1
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
2
|
Han YS, Pakkam M, Fogarty MJ, Sieck GC, Brozovich FV. Alterations in cardiac contractile and regulatory proteins contribute to age-related cardiac dysfunction in male rats. Physiol Rep 2024; 12:e70012. [PMID: 39169429 PMCID: PMC11338742 DOI: 10.14814/phy2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats. There are no age-related changes in SERCA2 expression or phospholamban phosphorylation. Additionally, neither titin isoform expression nor phosphorylation differed. However, there is a significant increase in β-isoform of the myosin heavy chain (MyHC) expression and phosphorylation of TnI and MyBP-C during aging. In permeabilized strips of papillary muscle, force and Ca2+ sensitivity are reduced during aging, consistent with the increase in β-MyHC expression and TnI phosphorylation. However, the increase in MyBP-C phosphorylation during aging may represent a mechanism to compensate for age-related contractile deficits. In isolated cardiomyocytes loaded with Fura-2, the peak of the Ca2+ transient is reduced, but the kinetics of the Ca2+ transient are not altered. Furthermore, the extent of shortening and the rates of both sarcomere shortening and re-lengthening are reduced. These results demonstrate that aging is associated with changes in contractile and regulatory protein expression and phosphorylation, which affect the mechanical properties of cardiac muscle.
Collapse
Affiliation(s)
- Young Soo Han
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Madona Pakkam
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary C. Sieck
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Frank V. Brozovich
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
3
|
Kakimoto Y, Ueda A, Kimura Y, Akiyama T, Tanaka M, Ikeda H, Isozaki S, Maeda K, Osawa M. Layer-specific proteomic profiling of human normal heart. Pathol Res Pract 2024; 260:155453. [PMID: 39003999 DOI: 10.1016/j.prp.2024.155453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The organized functioning of the anisotropic myocardial layers-including the inner longitudinal, middle circular, and outer longitudinal layers-is essential for stable systemic circulation. However, the proteomic profile of each myocardial layer has not been studied yet. Here, we aimed to elucidate the layer-specific proteomic profile of human cardiac tissue using microscopic sampling. METHODS Normal hearts were obtained from five autopsy cases, and cardiomyocytes were microdissected separately from the three myocardial layers of the left ventricle. Histological analysis and shotgun proteomic profiling were performed, followed by immunohistochemical analysis. RESULTS Histologically, no significant changes were observed among the three layers regarding cardiomyocyte diameter and myocardial fibrosis. Totally 1220 proteins-comprising 9404 peptides-were identified from 15 samples, of which the expression levels of 92 proteins were significantly altered among the layers. Gene ontology enrichment analysis revealed that the proteins specifically elevated in the inner and outer layers mostly belonged to the actin filament-binding protein group. In particular, MYH1 was highly expressed in cardiomyocytes in the outer layer, and CTNNA3 was highly expressed at the intercalated disc in the inner layer. CONCLUSIONS This is the first report on layer-specific proteomic profiling of human normal hearts. Anisotropic profiles of actin filament-binding proteins in myocardial layers may contribute to the anisotropic contractile and conductive abilities of the heart. Knowledge of the layer-specific proteome profiles of a human heart in the normal state can aid in further research on cardiac pathology, such as the prognosis and treatment of focal myocardial infarction.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan.
| | - Atsushi Ueda
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa 236-0004, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Kanagawa 236-0004, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa 259-1193, Japan
| | - Haruka Ikeda
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Shotaro Isozaki
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Kazuho Maeda
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| |
Collapse
|
4
|
Jones TLM, Woulfe KC. Considering impact of age and sex on cardiac cytoskeletal components. Am J Physiol Heart Circ Physiol 2024; 326:H470-H478. [PMID: 38133622 PMCID: PMC11219061 DOI: 10.1152/ajpheart.00619.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
The cardiac cytoskeletal components are integral to cardiomyocyte function and are responsible for contraction, sustaining cell structure, and providing scaffolding to direct signaling. Cytoskeletal components have been implicated in cardiac pathology; however, less attention has been paid to age-related modifications of cardiac cytoskeletal components and how these contribute to dysfunction with increased age. Moreover, significant sex differences in cardiac aging have been identified, but we still lack a complete understanding to the mechanisms behind these differences. This review summarizes what is known about how key cardiomyocyte cytoskeletal components are modified because of age, as well as reported sex-specific differences. Thorough consideration of both age and sex as integral players in cytoskeletal function may reveal potential avenues for more personalized therapeutics.
Collapse
Affiliation(s)
- Timothy L M Jones
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
5
|
Burnham HV, Cizauskas HE, Barefield DY. Fine tuning contractility: atrial sarcomere function in health and disease. Am J Physiol Heart Circ Physiol 2024; 326:H568-H583. [PMID: 38156887 PMCID: PMC11221815 DOI: 10.1152/ajpheart.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.
Collapse
Affiliation(s)
- Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| |
Collapse
|
6
|
Liu C, Ruppel KM, Spudich JA. Motility Assay to Probe the Calcium Sensitivity of Myosin and Regulated Thin Filaments. Methods Mol Biol 2024; 2735:169-189. [PMID: 38038849 PMCID: PMC10773985 DOI: 10.1007/978-1-0716-3527-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Calcium-dependent activation of the thin filament mediated by the troponin-tropomyosin complex is key in the regulation of actin-myosin based muscle contraction. Perturbations to this system, either physiological (e.g., phosphorylation of myosin light chains) or pathological (e.g., mutations that cause familial cardiomyopathies), can alter calcium sensitivity and thus have important implications in human health and disease. The in vitro motility assay provides a quantitative and precise method to study the calcium sensitivity of the reconstituted myosin-thin filament motile system. Here we present a simple and robust protocol to perform calcium-dependent motility of β-cardiac myosin and regulated thin filaments. The experiment is done on a multichannel microfluidic slide requiring minimal amounts of proteins. A complete velocity vs. calcium concentration curve is produced from one experiment in under 1 h.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
| | - James A Spudich
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Gerzen OP, Lisin RV, Balakin AA, Mukhlynina EA, Kuznetsov DA, Nikitina LV, Protsenko YL. Characteristics of the right atrial and right ventricular contractility in a model of monocrotaline-induced pulmonary arterial hypertension. J Muscle Res Cell Motil 2023; 44:299-309. [PMID: 37249732 DOI: 10.1007/s10974-023-09651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Pulmonary arterial hypertension (PAH) leads to changes in the pump function of the heart and causes right-sided myocardial hypertrophy and heart failure. This study was the first to compare the contractile characteristics of the multicellular myocardial preparations of the right atrium (RA) and right ventricle (RV) of male rats from the control group (CON) and the group with monocrotaline (MCT)-induced hypertrophy at the molecular and multicellular levels. In both RA and RV in MCT-treated rats, the fraction of motile filaments and the maximum sliding velocity of actin and reconstituted thin filaments over myosin decreased, and the ratio of α-/β-myosin heavy chains (MHC) shifted towards β-MHC. In the RA strips and RV trabeculae, the maximum shortening velocity, the extent of muscle shortening, the amplitude of isometric stress, the amount of work decreased. PAH leads to a greater drop in right atrial contractility than that of the ventricle.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya st, Yekaterinburg, 620049, Russian Federation
| | - Ruslan V Lisin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya st, Yekaterinburg, 620049, Russian Federation
| | - Alexander A Balakin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya st, Yekaterinburg, 620049, Russian Federation.
| | - Elena A Mukhlynina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya st, Yekaterinburg, 620049, Russian Federation
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya st, Yekaterinburg, 620049, Russian Federation
| | - Larisa V Nikitina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya st, Yekaterinburg, 620049, Russian Federation
| | - Yuri L Protsenko
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya st, Yekaterinburg, 620049, Russian Federation
| |
Collapse
|
8
|
Patel JR, Park KJ, Bradshaw AS, Phan T, Fitzsimons DP. Cooperative mechanisms underlie differences in myocardial contractile dynamics between large and small mammals. J Gen Physiol 2023; 155:e202213315. [PMID: 37725091 PMCID: PMC10509357 DOI: 10.1085/jgp.202213315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/08/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Ca2+ binding to troponin C (TnC) and myosin cross-bridge binding to actin act in a synergistic cooperative manner to modulate myocardial contraction and relaxation. The responsiveness of the myocardial thin filament to the activating effects of Ca2+ and myosin cross-bridge binding has been well-characterized in small mammals (e.g., mice). Given the nearly 10-fold difference in resting heart rates and twitch kinetics between small and large mammals, it is unlikely that the cooperative mechanisms underlying thin filament activation are identical in these two species. To test this idea, we measured the Ca2+ dependencies of steady-state force and the rate constant of force redevelopment (ktr) in murine and porcine permeabilized ventricular myocardium. While murine myocardium exhibited a steep activation-dependence of ktr, the activation-dependent profile of ktr was significantly reduced in porcine ventricular myocardium. Further insight was attained by examining force-pCa and ktr-pCa relationships. In the murine myocardium, the pCa50 for ktr was right-shifted compared with the pCa50 for force, meaning that increases in steady-state force occurred well before increases in the rate of force redevelopment were observed. In the porcine myocardium, we observed a tighter coupling of the force-pCa and ktr-pCa relationships, as evidenced by near-maximal rates of force redevelopment at low levels of Ca2+ activation. These results demonstrate that the molecular mechanisms underlying the cooperative activation of force are a dynamic property of the mammalian heart, involving, at least in part, the species- and tissue-specific expression of cardiac myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jitandrakumar R. Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kayla J.V. Park
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| | - Aidan S. Bradshaw
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| | - Tuan Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Daniel P. Fitzsimons
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
9
|
Kopylova GV, Kochurova AM, Yampolskaya DS, Nefedova VV, Tsaturyan AK, Koubassova NA, Kleymenov SY, Levitsky DI, Bershitsky SY, Matyushenko AM, Shchepkin DV. Structural and Functional Properties of Kappa Tropomyosin. Int J Mol Sci 2023; 24:ijms24098340. [PMID: 37176047 PMCID: PMC10179609 DOI: 10.3390/ijms24098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.
Collapse
Affiliation(s)
- Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Daria S Yampolskaya
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Victoria V Nefedova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | - Sergey Y Kleymenov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitrii I Levitsky
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | | | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| |
Collapse
|
10
|
Gerzen OP, Nabiev SR, Klinova SV, Minigalieva IA, Sutunkova MP, Katsnelson BA, Nikitina LV. Molecular mechanisms of mechanical function changes of the rat myocardium under subchronic lead exposure. Food Chem Toxicol 2022; 169:113444. [PMID: 36179994 DOI: 10.1016/j.fct.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
A moderate degree of lead intoxication was observed in male rats after repeated intraperitoneal injections with two doses of lead acetate three times a week during 5 (12.5 mg of Pb per kg body mass) and 6 (6.01 mg of Pb per kg body mass) weeks. Using an in vitro motility assay, we investigated the impact of this intoxication on the characteristics of actin-myosin interaction and its regulation in the atria, right, and left ventricles. Both lead doses exposure decreased the maximum sliding velocity of reconstituted thin filaments over myosin and fraction of motile filaments in all heart chambers, caused the myosin isoforms shift towards slower β-myosin heavy chains in ventricles and decreased regulatory light chain phosphorylation in atria. No statistically significant difference was found in force and calcium regulation of actin-myosin interaction. A dose-dependent effect of lead on myosin functional characteristics was found in all heart chambers, but the degree of this effect varied depending on the heart chamber.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
11
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
12
|
Wang T, Spahiu E, Osten J, Behrens F, Grünhagen F, Scholz T, Kraft T, Nayak A, Amrute-Nayak M. Cardiac ventricular myosin and slow skeletal myosin exhibit dissimilar chemomechanical properties despite bearing the same myosin heavy chain isoform. J Biol Chem 2022; 298:102070. [PMID: 35623390 PMCID: PMC9243179 DOI: 10.1016/j.jbc.2022.102070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
The myosin II motors are ATP-powered force-generating machines driving cardiac and muscle contraction. Myosin II heavy chain isoform-beta (β-MyHC) is primarily expressed in the ventricular myocardium and in slow-twitch muscle fibers, such as M. soleus. M. soleus-derived myosin II (SolM-II) is often used as an alternative to the ventricular β-cardiac myosin (βM-II); however, the direct assessment of biochemical and mechanical features of the native myosins is limited. By employing optical trapping, we examined the mechanochemical properties of native myosins isolated from the rabbit heart ventricle and soleus muscles at the single-molecule level. We found purified motors from the two tissue sources, despite expressing the same MyHC isoform, displayed distinct motile and ATPase kinetic properties. We demonstrate βM-II was approximately threefold faster in the actin filament-gliding assay than SolM-II. The maximum actomyosin (AM) detachment rate derived in single-molecule assays was also approximately threefold higher in βM-II, while the power stroke size and stiffness of the "AM rigor" crossbridge for both myosins were comparable. Our analysis revealed a higher AM detachment rate for βM-II, corresponding to the enhanced ADP release rates from the crossbridge, likely responsible for the observed differences in the motility driven by these myosins. Finally, we observed a distinct myosin light chain 1 isoform (MLC1sa) that associates with SolM-II, which might contribute to the observed kinetics differences between βM-II and SolM-II. These results have important implications for the choice of tissue sources and justify prerequisites for the correct myosin heavy and light chains to study cardiomyopathies.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Jennifer Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Florentine Behrens
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Fabius Grünhagen
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Lyu Y, Thai PN, Ren L, Timofeyev V, Jian Z, Park S, Ginsburg KS, Overton J, Bossuyt J, Bers DM, Yamoah EN, Chen-Izu Y, Chiamvimonvat N, Zhang XD. Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. iScience 2022; 25:103624. [PMID: 35005560 PMCID: PMC8718820 DOI: 10.1016/j.isci.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and β-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.
Collapse
Affiliation(s)
- Yankun Lyu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kenneth S. Ginsburg
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - James Overton
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
14
|
Barrick SK, Greenberg MJ. Cardiac myosin contraction and mechanotransduction in health and disease. J Biol Chem 2021; 297:101297. [PMID: 34634306 PMCID: PMC8559575 DOI: 10.1016/j.jbc.2021.101297] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin's functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
15
|
Gerzen OP, Nabiev SR, Nikitina LV. Influence of Chronic Lead Intoxication on Functional Characteristics and Isoform Composition of Left Ventricular Myosin in the Rat Heart. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302104013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Sharifi Kia D, Kim K, Simon MA. Current Understanding of the Right Ventricle Structure and Function in Pulmonary Arterial Hypertension. Front Physiol 2021; 12:641310. [PMID: 34122125 PMCID: PMC8194310 DOI: 10.3389/fphys.2021.641310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease resulting in increased right ventricular (RV) afterload and RV remodeling. PAH results in altered RV structure and function at different scales from organ-level hemodynamics to tissue-level biomechanical properties, fiber-level architecture, and cardiomyocyte-level contractility. Biomechanical analysis of RV pathophysiology has drawn significant attention over the past years and recent work has found a close link between RV biomechanics and physiological function. Building upon previously developed techniques, biomechanical studies have employed multi-scale analysis frameworks to investigate the underlying mechanisms of RV remodeling in PAH and effects of potential therapeutic interventions on these mechanisms. In this review, we discuss the current understanding of RV structure and function in PAH, highlighting the findings from recent studies on the biomechanics of RV remodeling at organ, tissue, fiber, and cellular levels. Recent progress in understanding the underlying mechanisms of RV remodeling in PAH, and effects of potential therapeutics, will be highlighted from a biomechanical perspective. The clinical relevance of RV biomechanics in PAH will be discussed, followed by addressing the current knowledge gaps and providing suggested directions for future research.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh - University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marc A Simon
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Isola R, Broccia F, Casti A, Loy F, Isola M, Vargiu R. STZ-diabetic rat heart maintains developed tension amplitude by increasing sarcomere length and crossbridge density. Exp Physiol 2021; 106:1572-1586. [PMID: 33977604 PMCID: PMC8362044 DOI: 10.1113/ep089000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
New Findings What is the central question of this study? In the papillary muscle from type I diabetic rats, does diabetes‐associated altered ventricular function result from changes of acto‐myosin interactions and are these modifications attributable to a possible sarcomere rearrangement? What is the main finding and its importance? For the first time, we showed that type‐I diabetes altered sarcomeric ultrastructure, as seen by transmission electron microscopy, consistent with physiological parameters. The diabetic condition induced slower timing parameters, which is compatible with a diastolic dysfunction. At the sarcomeric level, augmented β‐myosin heavy chain content and increased sarcomere length and crossbridges' number preserve myocardial stroke and could concur to maintain the ejection fraction.
Abstract We investigated whether diabetes‐associated altered ventricular function, in a type I diabetes animal model, results from a modification of acto‐myosin interactions, through the in vitro recording of left papillary muscle mechanical parameters and examination of sarcomere morphology by transmission electron microscopy (TEM). Experiments were performed on streptozotocin‐induced diabetic and age‐matched control female Wistar rats. Mechanical isometric and isotonic indexes and timing parameters were determined. Using Huxley's equations, we calculated mechanics, kinetics and energetics of myosin crossbridges. Sarcomere length and A‐band length were measured on TEM images. Type I and III collagen and β‐myosin heavy chain (MHC) expression were determined by immunoblotting. No variation in resting and developed tension or maximum extent of shortening was evident between groups, but diabetic rats showed lower maximum shortening velocity and prolonged timing parameters. Compared to controls, diabetics also displayed a higher number of crossbridges with lower unitary force. Moreover, no change in type I and III collagen was associated to diabetes, but pathological rats showed a two‐fold enhancement of β‐MHC content and longer sarcomeres and A‐band, detected by ultrastructural morphometry. Overall, these data address whether a preserved systolic function accompanied by an altered diastolic phase results from a recruitment of super‐relaxed myosin heads or the phosphorylation of the regulatory light chain site in myosin. Although the early signs of diabetic cardiomyopathy were well expressed, the striking finding of our study was that, in diabetics, sarcomere modification may be a possible compensatory mechanism that preserves systolic function.
Collapse
Affiliation(s)
- Raffaella Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesca Broccia
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Alberto Casti
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Michela Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| |
Collapse
|
18
|
Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol 2021; 153:211992. [PMID: 33856419 PMCID: PMC8054178 DOI: 10.1085/jgp.202012787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Jeanne M Nerbonne
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Mijailovich SM, Prodanovic M, Poggesi C, Powers JD, Davis J, Geeves MA, Regnier M. The effect of variable troponin C mutation thin filament incorporation on cardiac muscle twitch contractions. J Mol Cell Cardiol 2021; 155:112-124. [PMID: 33636222 DOI: 10.1016/j.yjmcc.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
One of the complexities of understanding the pathology of familial forms of cardiac diseases is the level of mutation incorporation in sarcomeres. Computational models of the sarcomere that are spatially explicit offer an approach to study aspects of mutational incorporation into myofilaments that are more challenging to get at experimentally. We studied two well characterized mutations of cardiac TnC, L48Q and I61Q, that decrease or increase the release rate of Ca2+ from cTnC, k-Ca, resulting in HCM and DCM respectively [1]. Expression of these mutations in transgenic mice was used to provide experimental data for incorporation of 30 and 50% (respectively) into sarcomeres. Here we demonstrate that fixed length twitch contractions of trabeculae from mice containing mutant differ from WT; L48Q trabeculae have slower relaxation while I61Q trabeculae have markedly reduced peak tension. Using our multiscale modelling approach [2] we were able to describe the tension transients of WT mouse myocardium. Tension transients for the mutant cTnCs were simulated with changes in k-Ca, measured experimentally for each cTnC mutant in whole troponin complex, a change in the affinity of cTnC for cTnI, and a reduction in the number of detached crossbridges available for binding. A major advantage of the multiscale explicit 3-D model is that it predicts the effects of variable mutation incorporation, and the effects of variations in mutation distribution within thin filaments in sarcomeres. Such effects are currently impossible to explore experimentally. We explored random and clustered distributions of mutant cTnCs in thin filaments, as well as distributions of individual thin filaments with only WT or mutant cTnCs present. The effects of variable amounts of incorporation and non-random distribution of mutant cTnCs are more marked for I61Q than L48Q cTnC. We conclude that this approach can be effective for study on mutations in multiple proteins of the sarcomere. SUMMARY: A challenge in experimental studies of diseases is accounting for the effect of variable mutation incorporation into myofilaments. Here we use a spatially explicit computational approach, informed by experimental data from transgenic mice expressing one of two mutations in cardiac Troponin C that increase or decrease calcium sensitivity. We demonstrate that the model can accurately describe twitch contractions for the data and go on to explore the effect of variable mutant incorporation and localization on simulated cardiac muscle twitches.
Collapse
Affiliation(s)
| | - Momcilo Prodanovic
- Bioengineering Research and Development Center (BioIRC), Kragujevac 34000, Serbia; Faculty of Engineering, University of Kragujevac, Kragujevac 34000, Serbia
| | - Corrado Poggesi
- Department of Experimental & Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Dept. of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Michael A Geeves
- Dept. of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
20
|
Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol Life Sci 2021; 78:7309-7337. [PMID: 34704115 PMCID: PMC8629898 DOI: 10.1007/s00018-021-03971-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023]
Abstract
Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly β-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & β-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.
Collapse
|
21
|
Katsnelson BA, Klinova SV, Gerzen OP, Balakin AA, Lookin ON, Lisin RV, Nabiev SR, Privalova LI, Minigalieva IA, Panov VG, Katsnelson LB, Nikitina LV, Kuznetsov DA, Protsenko YL. Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination. Food Chem Toxicol 2020; 144:111641. [PMID: 32758638 DOI: 10.1016/j.fct.2020.111641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023]
Abstract
This investigation continues our study of the effects of Pb-Cd poisoning on the heart, extending the enquiry from isometric to auxotonic contractions, thereby examining the effect on the ability of myocardial tissues to perform mechanical work. Different shifts were revealed in myocardial force-velocity relations following subchronic exposure of rats to lead acetate and cadmium chloride acting separately, in combination, or in combination with a bioprotective complex (BPC). The experiments were conducted on isolated preparations of trabecules and papillary muscles of the right ventricle in physiological loading conditions and on isolated heart muscle contractile proteins examined by the in vitro motility assay. The results of the latter correlate with the shifts in the ratio of cardiac myosin isoforms. The amount of work performed by the myocardium was calculated on the basis of the tension-shortening loop area and was found to be similar in the preparations from all experimental groups. This fact presumably reflects adaptive capacity of the myocardial function even when contractility is damaged due to the metallic intoxication of a moderate severity. Some characteristics of rat myocardium altered by the impact of lead-cadmium intoxication became fully or partly normalized if intoxication developed against background administration of a bioprotective complex (BPC). Together with previously reported results obtained in the isometric mode of contractility, all these results strengthen the scientific foundations of risk assessment and risk management projects in the occupational and environmental conditions characterized by human exposure to lead and/or cadmium.
Collapse
Affiliation(s)
- Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia; The Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
22
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
23
|
Pasternak JA, MacPhee DJ, Harding JCS. Maternal and fetal thyroid dysfunction following porcine reproductive and respiratory syndrome virus2 infection. Vet Res 2020; 51:47. [PMID: 32228691 PMCID: PMC7106657 DOI: 10.1186/s13567-020-00772-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
To better understand the host response to porcine reproductive and respiratory virus-2 (PRRSV2) we evaluated circulating thyroid hormone and associated gene expression in a late gestation challenge model. Pregnant gilts were inoculated at gestation day 85 and fetal samples collected at either 12 or 21 days post-infection (dpi). A subset of fetuses was selected for analysis based on viability and viral load categorized as either uninfected-viable (UNIF), high viral load viable (HV-VIA) or high viral load meconium stained (HV-MEC) and were compared with gestational age matched controls (CON). In dams, circulating levels of total T3 and T4 decreased in the acute period following infection and rebounded by 21 dpi. A similar effect was observed in fetuses, but was largely restricted to HV-VIA and HV-MEC, with minimal decrease noted in UNIF relative to CON at 21 dpi. Gene expression in fetal heart at 12 dpi showed significant decompensatory transcription of thyroid hormone transporters (SLC16A2) and deiodinases (DIO2, DIO3), which was not observed in brain. Correspondingly, genes associated with cell cycle progression (CDK1,2,4) were downregulated in only the heart of highly infected fetuses, while expression of their inhibitor (CDKN1A) was upregulated in both tissues. Finally, expression of genes associated with cardiac stress including CAMKD and AGT were upregulated in the hearts of highly infected fetuses, and a shift in expression of MYH6 to MYH7 was observed in HV-MEC fetuses specifically. Collectively, the results suggest PRRSV2 infection causes a hypothyroid state that disproportionally impacts the fetal heart over the brain.
Collapse
Affiliation(s)
- J Alex Pasternak
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada. .,Department of Animal Sciences, Purdue University, 270 S. Russell St, West Lafayette, IN, 47907, USA.
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
24
|
Abstract
Cardiovascular disease continues to be the leading cause of death worldwide, and is frequently associated with heart failure. Efforts to develop better therapeutics for heart failure have been held back by limited understanding of the normal control of contraction on the timescale of the heartbeat. We used synchrotron X-ray diffraction to determine the dynamic structural changes in the myosin motors that drive contraction in the heart muscle, and show that myosin filament-based control mechanisms determine the time course and strength of contraction, allowing those mechanisms to be targeted for developing new therapies for heart disease. Myosin-based mechanisms are increasingly recognized as supplementing their better-known actin-based counterparts to control the strength and time course of contraction in both skeletal and heart muscle. Here we use synchrotron small-angle X-ray diffraction to determine the structural dynamics of local domains of the myosin filament during contraction of heart muscle. We show that, although myosin motors throughout the filament contribute to force development, only about 10% of the motors in each filament bear the peak force, and these are confined to the filament domain containing myosin binding protein-C, the “C-zone.” Myosin motors in domains further from the filament midpoint are likely to be activated and inactivated first in each contraction. Inactivated myosin motors are folded against the filament core, and a subset of folded motors lie on the helical tracks described previously. These helically ordered motors are also likely to be confined to the C-zone, and the associated motor conformation reforms only slowly during relaxation. Myosin filament stress-sensing determines the strength and time course of contraction in conjunction with actin-based regulation. These results establish the fundamental roles of myosin filament domains and the associated motor conformations in controlling the strength and dynamics of contraction in heart muscle, enabling those structures to be targeted to develop new therapies for heart disease.
Collapse
|
25
|
Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Nabiev SR, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB. Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food Chem Toxicol 2019; 125:233-241. [PMID: 30634013 DOI: 10.1016/j.fct.2018.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
A moderate subchronic lead intoxication was observed in male rats after repeated intraperitoneal injections of lead acetate. Right ventricular trabeculae and papillary muscles were isolated for in vitro studying of the contraction-relaxation cycle under isotonic and physiological loading. The contractile function of the myocardium was also assessed by measuring the velocity of thin filament movement over myosin. Lead intoxication led in papillary muscles to a decrease in the maximal rate of isotonic shortening for all afterloads and a decrease in the thin filament sliding velocity. Papillary muscles from lead-exposed rats displayed marked changes in most of the main characteristics of afterload contraction-relaxation cycles, but in trabeculae these changes were less pronounced. The reported changes were attenuated to some extent in rats treated with a Ca-containing bioprotector. The amount of work produced by both types of heart muscle preparations was not changed by lead. Only in papillary muscles the load-dependent relaxation index was significantly increased in the lead-treated groups. Thus subchronic lead intoxication affects the peak rate of force development and relaxation properties of cardiac muscle contracting in isotonic/physiological regimes rather than the total amount of mechanical work, which may reflect adaptive changes in the myocardial function under decreased contractility.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia; Ural Federal University, Ekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia; Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
26
|
Hypertrophic cardiomyopathy R403Q mutation in rabbit β-myosin reduces contractile function at the molecular and myofibrillar levels. Proc Natl Acad Sci U S A 2018; 115:11238-11243. [PMID: 30322937 DOI: 10.1073/pnas.1802967115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In 1990, the Seidmans showed that a single point mutation, R403Q, in the human β-myosin heavy chain (MHC) of heart muscle caused a particularly malignant form of familial hypertrophic cardiomyopathy (HCM) [Geisterfer-Lowrance AA, et al. (1990) Cell 62:999-1006.]. Since then, more than 300 mutations in the β-MHC have been reported, and yet there remains a poor understanding of how a single missense mutation in the MYH7 gene can lead to heart disease. Previous studies with a transgenic mouse model showed that the myosin phenotype depended on whether the mutation was in an α- or β-MHC backbone. This led to the generation of a transgenic rabbit model with the R403Q mutation in a β-MHC backbone. We find that the in vitro motility of heterodimeric R403Q myosin is markedly reduced, whereas the actin-activated ATPase activity of R403Q subfragment-1 is about the same as myosin from a nontransgenic littermate. Single myofibrils isolated from the ventricles of R403Q transgenic rabbits and analyzed by atomic force microscopy showed reduced rates of force development and relaxation, and achieved a significantly lower steady-state level of isometric force compared with nontransgenic myofibrils. Myofibrils isolated from the soleus gave similar results. The force-velocity relationship determined for R403Q ventricular myofibrils showed a decrease in the velocity of shortening under load, resulting in a diminished power output. We conclude that independent of whether experiments are performed with isolated molecules or with ordered molecules in the native thick filament of a myofibril, there is a loss-of-function induced by the R403Q mutation in β-cardiac myosin.
Collapse
|
27
|
Pinzauti F, Pertici I, Reconditi M, Narayanan T, Stienen GJM, Piazzesi G, Lombardi V, Linari M, Caremani M. The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J Physiol 2018; 596:2581-2596. [PMID: 29714038 PMCID: PMC6023834 DOI: 10.1113/jp275579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/13/2018] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Fast sarcomere-level mechanics in intact trabeculae, which allows the definition of the mechano-kinetic properties of cardiac myosin in situ, is a fundamental tool not only for understanding the molecular mechanisms of heart performance and regulation, but also for investigating the mechanisms of the cardiomyopathy-causing mutations in the myosin and testing small molecules for therapeutic interventions. The approach has been applied to measure the stiffness and force of the myosin motor and the fraction of motors attached during isometric twitches of electrically paced trabeculae under different extracellular Ca2+ concentrations. Although the average force of the cardiac myosin motor (∼6 pN) is similar to that of the fast myosin isoform of skeletal muscle, the stiffness (1.07 pN nm-1 ) is 2- to 3-fold smaller. The increase in the twitch force developed in the presence of larger extracellular Ca2+ concentrations is fully accounted for by a proportional increase in the number of attached motors. ABSTRACT The mechano-kinetic properties of the cardiac myosin were studied in situ, in trabeculae dissected from the right ventricle of the rat heart, by measuring the stiffness of the half-sarcomere both at the twitch force peak (Tp ) of an electrically paced intact trabecula at different extracellular Ca2+ concentrations ([Ca2+ ]o ), and in the same trabecula after skinning and induction of rigor. Taking into account the contribution of filament compliance to half-sarcomere compliance and the lattice geometry, we found that the stiffness of the cardiac myosin motor is 1.07 ± 0.09 pN nm-1 , which is slightly larger than that of the slow myosin isoform of skeletal muscle (0.6-0.8 pN nm-1 ) and 2- to 3-fold smaller than that of the fast skeletal muscle isoform. The increase in Tp from 61 ± 4 kPa to 93 ± 9 kPa, induced by raising [Ca2+ ]o from 1 to 2.5 mm at sarcomere length ∼2.2 μm, is accompanied by an increase of the half-sarcomere stiffness that is explained by an increase of the fraction of actin-attached motors from 0.08 ± 0.01 to 0.12 ± 0.02, proportional to Tp . Consequently, each myosin motor bears an average force of 6.14 ± 0.52 pN independently of Tp and [Ca2+ ]o . The application of fast sarcomere-level mechanics to intact trabeculae to define the mechano-kinetic properties of the cardiac myosin in situ represents a powerful tool for investigating cardiomyopathy-causing mutations in the myosin motor and testing specific therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ger J. M. Stienen
- Department of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | | | | | | | | |
Collapse
|
28
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
29
|
Mijailovich SM, Nedic D, Svicevic M, Stojanovic B, Walklate J, Ujfalusi Z, Geeves MA. Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms. Biophys J 2017; 112:984-996. [PMID: 28297657 DOI: 10.1016/j.bpj.2017.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023] Open
Abstract
Modeling the complete actin.myosin ATPase cycle has always been limited by the lack of experimental data concerning key steps of the cycle, because these steps can only be defined at very low ionic strength. Here, using human β-cardiac myosin-S1, we combine published data from transient and steady-state kinetics to model a minimal eight-state ATPase cycle. The model illustrates the occupancy of each intermediate around the cycle and how the occupancy is altered by changes in actin concentration for [actin] = 1-20Km. The cycle can be used to predict the maximal velocity of contraction (by motility assay or sarcomeric shortening) at different actin concentrations (which is consistent with experimental velocity data) and predict the effect of a 5 pN load on a single motor. The same exercise was repeated for human α-cardiac myosin S1 and rabbit fast skeletal muscle S1. The data illustrates how the motor domain properties can alter the ATPase cycle and hence the occupancy of the key states in the cycle. These in turn alter the predicted mechanical response of the myosin independent of other factors present in a sarcomere, such as filament stiffness and regulatory proteins. We also explore the potential of this modeling approach for the study of mutations in human β-cardiac myosin using the hypertrophic myopathy mutation R453C. Our modeling, using the transient kinetic data, predicts mechanical properties of the motor that are compatible with the single-molecule study. The modeling approach may therefore be of wide use for predicting the properties of myosin mutations.
Collapse
Affiliation(s)
- Srbolujub M Mijailovich
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Mechanical Engineering, Wentworth Institute of Technology, Boston, Massachusetts.
| | - Djordje Nedic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Marina Svicevic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Boban Stojanovic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jonathan Walklate
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Zoltan Ujfalusi
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| |
Collapse
|
30
|
Shchepkin DV, Nikitina LV, Bershitsky SY, Kopylova GV. The isoforms of α-actin and myosin affect the Ca 2+ regulation of the actin-myosin interaction in the heart. Biochem Biophys Res Commun 2017. [PMID: 28623140 DOI: 10.1016/j.bbrc.2017.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myocardium of mammals contains a wide range of isoforms of proteins that provides contractile function of the heart. These are two isoforms of ventricular and two of atrial myosin, α- and β-tropomyosin, and two isoforms of α-actin: cardiac and skeletal. We believe that the difference in the amino acid sequence of α-actin can affect the calcium regulation of the actin-myosin interaction. To test this hypothesis, we investigated effects of the isoforms of α-actin, cardiac and skeletal, and the isoforms of cardiac myosin on the calcium regulation of the actin-myosin interaction in an in vitro motility assay using reconstructed regulated thin filaments. The results show that isoforms of α-actin and the ratio of α/β-chains of Tpm differently affect the calcium regulation of the actin-myosin interaction in myocardium in dependence on cardiac myosin isoforms.
Collapse
Affiliation(s)
- Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia.
| |
Collapse
|
31
|
Comparison of elementary steps of the cross-bridge cycle in rat papillary muscle fibers expressing α- and β-myosin heavy chain with sinusoidal analysis. J Muscle Res Cell Motil 2016; 37:203-214. [PMID: 27942960 DOI: 10.1007/s10974-016-9456-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
In mammalian ventricles, two myosin heavy chain (MHC) isoforms have been identified. Small animals express α-MHC, whereas large animals express β-MHC, which contribute to a large difference in the heart rate. Sprague-Dawley rats possessing ~99% α-MHC were treated with propylthiouracil to result in 100% β-MHC. Papillary muscles were skinned, dissected into small fibers, and used for experiments. To understand the functional difference between α-MHC and β-MHC, skinned-fibers were activated under the intracellular ionic conditions: 5 mM MgATP, 1 mM Mg2+, 8 mM Pi, 200 mM ionic strength, pH 7.00 at 25 °C. Small amplitude sinusoidal length oscillations were applied in the frequency range 0.13-100 Hz (corresponding time domain: 1.6-1200 ms), and effects of Ca2+, Pi, and ATP were studied. The results show that Ca2+ sensitivity was slightly less (10-15%) in β-MHC than α-MHC containing fibers. Sinusoidal analysis at pCa 4.66 (full Ca2+ activation) demonstrated that, the apparent rate constants were 2-4× faster in α-MHC containing fibers. The ATP study demonstrated that, in β-MHC containing fibers, K 1 (ATP association constant) was greater (1.7×), k 2 and k -2 (cross-bridge detachment and its reversal rate constants) were smaller (×0.6). The Pi study demonstrated that, in β-MHC containing fibers, k 4 (rate constant of the force-generation step) and k -4 were smaller (0.75× and 0.25×, respectively), resulting in greater K 4 (3×). There were no differences in active tension, rigor stiffness, or K 2 (equilibrium constant of the cross-bridge detachment step). Our study further demonstrated that there were no differences in parameters between fibers obtained from left and right ventricles, but with an exception in K 5 (Pi association constant).
Collapse
|
32
|
Nikitina LV, Kopylova GV, Shchepkin DV, Nabiev SR, Bershitsky SY. Investigations of Molecular Mechanisms of Actin-Myosin Interactions in Cardiac Muscle. BIOCHEMISTRY (MOSCOW) 2016; 80:1748-63. [PMID: 26878579 DOI: 10.1134/s0006297915130106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed - two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin-myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin-myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.
Collapse
Affiliation(s)
- L V Nikitina
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, 620041, Russia.
| | | | | | | | | |
Collapse
|
33
|
Spudich JA, Aksel T, Bartholomew SR, Nag S, Kawana M, Yu EC, Sarkar SS, Sung J, Sommese RF, Sutton S, Cho C, Adhikari AS, Taylor R, Liu C, Trivedi D, Ruppel KM. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin. ACTA ACUST UNITED AC 2016; 219:161-7. [PMID: 26792326 DOI: 10.1242/jeb.125930] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tural Aksel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sadie R Bartholomew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Choe Yu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jongmin Sung
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth F Sommese
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carol Cho
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Taylor
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darshan Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Kopylova G, Nabiev S, Nikitina L, Shchepkin D, Bershitsky S. The properties of the actin-myosin interaction in the heart muscle depend on the isoforms of myosin but not of α-actin. Biochem Biophys Res Commun 2016; 476:648-653. [PMID: 27264951 DOI: 10.1016/j.bbrc.2016.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 11/27/2022]
Abstract
In myocardium of mammals there are two isoforms of myosin heavy chains, α and β. In ventricle, together with ventricular isoforms of light chains they form two isomyosins: V1 and V3, homodimers of α- and β-heavy chains, respectively. In atria, α- and β-heavy chains together with atrial light chains form A1 (αα) and A2 (ββ) isomyosins. Besides in myocardium two isoforms of α-actin, skeletal and cardiac, are expressed. We assume that the differences in the amino acid sequence of cardiac and skeletal actin may affect its interaction with myosin. To test this hypothesis, we investigated characteristics of actin-myosin interactions of cardiac and skeletal isoforms of α-actin with the isoforms of cardiac myosin using an optical trap technique and an in vitro motility assay. It was found that the mechanical and kinetic characteristics of the interactions of the isoforms of cardiac myosin with actin depend on the isoforms of myosin not α-actin.
Collapse
Affiliation(s)
- G Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia.
| | - S Nabiev
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - L Nikitina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - D Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - S Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| |
Collapse
|
35
|
Vermillion KL, Jagtap P, Johnson JE, Griffin TJ, Andrews MT. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics. J Proteome Res 2015; 14:4792-804. [DOI: 10.1021/acs.jproteome.5b00575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Katie L. Vermillion
- Department
of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, Minnesota 55812, United States
| | - Pratik Jagtap
- Center
for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner
Avenue, St. Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55455, United States
| | - James E. Johnson
- Minnesota Supercomputing Institute, 512 Walter Library 117 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Timothy J. Griffin
- Center
for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner
Avenue, St. Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55455, United States
| | - Matthew T. Andrews
- Department
of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
36
|
Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges. Proc Natl Acad Sci U S A 2015; 112:11235-40. [PMID: 26294254 DOI: 10.1073/pnas.1510241112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley's 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Bárány [Bárány M (1967) J Gen Physiol 50(6, Suppl):197-218], V0 is linearly correlated with the maximal actin-activated ATPase rate (vmax), which is limited by the rate that myosin attaches strongly to actin. We have observed smooth muscle myosin filaments of different length and head number (N) moving over surface-attached F-actin in vitro. Fitting filament velocities (V) vs. N to a detachment-limited model using the myosin step size d=8 nm gave an ADP release rate 8.5-fold faster and ton (myosin's attached time) and r (duty ratio) ∼10-fold lower than previously reported. In contrast, these data were accurately fit to an attachment-limited model, V=N·v·d, over the range of N found in all muscle types. At nonphysiologically high N, V=L/ton rather than d/ton, where L is related to the length of myosin's subfragment 2. The attachment-limited model also fit well to the [ATP] dependence of V for myosin-rod cofilaments at three fixed N. Previously published V0 vs. vmax values for 24 different muscles were accurately fit to the attachment-limited model using widely accepted values for r and N, giving d=11.1 nm. Therefore, in contrast with Huxley's model, we conclude that V0 is limited by the actin-myosin attachment rate.
Collapse
|
37
|
Woodward M, Previs MJ, Mader TJ, Debold EP. Modifications of myofilament protein phosphorylation and function in response to cardiac arrest induced in a swine model. Front Physiol 2015; 6:199. [PMID: 26236240 PMCID: PMC4503891 DOI: 10.3389/fphys.2015.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/29/2015] [Indexed: 12/27/2022] Open
Abstract
Cardiac arrest is a prevalent condition with a poor prognosis, attributable in part to persistent myocardial dysfunction following resuscitation. The molecular basis of this dysfunction remains unclear. We induced cardiac arrest in a porcine model of acute sudden death and assessed the impact of ischemia and reperfusion on the molecular function of isolated cardiac contractile proteins. Cardiac arrest was electrically induced, left untreated for 12 min, and followed by a resuscitation protocol. With successful resuscitations, the heart was reperfused for 2 h (IR2) and the muscle harvested. In failed resuscitations, tissue samples were taken following the failed efforts (IDNR). Actin filament velocity, using myosin isolated from IR2 or IDNR cardiac tissue, was nearly identical to myosin from the control tissue in a motility assay. However, both maximal velocity (25% faster than control) and calcium sensitivity (pCa50 6.57 ± 0.04 IDNR vs. 6.34 ± 0.07 control) were significantly (p < 0.05) enhanced using native thin filaments (actin+troponin+tropomyosin) from IDNR samples, suggesting that the enhanced velocity is mediated through an alteration in muscle regulatory proteins (troponin+tropomyosin). Mass spectrometry analysis showed that only samples from the IR2 had an increase in total phosphorylation levels of troponin (Tn) and tropomyosin (Tm), but both IR2 and IDNR samples demonstrated a significant shift from mono-phosphorylated to bis-phosphorylated forms of the inhibitory subunit of Tn (TnI) compared to control. This suggests that the shift to bis-phosphorylation of TnI is associated with the enhanced function in IDNR, but this effect may be attenuated when phosphorylation of Tm is increased in tandem, as observed for IR2. There are likely many other molecular changes induced following cardiac arrest, but to our knowledge, these data provide the first evidence that this form cardiac arrest can alter the in vitro function of the cardiac contractile proteins.
Collapse
Affiliation(s)
- Mike Woodward
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Burlington, VT, USA
| | - Timothy J Mader
- Department of Emergency Medicine, Baystate Medical Center/Tufts University School of Medicine Springfield, MA, USA
| | - Edward P Debold
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA, USA ; Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
38
|
|
39
|
Aksel T, Choe Yu E, Sutton S, Ruppel KM, Spudich JA. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. Cell Rep 2015; 11:910-920. [PMID: 25937279 PMCID: PMC4431957 DOI: 10.1016/j.celrep.2015.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 11/24/2022] Open
Abstract
Cardiomyopathies due to mutations in human β-cardiac myosin are a significant cause of heart failure, sudden death, and arrhythmia. To understand the underlying molecular basis of changes in the contractile system's force production due to such mutations and search for potential drugs that restore force generation, an in vitro assay is necessary to evaluate cardiac myosin's ensemble force using purified proteins. Here, we characterize the ensemble force of human α- and β-cardiac myosin isoforms and those of β-cardiac myosins carrying left ventricular non-compaction (M531R) and dilated cardiomyopathy (S532P) mutations using a utrophin-based loaded in vitro motility assay and new filament-tracking software. Our results show that human α- and β-cardiac myosin, as well as the mutants, show opposite mechanical and enzymatic phenotypes with respect to each other. We also show that omecamtiv mecarbil, a previously discovered cardiac-specific myosin activator, increases β-cardiac myosin force generation.
Collapse
Affiliation(s)
- Tural Aksel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Choe Yu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Liu Y, White HD, Belknap B, Winkelmann DA, Forgacs E. Omecamtiv Mecarbil modulates the kinetic and motile properties of porcine β-cardiac myosin. Biochemistry 2015; 54:1963-75. [PMID: 25680381 DOI: 10.1021/bi5015166] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We determined the effect of Omecamtiv Mecarbil, a novel allosteric effector of cardiac muscle myosin, on the kinetic and "in vitro" motility properties of the porcine ventricular heavy meromyosin (PV-HMM). Omecamtiv Mecarbil increases the equilibrium constant of the hydrolysis step (M-ATP ⇄ M-ADP-Pi) from 2.4 to 6 as determined by quench flow, but the maximal rates of both the hydrolysis step and tryptophan fluorescence increase are unchanged by the drug. OM also increases the amplitude of the fast phase of phosphate dissociation (AM-ADP-Pi → AM-ADP + Pi) that is associated with force production in muscle by 4-fold. These results suggest a mechanism in which hydrolysis of M-ATP to M-ADP-Pi occurs both before and after the recovery stroke, but rapid acceleration of phosphate dissociation by actin occurs only on post-recovery stroke A-M-ADP-Pi. One of the more dramatic effects of OM on PV-HMM is a 14-fold decrease in the unloaded shortening velocity measured by the in vitro motility assay. The increase in flux through phosphate dissociation and the unchanged rate of ADP dissociation (AM-ADP → AM + ADP) by the drug produce a higher duty ratio motor in which a larger fraction of myosin heads are strongly bound to actin filaments. The increased internal load produced by a larger fraction of strongly attached crossbridges explains the reduced rate of in vitro motility velocity in the presence of OM and predicts that the drug will produce slower and stronger contraction of cardiac muscle.
Collapse
Affiliation(s)
- Yingying Liu
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Howard D White
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Betty Belknap
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Donald A Winkelmann
- ‡Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Eva Forgacs
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
41
|
Kagemoto T, Li A, Dos Remedios C, Ishiwata S. Spontaneous oscillatory contraction (SPOC) in cardiomyocytes. Biophys Rev 2015; 7:15-24. [PMID: 28509984 PMCID: PMC5425754 DOI: 10.1007/s12551-015-0165-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
SPOC (spontaneous oscillatory contraction) is a characteristic state of the contractile system of striated (skeletal and cardiac) muscle that exists between the states of relaxation and contraction. For example, Ca-SPOCs occur at physiological Ca2+ levels (pCa ∼6.0), whereas ADP-SPOC occurs in the virtual absence of Ca2+ (pCa ≥ 8; relaxing conditions in the presence of MgATP), but in the presence of inorganic phosphate (Pi) and a high concentration of MgADP. The concentration of Mg-ADP necessary for SPOC is nearly equal to or greater than the MgATP concentration for cardiac muscle and is several times higher for skeletal muscle. Thus, the cellular conditions for SPOC are broader in cardiac muscle than in skeletal muscle. During these SPOCs, each sarcomere in a myofibril undergoes length oscillation that has a saw-tooth waveform consisting of a rapid lengthening and a slow shortening phase. The lengthening phase of one half of a sarcomere is transmitted to the adjacent half of the sarcomere successively, forming a propagating wave (termed a SPOC wave). The SPOC waves are synchronized across the cardiomyocytes resulting in a visible wave of successive contractions and relaxations termed the SPOC wave. Experimentally, the SPOC period (and therefore the velocity of SPOC wave) is observed in demembranated cardiomyocytes and can be prepared from a wide range of animal hearts. These periods correlate well with the resting heartbeats of a wide range of mammals (rat, rabbit, dog, pig and cow). Preliminary experiments showed that the SPOC properties of human cardiomyocytes are similar to the heartbeat of a large dog or a pig. This correlation suggests that SPOCs may play a fundamental role in the heart. Here, we briefly summarize a range of SPOC parameters obtained experimentally, and relate them to a theoretical model to explain those characteristics. Finally, we discuss the possible significance of these SPOC properties in each and every heartbeat.
Collapse
Affiliation(s)
- Tatsuya Kagemoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Amy Li
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Cris Dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, Singapore, 138667, Singapore.
| |
Collapse
|
42
|
Moussavi-Harami F, Razumova MV, Racca AW, Cheng Y, Stempien-Otero A, Regnier M. 2-Deoxy adenosine triphosphate improves contraction in human end-stage heart failure. J Mol Cell Cardiol 2015; 79:256-63. [PMID: 25498214 PMCID: PMC4301986 DOI: 10.1016/j.yjmcc.2014.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/16/2014] [Accepted: 12/02/2014] [Indexed: 01/10/2023]
Abstract
We are developing a novel treatment for heart failure by increasing myocardial 2 deoxy-ATP (dATP). Our studies in rodent models have shown that substitution of dATP for adenosine triphosphate (ATP) as the energy substrate in vitro or elevation of dATP in vivo increases myocardial contraction and that small increases in the native dATP pool of heart muscle are sufficient to improve cardiac function. Here we report, for the first time, the effect of dATP on human adult cardiac muscle contraction. We measured the contractile properties of chemically-demembranated multicellular ventricular wall preparations and isolated myofibrils from human subjects with end-stage heart failure. Isometric force was increased at both saturating and physiologic Ca(2+) concentrations with dATP compared to ATP. This resulted in an increase in the Ca(2+) sensitivity of force (pCa50) by 0.06 pCa units. The rate of force redevelopment (ktr) in demembranated wall muscle was also increased, as was the rate of contractile activation (kACT) in isolated myofibrils, indicating increased cross-bridge binding and cycling compared with ATP in failing human myocardium. These data suggest that dATP could increase dP/dT and end systolic pressure in failing human myocardium. Importantly, even though the magnitude and rate of force development were increased, there was no increase in the time to 50% and 90% myofibril relaxation. These data, along with our previous studies in rodent models, show the promise of elevating myocardial dATP to enhance contraction and restore cardiac pump function. These data also support further pre-clinical evaluation of this new approach for treating heart failure.
Collapse
Affiliation(s)
- Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Alice W Racca
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - April Stempien-Otero
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Swenson AM, Trivedi DV, Rauscher AA, Wang Y, Takagi Y, Palmer BM, Málnási-Csizmadia A, Debold EP, Yengo CM. Magnesium modulates actin binding and ADP release in myosin motors. J Biol Chem 2014; 289:23977-91. [PMID: 25006251 DOI: 10.1074/jbc.m114.562231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg(2+)-dependent manner (0.3-9.0 mm free Mg(2+)) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg(2+) in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg(2+) in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg(2+) coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg(2+) concentrations, demonstrating that the ADP release rate constant is slowed by Mg(2+) in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg(2+) reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg(2+) inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg(2+)-dependent alterations in actin binding. Overall, our results suggest that Mg(2+) reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.
Collapse
Affiliation(s)
- Anja M Swenson
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Darshan V Trivedi
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Anna A Rauscher
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Yuan Wang
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Yasuharu Takagi
- the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Bradley M Palmer
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - András Málnási-Csizmadia
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary, the Hungarian Academy of Sciences-Eötvös Loránd University Molecular Biophysics Research Group, H-1117 Budapest, Hungary
| | - Edward P Debold
- the Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 02210, and
| | - Christopher M Yengo
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
44
|
Wagner S, Knipp S, Weber C, Hein S, Schinkel S, Walther A, Bekeredjian R, Müller OJ, Friedrich O. The heart in Duchenne muscular dystrophy: early detection of contractile performance alteration. J Cell Mol Med 2014; 16:3028-36. [PMID: 22970922 PMCID: PMC4393731 DOI: 10.1111/j.1582-4934.2012.01630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/31/2012] [Indexed: 11/27/2022] Open
Abstract
Progressive cardiomyopathy is a major cause of death in Duchenne muscular dystrophy (DMD) patients. Coupling between Ca(2+) handling and contractile properties in dystrophic hearts is poorly understood. It is also not clear whether developing cardiac failure is dominated by alterations in Ca(2+) pathways or more related to the contractile apparatus. We simultaneously recorded force and Ca(2+) transients in field-stimulated papillary muscles from young (10-14 weeks) wild-type (wt) and dystrophic mdx mice. Force amplitudes were fivefold reduced in mdx muscles despite only 30% reduction in fura-2 ratio amplitudes. This indicated mechanisms other than systolic Ca(2+) to additionally account for force decrements in mdx muscles. pCa-force relations revealed decreased mdx myofibrillar Ca(2+) sensitivity. 'In vitro' motility assays, studied in mdx hearts here for the first time, showed significantly slower sliding velocities. mdx MLC/MHC isoforms were not grossly altered. Dystrophic hearts showed echocardiography signs of early ventricular wall hypertrophy with a significantly enlarged end-diastolic diameter 'in vivo'. However, fractional shortening was still comparable to wt mice. Changes in the contractile apparatus satisfactorily explained force drop in mdx hearts. We give first evidence of early hypertrophy in mdx mice and possible mechanisms for already functional impairment of cardiac muscle in DMD.
Collapse
Affiliation(s)
- Sören Wagner
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nelson OL, Rourke BC. Increase in cardiac myosin heavy-chain (MyHC) alpha protein isoform in hibernating ground squirrels, with echocardiographic visualization of ventricular wall hypertrophy and prolonged contraction. ACTA ACUST UNITED AC 2013; 216:4678-90. [PMID: 24072796 DOI: 10.1242/jeb.088773] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deep hibernators such as golden-mantled ground squirrels (Callospermophilus lateralis) have multiple challenges to cardiac function during low temperature torpor and subsequent arousals. As heart rates fall from over 300 beats min(-1) to less than 10, chamber dilation and reduced cardiac output could lead to congestive myopathy. We performed echocardiography on a cohort of individuals prior to and after several months of hibernation. The left ventricular chamber exhibited eccentric and concentric hypertrophy during hibernation and thus calculated ventricular mass was ~30% greater. Ventricular ejection fraction was mildly reduced during hibernation but stroke volumes were greater due to the eccentric hypertrophy and dramatically increased diastolic filling volumes. Globally, the systolic phase in hibernation was ~9.5 times longer, and the diastolic phase was 28× longer. Left atrial ejection generally was not observed during hibernation. Atrial ejection returned weakly during early arousal. Strain echocardiography assessed the velocity and total movement distance of contraction and relaxation for regional ventricular segments in active and early arousal states. Myocardial systolic strain during early arousal was significantly greater than the active state, indicating greater total contractile movement. This mirrored the increased ventricular ejection fraction noted with early arousal. However, strain rates were slower during early arousal than during the active period, particularly systolic strain, which was 33% of active, compared with the rate of diastolic strain, which was 67% of active. As heart rate rose during the arousal period, myocardial velocities and strain rates also increased; this was matched closely by cardiac output. Curiously, though heart rates were only 26% of active heart rates during early arousal, the cardiac output was nearly 40% of the active state, suggesting an efficient pumping system. We further analyzed proportions of cardiac myosin heavy-chain (MyHC) isoforms in a separate cohort of squirrels over 5 months, including time points before hibernation, during hibernation and just prior to emergence. Hibernating individuals were maintained in both a 4°C cold room and a 20°C warm room. Measured by SDS-PAGE, relative percentages of cardiac MyHC alpha were increased during hibernation, at both hibernacula temperatures. A potential increase in contractile speed, and power, from more abundant MyHC alpha may aid force generation at low temperature and at low heart rates. Unlike many models of cardiomyopathies where the alpha isoform is replaced by the beta isoform in order to reduce oxygen consumption, ground squirrels demonstrate a potential cardioprotective mechanism to maintain cardiac output during torpor.
Collapse
Affiliation(s)
- O Lynne Nelson
- College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
46
|
Lowey S, Bretton V, Gulick J, Robbins J, Trybus KM. Transgenic mouse α- and β-cardiac myosins containing the R403Q mutation show isoform-dependent transient kinetic differences. J Biol Chem 2013; 288:14780-7. [PMID: 23580644 DOI: 10.1074/jbc.m113.450668] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a major cause of sudden cardiac death in young athletes. The discovery in 1990 that a point mutation at residue 403 (R403Q) in the β-myosin heavy chain (MHC) caused a severe form of FHC was the first of many demonstrations linking FHC to mutations in muscle proteins. A mouse model for FHC has been widely used to study the mechanochemical properties of mutated cardiac myosin, but mouse hearts express α-MHC, whereas the ventricles of larger mammals express predominantly β-MHC. To address the role of the isoform backbone on function, we generated a transgenic mouse in which the endogenous α-MHC was partially replaced with transgenically encoded β-MHC or α-MHC. A His6 tag was cloned at the N terminus, along with R403Q, to facilitate isolation of myosin subfragment 1 (S1). Stopped flow kinetics were used to measure the equilibrium constants and rates of nucleotide binding and release for the mouse S1 isoforms bound to actin. For the wild-type isoforms, we found that the affinity of MgADP for α-S1 (100 μM) is ~ 4-fold weaker than for β-S1 (25 μM). Correspondingly, the MgADP release rate for α-S1 (350 s(-1)) is ~3-fold greater than for β-S1 (120 s(-1)). Introducing the R403Q mutation caused only a minor reduction in kinetics for β-S1, but R403Q in α-S1 caused the ADP release rate to increase by 20% (430 s(-1)). These transient kinetic studies on mouse cardiac myosins provide strong evidence that the functional impact of an FHC mutation on myosin depends on the isoform backbone.
Collapse
Affiliation(s)
- Susan Lowey
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | |
Collapse
|
47
|
Deacon JC, Bloemink MJ, Rezavandi H, Geeves MA, Leinwand LA. Erratum to: Identification of functional differences between recombinant human α and β cardiac myosin motors. Cell Mol Life Sci 2012; 69:4239-55. [PMID: 23001010 PMCID: PMC3685716 DOI: 10.1007/s00018-012-1111-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and β myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:β) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and β myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow β isoform despite 91% sequence identity between the motor domains of α- and β-myosin. Among the features that differentiate α- from β-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than β-S1, α-S1 exhibits ~five-fold weaker actin affinity than β-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for β-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding.
Collapse
Affiliation(s)
- John C. Deacon
- Department of Molecular, Cellular and Developmental Biology and Biofrontiers Institute, University of Colorado, MCDB, UCB 347, Boulder, CO 80309 USA
| | | | - Heresh Rezavandi
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | | | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology and Biofrontiers Institute, University of Colorado, MCDB, UCB 347, Boulder, CO 80309 USA
| |
Collapse
|
48
|
Wang Y, Tanner BCW, Lombardo AT, Tremble SM, Maughan DW, Vanburen P, Lewinter MM, Robbins J, Palmer BM. Cardiac myosin isoforms exhibit differential rates of MgADP release and MgATP binding detected by myocardial viscoelasticity. J Mol Cell Cardiol 2012; 54:1-8. [PMID: 23123290 DOI: 10.1016/j.yjmcc.2012.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 10/05/2012] [Accepted: 10/22/2012] [Indexed: 01/26/2023]
Abstract
We measured myosin crossbridge detachment rate and the rates of MgADP release and MgATP binding in mouse and rat myocardial strips bearing one of the two cardiac myosin heavy chain (MyHC) isoforms. Mice and rats were fed an iodine-deficient, propylthiouracil diet resulting in ~100% expression of β-MyHC in the ventricles. Ventricles of control animals expressed ~100% α-MyHC. Chemically-skinned myocardial strips prepared from papillary muscle were subjected to sinusoidal length perturbation analysis at maximum calcium activation pCa 4.8 and 17°C. Frequency characteristics of myocardial viscoelasticity were used to calculate crossbridge detachment rate over 0.01 to 5mM [MgATP]. The rate of MgADP release, equivalent to the asymptotic value of crossbridge detachment rate at high MgATP, was highest in mouse α-MyHC (111.4±6.2s(-1)) followed by rat α-MyHC (65.0±7.3s(-1)), mouse β-MyHC (24.3±1.8s(-1)) and rat β-MyHC (15.5±0.8s(-1)). The rate of MgATP binding was highest in mouse α-MyHC (325±32 mM(-1) s(-1)) then mouse β-MyHC (152±23 mM(-1) s(-1)), rat α-MyHC (108±10 mM(-1) s(-1)) and rat β-MyHC (55±6 mM(-1) s(-1)). Because the events of MgADP release and MgATP binding occur in a post power-stroke state of the myosin crossbridge, we infer that MgATP release and MgATP binding must be regulated by isoform- and species-specific structural differences located outside the nucleotide binding pocket, which is identical in sequence for these four myosins. We postulate that differences in the stiffness profile of the entire myosin molecule, including the thick filament and the myosin-actin interface, are primarily responsible for determining the strain on the nucleotide binding pocket and the subsequent differences in the rates of nucleotide release and binding observed among the four myosins examined here.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Deacon JC, Bloemink MJ, Rezavandi H, Geeves MA, Leinwand LA. Identification of functional differences between recombinant human α and β cardiac myosin motors. Cell Mol Life Sci 2012; 69:2261-77. [PMID: 22349210 PMCID: PMC3375423 DOI: 10.1007/s00018-012-0927-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/29/2011] [Accepted: 01/19/2012] [Indexed: 11/24/2022]
Abstract
The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and β myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:β) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and β myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow β isoform despite 91% sequence identity between the motor domains of α- and β-myosin. Among the features that differentiate α- from β-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than β-S1, α-S1 exhibits ~five-fold weaker actin affinity than β-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for β-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding.
Collapse
Affiliation(s)
- John C. Deacon
- Department of Molecular, Cellular and Developmental Biology and Biofrontiers Institute, University of Colorado, MCDB, UCB 347, Boulder, CO 80309 USA
| | | | - Heresh Rezavandi
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | | | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology and Biofrontiers Institute, University of Colorado, MCDB, UCB 347, Boulder, CO 80309 USA
| |
Collapse
|
50
|
Shchepkin D, Kopylova G, Nikitina L. Study of reciprocal effects of cardiac myosin and tropomyosin isoforms on actin–myosin interaction with in vitro motility assay. Biochem Biophys Res Commun 2011; 415:104-8. [DOI: 10.1016/j.bbrc.2011.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|