1
|
Chojnowski JE, Li R, Tsang T, Alfaran FH, Dick A, Cocklin S, Brady DC, Strochlic TI. Copper Modulates the Catalytic Activity of Protein Kinase CK2. Front Mol Biosci 2022; 9:878652. [PMID: 35755824 PMCID: PMC9224766 DOI: 10.3389/fmolb.2022.878652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Casein kinase 2 (CK2) is an evolutionarily conserved serine/threonine kinase implicated in a wide range of cellular functions and known to be dysregulated in various diseases such as cancer. Compared to most other kinases, CK2 exhibits several unusual properties, including dual co-substrate specificity and a high degree of promiscuity with hundreds of substrates described to date. Most paradoxical, however, is its apparent constitutive activity: no definitive mode of catalytic regulation has thus far been identified. Here we demonstrate that copper enhances the enzymatic activity of CK2 both in vitro and in vivo. We show that copper binds directly to CK2, and we identify specific residues in the catalytic subunit of the enzyme that are critical for copper-binding. We further demonstrate that increased levels of intracellular copper result in enhanced CK2 kinase activity, while decreased copper import results in reduced CK2 activity. Taken together, these findings establish CK2 as a copper-regulated kinase and indicate that copper is a key modulator of CK2-dependent signaling pathways.
Collapse
Affiliation(s)
- John E. Chojnowski
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rongrong Li
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Tiffany Tsang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fatimah H. Alfaran
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Todd I. Strochlic
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States,*Correspondence: Todd I. Strochlic,
| |
Collapse
|
2
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Deepa P, Thirumeignanam D. Understanding the impact of anticancer halogenated inhibitors and various functional groups (X = Cl, F, CF 3, CH 3, NH 2, OH, H) of casein kinase 2 (CK2). J Biomol Struct Dyn 2020; 40:5036-5052. [PMID: 33375908 DOI: 10.1080/07391102.2020.1866075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Main focus of study is to understand potency of halogen (X = Br) atom that exists in tetrabromobenzotriazole (TBB) derivatives of crystal CK2 ligand along with hinge region amino acids (VAL45, PHE113, GLU114, VAL116, ASN118) through interaction energy analysis. In turn to attain profound insight on nature of stabilization of core CK2 ligands: 1ZOE-L1, 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 2OXY-L5, 3KXG-L6, 3KXH-L7 -L7 and 3KXM-L8, having four bromine atoms, we attempted to mutate all bromine (X = Br) atoms by various functional groups (X = Cl, F, CF3, CH3, NH2, OH, H) and binding strength along with amino acids was calculated. Most stable ligands exist in mutated NH2 functional groups: 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 3KXM-L8 having interaction energy as -5.21, -14.87, -6.69 and -11.72 kcal/mol respectively, revealing strong binding strength. Second most stable mutated Cl functional group ligands also play a major role in 1ZOH-L3, 2OXX-L4 and 3KXM-L8 having interaction energy as -6.89, -5.37, and -10.48 kcal/mol respectively. Overall, this study will pave way for crystal growth and medicinal chemist to have cleared perceptive about structural properties of CK2 halogenated ligands with new insight on CK2 mutated functional group ligands. Further, it insists us to reuse existing CK2 crystal ligand with more preferable suggested binding contacts in course of new functional groups that lead to anticancer affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Duraisamy Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Tirunelveli, India
| |
Collapse
|
4
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
5
|
Epibrassinolide alters PI3K/MAPK signaling axis via activating Foxo3a-induced mitochondria-mediated apoptosis in colon cancer cells. Exp Cell Res 2015; 338:10-21. [DOI: 10.1016/j.yexcr.2015.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/04/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022]
|
6
|
Turowec JP, Vilk G, Gabriel M, Litchfield DW. Characterizing the convergence of protein kinase CK2 and caspase-3 reveals isoform-specific phosphorylation of caspase-3 by CK2α': implications for pathological roles of CK2 in promoting cancer cell survival. Oncotarget 2013; 4:560-71. [PMID: 23599180 PMCID: PMC3720604 DOI: 10.18632/oncotarget.948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein kinase CK2 has emerged as a promising candidate for the treatment of a number of cancers. This enzyme is comprised of two catalytic subunits (CK2 and/or CK2α′) that form complexes with homodimers of regulatory CK2β subunits. While catalytic and regulatory CK2 subunits are generally expressed at similar levels to form tetrameric complexes, asymmetric expression of CK2 subunits has been associated with various forms of cancer and the enhanced survival of cancer cells. To elucidate mechanisms responsible for regulation of cancer cell survival by CK2, we recently employed computational and experimental strategies that revealed widespread overlap between sites for CK2 phosphorylation and caspase cleavage. Among candidates with overlapping CK2 and caspase cleavage sites was caspase-3 that is phosphorylated by CK2 to prevent its activation by upstream caspases. To elucidate the precise relationship between CK2 and caspase-3, we modulated expression of individual CK2 subunits and demonstrated that CK2α′ exhibits a striking preference for caspase-3 phosphorylation in cells as compared to CK2α and that CK2β exhibits the capacity to abolish caspase-3 phosphorylation. Since caspase-3 represents the first CK2 substrate selectively phosphorylated by CK2α′ in cells, our work highlights divergent functions of the different forms of CK2. Given the involvement of CK2 in a diverse series of biological events and its association with various cancers, this work has important implications for identifying pathological roles of distinct forms of CK2 that could instruct efforts to selectively target individual CK2 subunits for therapy.
Collapse
Affiliation(s)
- Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada
| | | | | | | |
Collapse
|
7
|
Kreutzer JN, Olsen BB, Lech K, Issinger OG, Guerra B. Role of polyamines in determining the cellular response to chemotherapeutic agents: modulation of protein kinase CK2 expression and activity. Mol Cell Biochem 2011; 356:149-58. [DOI: 10.1007/s11010-011-0949-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022]
|
8
|
Montenarh M. Cellular regulators of protein kinase CK2. Cell Tissue Res 2010; 342:139-46. [PMID: 20976471 DOI: 10.1007/s00441-010-1068-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/24/2010] [Indexed: 11/24/2022]
Abstract
Protein phosphorylation is a key regulatory post-translational modification and is involved in the control of many cellular processes. Protein kinase CK2, formerly known as casein kinase II, which is a ubiquitous and highly conserved protein serine/threonine kinase, plays a central role in the control of a variety of pathways in cell proliferation, transformation, apoptosis and senescence. An understanding of the regulation of such a central protein kinase would greatly help our comprehension of the regulation of many pathways in cellular regulation. A number of reviews have addressed the detection, the development, and the characterization of inhibitors of CK2. The present review focuses on possible natural regulators of CK2, i.e. proteins and other cellular factors that bind to CK2 and thereby regulate its activity.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebäude 44, 66424, Homburg, Germany.
| |
Collapse
|
9
|
Allen D, Fakler B, Maylie J, Adelman JP. Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. J Neurosci 2007; 27:2369-76. [PMID: 17329434 PMCID: PMC6673492 DOI: 10.1523/jneurosci.3565-06.2007] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small conductance Ca2+-activated K+ channels (SK channels) are complexes of four alpha pore-forming subunits each bound by calmodulin (CaM) that mediate Ca2+ gating. Proteomic analysis indicated that SK2 channels also bind protein kinase CK2 (CK2) and protein phosphatase 2A (PP2A). Coexpression of SK2 with the CaM phosphorylation surrogate CaM(T80D) suggested that the apparent Ca2+ sensitivity of SK2 channels is reduced by CK2 phosphorylation of SK2-bound CaM. By using 4,5,6,7-tetrabromo-2-azabenzimidazole, a CK2-specific inhibitor, we confirmed that SK2 channels coassemble with CK2. PP2A also binds to SK2 channels and counterbalances the effects of CK2, as shown by coexpression of a dominant-negative mutant PP2A as well as a mutant SK2 channel no longer able to bind PP2A. In vitro binding studies have revealed interactions between the N and C termini of the channel subunits as well as interactions among CK2 alpha and beta subunits, PP2A, and distinct domains of the channel. In the channel complex, lysine residue 121 within the N-terminal domain of the channel activates SK2-bound CK2, and phosphorylation of CaM is state dependent, occurring only when the channels are closed. The effects of CK2 and PP2A indicate that native SK2 channels are multiprotein complexes that contain constitutively associated CaM, both subunits of CK2, and at least two different subunits of PP2A. The results also show that the Ca2+ sensitivity of SK2 channels is regulated in a dynamic manner, directly through CK2 and PP2A, and indirectly by Ca2+ itself via the state dependence of CaM phosphorylation by CK2.
Collapse
Affiliation(s)
- Duane Allen
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97329
| | - Bernd Fakler
- Department of Physiology, University of Freiburg, Freiburg 09599, Germany, and
| | | | - John P. Adelman
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97329
| |
Collapse
|
10
|
Bolanos-Garcia VM, Fernandez-Recio J, Allende JE, Blundell TL. Identifying interaction motifs in CK2beta--a ubiquitous kinase regulatory subunit. Trends Biochem Sci 2006; 31:654-61. [PMID: 17084631 DOI: 10.1016/j.tibs.2006.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/26/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Casein kinase 2 (CK2) is probably the most ubiquitous serine/threonine kinase found in eukaryotes: it phosphorylates >300 cellular proteins, ranging from transcription factors to proteins involved in chromatin structure and cell division. CK2 is a heterotetrameric enzyme that induces neoplastic growth when overexpressed. The beta subunit of CK2 (CK2beta) functions as the regulator of the catalytic CK2alpha and CK2alpha' subunits, enhancing their stability, activity and specificity. However, CK2beta also functions as a multisubstrate docking platform for several other binding partners. Here, we discuss the organization and roles of interaction motifs of CK2beta, postulate new protein-interaction sites and map these to the known interaction motifs, and show how the resulting complexity of interactions mediated by CK2 gives rise to the versatile functions of this pleiotropic protein kinase.
Collapse
|
11
|
Jensen BC, Kifer CT, Brekken DL, Randall AC, Wang Q, Drees BL, Parsons M. Characterization of protein kinase CK2 from Trypanosoma brucei. Mol Biochem Parasitol 2006; 151:28-40. [PMID: 17097160 PMCID: PMC1790856 DOI: 10.1016/j.molbiopara.2006.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/30/2006] [Accepted: 10/02/2006] [Indexed: 11/18/2022]
Abstract
CK2 is a ubiquitous but enigmatic kinase. The difficulty in assigning a role to CK2 centers on the fact that, to date, no biologically relevant modulator of its function has been identified. One common theme revolves around a constellation of known substrates involved in growth control, compatible with its concentration in the nucleus and nucleolus. We had previously described the identification of two catalytic subunits of CK2 in Trypanosoma brucei and characterized one of them. Here we report the characterization of the second catalytic subunit, CK2alpha', and the identification and characterization of the regulatory subunit CK2beta. All three subunits are primarily localized to the nucleolus in T. brucei. We also show that CK2beta interacts with the nucleolar protein NOG1, adding to the interaction map which previously linked CK2alpha to the nucleolar protein NOPP44/46, which in turn associates with the rRNA binding protein p37. CK2 activity has four distinctive features: near equal affinity for GTP and ATP, heparin sensitivity, and stimulation by polyamines and polybasic peptides. Sequence comparison shows that the parasite orthologues have mutations in residues previously mapped as important in specifying affinity for GTP and stimulation by both polyamines and polybasic peptides. Studies of the enzymatic activity of the T. brucei CK2s show that both the affinity for GTP and stimulation by polyamines have been lost and only the features of heparin inhibition and stimulation by polybasic peptides are conserved.
Collapse
Affiliation(s)
- Bryan C Jensen
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Charles T Kifer
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Deirdre L Brekken
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Amber C Randall
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
- Department of Pathobiology and
| | - Qin Wang
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Becky L. Drees
- Department of Genetics and Howard Hughes Medical Institute,
University of Washington, Seattle, WA 98195 USA
| | - Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
- Department of Pathobiology and
- *Corresponding author.
, tell: +1-206-256-7315,
FAX: +1-206-256-7229
| |
Collapse
|
12
|
Salvi M, Sarno S, Marin O, Meggio F, Itarte E, Pinna LA. Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Lett 2006; 580:3948-52. [PMID: 16806200 DOI: 10.1016/j.febslet.2006.06.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
The acronym CK2 denotes a highly pleiotropic Ser/Thr protein kinase whose over-expression correlates with neoplastic growth. A vexed question about the enigmatic regulation of CK2 concerns the actual existence in living cells of the catalytic (alpha and/or alpha') and regulatory beta-subunits of CK2 not assembled into the regular heterotetrameric holoenzyme. Here we take advantage of novel reagents, namely a peptide substrate and an inhibitor which discriminate between the holoenzyme and the catalytic subunits, to show that CK2 activity in CHO cells is entirely accounted for by the holoenzyme. Transfection with individual subunits moreover does not give rise to holoenzyme formation unless the catalytic and regulatory subunits are co-transfected together, arguing against the existence of free subunits in CHO cells.
Collapse
Affiliation(s)
- Mauro Salvi
- Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|