1
|
Wang Y, Liu W, Sun Y, Dong X. Transthyretin-Penetratin: A Potent Fusion Protein Inhibitor against Alzheimer's Amyloid-β Fibrillogenesis with High Blood Brain Barrier Crossing Capability. Bioconjug Chem 2024; 35:419-431. [PMID: 38450606 DOI: 10.1021/acs.bioconjchem.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The design of a potent amyloid-β protein (Aβ) inhibitor plays a pivotal role in the prevention and treatment of Alzheimer's disease (AD). Despite endogenous transthyretin (TTR) being recognized as an Aβ inhibitor, the weak inhibitory and blood brain barrier (BBB) crossing capabilities hinder it for Aβ aggregation inhibition and transport. Therefore, we have herein designed a recombinant TTR by conjugating a cationic cell penetrating peptide (penetratin, Pen), which not only enabled the fusion protein, TTR-Pen (TP), to present high BBB penetration but also greatly enhanced the potency of Aβ inhibition. Namely, the protein fusion made TP positively charged, leading to a potent suppression of Aβ40 fibrillization at a low concentration (1.5 μM), while a TTR concentration as high as 12.5 μM was required to gain a similar function. Moreover, TP could mitigate Aβ-induced neuronal death, increase cultured cell viability from 72% to 92% at 2.5 μM, and extend the lifespan of AD nematodes from 14 to 18 d. Thermodynamic studies revealed that TP, enriched in positive charges, presented extensive electrostatic interactions with Aβ40. Importantly, TP showed excellent BBB penetration performance, with a 10 times higher BBB permeability than TTR, which would allow TP to enter the brain of AD patients and participate in the transport of Aβ species out of the brain. Thus, it is expected that the fusion protein has great potential for drug development in AD treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Chu YP, Jin LW, Wang LC, Ho PC, Wei WY, Tsai KJ. Transthyretin attenuates TDP-43 proteinopathy by autophagy activation via ATF4 in FTLD-TDP. Brain 2023; 146:2089-2106. [PMID: 36355566 PMCID: PMC10411944 DOI: 10.1093/brain/awac412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) proteinopathies are accompanied by the pathological hallmark of cytoplasmic inclusions in the neurodegenerative diseases, including frontal temporal lobar degeneration-TDP and amyotrophic lateral sclerosis. We found that transthyretin accumulates with TDP-43 cytoplasmic inclusions in frontal temporal lobar degeneration-TDP human patients and transgenic mice, in which transthyretin exhibits dramatic expression decline in elderly mice. The upregulation of transthyretin expression was demonstrated to facilitate the clearance of cytoplasmic TDP-43 inclusions through autophagy, in which transthyretin induces autophagy upregulation via ATF4. Of interest, transthyretin upregulated ATF4 expression and promoted ATF4 nuclear import, presenting physical interaction. Neuronal expression of transthyretin in frontal temporal lobar degeneration-TDP mice restored autophagy function and facilitated early soluble TDP-43 aggregates for autophagosome targeting, ameliorating neuropathology and behavioural deficits. Thus, transthyretin conducted two-way regulations by either inducing autophagy activation or escorting TDP-43 aggregates targeted autophagosomes, suggesting that transthyretin is a potential modulator therapy for neurological disorders caused by TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Yuan-Ping Chu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, CA, USA
| | - Liang-Chao Wang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
4
|
Nagaraj M, Najarzadeh Z, Pansieri J, Biverstål H, Musteikyte G, Smirnovas V, Matthews S, Emanuelsson C, Johansson J, Buxbaum JN, Morozova-Roche L, Otzen DE. Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation. Chem Sci 2022; 13:536-553. [PMID: 35126986 PMCID: PMC8729806 DOI: 10.1039/d1sc05790a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/11/2021] [Indexed: 11/21/2022] Open
Abstract
Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated.
Collapse
Affiliation(s)
- Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, S – 141 83 Huddinge, Sweden
| | - Greta Musteikyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Janne Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, S – 141 83 Huddinge, Sweden
| | - Joel N. Buxbaum
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Cheng S, Banerjee S, Daiello LA, Nakashima A, Jash S, Huang Z, Drake JD, Ernerudh J, Berg G, Padbury J, Saito S, Ott BR, Sharma S. Novel blood test for early biomarkers of preeclampsia and Alzheimer's disease. Sci Rep 2021; 11:15934. [PMID: 34354200 PMCID: PMC8342418 DOI: 10.1038/s41598-021-95611-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
A non-invasive and sensitive blood test has long been a goal for early stage disease diagnosis and treatment for Alzheimer's disease (AD) and other proteinopathy diseases. We previously reported that preeclampsia (PE), a severe pregnancy complication, is another proteinopathy disorder with impaired autophagy. We hypothesized that induced autophagy deficiency would promote accumulation of pathologic protein aggregates. Here, we describe a novel, sensitive assay that detects serum protein aggregates from patients with PE (n = 33 early onset and 33 late onset) and gestational age-matched controls (n = 77) as well as AD in both dementia and prodromal mild cognitive impairment (MCI, n = 24) stages with age-matched controls (n = 19). The assay employs exposure of genetically engineered, autophagy-deficient human trophoblasts (ADTs) to serum from patients. The aggregated protein complexes and their individual components, including transthyretin, amyloid β-42, α-synuclein, and phosphorylated tau231, can be detected and quantified by co-staining with ProteoStat, a rotor dye with affinity to aggregated proteins, and respective antibodies. Detection of protein aggregates in ADTs was not dependent on transcriptional upregulation of these biomarkers. The ROC curve analysis validated the robustness of the assay for its specificity and sensitivity (PE; AUC: 1, CI: 0.949-1.00; AD; AUC: 0.986, CI: 0.832-1.00). In conclusion, we have developed a novel, noninvasive diagnostic and predictive assay for AD, MCI and PE.
Collapse
Affiliation(s)
- Shibin Cheng
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Sayani Banerjee
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Lori A. Daiello
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Akitoshi Nakashima
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Sukanta Jash
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Zheping Huang
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Jonathan D. Drake
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Jan Ernerudh
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Services, Linkoping University, Linkoping, Sweden
| | - Goran Berg
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Services, Linkoping University, Linkoping, Sweden
| | - James Padbury
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Shigeru Saito
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Brian R. Ott
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Surendra Sharma
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| |
Collapse
|
6
|
Mustafa I, Awad A, Fgaier H, Mansur A, Elkamel A. Compartmental modeling and analysis of the effect of β-amyloid on acetylcholine neurocycle via choline leakage hypothesis. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2020.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Saponaro F, Kim JH, Chiellini G. Transthyretin Stabilization: An Emerging Strategy for the Treatment of Alzheimer's Disease? Int J Mol Sci 2020; 21:ijms21228672. [PMID: 33212973 PMCID: PMC7698513 DOI: 10.3390/ijms21228672] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022] Open
Abstract
Transthyretin (TTR), previously named prealbumin is a plasma protein secreted mainly by the liver and choroid plexus (CP) that is a carrier for thyroid hormones (THs) and retinol (vitamin A). The structure of TTR, with four monomers rich in β-chains in a globular tetrameric protein, accounts for the predisposition of the protein to aggregate in fibrils, leading to a rare and severe disease, namely transthyretin amyloidosis (ATTR). Much effort has been made and still is required to find new therapeutic compounds that can stabilize TTR ("kinetic stabilization") and prevent the amyloid genetic process. Moreover, TTR is an interesting therapeutic target for neurodegenerative diseases due to its recognized neuroprotective properties in the cognitive impairment context and interestingly in Alzheimer's disease (AD). Much evidence has been collected regarding the neuroprotective effects in AD, including through in vitro and in vivo studies as well as a wide range of clinical series. Despite this supported hypothesis of neuroprotection for TTR, the mechanisms are still not completely clear. The aim of this review is to highlight the most relevant findings on the neuroprotective role of TTR, and to summarize the recent progress on the development of TTR tetramer stabilizers.
Collapse
Affiliation(s)
| | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| |
Collapse
|
8
|
Ghadami SA, Chia S, Ruggeri FS, Meisl G, Bemporad F, Habchi J, Cascella R, Dobson CM, Vendruscolo M, Knowles TPJ, Chiti F. Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules 2020; 21:1112-1125. [PMID: 32011129 PMCID: PMC7997117 DOI: 10.1021/acs.biomac.9b01475] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Alzheimer’s
disease is associated with the deposition of
the amyloid-β peptide (Aβ) into extracellular senile plaques
in the brain. In vitro and in vivo observations have indicated that
transthyretin (TTR) acts as an Aβ scavenger in the brain, but
the mechanism has not been fully resolved. We have monitored the aggregation
process of Aβ40 by thioflavin T fluorescence, in
the presence or absence of different concentrations of preformed seed
aggregates of Aβ40, of wild-type tetrameric TTR (WT-TTR),
and of a variant engineered to be stable as a monomer (M-TTR). Both
WT-TTR and M-TTR were found to inhibit specific steps of the process
of Aβ40 fibril formation, which are primary and secondary
nucleations, without affecting the elongation of the resulting fibrils.
Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aβ40 oligomers formed in the aggregation reaction and inhibit
their conversion into the shortest fibrils able to elongate. Using
biophysical methods, TTR was found to change some aspects of its overall
structure following such interactions with Aβ40 oligomers,
as well as with oligomers of Aβ42, while maintaining
its overall topology. Hence, it is likely that the predominant mechanism
by which TTR exerts its protective role lies in the binding of TTR
to the Aβ oligomers and in inhibiting primary and secondary
nucleation processes, which limits both the toxicity of Aβ oligomers
and the ability of the fibrils to proliferate.
Collapse
Affiliation(s)
- Seyyed Abolghasem Ghadami
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Sean Chia
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Simone Ruggeri
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Georg Meisl
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Johnny Habchi
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K.,Department of Physics, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| |
Collapse
|
9
|
Molecular basis for chirality-regulated Aβ self-assembly and receptor recognition revealed by ion mobility-mass spectrometry. Nat Commun 2019; 10:5038. [PMID: 31695027 PMCID: PMC6834639 DOI: 10.1038/s41467-019-12346-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Despite extensive efforts on probing the mechanism of Alzheimer’s disease (AD) and enormous investments into AD drug development, the lack of effective disease-modifying therapeutics and the complexity of the AD pathogenesis process suggest a great need for further insights into alternative AD drug targets. Herein, we focus on the chiral effects of truncated amyloid beta (Aβ) and offer further structural and molecular evidence for epitope region-specific, chirality-regulated Aβ fragment self-assembly and its potential impact on receptor-recognition. A multidimensional ion mobility-mass spectrometry (IM-MS) analytical platform and in-solution kinetics analysis reveal the comprehensive structural and molecular basis for differential Aβ fragment chiral chemistry, including the differential and cooperative roles of chiral Aβ N-terminal and C-terminal fragments in receptor recognition. Our method is applicable to many other systems and the results may shed light on the potential development of novel AD therapeutic strategies based on targeting the D-isomerized Aβ, rather than natural L-Aβ. Chiral inversion of amino acids is thought to modulate the structure and function of amyloid beta (Aβ) but these processes are poorly understood. Here, the authors develop an ion mobility-mass spectrometry based approach to study chirality-regulated structural features of Aβ fragments and their influence on receptor recognition.
Collapse
|
10
|
Awad A, Fgaier H, Mustafa I, Elkamel A, Elnashaie S. Pharmacokinetic/Pharmacodynamic modeling and simulation of the effect of medications on β-amyloid aggregates and cholinergic neurocycle. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Christensen LF, Jensen KF, Nielsen J, Vad BS, Christiansen G, Otzen DE. Reducing the Amyloidogenicity of Functional Amyloid Protein FapC Increases Its Ability To Inhibit α-Synuclein Fibrillation. ACS OMEGA 2019; 4:4029-4039. [PMID: 31459612 PMCID: PMC6647998 DOI: 10.1021/acsomega.8b03590] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 05/15/2023]
Abstract
Functional amyloid (FA) proteins have evolved to assemble into fibrils with a characteristic cross-β structure, which stabilizes biofilms and contributes to bacterial virulence. Some of the most studied bacterial FAs are the curli protein CsgA, expressed in a wide range of bacteria, and FapC, produced mainly by members of the Pseudomonas genus. Though unrelated, both CsgA and FapC contain imperfect repeats believed to drive the formation of amyloid fibrils. While much is known about CsgA biogenesis and fibrillation, the mechanism of FapC fibrillation remains less explored. Here, we show that removing the three imperfect repeats of FapC (FapC ΔR1R2R3) slows down the fibrillation but does not prevent it. The increased lag phase seen for FapC ΔR1R2R3 allows for disulfide bond formation, which further delays fibrillation. Remarkably, these disulfide-bonded species of FapC ΔR1R2R3 also significantly delay the fibrillation of human α-synuclein, a key protein in Parkinson's disease pathology. This attenuation of α-synuclein fibrillation was not seen for the reduced form of FapC ΔR1R2R3. The results presented here shed light on the FapC fibrillation mechanism and emphasize how unrelated fibrillation systems may share such common fibril formation mechanisms, allowing inhibitors of one fibrillating protein to affect a completely different protein.
Collapse
Affiliation(s)
- Line Friis
Bakmann Christensen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Kirstine Friis Jensen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Brian Stougaard Vad
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Gunna Christiansen
- Section
for Medical Microbiology and Immunology, Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
- E-mail:
| |
Collapse
|
12
|
Ciccone L, Fruchart-Gaillard C, Mourier G, Savko M, Nencetti S, Orlandini E, Servent D, Stura EA, Shepard W. Copper mediated amyloid-β binding to Transthyretin. Sci Rep 2018; 8:13744. [PMID: 30213975 PMCID: PMC6137083 DOI: 10.1038/s41598-018-31808-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
Transthyretin (TTR), a homotetrameric protein that transports thyroxine and retinol both in plasma and in cerebrospinal (CSF) fluid provides a natural protective response against Alzheimer's disease (AD), modulates amyloid-β (Aβ) deposition by direct interaction and co-localizes with Aβ in plaques. TTR levels are lower in the CSF of AD patients. Zn2+, Mn2+ and Fe2+ transform TTR into a protease able to cleave Aβ. To explain these activities, monomer dissociation or conformational changes have been suggested. Here, we report that when TTR crystals are exposed to copper or iron salts, the tetramer undergoes a significant conformational change that alters the dimer-dimer interface and rearranges residues implicated in TTR's ability to neutralize Aβ. We also describe the conformational changes in TTR upon the binding of the various metal ions. Furthermore, using bio-layer interferometry (BLI) with immobilized Aβ(1-28), we observe the binding of TTR only in the presence of copper. Such Cu2+-dependent binding suggests a recognition mechanism whereby Cu2+ modulates both the TTR conformation, induces a complementary Aβ structure and may participate in the interaction. Cu2+-soaked TTR crystals show a conformation different from that induced by Fe2+, and intriguingly, TTR crystals grown in presence of Aβ(1-28) show different positions for the copper sites from those grown its absence.
Collapse
Affiliation(s)
- Lidia Ciccone
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Carole Fruchart-Gaillard
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Gilles Mourier
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Martin Savko
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Susanna Nencetti
- Dipartimento di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Elisabetta Orlandini
- Dipartimento di Scienze della Terra, Universitá di Pisa, Via Santa Maria 53-55, 56100, Pisa, Italy
| | - Denis Servent
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Enrico A Stura
- CEA Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingènierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Mangrolia P, Murphy RM. Retinol-Binding Protein Interferes with Transthyretin-Mediated β-Amyloid Aggregation Inhibition. Biochemistry 2018; 57:5029-5040. [PMID: 30024734 PMCID: PMC6530574 DOI: 10.1021/acs.biochem.8b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to Alzheimer's disease. On the basis of in vitro and transgenic animal studies, transthyretin (TTR) is hypothesized to provide neuroprotection against Aβ toxicity by binding to Aβ and inhibiting its aggregation. TTR is a homotetrameric protein that circulates in blood and cerebrospinal fluid; its normal physiological role is as a carrier for thyroxine and retinol-binding protein (RBP). RBP forms a complex with retinol, and the holoprotein (hRBP) binds with high affinity to TTR. In this study, the role of TTR ligands in TTR-mediated inhibition of Aβ aggregation was investigated. hRBP strongly reduced the ability of TTR to inhibit Aβ aggregation. The effect was not due to competition between Aβ and hRBP for binding to TTR, as Aβ bound equally well to TTR-hRBP complexes and TTR. hRBP is known to stabilize the TTR tetrameric structure. We show that Aβ partially destabilizes TTR and that hRBP counteracts this destabilization. Taken together, our results support a mechanism wherein TTR-mediated inhibition of Aβ aggregation requires not only TTR-Aβ binding but also destabilization of TTR quaternary structure.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Pate KM, Kim BJ, Shusta EV, Murphy RM. Transthyretin Mimetics as Anti-β-Amyloid Agents: A Comparison of Peptide and Protein Approaches. ChemMedChem 2018; 13:968-979. [PMID: 29512286 PMCID: PMC5991081 DOI: 10.1002/cmdc.201800031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/05/2018] [Indexed: 12/19/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to neuronal pathology in Alzheimer's disease; therefore, several small molecules, antibodies, and peptides have been tested as anti-Aβ agents. We developed two compounds based on the Aβ-binding domain of transthyretin (TTR): a cyclic peptide cG8 and an engineered protein mTTR, and compared them for therapeutically relevant properties. Both mTTR and cG8 inhibit fibrillogenesis of Aβ, with mTTR inhibiting at a lower concentration than cG8. Both inhibit aggregation of amylin but not of α-synuclein. They both bind more Aβ aggregates than monomer, and neither disaggregates preformed fibrils. cG8 retained more of its activity in the presence of biological materials and was more resistant to proteolysis than mTTR. We examined the effect of mTTR or cG8 on Aβ binding to human neurons. When mTTR was co-incubated with Aβ under oligomer-forming conditions, Aβ morphology was drastically changed and Aβ-cell deposition significantly decreased. In contrast, cG8 did not affect morphology but decreased the amount of Aβ deposited. These results provide guidance for further evolution of TTR-mimetic anti-amyloid agents.
Collapse
Affiliation(s)
- Kayla M Pate
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Brandon J Kim
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| |
Collapse
|
15
|
Abstract
Amyloid fibrils are protein homopolymers that adopt diverse cross-β conformations. Some amyloid fibrils are associated with the pathogenesis of devastating neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Conversely, functional amyloids play beneficial roles in melanosome biogenesis, long-term memory formation and release of peptide hormones. Here, we showcase advances in our understanding of amyloid assembly and structure, and how distinct amyloid strains formed by the same protein can cause distinct neurodegenerative diseases. We discuss how mutant steric zippers promote deleterious amyloidogenesis and aberrant liquid-to-gel phase transitions. We also highlight effective strategies to combat amyloidogenesis and related toxicity, including: (1) small-molecule drugs (e.g. tafamidis) to inhibit amyloid formation or (2) stimulate amyloid degradation by the proteasome and autophagy, and (3) protein disaggregases that disassemble toxic amyloid and soluble oligomers. We anticipate that these advances will inspire therapeutics for several fatal neurodegenerative diseases. Summary: This Review showcases important advances in our understanding of amyloid structure, assembly and disassembly, which are inspiring novel therapeutic strategies for amyloid disorders.
Collapse
Affiliation(s)
- Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Acacia M Hori
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina D Hesketh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA .,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Jain N, Ådén J, Nagamatsu K, Evans ML, Li X, McMichael B, Ivanova MI, Almqvist F, Buxbaum JN, Chapman MR. Inhibition of curli assembly and Escherichia coli biofilm formation by the human systemic amyloid precursor transthyretin. Proc Natl Acad Sci U S A 2017; 114:12184-12189. [PMID: 29087319 PMCID: PMC5699053 DOI: 10.1073/pnas.1708805114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During biofilm formation, Escherichia coli and other Enterobacteriaceae produce an extracellular matrix consisting of curli amyloid fibers and cellulose. The precursor of curli fibers is the amyloidogenic protein CsgA. The human systemic amyloid precursor protein transthyretin (TTR) is known to inhibit amyloid-β (Aβ) aggregation in vitro and suppress the Alzheimer's-like phenotypes in a transgenic mouse model of Aβ deposition. We hypothesized that TTR might have broad antiamyloid activity because the biophysical properties of amyloids are largely conserved across species and kingdoms. Here, we report that both human WT tetrameric TTR (WT-TTR) and its engineered nontetramer-forming monomer (M-TTR, F87M/L110M) inhibit CsgA amyloid formation in vitro, with M-TTR being the more efficient inhibitor. Preincubation of WT-TTR with small molecules that occupy the T4 binding site eliminated the inhibitory capacity of the tetramer; however, they did not significantly compromise the ability of M-TTR to inhibit CsgA amyloidogenesis. TTR also inhibited amyloid-dependent biofilm formation in two different bacterial species with no apparent bactericidal or bacteriostatic effects. These discoveries suggest that TTR is an effective antibiofilm agent that could potentiate antibiotic efficacy in infections associated with significant biofilm formation.
Collapse
Affiliation(s)
- Neha Jain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Kanna Nagamatsu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Margery L Evans
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Xinyi Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Brennan McMichael
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-1048
- Program of Biophysics, University of Michigan, Ann Arbor, MI 48109-1048
| | | | - Joel N Buxbaum
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048;
| |
Collapse
|
17
|
Li X, Song Y, Sanders CR, Buxbaum JN. Transthyretin Suppresses Amyloid-β Secretion by Interfering with Processing of the Amyloid-β Protein Precursor. J Alzheimers Dis 2017; 52:1263-75. [PMID: 27079720 DOI: 10.3233/jad-160033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Alzheimer's disease (AD), most hippocampal and cortical neurons show increased staining with anti-transthyretin (TTR) antibodies. Genetically programmed overexpression of wild type human TTR suppressed the neuropathologic and behavioral abnormalities in APP23 AD model mice and TTR-Aβ complexes have been isolated from some human AD brains and those of APP23 transgenic mice. In the present study, in vitro NMR analysis showed interaction between the hydrophobic thyroxine binding pocket of TTR and the cytoplasmic loop of the C99 fragment released by β-secretase cleavage of AβPP, with Kd = 86±9 μM. In cultured cells expressing both proteins, the interaction reduced phosphorylation of C99 (at T668) and suppressed its cleavage by γ-secretase, significantly decreasing Aβ secretion. Coupled with its previously demonstrated capacity to inhibit Aβ aggregation (with the resultant cytotoxicity in tissue culture) and its regulation by HSF1, these findings indicate that TTR can behave as a stress responsive multimodal suppressor of AD pathogenesis.
Collapse
Affiliation(s)
- Xinyi Li
- Janssen Research & Development, LLC, Johnson & Johnson, San Diego, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuanli Song
- Bristol-Myers Squibb, Biologics Process Development, Devens, MA, USA.,Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
18
|
Perlenfein TJ, Murphy RM. A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation. J Biol Chem 2017; 292:21071-21082. [PMID: 29046353 DOI: 10.1074/jbc.m117.811448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
β-Amyloid (Aβ) aggregation is thought to initiate a cascade of neurodegenerative events in Alzheimer's disease (AD). Much effort is underway to develop strategies to reduce Aβ concentration or inhibit aggregation. Cathepsin B (CatB) proteolytically degrades Aβ into non-aggregating fragments but is potently inhibited by cystatin C (CysC). It has been suggested that decreasing CysC would facilitate Aβ clearance by relieving CatB inhibition. However, CysC binds Aβ and inhibits Aβ aggregation, suggesting that an intervention that increases CysC would prevent Aβ aggregation. Both approaches have been tested in animal models, yielding contradictory results, possibly because of the opposing influences of CysC on Aβ degradation versus aggregation. Here, we sought to develop a model that quantitatively predicts the effects of CysC and CatB on Aβ aggregation. Aβ aggregation kinetics in the absence of CatB or CysC was measured. The rate constant for Aβ degradation by CatB and the equilibrium constant for binding of CysC to Aβ were determined. We derived a mathematical model that combines material balances and kinetic rate equations. The model accurately predicted Aβ aggregation kinetics at various CatB and CysC concentrations. We derived approximate expressions for the half-times of degradation and aggregation and show that their ratio can be used to estimate, at any given Aβ, CatB, or CysC concentration, whether Aβ aggregation or degradation will result. Our results may be useful for designing experiments and interpreting results from investigations of manipulation of CysC concentration as an AD therapy.
Collapse
Affiliation(s)
- Tyler J Perlenfein
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
19
|
Coexistence of transthyretin- and Aβ-type cerebral amyloid angiopathy in a patient with hereditary transthyretin V30M amyloidosis. J Neurol Sci 2017; 381:144-146. [DOI: 10.1016/j.jns.2017.08.3240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022]
|
20
|
Buxbaum JN, Johansson J. Transthyretin and BRICHOS: The Paradox of Amyloidogenic Proteins with Anti-Amyloidogenic Activity for Aβ in the Central Nervous System. Front Neurosci 2017; 11:119. [PMID: 28360830 PMCID: PMC5350149 DOI: 10.3389/fnins.2017.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Amyloid fibrils are physiologically insoluble biophysically specific β-sheet rich structures formed by the aggregation of misfolded proteins. In vivo tissue amyloid formation is responsible for more than 30 different disease states in humans and other mammals. One of these, Alzheimer's disease (AD), is the most common form of human dementia for which there is currently no definitive treatment. Amyloid fibril formation by the amyloid β-peptide (Aβ) is considered to be an underlying cause of AD, and strategies designed to reduce Aβ production and/or its toxic effects are being extensively investigated in both laboratory and clinical settings. Transthyretin (TTR) and proteins containing a BRICHOS domain are etiologically associated with specific amyloid diseases in the CNS and other organs. Nonetheless, it has been observed that TTR and BRICHOS structures are efficient inhibitors of Aβ fibril formation and toxicity in vitro and in vivo, raising the possibility that some amyloidogenic proteins, or their precursors, possess properties that may be harnessed for combating AD and other amyloidoses. Herein, we review properties of TTR and the BRICHOS domain and discuss how their abilities to interfere with amyloid formation may be employed in the development of novel treatments for AD.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research InstituteLa Jolla, CA, USA; Scintillon InstituteSan Diego, CA, USA
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Center for Alzheimer Research, Karolinska Institutet Huddinge, Sweden
| |
Collapse
|
21
|
Pate KM, Murphy RM. Cerebrospinal Fluid Proteins as Regulators of Beta-amyloid Aggregation and Toxicity. Isr J Chem 2017; 57:602-612. [PMID: 29129937 DOI: 10.1002/ijch.201600078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid disorders, such as Alzheimer's, are almost invariably late-onset diseases. One defining diagnostic feature of Alzheimer's disease is the deposition of beta-amyloid as extracellular plaques, primarily in the hippocampus. This raises the question: are there natural protective agents that prevent beta-amyloid from depositing, and is it loss of this protection that leads to onset of disease? Proteins in cerebrospinal fluid (CSF) have been suggested to act as just such natural protective agents. Here, we describe some of the early evidence that led to this suggestion, and we discuss, in greater detail, two CSF proteins that have garnered the bulk of the attention.
Collapse
Affiliation(s)
- Kayla M Pate
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| |
Collapse
|
22
|
Horton W, Sood A, Peerannawar S, Kugyela N, Kulkarni A, Tulsan R, Tran CD, Soule J, LeVine H, Török B, Török M. Synthesis and application of β-carbolines as novel multi-functional anti-Alzheimer's disease agents. Bioorg Med Chem Lett 2017; 27:232-236. [PMID: 27923619 PMCID: PMC5282889 DOI: 10.1016/j.bmcl.2016.11.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
The design, synthesis and assessment of β-carboline core-based compounds as potential multifunctional agents against several processes that are believed to play a significant role in Alzheimer's disease (AD) pathology, are described. The activity of the compounds was determined in Aβ self-assembly (fibril and oligomer formation) and cholinesterase (AChE, BuChE) activity inhibition, and their antioxidant properties were also assessed. To obtain insight into the mode of action of the compounds, HR-MS studies were carried out on the inhibitor-Aβ complex formation and molecular docking was performed on inhibitor-BuChE interactions. While several compounds exhibited strong activities in individual assays, compound 14 emerged as a promising multi-target lead for the further structure-activity relationship studies.
Collapse
Affiliation(s)
- William Horton
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | - Abha Sood
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | | | - Nandor Kugyela
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | - Aditya Kulkarni
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | - Rekha Tulsan
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | - Chris D Tran
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | - Jessica Soule
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | - Harry LeVine
- Department of Molecular and Cellular Biochemistry, Chandler School of Medicine, and Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Béla Török
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA
| | - Marianna Török
- University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, USA.
| |
Collapse
|
23
|
Loke SY, Wong PTH, Ong WY. Global gene expression changes in the prefrontal cortex of rabbits with hypercholesterolemia and/or hypertension. Neurochem Int 2016; 102:33-56. [PMID: 27890723 DOI: 10.1016/j.neuint.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
Although many studies have identified a link between hypercholesterolemia or hypertension and cognitive deficits, till date, comprehensive gene expression analyses of the brain under these conditions is still lacking. The present study was carried out to elucidate differential gene expression changes in the prefrontal cortex (PFC) of New Zealand white rabbits exposed to hypercholesterolemia and/or hypertension with a view of identifying gene networks at risk. Microarray analyses of the PFC of hypercholesterolemic rabbits showed 850 differentially expressed genes (DEGs) in the cortex of hypercholesterolemic rabbits compared to controls, but only 5 DEGs in hypertensive rabbits compared to controls. Up-regulated genes in the PFC of hypercholesterolemic rabbits included CIDEC, ODF2, RNASEL, FSHR, CES3 and MAB21L3, and down-regulated genes included FAM184B, CUL3, LOC100351029, TMEM109, LOC100357097 and PFDN5. Comparison with our previous study on the middle cerebral artery (MCA) of the same rabbits showed many differentially expressed genes in common between the PFC and MCA, during hypercholesterolemia. Moreover, these genes tended to fall into the same functional networks, as revealed by IPA analyses, with many identical node molecules. These include: proteasome, insulin, Akt, ERK1/2, histone, IL12, interferon alpha and NFκB. Of these, PSMB4, PSMD4, PSMG1 were chosen as representatives of genes related to the proteasome for verification by quantitative RT-PCR. Results indicate significant downregulation of all three proteasome associated genes in the PFC. Immunostaining showed significantly increased number of Aβ labelled cells in layers III and V of the cortex after hypercholesterolemia and hypertension, which may be due to decreased proteasome activity and/or increased β- or γ-secretase activity. Knowledge of altered gene networks during hypercholesterolemia and/or hypertension could inform our understanding of the link between these conditions and cognitive deficits in vascular dementia or Alzheimer's disease.
Collapse
Affiliation(s)
- Sau-Yeen Loke
- Department of Anatomy, National University of Singapore, 119260, Singapore
| | - Peter Tsun-Hon Wong
- Department of Pharmacology, National University of Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, 119260, Singapore; Neurobiology and Ageing Research Program, Life Sciences Institute, National University of Singapore, 119260, Singapore.
| |
Collapse
|
24
|
Costa AR, Marcelino H, Gonçalves I, Quintela T, Tomás J, Duarte AC, Fonseca AM, Santos CRA. Sex Hormones Protect Against Amyloid-β Induced Oxidative Stress in the Choroid Plexus Cell Line Z310. J Neuroendocrinol 2016; 28. [PMID: 27328988 DOI: 10.1111/jne.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 05/23/2016] [Accepted: 06/18/2016] [Indexed: 11/27/2022]
Abstract
The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood on the basal side and the cerebrospinal fluid (CSF) on the apical side. It is a relevant source of many polypeptides secreted to the CSF with neuroprotective functions and also participates in the elimination and detoxification of brain metabolites, such as β-amyloid (Aβ) removal from the CSF through transporter-mediated influx. The CP is also a target tissue for sex hormones (SHs) that have recognised neuroprotective effects against a variety of insults, including Aβ toxicity and oxidative stress in the central nervous system. The present study aimed to understand how SHs modulate Aβ-induced oxidative stress in a CP cell line (Z310 cell line) by analysing the effects of Aβ1-42 on oxidative stress, mitochondrial function and apoptosis, as well as by assessing how 17β-oestradiol (E2 ) and 5α-dihydrotestosterone (DHT) modulated these effects and the cellular uptake of Aβ1-42 by CP cells. Our findings show that E2 and DHT treatment reduce Aβ1-42 -induced oxidative stress and the internalisation of Aβ1-42 by CP epithelial cells, highlighting the importance of considering the background of SHs and therefore sex-related differences in Aβ metabolism and clearance by CP cells.
Collapse
Affiliation(s)
- A R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - H Marcelino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - J Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - A C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - A M Fonseca
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
25
|
Laiterä T, Kurki MI, Pursiheimo JP, Zetterberg H, Helisalmi S, Rauramaa T, Alafuzoff I, Remes AM, Soininen H, Haapasalo A, Jääskeläinen JE, Hiltunen M, Leinonen V. The Expression of Transthyretin and Amyloid-β Protein Precursor is Altered in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. J Alzheimers Dis 2016; 48:959-68. [PMID: 26444765 DOI: 10.3233/jad-150268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) is a dementing condition in which Alzheimer's disease (AD)-related amyloid-β (Aβ) plaques are frequently observed in the neocortex. iNPH patients with prominent Aβ pathology show AD-related alterations in amyloid-β protein precursor (AβPP) processing resulting from increased γ-secretase activity. OBJECTIVES Our goal was to assess potential alterations in the global gene expression profile in the brain of iNPH patients as compared to non-demented controls and to evaluate the levels of the identified targets in the cerebrospinal fluid (CSF) of iNPH patients. METHODS The genome-wide expression profile of ~35,000 probes was assessed in the RNA samples obtained from 22 iNPH patients and eight non-demented control subjects using a microarray chip. The soluble levels of sAβPPα, sAβPPβ, and transthyretin (TTR) were measured from the CSF of 102 iNPH patients using ELISA. RESULTS After correcting the results for multiple testing, significant differences in the expression of TTR and A βPP were observed between iNPH and control subjects. The mRNA levels of TTR were on average 17-fold lower in iNPH samples compared to control samples. Conversely, the expression level of A βPP was on average three times higher in iNPH samples as compared to control samples. Interestingly, the expression of α-secretase (ADAM10) was also increased in iNPH patients. In the lumbar CSF samples, soluble TTR levels showed a significant positive correlation with sAβPPα and sAβPPβ, but TTR levels did not predict the brain pathology or the shunt response. CONCLUSIONS These findings suggest differences in the expression profile of key factors involved in AD-related cellular events in the brain of iNPH patients.
Collapse
Affiliation(s)
- Tiina Laiterä
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mitja I Kurki
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Institute of Clinical Medicine - Pathology, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne M Remes
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juha E Jääskeläinen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
26
|
Peptides Composed of Alternating L- and D-Amino Acids Inhibit Amyloidogenesis in Three Distinct Amyloid Systems Independent of Sequence. J Mol Biol 2016; 428:2317-2328. [PMID: 27012425 DOI: 10.1016/j.jmb.2016.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/23/2022]
Abstract
There is now substantial evidence that soluble oligomers are primary toxic agents in amyloid diseases. The development of an antibody recognizing the toxic soluble oligomeric forms of different and unrelated amyloid species suggests a common conformational intermediate during amyloidogenesis. We previously observed a common occurrence of a novel secondary structure element, which we call α-sheet, in molecular dynamics (MD) simulations of various amyloidogenic proteins, and we hypothesized that the toxic conformer is composed of α-sheet structure. As such, α-sheet may represent a conformational signature of the misfolded intermediates of amyloidogenesis and a potential unique binding target for peptide inhibitors. Recently, we reported the design and characterization of a novel hairpin peptide (α1 or AP90) that adopts stable α-sheet structure and inhibits the aggregation of the β-Amyloid Peptide Aβ42 and transthyretin. AP90 is a 23-residue hairpin peptide featuring alternating D- and L-amino acids with favorable conformational propensities for α-sheet formation, and a designed turn. For this study, we reverse engineered AP90 to identify which of its design features is most responsible for conferring α-sheet stability and inhibitory activity. We present experimental characterization (CD and FTIR) of seven peptides designed to accomplish this. In addition, we measured their ability to inhibit aggregation in three unrelated amyloid species: Aβ42, transthyretin, and human islet amylin polypeptide. We found that a hairpin peptide featuring alternating L- and D-amino acids, independent of sequence, is sufficient for conferring α-sheet structure and inhibition of aggregation. Additionally, we show a correlation between α-sheet structural stability and inhibitory activity.
Collapse
|
27
|
Banerjee A, Dasgupta S, Mukhopadhyay BP, Sekar K. The putative role of some conserved water molecules in the structure and function of human transthyretin. ACTA ACUST UNITED AC 2015; 71:2248-66. [DOI: 10.1107/s1399004715016004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/26/2015] [Indexed: 11/10/2022]
Abstract
Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and Aβ peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH ≤ 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.
Collapse
|
28
|
Bag S, Tulsan R, Sood A, Cho H, Redjeb H, Zhou W, LeVine H, Török B, Török M. Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25:626-30. [DOI: 10.1016/j.bmcl.2014.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/03/2014] [Indexed: 11/30/2022]
|
29
|
The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice. J Neurosci 2014; 34:7253-65. [PMID: 24849358 DOI: 10.1523/jneurosci.4936-13.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased neuronal synthesis of transthyretin (TTR) may favorably impact on Alzheimer's disease (AD) because TTR has been shown to inhibit Aβ aggregation and detoxify cell-damaging conformers. The mechanism whereby hippocampal and cortical neurons from AD patients and APP23 AD model mice produce more TTR is unknown. We now show that TTR expression in SH-SY5Y human neuroblastoma cells, primary hippocampal neurons and the hippocampus of APP23 mice, is significantly enhanced by heat shock factor 1 (HSF1). Chromatin immunoprecipitation (ChIP) assays demonstrated occupation of TTR promoter heat shock elements by HSF1 in APP23 hippocampi, primary murine hippocampal neurons, and SH-SY5Y cells, but not in mouse liver, cultured human hepatoma (HepG2) cells, or AC16 cultured human cardiomyocytes. Treating SH-SY5Y human neuroblastoma cells with heat shock or the HSF1 stimulator celastrol increased TTR transcription in parallel with that of HSP40, HSP70, and HSP90. With both treatments, ChIP showed increased occupancy of heat shock elements in the TTR promoter by HSF1. In vivo celastrol increased the HSF1 ChIP signal in hippocampus but not in liver. Transfection of a human HSF1 construct into SH-SY5Y cells increased TTR transcription and protein production, which could be blocked by shHSF1 antisense. The effect is neuron specific. In cultured HepG2 cells, HSF1 was either suppressive or had no effect on TTR expression confirming the differential effects of HSF1 on TTR transcription in different cell types.
Collapse
|
30
|
Conti S, Li X, Gianni S, Ghadami SA, Buxbaum J, Cecchi C, Chiti F, Bemporad F. A Complex Equilibrium among Partially Unfolded Conformations in Monomeric Transthyretin. Biochemistry 2014; 53:4381-92. [DOI: 10.1021/bi500430w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simona Conti
- Dipartimento
di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”,
Sezione di Biochimica, Università degli Studi di Firenze, Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Xinyi Li
- Department
of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-230, La
Jolla, California 92037, United States
| | - Stefano Gianni
- Istituto
Pasteur Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Istituto di Biologia e Patologia
Molecolari del CNR, Università di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Seyyed Abolghasem Ghadami
- Dipartimento
di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”,
Sezione di Biochimica, Università degli Studi di Firenze, Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Joel Buxbaum
- Department
of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-230, La
Jolla, California 92037, United States
| | - Cristina Cecchi
- Dipartimento
di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”,
Sezione di Biochimica, Università degli Studi di Firenze, Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Fabrizio Chiti
- Dipartimento
di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”,
Sezione di Biochimica, Università degli Studi di Firenze, Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Francesco Bemporad
- Dipartimento
di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”,
Sezione di Biochimica, Università degli Studi di Firenze, Viale G. B. Morgagni 50, 50134 Firenze, Italy
| |
Collapse
|
31
|
Abstract
Tissue-specific overexpression of the human systemic amyloid precursor transthyretin (TTR) ameliorates Alzheimer's disease (AD) phenotypes in APP23 mice. TTR-β-amyloid (Aβ) complexes have been isolated from APP23 and some human AD brains. We now show that substoichiometric concentrations of TTR tetramers suppress Aβ aggregation in vitro via an interaction between the thyroxine binding pocket of the TTR tetramer and Aβ residues 18-21 (nuclear magnetic resonance and epitope mapping). The K(D) is micromolar, and the stoichiometry is <1 for the interaction (isothermal titration calorimetry). Similar experiments show that engineered monomeric TTR, the best inhibitor of Aβ fibril formation in vitro, did not bind Aβ monomers in liquid phase, suggesting that inhibition of fibrillogenesis is mediated by TTR tetramer binding to Aβ monomer and both tetramer and monomer binding of Aβ oligomers. The thousand-fold greater concentration of tetramer relative to monomer in vivo makes it the likely suppressor of Aβ aggregation and disease in the APP23 mice.
Collapse
|
32
|
Vieira M, Saraiva MJ. Transthyretin: a multifaceted protein. Biomol Concepts 2014; 5:45-54. [DOI: 10.1515/bmc-2013-0038] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 11/15/2022] Open
Abstract
AbstractTransthyretin is a highly conserved homotetrameric protein, mainly synthetized by the liver and the choroid plexus of brain. The carrier role of TTR is well-known; however, many other functions have emerged, namely in the nervous system. Behavior, cognition, neuropeptide amidation, neurogenesis, nerve regeneration, axonal growth and 14-3-3ζ metabolism are some of the processes where TTR has an important role. TTR aggregates are responsible for many amyloidosis such as familial amyloidotic polyneuropathy and cardiomyopathy. Normal TTR can also aggregate and deposit in the heart of old people and in preeclampsia placental tissue. Differences in TTR levels have been found in several neuropathologies, but its neuroprotective role, until now, was described in ischemia and Alzheimer’s disease. The aim of this review is to stress the relevance of TTR, besides its well-known role on transport of thyroxine and retinol-binding protein.
Collapse
|
33
|
Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2302-14. [PMID: 24075940 DOI: 10.1016/j.bbadis.2013.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/30/2022]
Abstract
Although human transthyretin (TTR) is associated with systemic amyloidoses, an anti-amyloidogenic effect that prevents Aβ fibril formation in vitro and in animal models has been observed. Here we studied the ability of three different types of TTR, namely human tetramers (hTTR), mouse tetramers (muTTR) and an engineered monomer of the human protein (M-TTR), to suppress the toxicity of oligomers formed by two different amyloidogenic peptides/proteins (HypF-N and Aβ42). muTTR is the most stable homotetramer, hTTR can dissociate into partially unfolded monomers, whereas M-TTR maintains a monomeric state. Preformed toxic HypF-N and Aβ42 oligomers were incubated in the presence of each TTR then added to cell culture media. hTTR, and to a greater extent M-TTR, were found to protect human neuroblastoma cells and rat primary neurons against oligomer-induced toxicity, whereas muTTR had no protective effect. The thioflavin T assay and site-directed labeling experiments using pyrene ruled out disaggregation and structural reorganization within the discrete oligomers following incubation with TTRs, while confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and hTTR, particularly M-TTR. Moreover, atomic force microscopy (AFM), light scattering and turbidimetry analyses indicated that larger assemblies of oligomers are formed in the presence of M-TTR and, to a lesser extent, with hTTR. Overall, the data suggest a generic capacity of TTR to efficiently neutralize the toxicity of oligomers formed by misfolded proteins and reveal that such neutralization occurs through a mechanism of TTR-mediated assembly of protein oligomers into larger species, with an efficiency that correlates inversely with TTR tetramer stability.
Collapse
|
34
|
Banerjee A, Bairagya HR, Mukhopadhyay BP, Nandi TK, Mishra DK. Conserved water mediated H-bonding dynamics of Ser117 and Thr119 residues in human transthyretin–thyroxin complexation: Inhibitor modeling study through docking and molecular dynamics simulation. J Mol Graph Model 2013; 44:70-80. [DOI: 10.1016/j.jmgm.2013.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/22/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022]
|
35
|
Du J, Cho PY, Yang DT, Murphy RM. Identification of beta-amyloid-binding sites on transthyretin. Protein Eng Des Sel 2012; 25:337-45. [PMID: 22670059 DOI: 10.1093/protein/gzs026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transthyretin (TTR) binds to the Alzheimer-related peptide beta-amyloid (Aβ), and may protect against Aβ-induced neurotoxicity. In this work, the specific domains on TTR involved with binding to Aβ were probed. An array was constructed of peptides derived from overlapping sequences from TTR. Strong binding of Aβ to TIAALLSPYSYS (residues 106-117) was detected, corresponding to strand G on the inner β-sheet of TTR. Aβ bound weakly to four contiguous peptides spanning residues 59-83, which includes strand E through the E/F helix and loop. To further pinpoint specific residues on TTR involved with Aβ binding, nine alanine mutants were generated: I68A, I73A, K76A, L82A, I84A, S85A, L17A, T106A and L110A. Aβ binding was significantly inhibited only in L82A and L110A, indicating that Aβ binding to TTR is mediated through these bulky hydrophobic leucines. Aβ binding to L17A and S85A was significantly higher than to wild-type TTR. Enhancement of binding in L17A is postulated to arise from reduced steric restriction to the interior L110 site, since these two residues are adjacent in the native protein. The S85A mutation caused a reduction in TTR tetramer stability; increased Aβ binding is postulated to be a direct consequence of the reduced quaternary stability.
Collapse
Affiliation(s)
- Jiali Du
- Chemical and Biological Engineering Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
36
|
Oliveira SM, Cardoso I, Saraiva MJ. Transthyretin: roles in the nervous system beyond thyroxine and retinol transport. Expert Rev Endocrinol Metab 2012; 7:181-189. [PMID: 30764010 DOI: 10.1586/eem.12.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transthyretin (TTR) is a plasma- and cerebrospinal fluid-circulating protein. Besides the primordially attributed systemic role as a transporter molecule of thyroxine (T4) and retinol (through the binding to retinol-binding protein [RBP]), TTR has been recognized as a protein with important functions in several aspects of the nervous system physiology. TTR has been shown to play an important role in behavior, cognition, amidated neuropeptide processing and nerve regeneration. Furthermore, it has been proposed that TTR is neuroprotective in Alzheimer's disease and cerebral ischemia. Mutations in TTR are a well-known cause of familial amyloidotic polyneuropathy, an autosomal dominant neurodegenerative disorder characterized by systemic deposition of TTR amyloid fibrils, particularly in the peripheral nervous system. The purpose of this review is to highlight the roles of TTR in the nervous system, beyond its systemic role as a transporter molecule of T4 and RBP-retinol.
Collapse
Affiliation(s)
- Sandra Marisa Oliveira
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Isabel Cardoso
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- b Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Maria João Saraiva
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- c ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.
| |
Collapse
|
37
|
Liu L, Xia N, Wang J. Potential applications of SPR in early diagnosis and progression of Alzheimer's disease. RSC Adv 2012. [DOI: 10.1039/c2ra00667g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
38
|
Abstract
There has been much progress in our understanding of transthyretin (TTR)-related amyloidosis including familial amyloidotic polyneuropathy (FAP), senile systemic amyloidosis and its related disorders from many clinical and experimental aspects. FAP is an inherited severe systemic amyloidosis caused by mutated TTR, and characterized by amyloid deposition mainly in the peripheral nervous system and the heart. Liver transplantation is the only available treatment for the disease. FAP is now recognized not to be a rare disease, and to have many variations based on genetical and biochemical variations of TTR. This chapter covers the recent advances in the clinical and pathological aspects of, and therapeutic approaches to FAP, and the trend as to the molecular pathogenesis of TTR.
Collapse
Affiliation(s)
- Takamura Nagasaka
- Department of Neurology, University of Yamanashi, 1110 Shimokato, 409-3898, Chuou-city, Yamanashi, Japan,
| |
Collapse
|
39
|
Li X, Buxbaum JN. Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 2011; 6:79. [PMID: 22112803 PMCID: PMC3267701 DOI: 10.1186/1750-1326-6-79] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Since the mid-1990's a trickle of publications from scattered independent laboratories have presented data suggesting that the systemic amyloid precursor transthyretin (TTR) could interact with the amyloidogenic β-amyloid (Aβ) peptide of Alzheimer's disease (AD). The notion that one amyloid precursor could actually inhibit amyloid fibril formation by another seemed quite far-fetched. Further it seemed clear that within the CNS, TTR was only produced in choroid plexus epithelial cells, not in neurons. The most enthusiastic of the authors proclaimed that TTR sequestered Aβ in vivo resulting in a lowered TTR level in the cerebrospinal fluid (CSF) of AD patients and that the relationship was salutary. More circumspect investigators merely showed in vitro interaction between the two molecules. A single in vivo study in Caenorhabditis elegans suggested that wild type human TTR could suppress the abnormalities seen when Aβ was expressed in the muscle cells of the worm. Subsequent studies in human Aβ transgenic mice, including those from our laboratory, also suggested that the interaction reduced the Aβ deposition phenotype. We have reviewed the literature analyzing the relationship including recent data examining potential mechanisms that could explain the effect. We have proposed a model which is consistent with most of the published data and current notions of AD pathogenesis and can serve as a hypothesis which can be tested.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd,, MEM-230, La Jolla, CA 92037, USA
| | | |
Collapse
|
40
|
Neuronal production of transthyretin in human and murine Alzheimer's disease: is it protective? J Neurosci 2011; 31:12483-90. [PMID: 21880910 DOI: 10.1523/jneurosci.2417-11.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transthyretin (TTR), a systemic amyloid precursor in the human TTR amyloidoses, interacts with β-amyloid (Aβ) in vitro, inhibits Aβ fibril formation, and suppresses the Alzheimer's disease (AD) phenotype in APP23 mice bearing a human APP gene containing the Swedish autosomal dominant AD mutation. In the present study, we show that TTR is a neuronal product upregulated in AD. Immunohistochemical analysis reveals that, in contrast to brains from non-demented age-matched individuals and control mice, the majority of hippocampal neurons from human AD and all those from the APP23 mouse brains contain TTR. Quantitative PCR for TTR mRNA and Western blot analysis show that primary neurons from APP23 mice transcribe TTR mRNA, and the cells synthesize and secrete TTR protein. TTR mRNA abundance is greatly increased in cultured cortical and hippocampal embryonic neurons and cortical lysates from adult APP23 mice. Antibodies specific for TTR and Aβ pulled down TTR/Aβ complexes from cerebral cortical extracts of APP23 mice and some human AD patients but not from control brains. In complementary tissue culture experiments, recombinant human TTR suppressed the cytotoxicity of soluble Aβ aggregates added to mouse neurons and differentiated human SH-SY5Y neuroblastoma cells. The findings that production of Aβ, its precursor, or its related peptides induces neuronal TTR transcription and synthesis and the presence of Aβ/TTR complexes in vivo suggest that increased TTR production coupled with interaction between TTR and Aβ and/or its related peptides may play a role in natural resistance to human AD.
Collapse
|
41
|
Straub JE, Thirumalai D. Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annu Rev Phys Chem 2011; 62:437-63. [PMID: 21219143 PMCID: PMC11237996 DOI: 10.1146/annurev-physchem-032210-103526] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative understanding of the kinetics of fibril formation and the molecular mechanism of transition from monomers to fibrils is needed to obtain insights into the growth of amyloid fibrils and more generally self-assembly multisubunit protein complexes. Significant advances using computations of protein aggregation in a number of systems have established generic and sequence-specific aspects of the early steps in oligomer formation. Theoretical considerations, which view oligomer and fibril growth as diffusion in a complex energy landscape, and computational studies, involving minimal lattice and coarse-grained models, have revealed general principles governing the transition from monomeric protein to ordered fibrillar aggregates. Detailed atomistic calculations have explored the early stages of the protein aggregation pathway for a number of amyloidogenic proteins, most notably amyloid β- (Aβ-) protein and fragments from proteins linked to various diseases. These computational studies have provided insights into the role of sequence, role of water, and specific interatomic interactions underlying the thermodynamics and dynamics of elementary kinetic steps in the aggregation pathway. Novel methods are beginning to illustrate the structural basis for the production of Aβ-peptides through interactions with secretases in the presence of membranes. We show that a variety of theoretical approaches, ranging from scaling arguments to minimal models to atomistic simulations, are needed as a complement to experimental studies probing the principles governing protein aggregation.
Collapse
Affiliation(s)
- John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
42
|
Du J, Murphy RM. Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers. Biochemistry 2010; 49:8276-89. [PMID: 20795734 DOI: 10.1021/bi101280t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Amyloid (Aβ) is the main protein component of the amyloid plaques associated with Alzheimer's disease. Transthyretin (TTR) is a homotetramer that circulates in both blood and cerebrospinal fluid. Wild-type (wt) TTR amyloid deposits are linked to senile systemic amyloidosis, a common disease of aging, while several TTR mutants are linked to familial amyloid polyneuropathy. Several recent studies provide support for the hypothesis that these two amyloidogenic proteins interact, and that this interaction is biologically relevant. For example, upregulation of TTR expression in Tg2576 mice was linked to protection from the toxic effects of Aβ deposition [Stein, T. D., and Johnson, J. A. (2002) J. Neurosci. 22, 7380-7388]. We examined the interaction of Aβ with wt TTR as well as two mutants: F87M/L110M, engineered to be a stable monomer, and T119M, a naturally occurring mutant with a tetrameric stability higher than that of the wild type. On the basis of enzyme-linked immunoassays as well as cross-linking experiments, we conclude that Aβ monomers bind more to TTR monomers than to TTR tetramers. The data further suggest that TTR tetramers interact preferably with Aβ aggregates rather than Aβ monomers. Through tandem mass spectrometry analysis of cross-linked TTR-Aβ fragments, we identified the A strand, in the inner β-sheet of TTR, as well as the EF helix, as regions of TTR that are involved with Aβ association. Light scattering and electron microscopy studies demonstrate that the outcome of the TTR-Aβ interaction strongly depends on TTR quaternary structure. While TTR tetramers may modestly enhance aggregation, TTR monomers decidedly arrest Aβ aggregate growth. These data provide important new insights into the nature of TTR-Aβ interactions. Such interactions may regulate TTR-mediated protection against Aβ toxicity.
Collapse
Affiliation(s)
- Jiali Du
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
43
|
Liz MA, Mar FM, Franquinho F, Sousa MM. Aboard transthyretin: From transport to cleavage. IUBMB Life 2010; 62:429-35. [PMID: 20503435 DOI: 10.1002/iub.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transthyretin (TTR) is a plasma and cerebrospinal fluid protein mainly recognized as the transporter of thyroxine (T(4)) and retinol. Mutated TTR leads to familial amyloid polyneuropathy, a neurodegenerative disorder characterized by TTR amyloid deposition particularly in peripheral nerves. Beside its transport activities, TTR is a cryptic protease and participates in the biology of the nervous system. Several studies have been directed at finding new ligands of TTR to further explore the biology of the protein. From the identified ligands, some were in fact TTR protease substrates. In this review, we will discuss the existent information concerning TTR ligands/substrates.
Collapse
Affiliation(s)
- Márcia A Liz
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | | | |
Collapse
|
44
|
Gupta S, Babu P, Surolia A. Biphenyl ethers conjugated CdSe/ZnS core/shell quantum dots and interpretation of the mechanism of amyloid fibril disruption. Biomaterials 2010; 31:6809-22. [PMID: 20573396 DOI: 10.1016/j.biomaterials.2010.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/17/2010] [Indexed: 11/17/2022]
Abstract
The biphenyl ethers (BPEs) are the potent inhibitors of TTR fibril formation and are efficient fibril disrupter. However, the mechanism by which the fibril disruption occurs is yet to be fully elucidated. To gain insight into the mechanism, we synthesized and used a new QD labeled BPE to track the process of fibril disruption. Our studies showed that the new BPE-QDs bind to the fiber uniformly and has affinity and specificity for TTR fiber and disrupted the pre-formed fiber at a relatively slow rate. Based on these studies we put forth the probable mechanism of fiber disruption by BPEs. Also, we show here that the BPE-QDs interact with high affinity to the amyloids of Abeta(42), lysozyme and insulin. The potential of BPE-QDs in the detection of senile plaque in the brain of transgenic Alzheimer's mice has also been explored.
Collapse
Affiliation(s)
- Sarika Gupta
- National Institute of Immunology, Aruna Asaf Ali marg, New Delhi 110067, India.
| | | | | |
Collapse
|
45
|
Transthyretin: More than meets the eye. Prog Neurobiol 2009; 89:266-76. [DOI: 10.1016/j.pneurobio.2009.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/24/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022]
|
46
|
Augustin S, Rimbach G, Augustin K, Cermak R, Wolffram S. Gene Regulatory Effects of Ginkgo biloba Extract and Its Flavonol and Terpenelactone Fractions in Mouse Brain. J Clin Biochem Nutr 2009; 45:315-21. [PMID: 19902022 PMCID: PMC2771253 DOI: 10.3164/jcbn.08-248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/20/2009] [Indexed: 01/15/2023] Open
Abstract
The standardised Ginkgo biloba extract EGb761 is known for its potential beneficial effects in the prevention and therapy of neurodegenerative disorders including Alzheimer’s disease (AD). However, the molecular mechanisms and the specific role of its constituents are largely unknown. The aim of the present feeding trial was to investigate the effects of EGb761 and its major constituents on the expression of genes encoding for proteins involved in the pathogenesis of AD in mouse brain. Six month old C57B6 mice were fed semi synthetic diets enriched with either EGb761 or one of its main fractions, flavonols and terpenelactones, respectively, over a period of 4 weeks. Thereafter, mRNA of α-secretase, neprilysin, amyloid precursor protein (App), App binding protein-1 and acetylcholine esterase was quantified in hippocampus and cortex. EGb761 and its flavonol fraction had no effects on relative mRNA levels of the respective genes in mouse brain. However, the terpenelactone fraction significantly decreased the mRNA levels of App in the hippocampus. Taken together, a 4 week dietary treatment with EGb761 or its main fractions had only moderate effects on mRNA levels of AD related genes in cortex and hippocampus of mice.
Collapse
Affiliation(s)
- Sabine Augustin
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
47
|
Buxbaum JN, Reixach N. Transthyretin: the servant of many masters. Cell Mol Life Sci 2009; 66:3095-101. [PMID: 19644733 PMCID: PMC4820353 DOI: 10.1007/s00018-009-0109-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 01/08/2023]
Abstract
Transthyretin (TTR) (formerly, thyroxine binding prealbumin) is an evolutionarily conserved serum and cerebrospinal fluid protein that transports holo-retinol-binding protein and thyroxine. Its serum concentration has been widely used to assess clinical nutritional status. It is also well known that wild-type transthyretin and approximately 100 different mutants give rise to a variety of forms of systemic amyloid deposition. It has been suspected and recently established that TTR can suppress the Alzheimer's disease phenotype in transgenic animal models of cerebral Abeta deposition. Thus, while TTR is a systemic amyloid precursor, in the brain it seems to have an anti-amyloidogenic effect. TTR is found in other organs as a result of local synthesis or transport, suggesting that it may have other, as yet undiscovered, functions. It is possible that its capacity to bind many classes of compounds allows it to serve as an endogenous detoxifier of molecules with potential pathologic effects.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Molecular and Experimental Medicine Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
48
|
Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 2009; 34:295-342. [PMID: 19665479 DOI: 10.1016/j.neubiorev.2009.07.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/23/2009] [Accepted: 07/30/2009] [Indexed: 12/20/2022]
Abstract
Tobacco smoking is an extremely addictive and harmful form of nicotine (NIC) consumption, but unfortunately also the most prevalent. Although disproportionately high frequencies of smoking and its health consequences among psychiatric patients are widely known, the neurobiological background of this epidemiological association is still obscure. The diverse neuroactive effects of NIC and some other major tobacco smoke constituents in the central nervous system may underlie this association. This present paper summarizes the pharmacology of NIC and its receptors (nAChR) based on a systematic review of the literature. The role of the brain's reward system(s) in NIC addiction and the results of functional and structural neuroimaging studies on smoking-related states and behaviors (i.e. dependence, craving, withdrawal) are also discussed. In addition, the epidemiological, neurobiological, and genetic aspects of smoking in several specific neuropsychiatric disorders are reviewed and the clinical relevance of smoking in these disease states addressed.
Collapse
Affiliation(s)
- Peter Dome
- Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, Faculty of Medicine, Kutvolgyi ut 4, 1125 Budapest, Hungary.
| | | | | | | |
Collapse
|
49
|
Liu L, Hou J, Du J, Chumanov RS, Xu Q, Ge Y, Johnson JA, Murphy RM. Differential modification of Cys10 alters transthyretin's effect on beta-amyloid aggregation and toxicity. Protein Eng Des Sel 2009; 22:479-88. [PMID: 19549717 PMCID: PMC2719498 DOI: 10.1093/protein/gzp025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 05/20/2009] [Accepted: 05/23/2009] [Indexed: 12/21/2022] Open
Abstract
Tg2576 mice produce high levels of beta-amyloid (Abeta) and develop amyloid deposits, but lack neurofibrillary tangles and do not suffer the extensive neuronal cell loss characteristic of Alzheimer's disease. Protection from Abeta toxicity has been attributed to up-regulation of transthyretin (TTR), a normal component of plasma and cerebrospinal fluid. We compared the effect of TTR purified from human plasma (pTTR) with that produced recombinantly (rTTR) on Abeta aggregation and toxicity. pTTR slowed Abeta aggregation but failed to protect primary cortical neurons from Abeta toxicity. In contrast, rTTR accelerated aggregation, while effectively protecting neurons. This inverse correlation between Abeta aggregation kinetics and toxicity is consistent with the hypothesis that soluble intermediates rather than insoluble fibrils are the most toxic Abeta species. We carried out a detailed comparison of pTTR with rTTR to ascertain the probable cause of these different effects. No differences in secondary, tertiary or quaternary structure were detected. However, pTTR differed from rTTR in the extent and nature of modification at Cys10. We hypothesize that differential modification at Cys10 regulates TTR's effect on Abeta aggregation and toxicity.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| | - Jie Hou
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| | - Jiali Du
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| | - Robert S. Chumanov
- Cellular and Molecular Biology Program and McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Ave., Madison, WI 53706
| | - Qingge Xu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1300 University Ave., Madison, WI 53706
| | - Ying Ge
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1300 University Ave., Madison, WI 53706
| | - Jeffrey A. Johnson
- Cellular and Molecular Biology Program and McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Ave., Madison, WI 53706
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, WI 53705, USA
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706
| |
Collapse
|
50
|
Buxbaum JN. Animal models of human amyloidoses: are transgenic mice worth the time and trouble? FEBS Lett 2009; 583:2663-73. [PMID: 19627988 DOI: 10.1016/j.febslet.2009.07.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 02/05/2023]
Abstract
The amyloidoses are the prototype gain of toxic function protein misfolding diseases. As such, several naturally occurring animal models and their inducible variants provided some of the first insights into these disorders of protein aggregation. With greater analytic knowledge and the increasing flexibility of transgenic and gene knockout technology, new models have been generated allowing the interrogation of phenomena that have not been approachable in more reductionist systems, i.e. behavioral readouts in the neurodegenerative diseases, interactions among organ systems in the transthyretin amyloidoses and taking pre-clinical therapeutic trials beyond cell culture. The current review describes the features of both transgenic and non-transgenic models and discusses issues that appear to be unresolved even when viewed in their organismal context.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|