agents targeting Gram-positive bacteria.
Collapse
Affiliation(s)
- Anjaly N Vijayan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Mary Anne Refaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Rebecca N Silva
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Pearl Tsang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
13
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
14
|
Sapra R, Rajora AK, Kumar P, Maurya GP, Pant N, Haridas V. Chemical Biology of Sortase A Inhibition: A Gateway to Anti-infective Therapeutic Agents. J Med Chem 2021; 64:13097-13130. [PMID: 34516107 DOI: 10.1021/acs.jmedchem.1c00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is the leading cause of hospital-acquired infections. The enzyme sortase A, present on the cell surface of S. aureus, plays a key role in bacterial virulence without affecting the bacterial viability. Inhibition of sortase A activity offers a powerful but clinically less explored therapeutic strategy, as it offers the possibility of not inducing any selective pressure on the bacteria to evolve drug-resistant strains. In this Perspective, we offer a chemical space narrative for the design of sortase A inhibitors, as delineated into three broad domains: peptidomimetics, natural products, and synthetic small molecules. This provides immense opportunities for medicinal chemists to alleviate the ever-growing crisis of antibiotic resistance.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Amit K Rajora
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pushpendra Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Govind P Maurya
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nalin Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
15
|
Artim CM, Kunala M, O'Leary MK, Alabi CA. PEGylated Oligothioetheramide Prodrugs Activated by Host Serum Proteases. Chembiochem 2021; 22:2697-2702. [PMID: 34227209 PMCID: PMC8497000 DOI: 10.1002/cbic.202100146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/03/2021] [Indexed: 11/08/2022]
Abstract
Due to the increasing prominence of antibiotic resistance, novel drug discovery and delivery approaches targeting bacteria are essential. In this work we evaluate a prodrug design to improve the cytotoxic profile of polycationic oligothioetheramides (oligoTEAs), which are promising antimicrobials. Herein we chemically modify the oligoTEA, PDT-4G, with a polyethylene glycol (PEG) and show that 1, 2, and 5 kDa PEGs mitigate cytotoxicity. As PEGylation reduces antibacterial activity, we evaluate two peptide linkers which, unlike oligoTEAs, are susceptible to proteolytic cleavage in serum. To gain insight into the prodrug reactivation, two linkers were tested, the 5-residue peptide sequence LMPTG, and the dipeptide sequence VC-PABC. In the presence of 20 % serum, prodrugs made with the VC-PABC linker successfully inhibited bacterial growth. Overall, we observed reactivation of oligoTEAs facilitated by serum protease cleavage of the peptide linkers. This work opens the door to the future design of antimicrobial prodrugs with tunable release profiles.
Collapse
Affiliation(s)
- Christine M Artim
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | - Manisha Kunala
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | - Meghan K O'Leary
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Bolzati C, Spolaore B. Enzymatic Methods for the Site-Specific Radiolabeling of Targeting Proteins. Molecules 2021; 26:3492. [PMID: 34201280 PMCID: PMC8229434 DOI: 10.3390/molecules26123492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Site-specific conjugation of proteins is currently required to produce homogenous derivatives for medicine applications. Proteins derivatized at specific positions of the polypeptide chain can actually show higher stability, superior pharmacokinetics, and activity in vivo, as compared with conjugates modified at heterogeneous sites. Moreover, they can be better characterized regarding the composition of the derivatization sites as well as the conformational and activity properties. To this aim, several site-specific derivatization approaches have been developed. Among these, enzymes are powerful tools that efficiently allow the generation of homogenous protein-drug conjugates under physiological conditions, thus preserving their native structure and activity. This review will summarize the progress made over the last decade on the use of enzymatic-based methodologies for the production of site-specific labeled immunoconjugates of interest for nuclear medicine. Enzymes used in this field, including microbial transglutaminase, sortase, galactosyltransferase, and lipoic acid ligase, will be overviewed and their recent applications in the radiopharmaceutical field will be described. Since nuclear medicine can benefit greatly from the production of homogenous derivatives, we hope that this review will aid the use of enzymes for the development of better radio-conjugates for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, I-35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padua, Viale G. Colombo, 3, I-35131 Padova, Italy
| |
Collapse
|
17
|
Staphylococcal Infections: Host and Pathogenic Factors. Microorganisms 2021; 9:microorganisms9051080. [PMID: 34069873 PMCID: PMC8157358 DOI: 10.3390/microorganisms9051080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
|
18
|
Öztürk İ, Eraç Y, Ballar Kırmızibayrak P, Ermertcan Ş. Nonsteroidal antiinflammatory drugs alter antibiotic susceptibility and expression of virulence-related genes and protein A of Staphylococcus aureus. Turk J Med Sci 2021; 51:835-847. [PMID: 33078603 PMCID: PMC8203164 DOI: 10.3906/sag-2003-60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022] Open
Abstract
Background/aim Nonsteroidal antiinflammatory drugs (NSAIDs) including diclofenac, naproxen, ibuprofen, acetylsalicylic acid, and acetaminophen have been shown to have antimicrobial effects on various microorganisms. The aim of this study was to investigate the antibacterial effects of NSAIDs on
Staphylococcus aureus
. Materials and methods Susceptibilities of
S. aureus
strains to NSAIDs with or without antimicrobials (moxifloxacin, vancomycin, ciprofloxacin, clindamycin, and gentamicin) were determined using the microdilution method and disk diffusion test. Expression levels of genes in the presence of drugs were investigated by real-time quantitative RT-PCR (qRT-PCR), and immunoblotting analysis was performed for staphylococcal protein A (SpA). Results Our results showed that all NSAIDs were active against
S. aureus
strains with MIC values ranging from 195 µg/mL to 6250 µg/mL. NSAIDs increased the antibiotic susceptibility of the strains, and diclofenac was found to be more effective than the other drugs. Drugs showed different effects on expression levels of virulence factor and/or regulatory genes. Immunoblotting analysis of SpA protein was mostly in accordance with qRT-PCR results. Conclusion The regulatory/virulence factor genes and proteins of
S. aureus
investigated in this study may be reasonable targets for these drugs, and we suggest that the data may contribute to the field of infection control and antimicrobial resistance.
Collapse
Affiliation(s)
- İsmail Öztürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Yasemin Eraç
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | - Şafak Ermertcan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| |
Collapse
|
19
|
Tian T, Zhao J, Wang Y, Li B, Qiao L, Zhang K, Liu B. Transpeptidation-mediated single-particle imaging assay for sensitive and specific detection of sortase with dark-field optical microscopy. Biosens Bioelectron 2021; 178:113003. [PMID: 33486157 DOI: 10.1016/j.bios.2021.113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
Transpeptidation of surface proteins catalyzed by the transpeptidase sortase plays a critical role in the infection process of Gram-positive pathogen. Monitoring sortase activity and screening its inhibitors are of great significance to fundamental understanding of the infection mechanism and pharmaceutical development. Herein, we developed a digital single-particle imaging method to quantify sortase A (SrtA) activity based on transpeptidation-mediated assembly and enumeration of gold nanoparticles (GNPs). The assay utilizes two peptide stands, in which one has the SrtA recognition sequence LPXTG motif while the other carries an oligoglycine nucleophile at the one end and a biotin group at the other. The presence of SrtA enables the ligation of two peptides and allows for the immobilization of streptavidin-functionalized GNPs. Thus, SrtA activity can be quantified by imaging and enumeration of the surface-assembled GNPs at the single-particle level via dark-field microscopy. The single-particle method was highly sensitive to SrtA activity with a low detection limit of 7.9 pM and a wide linear dynamic range from 0.05 to 50 nM. Besides detection of SrtA in complex biological samples such as Gram-positive pathogen lysates, the proposed method was also successfully applied to estimate the half-maximal inhibitory concentration (IC50) values of SrtA inhibitors (curcumin, berberine hydrochloride and quercetin). The present method, combining single-GNP counting and dark-field imaging, provides a facile and novel analytical tool for SrtA activity and its inhibitor screening.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jinzhi Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Yuning Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Kun Zhang
- Department of Neurosurgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, PR China.
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
20
|
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 2020; 10:42457-42492. [PMID: 35516773 PMCID: PMC9057961 DOI: 10.1039/d0ra07204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Solid-phase peptide synthesis (SPPS) is generally the method of choice for the chemical synthesis of peptides, allowing routine synthesis of virtually any type of peptide sequence, including complex or cyclic peptide products. Importantly, SPPS can be automated and is scalable, which has led to its widespread adoption in the pharmaceutical industry, and a variety of marketed peptide-based drugs are now manufactured using this approach. However, SPPS-based synthetic strategies suffer from a negative environmental footprint mainly due to extensive solvent use. Moreover, most of the solvents used in peptide chemistry are classified as problematic by environmental agencies around the world and will soon need to be replaced, which in recent years has spurred a movement in academia and industry to make peptide synthesis greener. These efforts have been centred around solvent substitution, recycling and reduction, as well as exploring alternative synthetic methods. In this review, we focus on methods pertaining to solvent substitution and reduction with large-scale industrial production in mind, and further outline emerging technologies for peptide synthesis. Specifically, the technical requirements for large-scale manufacturing of peptide therapeutics are addressed.
Collapse
Affiliation(s)
- Vincent Martin
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Peter H G Egelund
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Henrik Johansson
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | | | - Felix Wojcik
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Daniel Sejer Pedersen
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| |
Collapse
|
21
|
Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest Hits-Innovative Technologies for High Throughput Identification of Bispecific Antibodies. Int J Mol Sci 2020; 21:E6551. [PMID: 32911608 PMCID: PMC7554978 DOI: 10.3390/ijms21186551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent years have shown a tremendous increase and diversification in antibody-based therapeutics with advances in production techniques and formats. The plethora of currently investigated bi- to multi-specific antibody architectures can be harnessed to elicit a broad variety of specific modes of actions in oncology and immunology, spanning from enhanced selectivity to effector cell recruitment, all of which cannot be addressed by monospecific antibodies. Despite continuously growing efforts and methodologies, the identification of an optimal bispecific antibody as the best possible combination of two parental monospecific binders, however, remains challenging, due to tedious cloning and production, often resulting in undesired extended development times and increased expenses. Although automated high throughput screening approaches have matured for pharmaceutical small molecule development, it was only recently that protein bioconjugation technologies have been developed for the facile generation of bispecific antibodies in a 'plug and play' manner. In this review, we provide an overview of the most relevant methodologies for bispecific screening purposes-the DuoBody concept, paired light chain single cell production approaches, Sortase A and Transglutaminase, the SpyTag/SpyCatcher system, and inteins-and elaborate on the benefits as well as drawbacks of the different technologies.
Collapse
Affiliation(s)
- Tim Hofmann
- Advanced Cell Culture Technologies, Merck Life Sciences KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany;
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| |
Collapse
|
22
|
Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H. Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible With Screening Technologies. Front Chem 2020; 8:447. [PMID: 32626683 PMCID: PMC7314982 DOI: 10.3389/fchem.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Backbone macrocyclic structures are often found in diverse bioactive peptides and contribute to greater conformational rigidity, peptidase resistance, and potential membrane permeability compared to their linear counterparts. Therefore, such peptide scaffolds are an attractive platform for drug-discovery endeavors. Recent advances in synthetic methods for backbone macrocyclic peptides have enabled the discovery of novel peptide drug candidates against diverse targets. Here, we overview recent technical advancements in the synthetic methods including 1) enzymatic synthesis, 2) chemical synthesis, 3) split-intein circular ligation of peptides and proteins (SICLOPPS), and 4) in vitro translation system combined with genetic code reprogramming. We also discuss screening methodologies compatible with those synthetic methodologies, such as one-beads one-compound (OBOC) screening compatible with the synthetic method 2, cell-based assay compatible with 3, limiting-dilution PCR and mRNA display compatible with 4.
Collapse
Affiliation(s)
| | | | | | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Sue CK, McConnell SA, Ellis-Guardiola K, Muroski J, McAllister RA, Yu J, Alvarez AI, Chang C, Ogorzalek Loo RR, Loo JA, Ton-That H, Clubb RT. Kinetics and Optimization of the Lysine-Isopeptide Bond Forming Sortase Enzyme from Corynebacterium diphtheriae. Bioconjug Chem 2020; 31:1624-1634. [PMID: 32396336 PMCID: PMC8153732 DOI: 10.1021/acs.bioconjchem.0c00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Site-specifically modified protein bioconjugates have important applications in biology, chemistry, and medicine. Functionalizing specific protein side chains with enzymes using mild reaction conditions is of significant interest, but remains challenging. Recently, the lysine-isopeptide bond forming activity of the sortase enzyme that builds surface pili in Corynebacterium diphtheriae (CdSrtA) has been reconstituted in vitro. A mutationally activated form of CdSrtA was shown to be a promising bioconjugating enzyme that can attach Leu-Pro-Leu-Thr-Gly peptide fluorophores to a specific lysine residue within the N-terminal domain of the SpaA protein (NSpaA), enabling the labeling of target proteins that are fused to NSpaA. Here we present a detailed analysis of the CdSrtA catalyzed protein labeling reaction. We show that the first step in catalysis is rate limiting, which is the formation of the CdSrtA-peptide thioacyl intermediate that subsequently reacts with a lysine ε-amine in NSpaA. This intermediate is surprisingly stable, limiting spurious proteolysis of the peptide substrate. We report the discovery of a new enzyme variant (CdSrtAΔ) that has significantly improved transpeptidation activity, because it completely lacks an inhibitory polypeptide appendage ("lid") that normally masks the active site. We show that the presence of the lid primarily impairs formation of the thioacyl intermediate and not the recognition of the NSpaA substrate. Quantitative measurements reveal that CdSrtAΔ generates its cross-linked product with a catalytic turnover number of 1.4 ± 0.004 h-1 and that it has apparent KM values of 0.16 ± 0.04 and 1.6 ± 0.3 mM for its NSpaA and peptide substrates, respectively. CdSrtAΔ is 7-fold more active than previously studied variants, labeling >90% of NSpaA with peptide within 6 h. The results of this study further improve the utility of CdSrtA as a protein labeling tool and provide insight into the enzyme catalyzed reaction that underpins protein labeling and pilus biogenesis.
Collapse
Affiliation(s)
- Christopher K. Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Scott A. McConnell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - John Muroski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Rachel A. McAllister
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Justin Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Ana I. Alvarez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Chungyu Chang
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Hung Ton-That
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| |
Collapse
|
24
|
Gosschalk JE, Chang C, Sue CK, Siegel SD, Wu C, Kattke MD, Yi SW, Damoiseaux R, Jung ME, Ton-That H, Clubb RT. A Cell-based Screen in Actinomyces oris to Identify Sortase Inhibitors. Sci Rep 2020; 10:8520. [PMID: 32444661 PMCID: PMC7244523 DOI: 10.1038/s41598-020-65256-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Sortase enzymes are attractive antivirulence drug targets that attach virulence factors to the surface of Staphylococcus aureus and other medically significant bacterial pathogens. Prior efforts to discover a useful sortase inhibitor have relied upon an in vitro activity assay in which the enzyme is removed from its native site on the bacterial surface and truncated to improve solubility. To discover inhibitors that are effective in inactivating sortases in vivo, we developed and implemented a novel cell-based screen using Actinomyces oris, a key colonizer in the development of oral biofilms. A. oris is unique because it exhibits sortase-dependent growth in cell culture, providing a robust phenotype for high throughput screening (HTS). Three molecules representing two unique scaffolds were discovered by HTS and disrupt surface protein display in intact cells and inhibit enzyme activity in vitro. This represents the first HTS for sortase inhibitors that relies on the simple metric of cellular growth and suggests that A. oris may be a useful platform for discovery efforts targeting sortase.
Collapse
Affiliation(s)
- Jason E Gosschalk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sara D Siegel
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Michele D Kattke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.,California NanoSystems Institute, University of California, Los Angeles, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA. .,Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA. .,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA. .,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Reed SA, Brzovic DA, Takasaki SS, Boyko KV, Antos JM. Efficient Sortase-Mediated Ligation Using a Common C-Terminal Fusion Tag. Bioconjug Chem 2020; 31:1463-1473. [PMID: 32324377 PMCID: PMC7357393 DOI: 10.1021/acs.bioconjchem.0c00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sortase-mediated ligation is a powerful method for generating site-specifically modified proteins. However, this process is limited by the inherent reversibility of the ligation reaction. To address this, here we report the continued development and optimization of an experimentally facile strategy for blocking reaction reversibility. This approach, which we have termed metal-assisted sortase-mediated ligation (MA-SML), relies on the use of a solution additive (Ni2+) and a C-terminal tag (LPXTGGHH5) that is widely used for converting protein targets into sortase substrates. In a series of model systems utilizing a 1:1 molar ratio of sortase substrate and glycine amine nucleophile, we find that MA-SML consistently improves the extent of ligation. This enables the modification of proteins with fluorophores, PEG, and a bioorthogonal cyclooctyne moiety without the need to use precious reagents in excess. Overall, these results demonstrate the potential of MA-SML as a general strategy for improving reaction efficiency in a broad range of sortase-based protein engineering applications.
Collapse
Affiliation(s)
- Sierra A. Reed
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - David A. Brzovic
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - Savanna S. Takasaki
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - Kristina V. Boyko
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - John M. Antos
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| |
Collapse
|
26
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Xu Z, Moyle PM. A Self‐Adjuvanting Vaccine Platform: Optimization of Site‐Specific Sortase A Mediated Conjugation of Toll‐Like Receptor 2 Ligands onto the Carboxyl or Amino terminus of Recombinant Protein Antigens. Chempluschem 2020; 85:227-236. [DOI: 10.1002/cplu.201900687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zhenghui Xu
- Pharmacy Australia Centre of Excellence School of Pharmacy The University of Queensland 20 Cornwall St Woolloongabba QLD 4102 Australia
| | - Peter Michael Moyle
- Pharmacy Australia Centre of Excellence School of Pharmacy The University of Queensland 20 Cornwall St Woolloongabba QLD 4102 Australia
| |
Collapse
|
28
|
Semisynthetic, self-adjuvanting vaccine development: Efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group A streptococcal vaccine. J Control Release 2019; 317:96-108. [PMID: 31758971 DOI: 10.1016/j.jconrel.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
Abstract
Protein antigens are, in general, weakly immunogenic, and therefore require co-delivery with adjuvants to stimulate potent immune responses. The fusion of (poly)peptide antigens to immunostimulatory adjuvants (e.g. Toll-like receptor (TLR) agonists) has been demonstrated to greatly improve vaccine potency compared to mixtures of antigen and adjuvant. Chemical approaches, to enable the rapid, site-specific and high-yielding linkage of TLR2 ligands to recombinant protein antigens, have been previously optimized. These approaches require the use of denaturing conditions to ensure high reaction yields, which limits their application, as maintenance of native protein folding is necessary to elicit antibodies against conformational epitopes. Here, this work aimed to optimize an alternative method, to ensure the efficient bioconjugation of TLR2 ligands onto folded protein antigens. An enzyme-mediated approach, using Staphylococcus aureus sortase A (or a penta mutant with enhanced efficiency), was optimized for reaction yield and time, as well as enzyme type and amount. This approach enabled the site-specific conjugation of the TLR2-agonist fibroblast-stimulating lipopeptide-1 (FSL-1) onto a model group A Streptococcus (GAS) recombinant polytope antigen under conditions that maintain protein folding, yielding a homogeneous, molecularly-defined product, with ligation yields as high as 90%. Following intramuscular (IM) administration of the ligation product to humanized plasminogen AlbPLG1 mice, high-titer, antigen-specific IgG antibodies were observed, which conferred protection against subcutaneous challenge with GAS strain 5448. In comparison, mixtures of the GAS antigen with aluminum hydroxide or FSL-1 failed to provide protection, with the FSL-1 mixture yielding ~1000-fold lower antigen-specific IgG antibody titers, and the mixture with alum yielding a Th2-biased response compared to the more balanced Th1/Th2 responses observed with the FSL-1 conjugate. Overall, a FSL-1 bioconjugation method for the efficient production of antigen-TLR2 agonist conjugates, which maintain protein folding, was produced, with broad utility for the development of self-adjuvanting vaccines against subunit protein antigens.
Collapse
|
29
|
Gu H, Ghosh S, Staples RJ, Bane SL. β-Hydroxy-Stabilized Boron-Nitrogen Heterocycles Enable Rapid and Efficient C-Terminal Protein Modification. Bioconjug Chem 2019; 30:2604-2613. [PMID: 31483610 DOI: 10.1021/acs.bioconjchem.9b00534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bioorthogonal chemistry has enabled the development of bioconjugates in physiological environments while averting interference from endogenous biomolecules. Reactions between carbonyl-containing molecules and alkoxyamines or hydrazines have experienced a resurgence in popularity in bioorthogonal chemistry owing to advances that allow the reactions to occur under physiological conditions. In particular, ortho-carbonyl-substituted phenylboronic acids (CO-PBAs) exhibit greatly accelerated rates of hydrazone and oxime formation via intramolecular Lewis acid catalysis. Unfortunately, the rate of the reverse reaction is also increased, yielding a kinetically less stable bioconjugate. When the substrate is a hydrazine derivative, an intramolecular reaction between the boronic acid and the hydrazone can lead to the formation of a heterocycle containing a boron-nitrogen bond. We have shown previously that α-amino hydrazides undergo rapid reaction with CO-PBAs to form highly stable, tricyclic products, and that this reaction is orthogonal to the popular azide-alkyne and tetrazine-alkene reactions. In this work, we explore a series of heteroatom-substituted hydrazides for their ability to form tricyclic products with two CO-PBAs, 2-formylphenylboronic acid (2fPBA), and 2-acetylphenylboronic acid (AcPBA). In particular, highly stable products were formed using β-hydroxy hydrazides and 2fPBA. C-Terminal β-hydroxy hydrazide proteins are available using conventional biochemical methods, which alleviates one of the difficulties with applications of bioorthogonal chemical reactions: site-specific incorporation of a reactive group into the biomolecular target. Using sortase-mediated ligation (SML), C-terminal threonine and serine hydrazides were appended to a model eGFP protein in high yield. Subsequent labeling with 2fPBA functionalized probes could be performed quickly and quantitatively at neutral pH using micromolar concentrations of reactants. The SML process was applied directly to an expressed protein in cellular extract, and the C-terminal modified target protein was selectively immobilized using 2fPBA-agarose. Elution from the agarose yielded a highly pure protein that retained the hydrazide functionality. This strategy should be generally applicable for rapid, efficient site-specific protein labeling, protein immobilization, and preparation of highly pure functionalized proteins.
Collapse
Affiliation(s)
- Han Gu
- Department of Chemistry , Binghamton University, State University of New York , Binghamton , New York 13902 , United States
| | - Saptarshi Ghosh
- Department of Chemistry , Binghamton University, State University of New York , Binghamton , New York 13902 , United States
| | - Richard J Staples
- Department of Chemistry and Chemical Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Susan L Bane
- Department of Chemistry , Binghamton University, State University of New York , Binghamton , New York 13902 , United States
| |
Collapse
|
30
|
Structural studies of Staphylococcus aureus Sortase inhibiton via Conus venom peptides. Arch Biochem Biophys 2019; 671:87-102. [DOI: 10.1016/j.abb.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
|
31
|
Anderl A, Ferlemann C, Muth M, Henkel-Gupalo A, Ebenig A, Brenner-Weiß G, Kolmar H, Fuchsbauer HL. Biochemical study of sortase E2 from Streptomyces mobaraensis and determination of transglutaminase cross-linking sites. FEBS Lett 2019; 593:1944-1956. [PMID: 31155711 DOI: 10.1002/1873-3468.13466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Distinct streptomycetes such as Streptomyces mobaraensis produce the protein cross-linking enzyme transglutaminase. Bioinformatic analysis predicted the occurrence of seven sortases exerting transpeptidation reactions similarly to transglutaminase. Here, we report the production and characterization of sortase E2 (Sm-SrtE2) solubilized by removal of its membrane anchor domain. Sm-SrtE2 activity was measured using pentapeptides predicted to be cell wall sorting signals of putative sortase substrate proteins. Preferred linkage to Gly3 by Sm-SrtE2 was in the order LAETG>>LAHTG>>LAQTG~LANTG>LARTG. Chaplin 1 from S. mobaraensis was further demonstrated to be an excellent substrate of both the intrinsic Sm-SrtE2 and transglutaminase. The unexpected discovery showing Gln-62 and Gln-65 of Δ1-50 -Sm-SrtE2 as transglutaminase cross-linking sites suggests that low enzyme stability might be due to anchor domain truncation and a disordered N terminus.
Collapse
Affiliation(s)
- Anita Anderl
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Cathrin Ferlemann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Marius Muth
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
| | - Antonina Henkel-Gupalo
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Aileen Ebenig
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Gerald Brenner-Weiß
- Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
| | - Harald Kolmar
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
32
|
Characterization of the housekeeping sortase from the human pathogen Propionibacterium acnes: first investigation of a class F sortase. Biochem J 2019; 476:665-682. [PMID: 30670573 DOI: 10.1042/bcj20180885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/17/2022]
Abstract
Sortase enzymes play an important role in Gram-positive bacteria. They are responsible for the covalent attachment of proteins to the surface of the bacteria and perform this task via a highly sequence-specific transpeptidation reaction. Since these immobilized proteins are often involved in pathogenicity of Gram-positive bacteria, characterization of this type of enzyme is also of medical relevance. Different classes of sortases (A-F) have been found, which recognize characteristic recognition sequences present in substrate proteins. Up to date, sortase A from Staphylococcus aureus, a housekeeping class A sortase, is the most thoroughly studied representative of the sortase family of enzymes. Here we report the in-depth characterization of the class F sortase from Propionibacterium acnes, a class of sortases that has not been investigated before. As Sortase F is the only transpeptidase found in the P. acnes genome, it is the housekeeping sortase of this organism. Sortase F from P. acnes shows a behavior similar to sortases from class A in terms of pH dependence, recognition sequence and catalytic activity; furthermore, its activity is independent of bivalent ions, which contrasts to sortase A from S. aureus We demonstrate that sortase F is useful for protein engineering applications, by producing a site-specifically conjugated homogenous antibody-drug conjugate with a potency similar to that of a conjugate prepared with sortase A. Thus, the detailed characterization presented here will not only enable the development of anti-virulence agents targeting P. acnes but also provides a powerful alternative to sortase A for protein engineering applications.
Collapse
|
33
|
Arkenberg MR, Moore DM, Lin CC. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Acta Biomater 2019; 83:83-95. [PMID: 30415064 PMCID: PMC6697659 DOI: 10.1016/j.actbio.2018.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Cell-laden hydrogels whose crosslinking density can be dynamically and reversibly tuned are highly sought-after for studying pathophysiological cellular fate processes, including embryogenesis, fibrosis, and tumorigenesis. Special efforts have focused on controlling network crosslinking in poly(ethylene glycol) (PEG) based hydrogels to evaluate the impact of matrix mechanics on cell proliferation, morphogenesis, and differentiation. In this study, we sought to design dynamic PEG-peptide hydrogels that permit cyclic/reversible stiffening and softening. This was achieved by utilizing reversible enzymatic reactions that afford specificity, biorthogonality, and predictable reaction kinetics. To that end, we prepared PEG-peptide conjugates to enable sortase A (SrtA) induced tunable hydrogel crosslinking independent of macromer contents. Uniquely, these hydrogels can be completely degraded by the same enzymatic reactions and the degradation rate can be tuned from hours to days. We further synthesized SrtA-sensitive peptide linker (i.e., KCLPRTGCK) for crosslinking with 8-arm PEG-norbornene (PEG8NB) via thiol-norbornene photocrosslinking. These hydrogels afford diverse softening paradigms through control of network structures during crosslinking or by adjusting enzymatic parameters during on-demand softening. Importantly, user-controlled hydrogel softening promoted spreading of human mesenchymal stem cells (hMSCs) in 3D. Finally, we designed a bis-cysteine-bearing linear peptide flanked with SrtA substrates at the peptide's N- and C-termini (i.e., NH2-GGGCKGGGKCLPRTG-CONH2) to enable cyclic/reversible hydrogel stiffening/softening. We show that matrix stiffening and softening play a crucial role in growth and chemoresistance in pancreatic cancer cells. These results represent the first dynamic hydrogel platform that affords cyclic gel stiffening/softening based on reversible enzymatic reactions. More importantly, the chemical motifs that affords such reversible crosslinking were built-in on the linear peptide crosslinker without any post-synthesis modification. STATEMENT OF SIGNIFICANCE: Cell-laden 'dynamic' hydrogels are typically designed to enable externally stimulated stiffening or softening of the hydrogel network. However, no enzymatic reaction has been used to reversibly control matrix crosslinking. The application of SrtA-mediated transpeptidation in crosslinking and post-gelation modification of biomimetic hydrogels is innovative because of the specificity of the reaction and reversible tunability of crosslinking kinetics. While SrtA has been previously used to crosslink and fully degrade hydrogels, matrix softening and reversible stiffening of cell-laden hydrogels has not been reported. By designing simple peptide substrates, this unique enzymatic reaction can be employed to form a primary network, to gradually soften hydrogels, or to reversibly stiffen hydrogels. As a result, this dynamic hydrogel platform can be used to answer important matrix-related biological questions that are otherwise difficult to address.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Dustin M Moore
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Wöll S, Bachran C, Schiller S, Schröder M, Conrad L, Scherließ R, Swee LK. Sortagging of liposomes with a murine CD11b-specific VHH increases in vitro and in vivo targeting specificity of myeloid cells. Eur J Pharm Biopharm 2019; 134:190-198. [DOI: 10.1016/j.ejpb.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
|
35
|
Goya Grocin A, Serwa RA, Morales Sanfrutos J, Ritzefeld M, Tate EW. Whole Proteome Profiling of N-Myristoyltransferase Activity and Inhibition Using Sortase A. Mol Cell Proteomics 2019; 18:115-126. [PMID: 30341083 PMCID: PMC6317481 DOI: 10.1074/mcp.ra118.001043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
N-myristoylation is the covalent addition of a 14-carbon saturated fatty acid (myristate) to the N-terminal glycine of specific protein substrates by N-myristoyltransferase (NMT) and plays an important role in protein regulation by controlling localization, stability, and interactions. We developed a novel method for whole-proteome profiling of free N-terminal glycines through labeling with S. Aureus sortase A (SrtA) and used it for assessment of target engagement by an NMT inhibitor. Analysis of the SrtA-labeling pattern with an engineered biotinylated depsipeptide SrtA substrate (Biotin-ALPET-Haa, Haa = 2-hydroxyacetamide) enabled whole proteome identification and quantification of de novo generated N-terminal Gly proteins in response to NMT inhibition by nanoLC-MS/MS proteomics, and was confirmed for specific substrates across multiple cell lines by gel-based analyses and ELISA. To achieve optimal signal over background noise we introduce a novel and generally applicable improvement to the biotin/avidin affinity enrichment step by chemically dimethylating commercial NeutrAvidin resin and combining this with two-step LysC on-bead/trypsin off-bead digestion, effectively eliminating avidin-derived tryptic peptides and enhancing identification of enriched peptides. We also report SrtA substrate specificity in whole-cell lysates for the first time, confirming SrtA promiscuity beyond its recognized preference for N-terminal glycine, and its usefulness as a tool for unbiased labeling of N-terminal glycine-containing proteins. Our new methodology is complementary to metabolic tagging strategies, providing the first approach for whole proteome gain-of signal readout for NMT inhibition in complex samples which are not amenable to metabolic tagging.
Collapse
Affiliation(s)
- Andrea Goya Grocin
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Remigiusz A Serwa
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Julia Morales Sanfrutos
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Markus Ritzefeld
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Edward W Tate
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK..
| |
Collapse
|
36
|
Cao T, Lv J, Zhang L, Yan G, Lu H. Selective Enrichment and Quantification of N-Terminal Glycine Peptides via Sortase A Mediated Ligation. Anal Chem 2018; 90:14303-14308. [DOI: 10.1021/acs.analchem.8b03562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
|
38
|
Zhang J, Wang M, Tang R, Liu Y, Lei C, Huang Y, Nie Z, Yao S. Transpeptidation-Mediated Assembly of Tripartite Split Green Fluorescent Protein for Label-Free Assay of Sortase Activity. Anal Chem 2018; 90:3245-3252. [DOI: 10.1021/acs.analchem.7b04756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Menglin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
39
|
Enzyme-Based Labeling Strategies for Antibody-Drug Conjugates and Antibody Mimetics. Antibodies (Basel) 2018; 7:antib7010004. [PMID: 31544857 PMCID: PMC6698867 DOI: 10.3390/antib7010004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
Strategies for site-specific modification of proteins have increased in number, complexity, and specificity over the last years. Such modifications hold the promise to broaden the use of existing biopharmaceuticals or to tailor novel proteins for therapeutic or diagnostic applications. The recent quest for next-generation antibody–drug conjugates (ADCs) sparked research into techniques with site selectivity. While purely chemical approaches often impede control of dosage or locus of derivatization, naturally occurring enzymes and proteins bear the ability of co- or post-translational protein modifications at particular residues, thus enabling unique coupling reactions or protein fusions. This review provides a general overview and focuses on chemo-enzymatic methods including enzymes such as formylglycine-generating enzyme, sortase, and transglutaminase. Applications for the conjugation of antibodies and antibody mimetics are reported.
Collapse
|
40
|
Xu AJ, Yang Y, Zhang CY. Transpeptidation-directed intramolecular bipartite tetracysteine display for sortase activity assay. Chem Commun (Camb) 2018; 54:8116-8119. [DOI: 10.1039/c8cc04495c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a simple, label-free and homogenous assay to quantitively evaluate SrtA-catalyzed transpeptidation reaction.
Collapse
Affiliation(s)
- Ai-jun Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yong Yang
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
- China
| | - Chun-Yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
41
|
Xu Z, Moyle PM. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands. Bioconjug Chem 2017; 29:572-586. [PMID: 28891637 DOI: 10.1021/acs.bioconjchem.7b00478] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional vaccines derived from attenuated or inactivated pathogens are effective at inducing antibody-based protective immune responses but tend to be highly reactogenic, causing notable adverse effects. Vaccines with superior safety profiles can be produced by subunit approaches, utilizing molecularly defined antigens (e.g., proteins and polysaccharides). These antigens, however, often elicit poor immunological responses, necessitating the use of adjuvants. Immunostimulatory adjuvants have the capacity to activate antigen presenting cells directly through specific receptors (e.g., Toll-like receptors (TLRs)), resulting in enhanced presentation of antigens as well as the secretion of proinflammatory chemokines and cytokines. Consequently, innate immune responses are amplified and adaptive immunity is generated. Recently, site-specific conjugation of such immunostimulatory adjuvants (e.g., TLR ligands) onto defined antigens has shown superior efficacy over unconjugated mixtures, suggesting that the development of chemically characterized immunostimulatory adjuvants and optimized approaches for their conjugation with antigens may provide a better opportunity for the development of potent, novel vaccines. This review briefly summarizes various TLR agonists utilized as immunostimulatory adjuvants and focuses on the development of techniques (e.g., recombinant, synthetic, and semisynthetic) for generating adjuvant-antigen fusion vaccines incorporating peptide or protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| | - Peter Michael Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| |
Collapse
|
42
|
Suliman M, Santosh V, Seegar TCM, Dalton AC, Schultz KM, Klug CS, Barton WA. Directed evolution provides insight into conformational substrate sampling by SrtA. PLoS One 2017; 12:e0184271. [PMID: 28859178 PMCID: PMC5578623 DOI: 10.1371/journal.pone.0184271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Sortase family of transpeptidases are found in numerous gram-positive bacteria and involved in divergent physiological processes including anchoring of surface proteins to the cell wall as well as pili assembly. As essential proteins, sortase enzymes have been the focus of considerable interest for the development of novel anti-microbials, however, more recently their function as unique transpeptidases has been exploited for the synthesis of novel bio-conjugates. Yet, for synthetic purposes, SrtA-mediated conjugation suffers from the enzyme's inherently poor catalytic efficiency. Therefore, to identify SrtA variants with improved catalytic efficiency, we used directed evolution to select a catalytically enhanced SrtA enzyme. An analysis of improved SrtA variants in the context of sequence conservation, NMR and x-ray crystal structures, and kinetic data suggests a novel mechanism for catalysis involving large conformational changes that delivers substrate to the active site pocket. Indeed, using DEER-EPR spectroscopy, we reveal that upon substrate binding, SrtA undergoes a large scissors-like conformational change that simultaneously translates the sort-tag substrate to the active site in addition to repositioning key catalytic residues for esterification. A better understanding of Sortase dynamics will significantly enhance future engineering and drug discovery efforts.
Collapse
Affiliation(s)
- Muna Suliman
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vishaka Santosh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tom C. M. Seegar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Annamarie C. Dalton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kathryn M. Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - William A. Barton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Jacobitz AW, Kattke MD, Wereszczynski J, Clubb RT. Sortase Transpeptidases: Structural Biology and Catalytic Mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:223-264. [PMID: 28683919 DOI: 10.1016/bs.apcsb.2017.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-positive bacteria use sortase cysteine transpeptidase enzymes to covalently attach proteins to their cell wall and to assemble pili. In pathogenic bacteria sortases are potential drug targets, as many of the proteins that they display on the microbial surface play key roles in the infection process. Moreover, the Staphylococcus aureus Sortase A (SaSrtA) enzyme has been developed into a valuable biochemical reagent because of its ability to ligate biomolecules together in vitro via a covalent peptide bond. Here we review what is known about the structures and catalytic mechanism of sortase enzymes. Based on their primary sequences, most sortase homologs can be classified into six distinct subfamilies, called class A-F enzymes. Atomic structures reveal unique, class-specific variations that support alternate substrate specificities, while structures of sortase enzymes bound to sorting signal mimics shed light onto the molecular basis of substrate recognition. The results of computational studies are reviewed that provide insight into how key reaction intermediates are stabilized during catalysis, as well as the mechanism and dynamics of substrate recognition. Lastly, the reported in vitro activities of sortases are compared, revealing that the transpeptidation activity of SaSrtA is at least 20-fold faster than other sortases that have thus far been characterized. Together, the results of the structural, computational, and biochemical studies discussed in this review begin to reveal how sortases decorate the microbial surface with proteins and pili, and may facilitate ongoing efforts to discover therapeutically useful small molecule inhibitors.
Collapse
Affiliation(s)
- Alex W Jacobitz
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States
| | - Michele D Kattke
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States
| | - Jeff Wereszczynski
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, United States
| | - Robert T Clubb
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States.
| |
Collapse
|
44
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Silvius JR, Leventis R. A Novel “Prebinding” Strategy Dramatically Enhances Sortase-Mediated Coupling of Proteins to Liposomes. Bioconjug Chem 2017; 28:1271-1282. [DOI: 10.1021/acs.bioconjchem.7b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John R. Silvius
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1A9
| | - Rania Leventis
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1A9
| |
Collapse
|
46
|
Raeeszadeh-Sarmazdeh M, Parthasarathy R, Boder ET. Fine-tuning sortase-mediated immobilization of protein layers on surfaces using sequential deprotection and coupling. Biotechnol Prog 2017; 33:824-831. [PMID: 28218499 DOI: 10.1002/btpr.2449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/08/2017] [Indexed: 12/23/2022]
Abstract
Increasing interest in protein immobilization on surfaces has heightened the need for techniques enabling layer-by-layer protein attachment. Here, we report a technique for controlling enzyme-mediated immobilization of layers of protein on the surface using a genetically encoded protecting group. An enterokinase-cleavable peptide sequence was inserted at the N-terminus of bifunctional fluorescent proteins containing Sortase A substrate recognition tags at both ends to control Sortase A-mediated protein immobilization on the surface layer-by-layer. Efficient, sequential immobilization of a second layer of protein using Sortase A required removal of the N-terminal protecting group, suggesting the method enables multilayer synthesis using cyclic deprotection and coupling steps. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:824-831, 2017.
Collapse
Affiliation(s)
| | | | - Eric T Boder
- Dept. of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996
| |
Collapse
|
47
|
Voloshchuk N, Chen L, Li Q, Liang JF. Peptide oligomers from ultra-short peptides using sortase. Biochem Biophys Rep 2017; 10:1-6. [PMID: 28955731 PMCID: PMC5614665 DOI: 10.1016/j.bbrep.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 11/30/2022] Open
Abstract
Sortase A catalyzed ligation of ultra-short peptides leads to inter/intra-molecular transpeptidation to form either linear or cyclic oligomers dependent upon the peptide length. Cyclic peptides were the main products for peptides with more than 15aa. However, for ultra-short (<15aa) peptides, cyclic oligomers became predominant in prolonged reactions. Peptides with 1-3 aminoglycines were equally active but peptide oligomers from peptide containing more than one aminoglycine were prone to hydrolysis.
Collapse
Affiliation(s)
- Natalya Voloshchuk
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Long Chen
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Qiang Li
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jun F Liang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
48
|
A Novel Yeast Surface Display Method for Large-Scale Screen Inhibitors of Sortase A. Bioengineering (Basel) 2017; 4:bioengineering4010006. [PMID: 28952485 PMCID: PMC5590430 DOI: 10.3390/bioengineering4010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/27/2016] [Accepted: 01/15/2017] [Indexed: 11/17/2022] Open
Abstract
Fluorescence resonance energy transfer substrates of sortase A are too expensive to be used to roughly screen high-throughput sortase A inhibitors. This makes therapeutic strategies difficult to realize in a clinical therapeutic use. Instead, we design here an LPETG-EGFP (leucine, proline, glutamic, threonine and glycine-enhanced green fluorescence) protein displayed on a yeast surface as a substrate by adaptively reducing the cost. We do this by optimizing the induction conditions of sortase A expression in Escherichia coli DE3(BL21) and catalyzing LPETG proteins, which are displayed on surface of Pichia pastoris. Different expression conditions of sortase A include: induction temperature (22 °C, 28 °C, 37 °C and 40 °C), induction time (4 h, 5 h, 6 h and 7 h) and induction concentration of isopropyl β-d-thiogalactoside IPTG (0.25 mmol/L, 0.5 mmol/L, 1 mmol/L, and 2 mmol/L). The fluorescence change of the LPETG-EGFP protein on the surface of P. pastoris over time was detected by flow cytometry and fluorescence spectrophotometry, and then the sensitivities of the two methods were compared. Using berberine chloride as an inhibitor, the activity of sortase A was investigated with the substrates of LPETG-EGFP protein, and compared to Dabcyl-QALPETGEE-Edans. A high yield of sortase A was achieved by inducing 1.0 mmol/L IPTG at 28 °C for 6 h. The intensity of green fluorescence of substrates displayed on the yeast surface was increased over time, while the stability was decreased slightly. Both fluorescence spectrophotometery and flow cytometry were fit for detection because of their high sensitivity. We utilized two different substrates of sortase A to investigate sortase A activity, which resulted in the increase of fluorescence intensity with respect to the increased time of growth. However, the method with Dabcyl-QALPETGEE-Edans as its substrate was more robust. Thus, the method described in this paper is a simple and cheap method which is very suitable for high-throughput analysis, but the conventional method is much more sensitive. The method described in this paper is expected to lead to large-scale screening of sortase A inhibitors which can be used to decrease the risk of drug resistance development.
Collapse
|
49
|
Arkenberg MR, Lin CC. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels. Biomater Sci 2017; 5:2231-2240. [DOI: 10.1039/c7bm00691h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A biocompatible PEG–peptide hydrogel with dynamically tunable stiffness was developed through sortase A-mediated crosslinking and mushroom tyrosinase-triggered stiffening.
Collapse
Affiliation(s)
- Matthew R. Arkenberg
- Department of Biomedical Engineering
- Purdue School of Engineering & Technology
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering
- Purdue School of Engineering & Technology
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
| |
Collapse
|
50
|
Kattke MD, Chan AH, Duong A, Sexton DL, Sawaya MR, Cascio D, Elliot MA, Clubb RT. Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 2016; 11:e0167763. [PMID: 27936128 PMCID: PMC5148588 DOI: 10.1371/journal.pone.0167763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
Many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution of alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.
Collapse
Affiliation(s)
- Michele D. Kattke
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Albert H. Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Duong
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Danielle L. Sexton
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Michael R. Sawaya
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marie A. Elliot
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|