1
|
Saboor M, Hamali HA, Mobarki AA, Madkhali AM, Dboie G. Exploring antithrombin: insights into its physiological features, clinical implications and analytical techniques. Blood Coagul Fibrinolysis 2024; 35:43-48. [PMID: 38179715 DOI: 10.1097/mbc.0000000000001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Antithrombin is an essential protein that acts as a natural anticoagulant in the human body. It is synthesized by the liver and belongs to the serine protease inhibitors, which are commonly referred to as the SERPINS superfamily. The antithrombin molecule comprises 432 amino acids and has a molecular weight of approximately 58 200 D. It consists of three domains, including an amino-terminal domain, a carbohydrate-rich domain, and a carboxyl-terminal domain. The amino-terminal domain binds with heparin, whereas the carboxyl-terminal domain binds with serine protease. Antithrombin is a crucial natural anticoagulant that contributes approximately 60-80% of plasma anticoagulant activities in the human body. Moreover, antithrombin has anti-inflammatory effects that can be divided into coagulation-dependent and coagulation-independent effects. Furthermore, it exhibits antitumor activity and possesses a broad range of antiviral properties. Inherited type I antithrombin deficiency is a quantitative disorder that is characterized by low antithrombin activity due to low plasma levels. On the other hand, inherited type II antithrombin deficiency is a qualitative disorder that is characterized by defects in the antithrombin molecule. Acquired antithrombin deficiencies are more common than hereditary deficiencies and are associated with various clinical conditions due to reduced synthesis, increased loss, or enhanced consumption. The purpose of this review was to provide an update on the structure, functions, clinical implications, and methods of detection of antithrombin.
Collapse
Affiliation(s)
- Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hassan A Hamali
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Aymen M Madkhali
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Gasim Dboie
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Izaguirre G, Swanson R, Roth R, Gettins PGW, Olson ST. Paramount Importance of Core Conformational Changes for Heparin Allosteric Activation of Antithrombin. Biochemistry 2021; 60:1201-1213. [PMID: 33822598 PMCID: PMC10921935 DOI: 10.1021/acs.biochem.1c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antithrombin is unique among serpin family protein protease inhibitors with respect to the major reactive center loop (RCL) and core conformational changes that mediate allosteric activation of its anticoagulant function by heparin. A critical role for expulsion of the RCL hinge from a native stabilizing interaction with the hydrophobic core in the activation mechanism has been proposed from reports that antithrombin variants that block this change through engineered disulfide bonds block activation. However, the sufficiency of core conformational changes for activation without expulsion of the RCL from the core is suggested by variants that are activated without the need for heparin and retain the native RCL-core interaction. To resolve these apparently conflicting findings, we engineered variants in which disulfides designed to block the RCL conformational change were combined with constitutively activating mutations. Our findings demonstrate that while a reversible constitutive activation can be engineered in variants that retain the native RCL-core interaction, engineered disulfides that lock the RCL native conformation can also block heparin allosteric activation. Such findings support a three-state allosteric activation model in which constitutive activating mutations stabilize an intermediate-activated state wherein core conformational changes and a major activation have occurred without the release of the RCL from the core but with a necessary repositioning of the RCL to allow productive engagement with an exosite. Rigid disulfide bonds that lock the RCL native conformation block heparin activation by preventing both RCL repositioning in the intermediate-activated state and the release of the RCL from the core in the fully activated state.
Collapse
|
3
|
Investigation of the Differences in Antithrombin to Heparin Binding among Antithrombin Budapest 3, Basel, and Padua Mutations by Biochemical and In Silico Methods. Biomolecules 2021; 11:biom11040544. [PMID: 33917853 PMCID: PMC8068293 DOI: 10.3390/biom11040544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Antithrombin (AT) is a serine protease inhibitor, its activity is highly accelerated by heparin. Mutations at the heparin-binding region lead to functional defect, type II heparin-binding site (IIHBS) AT deficiency. The aim of this study was to investigate and compare the molecular background of AT Budapest 3 (p.Leu131Phe, ATBp3), AT Basel (p.Pro73Leu), and AT Padua (p.Arg79His) mutations. Advanced in silico methods and heparin-binding studies of recombinant AT proteins using surface plasmon resonance method were used. Crossed immunoelectrophoresis and Differential Scanning Fluorimetry (NanoDSF) were performed in plasma samples. Heparin affinity of AT Padua was the lowest (KD = 1.08 × 10-6 M) and had the most severe consequences affecting the allosteric pathways of activation, moreover significant destabilizing effects on AT were also observed. KD values for AT Basel, ATBp3 and wild-type AT were 7.64 × 10-7 M, 2.15 × 10-8 M and 6.4 × 10-10 M, respectively. Heparin-binding of AT Basel was slower, however once the complex was formed the mutation had only minor effect on the secondary and tertiary structures. Allosteric activation of ATBp3 was altered, moreover decreased thermostability in ATBp3 homozygous plasma and increased fluctuations in multiple regions of ATBp3 were observed by in silico methods suggesting the presence of a quantitative component in the pathogenicity of this mutation due to molecular instability.
Collapse
|
4
|
Boittier ED, Burns JM, Gandhi NS, Ferro V. GlycoTorch Vina: Docking Designed and Tested for Glycosaminoglycans. J Chem Inf Model 2020; 60:6328-6343. [PMID: 33152249 DOI: 10.1021/acs.jcim.0c00373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of anionic carbohydrates that play an essential role in the physiology and pathology of all eukaryotic life forms. Experimental determination of GAG-protein complexes is challenging due to their difficult isolation from biological sources, natural heterogeneity, and conformational flexibility-including possible ring puckering of sulfated iduronic acid from 1C4 to 2SO conformation. To overcome these challenges, we present GlycoTorch Vina (GTV), a molecular docking tool based on the carbohydrate docking program VinaCarb (VC). Our program is unique in that it contains parameters to model 2SO sugars while also supporting glycosidic linkages specific to GAGs. We discuss how crystallographic models of carbohydrates can be biased by the choice of refinement software and structural dictionaries. To overcome these variations, we carefully curated 12 of the best available GAG and GAG-like crystal structures (ranging from tetra- to octasaccharides or longer) obtained from the PDB-REDO server and refined using the same protocol. Both GTV and VC produced pose predictions with a mean root-mean-square deviation (RMSD) of 3.1 Å from the native crystal structure-a statistically significant improvement when compared to AutoDock Vina (4.5 Å) and the commercial software Glide (5.9 Å). Examples of how real-space correlation coefficients can be used to better assess the accuracy of docking pose predictions are given. Comparisons between statistical distributions of empirical "salt bridge" interactions, relevant to GAGs, were compared to density functional theory (DFT) studies of model salt bridges, and water-mediated salt bridges; however, there was generally a poor agreement between these data. Water bridges appear to play an important, yet poorly understood, role in the structures of GAG-protein complexes. To aid in the rapid prototyping of future pose scoring functions, we include a module that allows users to include their own torsional and nonbonded parameters.
Collapse
Affiliation(s)
- Eric D Boittier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Neha S Gandhi
- Chemistry and Physics, Centre for Genomics and Personalised Health, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Balogh G, Komáromi I, Bereczky Z. The mechanism of high affinity pentasaccharide binding to antithrombin, insights from Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:4718-4732. [PMID: 31686597 DOI: 10.1080/07391102.2019.1688194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activity of antithrombin (AT), a serpin protease inhibitor, is enhanced by heparin and heparin analogs against its target proteases, mainly thrombin, factors Xa and IXa. Considerable amount of information is available on the multistep mechanism of the heparin pentasaccharide binding and conformational activation. However, much of the details were inferred from 'static' structures obtained by X-ray diffraction. Moreover, limited information is available for the early steps of binding mechanism other than kinetic studies with various ligands. To gain insights into these processes, we performed enhanced sampling molecular dynamics (MD) simulations using the Gaussian Accelerated Molecular Dynamics (GAMD) method, applied previously in drug binding studies. We were able to observe the binding of the pentasaccharide idraparinux to a 'non-activated' AT conformation in two separate trajectories with low root mean square deviation (RMSD) values compared to X-ray structures of the bound state. These trajectories along with further simulations of the AT-pentasaccharide complex provided insights into the mechanisms of multiple conformational transitions, including the expulsion of the hinge region, the extension of helix D and the conformational behavior of the reactive center loop (RCL). We could also confirm the high stability of helix P in non-activated AT conformations, such states might play an important role in heparin binding. 'Generalized correlation' matrices revealed possible paths of allosteric signal propagation to the binding sites for the target proteases, factors Xa and IXa. Enhanced MD simulations of ligand binding to AT may assist the design of new anticoagulant drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Bolten SN, Rinas U, Scheper T. Heparin: role in protein purification and substitution with animal-component free material. Appl Microbiol Biotechnol 2018; 102:8647-8660. [PMID: 30094590 PMCID: PMC6153649 DOI: 10.1007/s00253-018-9263-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 01/27/2023]
Abstract
Heparin is a highly sulfated polysaccharide which belongs to the family of glycosaminoglycans. It is involved in various important biological activities. The major biological purpose is the inhibition of the coagulation cascade to maintain the blood flow in the vasculature. These properties are employed in several therapeutic drugs. Heparin’s activities are associated with its interaction to various proteins. To date, the structural heparin-protein interactions are not completely understood. This review gives a general overview of specific patterns and functional groups which are involved in the heparin-protein binding. An understanding of the heparin-protein interactions at the molecular level is not only advantageous in the therapeutic application but also in biotechnological application of heparin for downstreaming. This review focuses on the heparin affinity chromatography. Diverse recombinant proteins can be successfully purified by this method. While effective, it is disadvantageous that heparin is an animal-derived material. Animal-based components carry the risk of contamination. Therefore, they are liable to strict quality controls and the validation of effective good manufacturing practice (GMP) implementation. Hence, adequate alternatives to animal-derived components are needed. This review examines strategies to avoid these disadvantages. Thereby, alternatives for the provision of heparin such as chemical synthesized heparin, chemoenzymatic heparin, and bioengineered heparin are discussed. Moreover, the usage of other chromatographic systems mimetic the heparin effect is reviewed.
Collapse
Affiliation(s)
- Svenja Nicolin Bolten
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ursula Rinas
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany.
| |
Collapse
|
7
|
Richard B, Swanson R, Izaguirre G, Olson ST. Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. Biochemistry 2018; 57:2211-2226. [PMID: 29561141 DOI: 10.1021/acs.biochem.8b00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparin allosterically activates the anticoagulant serpin, antithrombin, by binding through a sequence-specific pentasaccharide and inducing activating conformational changes in the protein. Three basic residues of antithrombin, Lys114, Lys125, and Arg129, have been shown to be hotspots for binding the pentasaccharide, but the molecular basis for such hotspot binding has been unclear. To determine whether this results from cooperative interactions, we analyzed the effects of single, double, and triple mutations of the hotspot residues on pentasaccharide binding and activation of antithrombin. Double-mutant cycles revealed that the contribution of each residue to pentasaccharide binding energy was progressively reduced when one or both of the other residues were mutated, indicating strong coupling between each pair of residues that was dependent on the third residue and reflective of the three residues acting as a cooperative unit. Rapid kinetic studies showed that the hotspot residue mutations progressively abrogated the ability of the pentasaccharide to bind productively to native antithrombin and to conformationally activate the serpin by engaging the hotspot residues in an induced-fit interaction. Examination of the antithrombin-pentasaccharide complex structure revealed that the hotspot residues form two adjoining binding pockets for critical sulfates of the pentasaccharide that structurally link these residues. Together, these findings demonstrate that cooperative interactions of Lys114, Lys125, and Arg129 are critical for the productive induced-fit binding of the heparin pentasaccharide to antithrombin that allosterically activates the anticoagulant function of the serpin.
Collapse
Affiliation(s)
- Benjamin Richard
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Richard Swanson
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Gonzalo Izaguirre
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Steven T Olson
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| |
Collapse
|
8
|
Stancanelli E, Elli S, Hsieh PH, Liu J, Guerrini M. Recognition and Conformational Properties of an Alternative Antithrombin Binding Sequence Obtained by Chemoenzymatic Synthesis. Chembiochem 2018; 19:10.1002/cbic.201800095. [PMID: 29573524 PMCID: PMC6517080 DOI: 10.1002/cbic.201800095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/24/2022]
Abstract
Heparin is a highly sulfated glycosaminoglycan (GAG) of natural origin used as an anticoagulant and antithrombotic drug. These properties are principally based on the binding and activation of antithrombin (AT) through the pentasaccharide sequence GlcNAc/NS,6S-GlcA-GlcNS,3,6S-IdoA2S-GlcNS,6S (AGA*IA). Literature data show that the population of the 2 S0 ring conformation of the 2-O-sulfo-α-l-iduronic acid (IdoA2S) motif correlates with the affinity and activation of AT. It was recently demonstrated that two synthetic AGA*IA-containing hexasaccharides (one G unit added at the reducing end), differing in the degree of sulfation of the IdoA unit, show comparable affinity and ability to activate AT, despite a different conformation of the IdoA residue. In this paper, the binding of these two glycans to AT was studied by isothermal titration microcalorimetry (ITC), transferred (tr-) NOESY, saturation transfer difference (STD) NMR spectroscopy and molecular dynamics (MD) simulations. Results indicated that both the IdoA2S and the IdoA units assume a 2 S0 conformation when bound with AT, and so present a common binding epitope for the two glycans, centred on the AGA*IA sequence.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Department NMR and Carbohydrates, Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Stefano Elli
- Department NMR and Carbohydrates, Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Po-Hung Hsieh
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Marco Guerrini
- Department NMR and Carbohydrates, Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| |
Collapse
|
9
|
Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J 2017; 473:2273-93. [PMID: 27470592 DOI: 10.1042/bcj20160014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Serpins are a widely distributed family of high molecular mass protein proteinase inhibitors that can inhibit both serine and cysteine proteinases by a remarkable mechanism-based kinetic trapping of an acyl or thioacyl enzyme intermediate that involves massive conformational transformation. The trapping is based on distortion of the proteinase in the complex, with energy derived from the unique metastability of the active serpin. Serpins are the favoured inhibitors for regulation of proteinases in complex proteolytic cascades, such as are involved in blood coagulation, fibrinolysis and complement activation, by virtue of the ability to modulate their specificity and reactivity. Given their prominence as inhibitors, much work has been carried out to understand not only the mechanism of inhibition, but how it is fine-tuned, both spatially and temporally. The metastability of the active state raises the question of how serpins fold, whereas the misfolding of some serpin variants that leads to polymerization and pathologies of liver disease, emphysema and dementia makes it clinically important to understand how such polymerization might occur. Finally, since binding of serpins and their proteinase complexes, particularly plasminogen activator inhibitor-1 (PAI-1), to the clearance and signalling receptor LRP1 (low density lipoprotein receptor-related protein 1), may affect pathways linked to cell migration, angiogenesis, and tumour progression, it is important to understand the nature and specificity of binding. The current state of understanding of these areas is addressed here.
Collapse
|
10
|
Carrell RW, Read RJ. How serpins transport hormones and regulate their release. Semin Cell Dev Biol 2016; 62:133-141. [PMID: 28027946 DOI: 10.1016/j.semcdb.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
The adaptation of the serpin framework and its mechanism to perform diverse functions is epitomised in the hormone carriers of the blood. Thyroxine and the corticosteroids are transported bound in a 1:1 ratio on almost identical sites in the two homologous binding-globulins, TBG and CBG. Recent structural findings show an equilibrated, rather than on-and-off, release of the hormones from the carriers, reflecting small reversible movements of the hinge region of the reactive loop that modify the conformational flexibility of the underlying hormone-binding site. Consequently, contrary to previous concepts, the binding affinities of TBG and CBG are not fixed but can be allosterically modified to allow differential hormone delivery. Notably, the two carriers function like protein thermocouples with a surge in hormone release as body temperatures rise in fevers, and conversely a large diminution in free hormone levels at hibernation temperatures. By comparison angiotensinogen, the source of the angiotensin peptides that control blood pressure, does not appear to utilise the serpin mechanism. It has instead evolved a 63 residue terminal extension containing the buried angiotensin cleavage site, which on interaction moves into the active cleft of the renin. The conformational shift involved is critically linked by a labile disulphide bridge. The observation of changes in the redox status of this S-S bridge, in the hypertensive complication of pregnancy, pre-eclampsia, has opened an unexpected level of regulation at what is the initial stage in the control of blood pressure.
Collapse
Affiliation(s)
- Robin W Carrell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Randy J Read
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Malineni J, Singh S, Tillmann S, Keul H, Möller M. Aliphatic Polyethers with Sulfate, Carboxylate, and Hydroxyl Side Groups-Do They Show Anticoagulant Properties? Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/30/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Jagadeesh Malineni
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| | - Smriti Singh
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| | - Sabine Tillmann
- Department for Anaesthesiology; University Hospital RWTH Aachen; Pauwelsstraße 30 D-52074 Aachen Germany
| | - Helmut Keul
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| |
Collapse
|
12
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
13
|
Meneghetti MCZ, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. Heparan sulfate and heparin interactions with proteins. J R Soc Interface 2016; 12:0589. [PMID: 26289657 DOI: 10.1098/rsif.2015.0589] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure-activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure-activity relationships and regulation will be discussed.
Collapse
Affiliation(s)
- Maria C Z Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Ashley J Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Timothy R Rudd
- The National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Hertfordshire EN6 3QC, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Helena B Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Marcelo A Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
14
|
Marie AL, Tran NT, Saller F, Abdou YM, Zeau P, Plantier JL, Urbain R, Borgel D, Taverna M. A capillary zone electrophoresis method to detect conformers and dimers of antithrombin in therapeutic preparations. Electrophoresis 2016; 37:1696-703. [DOI: 10.1002/elps.201500456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Anne-Lise Marie
- Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Université Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - Nguyet Thuy Tran
- Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Université Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - François Saller
- Université Paris Sud; UMR-S1176; Le Kremlin-Bicêtre France
- INSERM; U1176 Le Kremlin-Bicêtre France
| | - Youmna Mohamed Abdou
- Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Université Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | | | | | | | - Delphine Borgel
- Université Paris Sud; UMR-S1176; Le Kremlin-Bicêtre France
- INSERM; U1176 Le Kremlin-Bicêtre France
- AP-HP, Hôpital Necker; Service d'Hématologie Biologique; Paris France
| | - Myriam Taverna
- Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Université Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| |
Collapse
|
15
|
Zhao Y, Singh A, Li L, Linhardt RJ, Xu Y, Liu J, Woods RJ, Amster IJ. Investigating changes in the gas-phase conformation of Antithrombin III upon binding of Arixtra using traveling wave ion mobility spectrometry (TWIMS). Analyst 2015; 140:6980-9. [PMID: 26115461 PMCID: PMC4586392 DOI: 10.1039/c5an00908a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We validate the utility of ion mobility to measure protein conformational changes induced by the binding of glycosaminoglycan ligands, using the well characterized system of Antithrombin III (ATIII) and Arixtra, a pharmaceutical agent with heparin (Hp) activity. Heparin has been used as a therapeutic anticoagulant drug for several decades through its interaction with ATIII, a serine protease inhibitor that plays a central role in the blood coagulation cascade. This interaction induces conformational changes within ATIII that dramatically enhance the ATIII-mediated inhibition rate. Arixtra is the smallest synthetic Hp containing the specific pentasaccharide sequence required to bind with ATIII. Here we report the first travelling wave ion mobility mass spectrometry (TWIMS) investigation of the conformational changes in ATIII induced by its interaction with Arixtra. Native electrospray ionization mass spectrometry allowed the gentle transfer of the native topology of ATIII and ATIII-Arixtra complex. IM measurements of ATIII and ATIII-Arixtra complex showed a single structure, with well-defined collisional cross section (CCS) values. An average 3.6% increase in CCS of ATIII occurred as a result of its interaction with Arixtra, which agrees closely with the theoretical estimation of the change in CCS based on protein crystal structures. A comparison of the binding behavior of ATIII under both denaturing and non-denaturing conditions confirmed the significance of a folded tertiary structure of ATIII for its biological activity. A Hp oligosaccharide whose structure is similar to Arixtra but missing the 3-O sulfo group on the central glucosamine residue showed a dramatic decrease in binding affinity towards ATIII, but no change in the mobility behavior of the complex, consistent with prior studies that suggested that 3-O sulfation affects the equilibrium constant for binding to ATIII, but not the mode of interaction. In contrast, nonspecific binding by a Hp tetrasaccharide showed more complex mobility behavior, suggesting more promiscuous interactions with ATIII. The effect of collisional activation of ATIII and ATIII-Arixtra complex were also assessed, revealing that the binding of Arixtra provided ATIII with additional stability against unfolding. Overall, our results validate the capability of TWIMS to retain the significant features of the solution structure of a protein-carbohydrate complex so that it can be used to study protein conformational changes induced by the binding of glycosaminoglycan ligands.
Collapse
Affiliation(s)
- Yuejie Zhao
- University of Georgia, Department of Chemistry, 140 Cedar Street, Athens, GA 30602-2556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Roth R, Swanson R, Izaguirre G, Bock SC, Gettins PGW, Olson ST. Saturation Mutagenesis of the Antithrombin Reactive Center Loop P14 Residue Supports a Three-step Mechanism of Heparin Allosteric Activation Involving Intermediate and Fully Activated States. J Biol Chem 2015; 290:28020-28036. [PMID: 26359493 DOI: 10.1074/jbc.m115.678839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 11/06/2022] Open
Abstract
Past studies have suggested that a key feature of the mechanism of heparin allosteric activation of the anticoagulant serpin, antithrombin, is the release of the reactive center loop P14 residue from a native state stabilizing interaction with the hydrophobic core. However, more recent studies have indicated that this structural change plays a secondary role in the activation mechanism. To clarify this role, we expressed and characterized 15 antithrombin P14 variants. The variants exhibited basal reactivities with factors Xa and IXa, heparin affinities and thermal stabilities that were dramatically altered from wild type, consistent with the P14 mutations perturbing native state stability and shifting an allosteric equilibrium between native and activated states. Rapid kinetic studies confirmed that limiting rate constants for heparin allosteric activation of the mutants were altered in conjunction with the observed shifts of the allosteric equilibrium. However, correlations of the P14 mutations' effects on parameters reflecting the allosteric activation state of the serpin were inconsistent with a two-state model of allosteric activation and suggested multiple activated states. Together, these findings support a minimal three-state model of allosteric activation in which the P14 mutations perturb equilibria involving distinct native, intermediate, and fully activated states wherein the P14 residue retains an interaction with the hydrophobic core in the intermediate state but is released from the core in the fully activated state, and the bulk of allosteric activation has occurred in the intermediate.
Collapse
Affiliation(s)
- Ryan Roth
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics
| | - Richard Swanson
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics
| | - Gonzalo Izaguirre
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics
| | - Susan C Bock
- Departments of Medicine and Bioengineering, University of Utah, Salt Lake City, Utah 84132
| | - Peter G W Gettins
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Steven T Olson
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics.
| |
Collapse
|
17
|
Lin F, Zhou A, Wei Z. Crystallization and crystallographic studies of kallistatin. Acta Crystallogr F Struct Biol Commun 2015; 71:1135-8. [PMID: 26323298 PMCID: PMC4555919 DOI: 10.1107/s2053230x15012893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/03/2015] [Indexed: 01/27/2023] Open
Abstract
Kallistatin is a serine protease inhibitor (serpin) which specifically inhibits human tissue kallikrein; however, its inhibitory activity is inhibited by heparin. In order to elucidate the underlying mechanism, recombinant human kallistatin was prepared in Escherichia coli and the protein was crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals were found to belong to space group P61, with unit-cell parameters a = 113.51, b = 113.51, c = 76.17 Å. Initial analysis indicated that the crystallized kallistatin was in a relaxed conformation, with its reactive-centre loop inserted in the central β-sheet.
Collapse
Affiliation(s)
- Fang Lin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, and Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of China
| | - Aiwu Zhou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, and Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of China
| | - Zhenquan Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, and Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of China
| |
Collapse
|
18
|
A fast capillary electrophoresis method to assess the binding affinity of recombinant antithrombin toward heparin directly from cell culture supernatants. J Pharm Biomed Anal 2015; 111:64-70. [DOI: 10.1016/j.jpba.2015.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
|
19
|
Tóth L, Fekete A, Balogh G, Bereczky Z, Komáromi I. Dynamic properties of the native free antithrombin from molecular dynamics simulations: computational evidence for solvent- exposed Arg393 side chain. J Biomol Struct Dyn 2014; 33:2023-36. [PMID: 25483839 DOI: 10.1080/07391102.2014.986525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
While antithrombin (AT) has small basal inhibitory activity, it reaches its full inhibitory potential against activated blood coagulation factors, FXa, FIXa, and FIIa (thrombin), via an allosteric and/or template (bridging) mechanism by the action of heparin, heparan sulfate, or heparin-mimetic pentasaccharides (PS). From the numerous X-ray structures available for different conformational states of AT, only indirect and incomplete conclusions can be drawn on the inherently dynamic properties of AT. As a typical example, the basal inhibitory activity of AT cannot be interpreted on the basis of "non-activated" free antithrombin X-ray structures since the Arg393 side chain, playing crucial role in antithrombin-proteinase interaction, is not exposed. In order to reveal the intrinsic dynamic properties and the reason of basal inhibitory activity of antithrombin, 2 μs molecular dynamics simulations were carried out on its native free-forms. It was shown from the simulation trajectories that the reactive center loop which is functioning as "bait" for proteases, even without any biasing potential can populate conformational state in which the Arg393 side chain is solvent exposed. It is revealed from the trajectory analysis that the peptide sequences correspond to the helix D extension, and new helix P formation can be featured with especially large root-mean-square fluctuations. Mutual information analyses of the trajectory showed remarkable (generalized) correlation between those regions of antithrombin which changed their conformations as the consequence of AT-PS complex formation. This suggests that allosteric information propagation pathways are present even in the non-activated native form of AT.
Collapse
Affiliation(s)
- László Tóth
- a Faculty of Medicine, Division of Clinical Laboratory Science, Department of Laboratory Medicine , University of Debrecen , Debrecen , Hungary
| | | | | | | | | |
Collapse
|
20
|
Izaguirre G, Aguila S, Qi L, Swanson R, Roth R, Rezaie AR, Gettins PGW, Olson ST. Conformational activation of antithrombin by heparin involves an altered exosite interaction with protease. J Biol Chem 2014; 289:34049-64. [PMID: 25331949 DOI: 10.1074/jbc.m114.611707] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin allosterically activates antithrombin as an inhibitor of factors Xa and IXa by enhancing the initial Michaelis complex interaction of inhibitor with protease through exosites. Here, we investigate the mechanism of this enhancement by analyzing the effects of alanine mutations of six putative antithrombin exosite residues and three complementary protease exosite residues on antithrombin reactivity with these proteases in unactivated and heparin-activated states. Mutations of antithrombin Tyr(253) and His(319) exosite residues produced massive 10-200-fold losses in reactivity with factors Xa and IXa in both unactivated and heparin-activated states, indicating that these residues made critical attractive interactions with protease independent of heparin activation. By contrast, mutations of Asn(233), Arg(235), Glu(237), and Glu(255) exosite residues showed that these residues made both repulsive and attractive interactions with protease that depended on the activation state and whether the critical Tyr(253)/His(319) residues were mutated. Mutation of factor Xa Arg(143), Lys(148), and Arg(150) residues that interact with the exosite in the x-ray structure of the Michaelis complex confirmed the importance of all residues for heparin-activated antithrombin reactivity and Arg(150) for native serpin reactivity. These results demonstrate that the exosite is a key determinant of antithrombin reactivity with factors Xa and IXa in the native as well as the heparin-activated state and support a new model of allosteric activation we recently proposed in which a balance between attractive and repulsive exosite interactions in the native state is shifted to favor the attractive interactions in the activated state through core conformational changes induced by heparin binding.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- From the Department of Periodontics, Center for Molecular Biology of Oral Diseases and
| | - Sonia Aguila
- the Centro Regional de Hemodonación, University of Murcia, Murcia 30003, Spain, and
| | - Lixin Qi
- From the Department of Periodontics, Center for Molecular Biology of Oral Diseases and
| | - Richard Swanson
- From the Department of Periodontics, Center for Molecular Biology of Oral Diseases and
| | - Ryan Roth
- From the Department of Periodontics, Center for Molecular Biology of Oral Diseases and
| | - Alireza R Rezaie
- the Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, Missouri 63104
| | - Peter G W Gettins
- the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Steven T Olson
- From the Department of Periodontics, Center for Molecular Biology of Oral Diseases and
| |
Collapse
|
21
|
Abstract
![]()
A series of self-associating foldamers
have been designed as heparin
reversal agents, as antidotes to prevent bleeding due to this potent
antithrombotic agent. The foldamers have a repeating sequence of Lys-Sal,
in which Sal is 5-amino-2-methoxy-benzoic acid. These foldamers are
designed to self-associate along one face of an extended chain in
a β-sheet-like interaction. The methoxy groups were included
to form intramolecular hydrogen bonds that preclude the formation
of very large amyloid-like aggregates, while the positively charged
Lys side chains were introduced to interact electrostatically with
the highly anionic heparin polymer. The prototype compound (Lys-Sal)4 carboxamide weakly associates in aqueous solution at physiological
salt concentration in a monomer-dimer-hexamer equilibrium. The association
is greatly enhanced at either high ionic strength or in the presence
of a heparin derivative, which is bound tightly. Variants of this
foldamer are active in an antithrombin III–factor Xa assay,
showing their potential as heparin reversal agents.
Collapse
|
22
|
Remko M, Van Duijnen PT, Broer R. Effect of metal ions (Li+, Na+, K+, Mg2+ and Ca2+) and water on the conformational changes of glycosidic bonds in heparin oligosaccharides. RSC Adv 2013. [DOI: 10.1039/c3ra40566d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
23
|
Lima MA, Hughes AJ, Veraldi N, Rudd TR, Hussain R, Brito AS, Chavante SF, Tersariol II, Siligardi G, Nader HB, Yates EA. Antithrombin stabilisation by sulfated carbohydrates correlates with anticoagulant activity. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00048f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Mosier PD, Krishnasamy C, Kellogg GE, Desai UR. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. PLoS One 2012; 7:e48632. [PMID: 23152789 PMCID: PMC3495972 DOI: 10.1371/journal.pone.0048632] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
Background The antithrombin–heparin/heparan sulfate (H/HS) and thrombin–H/HS interactions are recognized as prototypic specific and non-specific glycosaminoglycan (GAG)–protein interactions, respectively. The fundamental structural basis for the origin of specificity, or lack thereof, in these interactions remains unclear. The availability of multiple co-crystal structures facilitates a structural analysis that challenges the long-held belief that the GAG binding sites in antithrombin and thrombin are essentially similar with high solvent exposure and shallow surface characteristics. Methodology Analyses of solvent accessibility and exposed surface areas, gyrational mobility, symmetry, cavity shape/size, conserved water molecules and crystallographic parameters were performed for 12 X-ray structures, which include 12 thrombin and 16 antithrombin chains. Novel calculations are described for gyrational mobility and prediction of water loci and conservation. Results The solvent accessibilities and gyrational mobilities of arginines and lysines in the binding sites of the two proteins reveal sharp contrasts. The distribution of positive charges shows considerable asymmetry in antithrombin, but substantial symmetry for thrombin. Cavity analyses suggest the presence of a reasonably sized bifurcated cavity in antithrombin that facilitates a firm ‘hand-shake’ with H/HS, but with thrombin, a weaker ‘high-five’. Tightly bound water molecules were predicted to be localized in the pentasaccharide binding pocket of antithrombin, but absent in thrombin. Together, these differences in the binding sites explain the major H/HS recognition characteristics of the two prototypic proteins, thus affording an explanation of the specificity of binding. This provides a foundation for understanding specificity of interaction at an atomic level, which will greatly aid the design of natural or synthetic H/HS sequences that target proteins in a specific manner.
Collapse
Affiliation(s)
| | | | | | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Singh P, Singh K, Jairajpuri MA. Energetics of Hydrogen Bond Switch, Residue Burial and Cavity Analysis Reveals Molecular Basis of Improved Heparin Binding to Antithrombin. J Biomol Struct Dyn 2011; 29:339-50. [DOI: 10.1080/07391102.2011.10507389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Pol-Fachin L, Franco Becker C, Almeida Guimarães J, Verli H. Effects of glycosylation on heparin binding and antithrombin activation by heparin. Proteins 2011; 79:2735-45. [PMID: 21769943 DOI: 10.1002/prot.23102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/31/2011] [Accepted: 06/07/2011] [Indexed: 11/06/2022]
Abstract
Antithrombin (AT), a serine protease inhibitor, circulates in blood in two major isoforms, α and β, which differ in their amount of glycosylation and affinity for heparin. After binding to this glycosaminoglycan, the native AT conformation, relatively inactive as a protease inhibitor, is converted to an activated form. In this process, β-AT presents the higher affinity for heparin, being suggested as the major AT glycoform inhibitor in vivo. However, either the molecular basis demonstrating the differences in heparin binding to both AT isoforms or the mechanism of its conformational activation are not fully understood. Thus, the present work evaluated the effects of glycosylation and heparin binding on AT structure, function, and dynamics. Based on the obtained data, besides the native and activated forms of AT, an intermediate state, previously proposed to exist between such conformations, was also spontaneously observed in solution. Additionally, Asn135-linked oligosaccharide caused a bending in AT-bounded heparin, moving such polysaccharide away from helix D, which supports its reduced affinity for α-AT. The obtained data supported the proposal of an atomic-level, solvent and amino acid residues accounting, putative model for the transmission of the conformational signal from heparin binding exosite to β-sheet A and the reactive center loop, also supporting the identification of differences in such transmission between the serpin glycoforms involving helix D, where the Asn135-linked oligosaccharide stands. Such intramolecular rearrangements, together with heparin dynamics over AT surface, may support an atomic-level explanation for the Asn135-linked glycan influence over heparin binding and AT activation.
Collapse
Affiliation(s)
- Laercio Pol-Fachin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil
| | | | | | | |
Collapse
|
27
|
Qi X, Loiseau F, Chan WL, Yan Y, Wei Z, Milroy LG, Myers RM, Ley SV, Read RJ, Carrell RW, Zhou A. Allosteric modulation of hormone release from thyroxine and corticosteroid-binding globulins. J Biol Chem 2011; 286:16163-73. [PMID: 21325280 PMCID: PMC3091225 DOI: 10.1074/jbc.m110.171082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr(342) of the reactive loop and Tyr(241) of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys(243), which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg(378). Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Biochemistry, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Serpins (serine protease inhibitors) have traditionally been grouped together based on structural homology. They share common structural features of primary sequence, but not all serpins require binding to cofactors in order to achieve maximal protease inhibition. In order to obtain physiologically relevant rates of inhibition of target proteases, some serpins utilize the unbranched sulfated polysaccharide chains known as glycosaminoglycans (GAGs) to enhance inhibition. These GAG-binding serpins include antithrombin (AT), heparin cofactor II (HCII), and protein C inhibitor (PCI). The GAGs heparin and heparan sulfate have been shown to bind AT, HCII, and PCI, while HCII is also able to utilize dermatan sulfate as a cofactor. Other serpins such as PAI-1, kallistatin, and α(1)-antitrypsin also interact with GAGs with different endpoints, some accelerating protease inhibition while others inhibit it. There are many serpins that bind or carry ligands that are unrelated to GAGs, which are described elsewhere in this work. For most GAG-binding serpins, binding of the GAG occurs in a conserved region of the serpin near or involving helix D, with the exception of PCI, which utilizes helix H. The binding of GAG to serpin can lead to a conformational change within the serpin, which can lead to increased or tighter binding to the protease, and can accelerate the rates of inhibition up to 10,000-fold compared to the unbound native serpin. In this chapter, we will discuss three major GAG-binding serpins with known physiological roles in modulating coagulation: AT (SERPINC1), HCII (SERPIND1), and PCI (SERPINA5). We will review methodologies implemented to study the structure of these serpins and those used to study their interactions with GAG's. We discuss novel techniques to examine the serpin-GAG interaction and finally we review the biological roles of these serpins by describing the mouse models used to study them.
Collapse
Affiliation(s)
- Chantelle M Rein
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
30
|
|
31
|
Olson ST, Richard B, Izaguirre G, Schedin-Weiss S, Gettins PGW. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Biochimie 2010; 92:1587-96. [PMID: 20685328 PMCID: PMC2974786 DOI: 10.1016/j.biochi.2010.05.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/18/2010] [Indexed: 11/20/2022]
Abstract
Serpin family protein proteinase inhibitors regulate the activity of serine and cysteine proteinases by a novel conformational trapping mechanism that may itself be regulated by cofactors to provide a finely-tuned time and location-dependent control of proteinase activity. The serpin, antithrombin, together with its cofactors, heparin and heparan sulfate, perform a critical anticoagulant function by preventing the activation of blood clotting proteinases except when needed at the site of a vascular injury. Here, we review the detailed molecular understanding of this regulatory mechanism that has emerged from numerous X-ray crystal structures of antithrombin and its complexes with heparin and target proteinases together with mutagenesis and functional studies of heparin-antithrombin-proteinase interactions in solution. Like other serpins, antithrombin achieves specificity for its target blood clotting proteinases by presenting recognition determinants in an exposed reactive center loop as well as in exosites outside the loop. Antithrombin reactivity is repressed in the absence of its activator because of unfavorable interactions that diminish the favorable RCL and exosite interactions with proteinases. Binding of a specific heparin or heparan sulfate pentasaccharide to antithrombin induces allosteric activating changes that mitigate the unfavorable interactions and promote template bridging of the serpin and proteinase. Antithrombin has thus evolved a sophisticated means of regulating the activity of blood clotting proteinases in a time and location-dependent manner that exploits the multiple conformational states of the serpin and their differential stabilization by glycosaminoglycan cofactors.
Collapse
Affiliation(s)
- Steven T Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
32
|
Schedin-Weiss S, Richard B, Olson ST. Kinetic evidence that allosteric activation of antithrombin by heparin is mediated by two sequential conformational changes. Arch Biochem Biophys 2010; 504:169-76. [PMID: 20816747 DOI: 10.1016/j.abb.2010.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/26/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
The serpin, antithrombin, requires allosteric activation by a sequence-specific pentasaccharide unit of heparin or heparan sulfate glycosaminoglycans to function as an anticoagulant regulator of blood clotting proteases. Surprisingly, X-ray structures have shown that the pentasaccharide produces similar induced-fit changes in the heparin binding site of native and latent antithrombin despite large differences in the heparin affinity and global conformation of these two forms. Here we present kinetic evidence for similar induced-fit mechanisms of pentasaccharide binding to native and latent antithrombins and kinetic simulations which together support a three-step mechanism of allosteric activation of native antithrombin involving two successive conformational changes. Equilibrium binding studies of pentasaccharide interactions with native and latent antithrombins and the salt dependence of these interactions suggest that each conformational change is associated with distinct spectroscopic changes and is driven by a progressively better fit of the pentasaccharide in the binding site. The observation that variant antithrombins that cannot undergo the second conformational change bind the pentasaccharide like latent antithrombin and are partially activated suggests that both conformational changes contribute to allosteric activation, in agreement with a recently proposed model of allosteric activation.
Collapse
|
33
|
Molecular structure of basic oligomeric building units of heparan-sulfate glycosaminoglycans. Struct Chem 2010. [DOI: 10.1007/s11224-010-9633-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Proc Natl Acad Sci U S A 2009; 107:645-50. [PMID: 20080729 DOI: 10.1073/pnas.0910144107] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Factor (f) IXa is a critical enzyme for the formation of stable blood clots, and its deficiency results in hemophilia. The enzyme functions at the confluence of the intrinsic and extrinsic pathways by binding to fVIIIa and rapidly generating fXa. In spite of its importance, little is known about how fIXa recognizes its cofactor, its substrate, or its only known inhibitor, antithrombin (AT). However, it is clear that fIXa requires extensive exosite interactions to present substrates for efficient cleavage. Here we describe the 1.7-A crystal structure of fIXa in its recognition (Michaelis) complex with heparin-activated AT. It represents the highest resolution structure of both proteins and allows us to address several outstanding issues. The structure reveals why the heparin-induced conformational change in AT is required to permit simultaneous active-site and exosite interactions with fIXa and the nature of these interactions. The reactive center loop of AT has evolved to specifically inhibit fIXa, with a P2 Gly so as not to clash with Tyr99 on fIXa, a P4 Ile to fit snugly into the S4 pocket, and a C-terminal extension to exploit a unique wall-like feature of the active-site cleft. Arg150 is at the center of the exosite interface, interacting with AT residues on beta-sheet C. A surprising crystal contact is observed between the heparin pentasaccharide and fIXa, revealing a plausible mode of binding that would allow longer heparin chains to bridge the complex.
Collapse
|
35
|
Liang A, Raghuraman A, Desai UR. Capillary electrophoretic study of small, highly sulfated, non-sugar molecules interacting with antithrombin. Electrophoresis 2009; 30:1544-51. [PMID: 19425011 PMCID: PMC2755545 DOI: 10.1002/elps.200800642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Affinity CE (ACE) was used to study interactions of small, highly sulfated, aromatic molecules with antithrombin (AT). The high charge density of the small molecules induces differential migration of the complex resulting in a versatile method of assessing binding affinities, nature of interactions and site of binding on the inhibitor. Scatchard analysis of the interaction of three tetrahydroisoquinoline-based polysulfated molecules with AT results in monophasic profiles with affinities in the range of 40-60 microM in 20 mM sodium phosphate buffer, pH 7.4. For a pentasulfated molecule, a biphasic profile with affinities of 4.7 and 30 microM was observed. Measurement of K(D) as a function of ionic strength of the medium indicated that ionic and non-ionic forces contribute 2.4 and 1.9 kcal/mol, respectively, at pH 7.4 and 100 mM NaCl. Competitive binding studies showed that the tetrahydroisoquinoline-based molecules do not compete with a high-affinity heparin pentasaccharide. In contrast, the affinity of these tetrahydroisoquinoline derivatives decreases dramatically in the presence of an extended heparin-binding site ligand. Overall, ACE analysis of small, sulfated aromatic molecules interacting with AT is relatively easy and obviates the need for an external signal, e.g. fluorescence, for monitoring the interaction. In addition to affording biochemical knowledge, the small sample requirement and fast analysis time of ACE could be particularly advantageous for high-throughput screening of potential anticoagulants.
Collapse
Affiliation(s)
- Aiye Liang
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Arjun Raghuraman
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219
| |
Collapse
|
36
|
Langdown J, Belzar KJ, Savory WJ, Baglin TP, Huntington JA. The Critical Role of Hinge-Region Expulsion in the Induced-Fit Heparin Binding Mechanism of Antithrombin. J Mol Biol 2009; 386:1278-89. [DOI: 10.1016/j.jmb.2009.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Li W, Huntington JA. The Heparin Binding Site of Protein C Inhibitor Is Protease-dependent. J Biol Chem 2008; 283:36039-45. [DOI: 10.1074/jbc.m805974200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Mitsi M, Forsten-Williams K, Gopalakrishnan M, Nugent MA. A catalytic role of heparin within the extracellular matrix. J Biol Chem 2008; 283:34796-807. [PMID: 18845539 DOI: 10.1074/jbc.m806692200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the mechanism by which heparin enhances the binding of vascular endothelial growth factor (VEGF) to the extracellular matrix protein fibronectin. In contrast to other systems, where heparin acts as a protein scaffold, we found that heparin functions catalytically to modulate VEGF binding site availability on fibronectin. By measuring the binding of VEGF and heparin to surface-immobilized fibronectin, we show that substoichiometric amounts of heparin exposed cryptic VEGF binding sites within fibronectin that remain available after heparin removal. Measurement of association and dissociation kinetics for heparin binding to fibronectin indicated that the interaction is rapid and transient. We localized the heparin-responsive element to the C-terminal 40-kDa Hep2 domain of fibronectin. A mathematical model of this catalytic process was constructed that supports a mechanism whereby the heparin-induced conformational change in fibronectin is accompanied by release of heparin. Experiments with endothelial extracellular matrix suggest that this process may also occur within biological matrices. These results indicate a novel mechanism whereby heparin catalyzes the conversion of fibronectin to an open conformation by transiently interacting with fibronectin and progressively hopping from molecule to molecule. Catalytic activation of the extracellular matrix might be an important mechanism for heparin to regulate function during normal and disease states.
Collapse
Affiliation(s)
- Maria Mitsi
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
39
|
Li SH, Gorlatova NV, Lawrence DA, Schwartz BS. Structural differences between active forms of plasminogen activator inhibitor type 1 revealed by conformationally sensitive ligands. J Biol Chem 2008; 283:18147-57. [PMID: 18436534 DOI: 10.1074/jbc.m709455200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central beta-sheet, beta-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into beta-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the beta-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to beta-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin.
Collapse
Affiliation(s)
- Shih-Hon Li
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
40
|
Remko M, von der Lieth CW. Conformational structure of some trimeric and pentameric structural units of heparin. J Phys Chem A 2007; 111:13484-91. [PMID: 18052350 DOI: 10.1021/jp075330l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular structure of trimeric units (D-E-F and F-G-H) and the pentamer D-E-F-G-H of heparin (sodium salts and their anionic forms) was studied using the B3LYP/6-31G(d) method. The equilibrium structure of the sodium salts of the trimers and pentamer investigated in the isolated state was determined by multidentate coordination of the sodium cations with oxygen atoms of the sulfate, carboxyl, and hydroxyl (hydroxymethyl) groups, respectively. The displacement of Na+ ions from the binding sites in the sodium salt of oligosaccharides studied resulted in the appreciable change of the overall conformation of the corresponding anion. Upon dissociation, a large change in both the position of the sulfate groups and the conformation across the glycosidic bonds was observed. The stable energy conformations around the glysosidic bonds found for the pentamer investigated are compared and discussed with the available experimental X-ray structural data for the structurally related heparin-derived pentasaccharides in cocrystals with proteins.
Collapse
Affiliation(s)
- Milan Remko
- Department of Pharmaceutical Chemistry, Comenius University, Odbojarov 10, SK-832 32 Bratislava, Slovakia.
| | | |
Collapse
|
41
|
Imberty A, Lortat-Jacob H, Pérez S. Structural view of glycosaminoglycan–protein interactions. Carbohydr Res 2007; 342:430-9. [PMID: 17229412 DOI: 10.1016/j.carres.2006.12.019] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 01/28/2023]
Abstract
The essential role of protein-glycosaminoglycan interactions in the regulation of various physiological processes has been recognized for several decades but it is only recently that the molecular basis underlying such interactions has emerged. The different methodologies to elucidate the three-dimensional features of glycosaminoglycans along with the interactions with proteins cover high resolution NMR spectroscopy, X-ray crystallography, molecular modeling, and hydrodynamic measurements. The structural results that have accumulated have been organized in databases that allow rapid searching with entries related either to the type of glycosaminoglycan or the type of protein. Finally, three selected examples enlightening the complexity of the nature of the interactions occurring between proteins and glycosaminoglycans are given. The example of interactions between heparin and antithrombin III illustrates how such a complex mechanism as the regulation of blood coagulation by a specific pentasaccharide can be dissected through the combined use of dedicated carbohydrate chemistry and structural glycobiology. The second example deals with the study of complexes between chemokines and heparin, and shows how multimolecular complexes of proteins can be organized in space throughout the action of glycosaminoglycans. Again, the synthesis of chemical mimetics offers an unexpected route to the development of novel glycotherapeutics. Finally, the area of enzymes/glycosaminoglycans complexes is briefly covered to realize the limited knowledge that we have for such an important class of biomacromolecular complexes.
Collapse
Affiliation(s)
- Anne Imberty
- CERMAV-CNRS (affiliated with Université Joseph Fourier), BP 53, F-38041 Grenoble, France.
| | | | | |
Collapse
|
42
|
Choi S, Clements DJ, Pophristic V, Ivanov I, Vemparala S, Bennett JS, Klein ML, Winkler JD, DeGrado WF. The design and evaluation of heparin-binding foldamers. Angew Chem Int Ed Engl 2006; 44:6685-9. [PMID: 16094685 DOI: 10.1002/anie.200501279] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sungwook Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cruz RGCD, Jairajpuri MA, Bock SC. Disruption of a Tight Cluster Surrounding Tyrosine 131 in the Native Conformation of Antithrombin III Activates It for Factor Xa Inhibition. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84080-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Johnson DJD, Langdown J, Li W, Luis SA, Baglin TP, Huntington JA. Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation. J Biol Chem 2006; 281:35478-86. [PMID: 16973611 PMCID: PMC2679979 DOI: 10.1074/jbc.m607204200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poor inhibitory activity of circulating antithrombin (AT) is critical to the formation of blood clots at sites of vascular damage. AT becomes an efficient inhibitor of the coagulation proteases only after binding to a specific heparin pentasaccharide, which alters the conformation of the reactive center loop (RCL). The molecular basis of this activation event lies at the heart of the regulation of hemostasis and accounts for the anticoagulant properties of the low molecular weight heparins. Although several structures of AT have been solved, the conformation of the RCL in native AT remains unknown because of the obligate crystal contact between the RCL of native AT and its latent counterpart. Here we report the crystallographic structure of a variant of AT in its monomeric native state. The RCL shifted approximately 20 A, and a salt bridge was observed between the P1 residue (Arg-393) and Glu-237. This contact explains the effect of mutations at the P1 position on the affinity of AT for heparin and also the properties of AT-Truro (E237K). The relevance of the observed conformation was verified through mutagenesis studies and by solving structures of the same variant in different crystal forms. We conclude that the poor inhibitory activity of the circulating form of AT is partially conferred by intramolecular contacts that restrain the RCL, orient the P1 residue away from attacking proteases, and additionally block the exosite utilized in protease recognition.
Collapse
Affiliation(s)
| | | | | | | | | | - James A. Huntington
- To whom correspondence should be addressed. Tel.: 44-1223-763230; Fax: 44-1223-336827; E-mail:
| |
Collapse
|
45
|
Robertson AS, Belorgey D, Gubb D, Dafforn TR, Lomas DA. Inhibitory Activity of the Drosophila melanogaster Serpin Necrotic Is Dependent on Lysine Residues in the D-helix. J Biol Chem 2006; 281:26437-43. [PMID: 16835244 DOI: 10.1074/jbc.m606085200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Necrotic is a member of the serine protease inhibitor or serpin superfamily. It is a potent inhibitor of elastase and chymotrypsin type proteases and is responsible for regulating the anti-fungal response in Drosophila melanogaster. Necrotic contains three basic lysine residues within the D-helix that are homologous to those found in the heparin-binding domain of antithrombin and heparin co-factor II. We show here that substitution of all three lysine residues for glutamines caused cellular necrosis and premature death in Drosophila in keeping with a loss of function phenotype. The lysine to glutamine substitutions had no effect on the overall structure of recombinant Necrotic protein but abolished the formation of stable complexes with target proteases. Individual substitutions with either glutamine or alanine demonstrated that lysine 68 was the most critical residue for inhibitory activity. Despite the homology to other serpins, Necrotic did not bind, nor was it activated by sulfated glycans. These data demonstrate a critical role for basic residues within the D-helix (and lysine 68 in particular) in the inhibitory mechanism of the serpin Necrotic.
Collapse
Affiliation(s)
- Andrew S Robertson
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
dela Cruz RGC, Jairajpuri MA, Bock SC. Disruption of a tight cluster surrounding tyrosine 131 in the native conformation of antithrombin III activates it for factor Xa inhibition. J Biol Chem 2006; 281:31668-76. [PMID: 16940049 DOI: 10.1074/jbc.m604826200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The native conformation of antithrombin III (ATIII) is a poor inhibitor of its coagulation pathway target enzymes because of the partial insertion of its reactive center loop (RCL) in its central A beta-sheet. This study focused on tyrosine 131, which is located at the helix D-sheet A interface, adjacent to the ATIII pentasaccharide and heparin cofactor-binding sites and some 17A away from the RCL insertion. Crystallographic structures show that the Tyr(131) ring is buried in native ATIII and then becomes exposed when pentasaccharide binds to the inhibitor and activates it. This change suggested that Tyr(131) might serve as a switch for ATIII conformational activation. The hypothesis is supported by results from this study, which progressively removed atoms from the Tyr(131) side chain. Rates of heparin-independent Y131L and Y131A factor Xa inhibition were 25 and 29 times faster than for the control and Y131F, suggesting that Tyr(131) ring interactions with neighboring helix D and strand 2A residues shift the uncatalyzed native-to-activated conformational equilibrium toward the RCL-inserted state. Thermal denaturation experiments showed Y131A and Y131L were less stable than the control and Y131F, implying an increased tendency toward A-sheet mobility in these genetically activated molecules. Thus, the tight Tyr(131)-Asn(127)-Leu(130)-Leu(140)-Ser(142) cluster at the helix D-strand 2A interface of native antithrombin contributes significantly to the stability of the ground state conformation, and tyrosine 131 serves as a heparin-responsive molecular switch during the allosteric activation of ATIII anticoagulant activity.
Collapse
|
47
|
Huntington JA. Shape-shifting serpins – advantages of a mobile mechanism. Trends Biochem Sci 2006; 31:427-35. [PMID: 16820297 DOI: 10.1016/j.tibs.2006.06.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/24/2006] [Accepted: 06/21/2006] [Indexed: 11/30/2022]
Abstract
Serpins use an extraordinary mechanism of protease inhibition that depends on a rapid and marked conformational change and causes destruction of the covalently linked protease. Serpins thus provide stoichiometric, irreversible inhibition, and their dependence on conformational change is exploited for signalling and clearance. The regulatory advantages provided by structural mobility are best illustrated by the heparin activation mechanisms of the plasma serpins antithrombin and heparin cofactor II. This mechanistic complexity, however, renders serpins highly susceptible to disease-causing mutations. Recent crystal structures reveal the intricate conformational rearrangements involved in protease inhibition, activity modulation and the unique molecular pathology of the remarkable shape-shifting serpins.
Collapse
Affiliation(s)
- James A Huntington
- University of Cambridge, Department of Haematology, Cambridge Institute for Medical Research, Division of Structural Medicine, Thrombosis Research Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, UK.
| |
Collapse
|
48
|
Raghuraman A, Mosier PD, Desai UR. Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). J Med Chem 2006; 49:3553-62. [PMID: 16759098 PMCID: PMC2516555 DOI: 10.1021/jm060092o] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a combinatorial virtual screening approach for predicting high specificity heparin/heparan sulfate sequences using the well-studied antithrombin-heparin interaction as a test case. Heparan sulfate hexasaccharides were simulated in the 'average backbone' conformation, wherein the inter-glycosidic bond angles were held constant at the mean of the known solution values, irrespective of their sequence. Molecular docking utilized GOLD with restrained inter-glycosidic torsions and intra-ring conformations, but flexible substituents at the 2-, 3-, and 6-positions and explicit incorporation of conformational variability of the iduronate residues. The approach reproduces the binding geometry of the sequence-specific heparin pentasaccharide to within 2.5 A. Screening of a combinatorial virtual library of 6,859 heparin hexasaccharides using a dual filter strategy, in which predicted antithrombin affinity was the first filter and self-consistency of docking was the second, resulted in only 10 sequences. Of these, nine were found to bind antithrombin in a manner identical to the natural pentasaccharide, while a novel hexasaccharide bound the inhibitor in a unique but dramatically different geometry and orientation. This work presents the first approach on combinatorial library screening for heparin/heparan sulfate GAGs to determine high specificity sequences and opens up huge opportunities to investigate numerous other physiologically relevant GAG-protein interactions.
Collapse
Affiliation(s)
- Arjun Raghuraman
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, 23298, USA
| | | | | |
Collapse
|
49
|
Langdown J, Carter WJ, Baglin TP, Huntington JA. Allosteric activation of antithrombin is independent of charge neutralization or reversal in the heparin binding site. FEBS Lett 2006; 580:4709-12. [PMID: 16884719 DOI: 10.1016/j.febslet.2006.07.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/13/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
We investigate the hypothesis that heparin activates antithrombin (AT) by relieving electrostatic strain within helix D. Mutation of residues K125 and R129 to either Ala or Glu abrogated heparin binding, but did not activate AT towards inhibition of factors IXa or Xa. However, substitution of residues C-terminal to helix D (R132 and K133) to Ala had minimal effect on heparin affinity but resulted in appreciable activation. We conclude that charge neutralization or reversal in the heparin binding site does not drive the activating conformational change of AT, and that the role of helix D elongation is to stabilize the activated state.
Collapse
Affiliation(s)
- Jonathan Langdown
- University of Cambridge, Department of Haematology, Cambridge Institute for Medical Research, Division of Structural Medicine, Wellcome Trust/MRC Building, Cambridge CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
50
|
Choi S, Clements DJ, Pophristic V, Ivanov I, Vemparala S, Bennett JS, Klein ML, Winkler JD, DeGrado WF. The Design and Evaluation of Heparin-Binding Foldamers. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|