1
|
Alanzi AR, Alajmi MF, Alqahtani MJ. Molecular docking and ADMET studies of halogenated metabolites from marine sponges as inhibitors of wild-type and mutants PBP2 in Neisseria gonorrhoeae. J Biomol Struct Dyn 2025; 43:1498-1510. [PMID: 38088353 DOI: 10.1080/07391102.2023.2292291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2025]
Abstract
Gonorrhoea is a sexually transmitted infection (STI) caused by the bacteria Neisseria gonorrhoeae. Gonorrhoea symptoms can vary, although roughly 50% of women and 10% of men infected with N. gonorrhoeae may be asymptomatic. If left untreated, gonorrhoea can cause major health problems. However, no effective treatment or vaccination is currently available. The enzyme penicillin-binding protein 2 (PBP2) is necessary for cell wall synthesis during N. gonorrhoeae cell growth. The goal of this study is to investigate the molecular interactions of three PBP2 variants with halogenated marine sponge metabolites using molecular docking, molecular dynamic simulation, and ADMET analysis. The docking findings were evaluated using the glide gscore, and the top 20 compounds docked against each PBP2 protein receptor were chosen. Furthermore, the selected compounds underwent ADMET analysis, indicating that they have the potential for therapeutic development. Among the selected compounds, Bromoageliferin had the highest affinity for PBP2, Psammaplysin E for the penicillin-resistant variation of PBP2 protein, and Preaxinellamine for the cephalosporin-resistant variant of PBP2 protein. Additionally, MM-GBSA binding free energy and molecular dynamics simulations were used to support the docking investigations. The results of the study suggest that these compounds may eventually be used to treat gonorrhoea. However, computer validations were included in this study, and more in-vitro research is required to turn these prospective inhibitors into clinical drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moneerah J Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
López-Argüello S, Alcoceba E, Ordóñez P, Taltavull B, Cabot G, Gomis-Font MA, Oliver A, Moya B. Differential contribution of PBP occupancy and efflux on the effectiveness of β-lactams at their target site in clinical isolates of Neisseria gonorrhoeae. PLoS Pathog 2024; 20:e1012783. [PMID: 39739989 PMCID: PMC11729944 DOI: 10.1371/journal.ppat.1012783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/13/2025] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
Neisseria gonorrhoeae exhibits alarming antibiotic resistance trends and poses a significant challenge in therapeutic management. This study aimed to explore the association of penA alleles with penicillin-binding protein (PBP) occupancy patterns and reduced outer membrane permeability, impacting susceptibility to last-line cephalosporins and potential β-lactam candidates. The whole genome sequence, the MICs and PBP IC50s were determined for 12 β-lactams and β-lactamase inhibitors in 8 clinical isolates with varying β-lactam sensitivity, 2 ATCC, and 3 WHO cephalosporin-resistant reference strains. The genetic analysis identified diverse determinants of β-lactam resistance including penA, ponA, porB, and mtrR alterations. Mosaic penA alleles were confirmed to be key determinants of cephalosporin resistance, with notable impacts on PBP2 IC50 affinities (in the presence of all PBPs). Substitutions in positions V316 and A501 exhibited significant effects on β-lactam PBP2 occupancy and MICs. PBP1 inhibition showed marginal effect on β-lactam sensitivity and PBP3 acted as a sink target. Ertapenem and piperacillin emerged as potential therapies against cephalosporin-resistant N. gonorrhoeae strains, along with combination therapies involving tazobactam and/or efflux inhibitors. The study determined the β-lactam PBP-binding affinities of last-line cephalosporins and alternative β-lactam candidates in strains carrying different penA alleles for the first time. These findings provide insights for developing new antimicrobial agents and enhancers against emerging resistant strains. Further research is warranted to optimize therapeutic interventions for cephalosporin-resistant N. gonorrhoeae infections.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Eva Alcoceba
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Paula Ordóñez
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Biel Taltavull
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Maria Antonia Gomis-Font
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| |
Collapse
|
3
|
Unemo M, Sánchez-Busó L, Golparian D, Jacobsson S, Shimuta K, Lan PT, Eyre DW, Cole M, Maatouk I, Wi T, Lahra MM. The novel 2024 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations and superseded WHO N. gonorrhoeae reference strains-phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2024; 79:1885-1899. [PMID: 38889110 PMCID: PMC11290888 DOI: 10.1093/jac/dkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES MDR and XDR Neisseria gonorrhoeae strains remain major public health concerns internationally, and quality-assured global gonococcal antimicrobial resistance (AMR) surveillance is imperative. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) and WHO Enhanced GASP (EGASP), including metadata and WGS, are expanding internationally. We present the phenotypic, genetic and reference genome characteristics of the 2024 WHO gonococcal reference strains (n = 15) for quality assurance worldwide. All superseded WHO gonococcal reference strains (n = 14) were identically characterized. MATERIAL AND METHODS The 2024 WHO reference strains include 11 of the 2016 WHO reference strains, which were further characterized, and four novel strains. The superseded WHO reference strains include 11 WHO reference strains previously unpublished. All strains were characterized phenotypically and genomically (single-molecule PacBio or Oxford Nanopore and Illumina sequencing). RESULTS The 2024 WHO reference strains represent all available susceptible and resistant phenotypes and genotypes for antimicrobials currently and previously used (n = 22), or considered for future use (n = 3) in gonorrhoea treatment. The novel WHO strains include internationally spreading ceftriaxone resistance, ceftriaxone resistance due to new penA mutations, ceftriaxone plus high-level azithromycin resistance and azithromycin resistance due to mosaic MtrRCDE efflux pump. AMR, serogroup, prolyliminopeptidase, genetic AMR determinants, plasmid types, molecular epidemiological types and reference genome characteristics are presented for all strains. CONCLUSIONS The 2024 WHO gonococcal reference strains are recommended for internal and external quality assurance in laboratory examinations, especially in the WHO GASP, EGASP and other GASPs, but also in phenotypic and molecular diagnostics, AMR prediction, pharmacodynamics, epidemiology, research and as complete reference genomes in WGS analysis.
Collapse
Affiliation(s)
- Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| | - Leonor Sánchez-Busó
- Joint Research Unit ‘Infection and Public Health’, FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Ismael Maatouk
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Monica M Lahra
- WHO Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Krivitskaya AV, Kuryshkina MS, Eremina MY, Smirnov IV, Khrenova MG. Molecular Basis of Influence of A501X Mutations in Penicillin-Binding Protein 2 of Neisseria gonorrhoeae Strain 35/02 on Ceftriaxone Resistance. Int J Mol Sci 2024; 25:8260. [PMID: 39125830 PMCID: PMC11312080 DOI: 10.3390/ijms25158260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The increase in the resistance of mutant strains of Neisseria gonorrhoeae to the antibiotic ceftriaxone is pronounced in the decrease in the second-order acylation rate constant, k2/KS, by penicillin-binding protein 2 (PBP2). These changes can be caused by both the decrease in the acylation rate constant, k2, and the weakening of the binding affinity, i.e., an increase in the substrate constant, KS. A501X mutations in PBP2 affect second-order acylation rate constants. The PBP2A501V variant exhibits a higher k2/KS value, whereas for PBP2A501R and PBP2A501P variants, these values are lower. We performed molecular dynamic simulations with both classical and QM/MM potentials to model both acylation energy profiles and conformational dynamics of four PBP2 variants to explain the origin of k2/KS changes. The acylation reaction occurs in two elementary steps, specifically, a nucleophilic attack by the oxygen atom of the Ser310 residue and C-N bond cleavage in the β-lactam ring accompanied by the elimination of the leaving group of ceftriaxone. The energy barrier of the first step increases for PBP2 variants with a decrease in the observed k2/KS value. Submicrosecond classic molecular dynamic trajectories with subsequent cluster analysis reveal that the conformation of the β3-β4 loop switches from open to closed and its flexibility decreases for PBP2 variants with a lower k2/KS value. Thus, the experimentally observed decrease in the k2/KS in A501X variants of PBP2 occurs due to both the decrease in the acylation rate constant, k2, and the increase in KS.
Collapse
Affiliation(s)
- Alexandra V. Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Maria S. Kuryshkina
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.S.K.); (I.V.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maria Y. Eremina
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Smirnov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.S.K.); (I.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria G. Khrenova
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.S.K.); (I.V.S.)
| |
Collapse
|
5
|
Liao Y, Xie Q, Yin X, Li X, Xie J, Wu X, Tang S, Liu M, Zeng L, Pan Y, Yang J, Feng Z, Qin X, Zheng H. penA profile of Neisseria gonorrhoeae in Guangdong, China: Novel penA alleles are related to decreased susceptibility to ceftriaxone or cefixime. Int J Antimicrob Agents 2024; 63:107101. [PMID: 38325722 DOI: 10.1016/j.ijantimicag.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Resistance to extended-spectrum cephalosporins (ESCs) has become a public health concern with the spread of Neisseria gonorrhoeae and increasing antimicrobial resistance. Mutation of penA, encoding penicillin-binding protein 2, represents a mechanism of ESC resistance. This study sought to assess penA alleles and mutations associated with decreased susceptibility (DS) to ESCs in N. gonorrhoeae. MATERIALS AND METHODS In 2021, 347 gonococci were collected in Guangdong, China. Minimum inhibitory concentations (MICs) of ceftriaxone and cefixime were determined, and whole-genome sequencing and phylogenetic analysis were performed. Multi-locus sequence typing (MLST) and conventional resistance determinants such as penA, mtrR, PonA and PorB were analysed. penA was genotyped and sequence-aligned using PubMLST. RESULTS Genome-wide phylogenetic analysis revealed that the prevalence of DS to ESCs was highest in Clade 11.1 (100.0%), Clade 2 (66.7%) and Clade 0 (55.7%), and the leading cause was strains with penA-60.001 or new penA alleles in clades. The penA phylogenetic tree is divided into two branches: non-mosaic penA and mosaic penA. The latter contained penA-60.001, penA-10 and penA-34. penA profile analysis indicated that A311V and T483S are closely related to DS to ESCs in mosaic penA. The new alleles NEIS1753_2840 and NEIS1753_2837 are closely related to penA-60.001, with DS to ceftriaxone and cefixime of 100%. NEIS1753_2660, a derivative of penA-10 (A486V), has increased DS to ceftriaxone. NEIS1753_2846, a derivative of penA-34.007 (G546S), has increased DS to cefixime. CONCLUSION This study identified critical penA alleles related to elevated MICs, and trends of gonococcus-evolved mutated penA associated with DS to ESCs in Guangdong.
Collapse
Affiliation(s)
- Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Li
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhui Xie
- The Affiliated Cancer Hospital of Gannan Medical University, Ganzhou, Jiang Xi, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjing Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. Microbiol Spectr 2024; 12:e0350723. [PMID: 38179941 PMCID: PMC10871548 DOI: 10.1128/spectrum.03507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
7
|
Unitt A, Maiden M, Harrison O. Characterizing the diversity and commensal origins of penA mosaicism in the genus Neisseria. Microb Genom 2024; 10:001209. [PMID: 38381035 PMCID: PMC10926701 DOI: 10.1099/mgen.0.001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Mosaic penA alleles formed through horizontal gene transfer (HGT) have been instrumental to the rising incidence of ceftriaxone-resistant gonococcal infections. Although interspecies HGT of regions of the penA gene between Neisseria gonorrhoeae and commensal Neisseria species has been described, knowledge concerning which species are the most common contributors to mosaic penA alleles is limited, with most studies examining only a small number of alleles. Here, we investigated the origins of recombinant penA alleles through in silico analyses that incorporated 1700 penA alleles from 35 513 Neisseria isolates, comprising 15 different Neisseria species. We identified Neisseria subflava and Neisseria cinerea as the most common source of recombinant sequences in N. gonorrhoeae penA. This contrasted with Neisseria meningitidis penA, for which the primary source of recombinant DNA was other meningococci, followed by Neisseria lactamica. Additionally, we described the distribution of polymorphisms implicated in antimicrobial resistance in penA, and found that these are present across the genus. These results provide insight into resistance-related changes in the penA gene across human-associated Neisseria species, illustrating the importance of genomic surveillance of not only the pathogenic Neisseria, but also of the oral niche-associated commensals from which these pathogens are sourcing key genetic variation.
Collapse
Affiliation(s)
- Anastasia Unitt
- Department of Biology, University of Oxford, Oxford, OX1 3SY, UK
| | - Martin Maiden
- Department of Biology, University of Oxford, Oxford, OX1 3SY, UK
| | - Odile Harrison
- Department of Biology, University of Oxford, Oxford, OX1 3SY, UK
- Infectious Disease Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, OX3 7LF, UK
| |
Collapse
|
8
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Gu Y, Song S, Zhu Q, Jiao R, Lin X, Yang F, van der Veen S. Bacitracin enhances ceftriaxone susceptibility of the high-level ceftriaxone-resistant gonococcal FC428 clone. Microbiol Spectr 2023; 11:e0244923. [PMID: 37982635 PMCID: PMC10715023 DOI: 10.1128/spectrum.02449-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Ceftriaxone-based antimicrobial therapies for gonorrhea are threatened by waning ceftriaxone susceptibility levels and the global dissemination of the high-level ceftriaxone-resistant gonococcal FC428 clone. Combination therapy can be an effective strategy to restrain the development of ceftriaxone resistance, and for that purpose, it is important to find an alternative antimicrobial to replace azithromycin, which has recently been removed in some countries from the recommended ceftriaxone plus azithromycin dual-antimicrobial therapy. Ideally, the second antimicrobial should display synergistic activity with ceftriaxone. We hypothesized that bacitracin might display synergistic activity with ceftriaxone because of their distinct mechanisms targeting bacterial cell wall synthesis. In this study, we showed that bacitracin indeed displays synergistic activity with ceftriaxone against Neisseria gonorrhoeae. Importantly, strains associated with the FC428 clone appeared to be particularly susceptible to the bacitracin plus ceftriaxone combination, which might therefore be an interesting dual therapy for further in vivo testing.
Collapse
Affiliation(s)
- Yuhua Gu
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuaijie Song
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingrui Zhu
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilin Jiao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu'ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
10
|
Kanesaka I, Ohno A, Morita M, Katsuse AK, Morihana T, Ito T, Takahashi H, Kobayashi I. Epigenetic effects of ceftriaxone-resistant Neisseria gonorrhoeae FC428 mosaic-like sequences found in PenA sequences unique to Neisseria subflava and related species. J Antimicrob Chemother 2023; 78:2683-2690. [PMID: 37769185 DOI: 10.1093/jac/dkad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES The aim of this study was to explore the origin of the PenA mosaic amino acid sequence in the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone. METHODS The penA sequences of 27 Neisseria subflava pharyngeal isolates were determined by the Sanger method and penA sequences of 52 isolates from nine Neisseria species were obtained from the NCBI database. Comparative analysis of each PenA sequence was performed by multiple sequence alignment using ClustalW. In vitro resistance acquisition experiments were conducted to investigate the possibility of selection pressure by cefixime-induced amino acid substitution mutations in PenA. RESULTS All N. subflava strains, including two with low susceptibility to expanded-spectrum cephalosporins (ESCs), possessed the majority of the PenA FC428 sequence. Furthermore, a number of strains, but not all, of closely related species of N. subflava showed similar results. PenA FC428 sequences were also found in some strains of distantly related species. No new mutations in the penA sequence were observed in colonies with increased MIC in in vitro resistance acquisition experiments. CONCLUSIONS This study provides strong evidence that the FC428 PenA mosaic sequence originated from N. subflava and related species among oral commensal Neisseria species. The results of in vitro resistance acquisition experiments also suggested that one of the PenA FC428-like sequence gene polymorphisms resulted in the expression of ESC resistance. Furthermore, many of the PenA FC428 mosaic sequences were thought to be involved in the so-called epistasis effect that regulates the expression of resistance, without directly contributing to the resistance level itself.
Collapse
Affiliation(s)
- Izumo Kanesaka
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akira Ohno
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Masahiro Morita
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akiko Kanayama Katsuse
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Takefumi Morihana
- Morihana Dental Clinic, 48, Dojocho-dojo, Kita-ku, Kobe-shi, Hyogo 651-1501, Japan
| | - Takamitsu Ito
- Department of Clinical Laboratory, Higashiosaka City Medical Center, 3-4-5, Nishiiwata, Higashiosaka-shi, Osaka 578-8588, Japan
| | - Hiroshi Takahashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| |
Collapse
|
11
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559611. [PMID: 37808746 PMCID: PMC10557713 DOI: 10.1101/2023.09.26.559611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Species within the genus Neisseria are especially adept at sharing adaptive allelic variation across species' boundaries, with commensal species repeatedly transferring resistance to their pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary trajectories. However alternatively, similar genetic content present across species due to shared ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome - or the reservoir of alleles within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 cases respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. However, continuing to explore the paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
12
|
López-Argüello S, Montaner M, Mármol-Salvador A, Velázquez-Escudero A, Docobo-Pérez F, Oliver A, Moya B. Penicillin-Binding Protein Occupancy Dataset for 18 β-Lactams and 4 β-Lactamase Inhibitors in Neisseria gonorrhoeae. Microbiol Spectr 2023; 11:e0069223. [PMID: 37093051 PMCID: PMC10269775 DOI: 10.1128/spectrum.00692-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
The lack of effective first-line antibiotic treatments against Neisseria gonorrhoeae, and the worldwide dissemination of resistant strains, are the main drivers of a worsening global health crisis. β-lactam antibiotics have been the backbone of therapeutic armamentarium against gonococci. However, we are lacking critical insights to design rationally optimized therapies. In the present work, we generated the first PBP-binding data set on 18 currently available and clinically relevant β-lactams and 4 β-lactamase inhibitors in two N. gonorrhoeae ATCC type collection strains, 19424 and 49226 (PBP2 type XXII and A39T change in mtrR). PBP binding (IC50) was determined via the Bocillin FL binding assay in isolated membrane preparations. Three clusters of differential PBP IC50s were identified and were mostly consistent across both strains, but with quantitative differences. Carbapenems were coselective for PBP2 and PBP3 (0.01 to 0.03 mg/L). Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime, and ceftriaxone showed the lowest IC50 values for PBP2 (0.01 mg/L), whereas cefoxitin, ceftaroline, and ceftolozane required higher concentrations (0.04 to >2 mg/L). Aztreonam was selective for PBP2 in both strains (0.03 to 0.07 mg/L); amdinocillin bound this PBP at higher concentrations (1.33 to 2.94 mg/L). Penicillins specifically targeted PBP2 in strain ATCC 19424 (0.02 to 0.19 mg/L) and showed limited inhibition in strain ATCC 49226 (0.01 to >2 mg/L). Preferential PBP2 binding was observed by β-lactam-based β-lactamase inhibitors sulbactam and tazobactam (1.07 to 6.02 mg/L); meanwhile, diazabicyclooctane inhibitors relebactam and avibactam were selective for PBP3 (1.27 to 5.40 mg/L). This data set will set the bar for future studies that will help the rational use and translational development of antibiotics against multidrug-resistant (MDR) N. gonorrhoeae. IMPORTANCE The manuscript represents the first N. gonorrhoeae PBP-binding data set for 22 chemically different drugs in two type strains with different genetic background. We have identified three clusters of drugs according to their PBP binding IC50s and highlighted the binding differences across the two strains studied. With the currently available genomic information and the PBP-binding data, we have been able to correlate the target attainment differences and the mutations that affect the drug uptake with the MIC changes. The results of the current work will allow us to develop molecular tools of great practical use for the study and the design of new rationally designed therapies capable of combating the growing MDR gonococci threat.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Amanda Mármol-Salvador
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana Velázquez-Escudero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fernando Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
13
|
Chen M, Shao Y, Luo J, Yuan L, Wang M, Chen M, Guo Q. Penicillin and Cefotaxime Resistance of Quinolone-Resistant Neisseria meningitidis Clonal Complex 4821, Shanghai, China, 1965-2020. Emerg Infect Dis 2023; 29:341-350. [PMID: 36692352 PMCID: PMC9881793 DOI: 10.3201/eid2902.221066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Clonal complex 4821 (CC4821) Neisseria meningitidis, usually resistant to quinolones but susceptible to penicillin and third-generation cephalosporins, is increasing worldwide. To characterize the penicillin-nonsusceptible (PenNS) meningococci, we analyzed 491 meningococci and 724 commensal Neisseria isolates in Shanghai, China, during 1965-2020. The PenNS proportion increased from 0.3% in 1965-1985 to 7.0% in 2005-2014 and to 33.3% in 2015-2020. Of the 26 PenNS meningococci, 11 (42.3%) belonged to the CC4821 cluster; all possessed mutations in penicillin-binding protein 2, mostly from commensal Neisseria. Genetic analyses and transformation identified potential donors of 6 penA alleles. Three PenNS meningococci were resistant to cefotaxime, 2 within the CC4821 cluster. With 96% of the PenNS meningococci beyond the coverage of scheduled vaccination and the cefotaxime-resistant isolates all from toddlers, quinolone-resistant CC4821 has acquired penicillin and cefotaxime resistance closely related to the internationally disseminated ceftriaxone-resistant gonococcal FC428 clone, posing a greater threat especially to young children.
Collapse
|
14
|
Bazan JA, Tzeng YL, Bischof KM, Satola SW, Stephens DS, Edwards JL, Carter A, Snyder B, Turner AN. Antibiotic Susceptibility Profile for the US Neisseria meningitidis Urethritis Clade. Open Forum Infect Dis 2023; 10:ofac661. [PMID: 36655188 PMCID: PMC9835751 DOI: 10.1093/ofid/ofac661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The US Neisseria meningitidis urethritis clade (US_NmUC) harbors gonococcal deoxyribonucleic acid alleles and causes gonorrhea-like urogenital tract disease. A large convenience sample of US_NmUC isolates (N = 122) collected between January 2015 and December 2019 in Columbus, Ohio demonstrated uniform susceptibility to antibiotics recommended for gonorrhea treatment and meningococcal chemoprophylaxis.
Collapse
Affiliation(s)
- Jose A Bazan
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Sexual Health Clinic, Columbus Public Health, Columbus, Ohio, USA
| | - Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katarina M Bischof
- Division of Epidemiology, The Ohio State University College of Public Health, Columbus, Ohio, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jennifer L Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Alexandria Carter
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Brandon Snyder
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Division of Epidemiology, The Ohio State University College of Public Health, Columbus, Ohio, USA
| |
Collapse
|
15
|
Evolution of Ceftriaxone Resistance of Penicillin-Binding Proteins 2 Revealed by Molecular Modeling. Int J Mol Sci 2022; 24:ijms24010176. [PMID: 36613627 PMCID: PMC9820184 DOI: 10.3390/ijms24010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Penicillin-binding proteins 2 (PBP2) are critically important enzymes in the formation of the bacterial cell wall. Inhibition of PBP2 is utilized in the treatment of various diseases, including gonorrhea. Ceftriaxone is the only drug used to treat gonorrhea currently, and recent growth in PBP2 resistance to this antibiotic is a serious threat to human health. Our study reveals mechanistic aspects of the inhibition reaction of PBP2 from the wild-type FA19 strain and mutant 35/02 and H041 strains of Neisseria Gonorrhoeae by ceftriaxone. QM(PBE0-D3/6-31G**)/MM MD simulations show that the reaction mechanism for the wild-type PBP2 consists of three elementary steps including nucleophilic attack, C-N bond cleavage in the β-lactam ring and elimination of the leaving group in ceftriaxone. In PBP2 from the mutant strains, the second and third steps occur simultaneously. For all considered systems, the acylation rate is determined by the energy barrier of the first step that increases in the order of PBP2 from FA19, 35/02 and H041 strains. Dynamic behavior of ES complexes is analyzed using geometry and electron density features including Fukui electrophilicity index and Laplacian of electron density maps. It reveals that more efficient activation of the carbonyl group of the antibiotic leads to the lower energy barrier of nucleophilic attack and larger stabilization of the first reaction intermediate. Dynamical network analysis of MD trajectories explains the differences in ceftriaxone binding affinity: in PBP2 from the wild-type strain, the β3-β4 loop conformation facilitates substrate binding, whereas in PBP2 from the mutant strains, it exists in the conformation that is unfavorable for complex formation. Thus, we clarify that the experimentally observed decrease in the second-order rate constant of acylation (k2/KS) in PBP2 from the mutant strains is due to both a decrease in the acylation rate constant k2 and an increase in the dissociation constant KS.
Collapse
|
16
|
Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022; 13:e0199122. [PMID: 36154280 DOI: 10.1128/mbio.01991-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.
Collapse
|
17
|
Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int J Mol Sci 2022; 23:ijms231810499. [PMID: 36142410 PMCID: PMC9505821 DOI: 10.3390/ijms231810499] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
The paper presents various issues related to the increasing drug resistance of Neisseria gonorrhoeae and the occurrence and spread of multidrug-resistant clones. One of the most important is the incidence and evolution of resistance mechanisms of N. gonorrhoeae to beta-lactam antibiotics. Chromosomal resistance to penicillins and oxyimino-cephalosporins and plasmid resistance to penicillins are discussed. Chromosomal resistance is associated with the presence of mutations in the PBP2 protein, containing mosaic variants and nonmosaic amino acid substitutions in the transpeptidase domain, and their correlation with mutations in the mtrR gene and its promoter regions (the MtrCDE membrane pump repressor) and in several other genes, which together determine reduced sensitivity or resistance to ceftriaxone and cefixime. Plasmid resistance to penicillins results from the production of beta-lactamases. There are different types of beta-lactamases as well as penicillinase plasmids. In addition to resistance to beta-lactam antibiotics, the paper covers the mechanisms and occurrence of resistance to macrolides (azithromycin), fluoroquinolones and some other antibiotics. Moreover, the most important epidemiological types of multidrug-resistant N. gonorrhoeae, prevalent in specific years and regions, are discussed. Epidemiological types are defined as sequence types, clonal complexes and genogroups obtained by various typing systems such as NG-STAR, NG-MAST and MLST. New perspectives on the treatment of N. gonorrhoeae infections are also presented, including new drugs active against multidrug-resistant strains.
Collapse
|
18
|
Allan-Blitz LT, Adamson PC, Klausner JD. Resistance-Guided Therapy for Neisseria gonorrhoeae. Clin Infect Dis 2022; 75:1655-1660. [PMID: 35818315 DOI: 10.1093/cid/ciac371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial-resistant Neisseria gonorrhoeae infections are a threat to public health. Novel strategies for combating such resistance include the development of molecular assays to facilitate real-time prediction of antimicrobial susceptibility. Resistance to ciprofloxacin is determined by the presence of a single mutation at codon 91 of the gyrase A gene; molecular assays to guide therapy are commercially available. Resistance to cefixime is conferred via 1 of 6 critical mutations in either the mosaic penA gene or specific loci in the nonmosaic region. Resistance to ceftriaxone is conferred through mutations in 1 of 4 genes: penA, ponA, penB, and mtr; however, the ability to predict reduced susceptibility based on those genes varies by geographic region. Here, we highlight the work done toward the development of 3 such assays for ciprofloxacin, cefixime, and ceftriaxone, discuss the status of our current understanding and ongoing challenges, and suggest future directions.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Paul C Adamson
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Lin X, Qin X, Wu X, Liao Y, Yu Y, Xie Q, Tang S, Guo C, Pei J, Wu Z, Cai C, Wang F, Wu S, Chen H, Liu X, Li M, Cao W, Zheng H. Markedly Increasing Antibiotic Resistance and Dual Treatment of Neisseria gonorrhoeae Isolates in Guangdong, China, from 2013 to 2020. Antimicrob Agents Chemother 2022; 66:e0229421. [PMID: 35345891 PMCID: PMC9017359 DOI: 10.1128/aac.02294-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug resistance in Neisseria gonorrhoeae is concerning, especially the cooccurrence of azithromycin resistance and decreased susceptibility to extended-spectrum cephalosporin. This study aimed to confirm the antibiotic resistance trends and provide a solution for N. gonorrhoeae treatment in Guangdong, China. A total of 5,808 strains were collected for assessment of antibiotic MICs. High resistance to penicillin (53.80 to 82%), tetracycline (88.30 to 100%), ciprofloxacin (96 to 99.8%), cefixime (6.81 to 46%), and azithromycin (8.60 to 20.03%) was observed. Remarkably, spectinomycin and ceftriaxone seemed to be the effective choices, with resistance rates of 0 to 7.63% and 2.00 to 16.18%, respectively. Moreover, the rates of azithromycin resistance combined with decreased susceptibility to ceftriaxone and cefixime reached 9.28% and 8.64%, respectively. Furthermore, genotyping identified NG-STAR-ST501, NG-MAST-ST2268, and MLST-ST7363 as the sequence types among representative multidrug-resistant isolates. Evolutionary analysis showed that FC428-related clones have spread to Guangdong, China, which might be a cause of the rapid increase in extended-spectrum cephalosporin resistance currently. Among these strains, the prevalence of N. gonorrhoeae was extremely high, and single-dose ceftriaxone treatment might be a challenge in the future. To partially relieve the treatment pressure, a susceptibility test for susceptibility to azithromycin plus extended-spectrum cephalosporin dual therapy was performed. The results showed that all the representative isolates could be effectively killed with the coadministration of less than 1 mg/liter azithromycin and 0.125 mg/liter extended-spectrum cephalosporin, with a synergistic effect according to a fractional inhibitory concentration (FIC) of <0.5. In conclusion, dual therapy might be a powerful measure to treat refractory N. gonorrhoeae in the context of increasing antibiotic resistance in Guangdong, China.
Collapse
Affiliation(s)
- Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqi Yu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for STD Control, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Anhui Medical University, Hefei, Anhui, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for STD Control, Guangzhou, Guangdong, China
| | - Chixing Guo
- Guangzhou Panyu Chronic Disease Prevention and Treatment Station, Guangzhou, China
| | - Junming Pei
- Shantou Dermatology Hospital, Shantou, Guangzhou, China
| | - Zhizhou Wu
- Jiangmen Dermatology Hospital, Jiangmen, Guangzhou, China
| | - Changhui Cai
- Zhongshan Second People's Hospital, Zhongshan, Guangzhou, China
| | - Feng Wang
- Shenzhen Center for Chronic Diseases Control, Shenzhen, Guangzhou, China
| | - Shanghua Wu
- Shaoguan Center for Chronic Diseases Control, Shaoguan, Guangzhou, China
| | - Heyong Chen
- Maoming Center for Chronic Diseases Control, Maoming, Guangdong, China
| | - Xiaofeng Liu
- Zhuhai Center for Chronic Diseases Control, Zhuhai, China
| | - Ming Li
- Binhai Bay Central Hospital of Dongguan City, Dongguan, China
| | - Wenling Cao
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
A multiplex molecular assay for detection of six penA codons to predict decreased susceptibility to cephalosporins in
Neisseria gonorrhoeae. Antimicrob Agents Chemother 2022; 66:e0170921. [DOI: 10.1128/aac.01709-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emerging cephalosporin-resistant
Neisseria gonorrhoeae
poses an urgent threat to the continued efficacy of the last-line monotherapy for gonorrhea. Consequently, high-throughput, accurate, and reasonable molecular assays are urgently needed for strengthening antimicrobial-resistance surveillance in
N. gonorrhoeae
. In this study, we designed a high-throughput multiplex method that incorporates high-resolution melting technology and is based on a 6-codon assay (among the most parsimonious assays) developed following comprehensive and systematic reviews. The results showed that our method can precisely distinguish specific single-nucleotide polymorphisms in resistance-associated genes with a specificity and sensitivity of 100% and a detection limit as low as 10 copies per reaction. This method can be directly applied to clinical samples without cumbersome culture and successfully predicted all cephalosporin-resistant isolates (sensitivity: 100%). The method presented here represents a technique for rapid testing of antimicrobial resistance and will serve as a valuable tool for tailor-made antimicrobial therapy and for monitoring the transmission of cephalosporin-resistant strains.
Collapse
|
21
|
Willerton L, Lucidarme J, Walker A, Lekshmi A, Clark SA, Walsh L, Bai X, Lee-Jones L, Borrow R. Antibiotic resistance among invasive Neisseria meningitidis isolates in England, Wales and Northern Ireland (2010/11 to 2018/19). PLoS One 2021; 16:e0260677. [PMID: 34843604 PMCID: PMC8629238 DOI: 10.1371/journal.pone.0260677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
Invasive meningococcal disease (IMD), caused by Neisseria meningitidis, can have a fatality rate as high as 10%, even with appropriate treatment. In the UK, penicillin is administered to patients in primary care whilst third generation cephalosporins, cefotaxime and ceftriaxone, are administered in secondary care. The first-choice antibiotic for chemoprophylaxis of close contacts is ciprofloxacin, followed by rifampicin. Immunocompromised individuals are often recommended antibiotic chemoprophylaxis and vaccination due to a greater risk of IMD. Resistance to antibiotics among meningococci is relatively rare, however reduced susceptibility and resistance to penicillin are increasing globally. Resistance to third generation cephalosporins is seldom reported, however reduced susceptibility to both cefotaxime and ceftriaxone has been observed. Rifampicin resistance has been reported among meningococci, mainly following prophylaxis, and ciprofloxacin resistance, whilst uncommon, has also been reported across the globe. The Public Health England Meningococcal Reference Unit receives and characterises the majority of isolates from IMD cases in England, Wales and Northern Ireland. This study assessed the distribution of antibiotic resistance to penicillin, rifampicin, ciprofloxacin and cefotaxime among IMD isolates received at the MRU from 2010/11 to 2018/19 (n = 4,122). Out of the 4,122 IMD isolates, 113 were penicillin-resistant, five were ciprofloxacin-resistant, two were rifampicin-resistant, and one was cefotaxime-resistant. Penicillin resistance was due to altered penA alleles whilst rifampicin and ciprofloxacin resistance was due to altered rpoB and gyrA alleles, respectively. Cefotaxime resistance was observed in one isolate which had an altered penA allele containing additional mutations to those harboured by the penicillin-resistant isolates. This study identified several isolates with resistance to antibiotics used for current treatment and prophylaxis of IMD and highlights the need for continued surveillance of resistance among meningococci to ensure continued effective use.
Collapse
Affiliation(s)
- Laura Willerton
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Andrew Walker
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Aiswarya Lekshmi
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Stephen A. Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Lloyd Walsh
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Lisa Lee-Jones
- Life Sciences Department, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
22
|
Mutations in PBP2 from ceftriaxone-resistant Neisseria gonorrhoeae alter the dynamics of the β3-β4 loop to favor a low-affinity drug-binding state. J Biol Chem 2021; 297:101188. [PMID: 34529975 PMCID: PMC8503634 DOI: 10.1016/j.jbc.2021.101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to the extended-spectrum cephalosporin ceftriaxone in the pathogenic bacteria Neisseria gonorrhoeae is conferred by mutations in penicillin-binding protein 2 (PBP2), the lethal target of the antibiotic, but how these mutations exert their effect at the molecular level is unclear. Using solution NMR, X-ray crystallography, and isothermal titration calorimetry, we report that WT PBP2 exchanges dynamically between a low-affinity state with an extended β3–β4 loop conformation and a high-affinity state with an inward β3–β4 loop conformation. Histidine-514, which is located at the boundary of the β4 strand, plays an important role during the exchange between these two conformational states. We also find that mutations present in PBP2 from H041, a ceftriaxone-resistant strain of N. gonorrhoeae, increase resistance to ceftriaxone by destabilizing the inward β3–β4 loop conformation or stabilizing the extended β3–β4 loop conformation to favor the low-affinity drug-binding state. These observations reveal a unique mechanism for ceftriaxone resistance, whereby mutations in PBP2 lower the proportion of target molecules in the high-affinity drug-binding state and thus reduce inhibition at lower drug concentrations.
Collapse
|
23
|
Reimche JL, Chivukula VL, Schmerer MW, Joseph SJ, Pham CD, Schlanger K, St Cyr SB, Weinstock HS, Raphael BH, Kersh EN, Gernert KM. Genomic Analysis of the Predominant Strains and Antimicrobial Resistance Determinants Within 1479 Neisseria gonorrhoeae Isolates From the US Gonococcal Isolate Surveillance Project in 2018. Sex Transm Dis 2021; 48:S78-S87. [PMID: 33993166 PMCID: PMC8284387 DOI: 10.1097/olq.0000000000001471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The prevalence of Neisseria gonorrhoeae (GC) isolates with elevated minimum inhibitory concentrations to various antibiotics continues to rise in the United States and globally. Genomic analysis provides a powerful tool for surveillance of circulating strains, antimicrobial resistance determinants, and understanding of transmission through a population. METHODS Neisseria gonorrhoeae isolates collected from the US Gonococcal Isolate Surveillance Project in 2018 (n = 1479) were sequenced and characterized. Whole-genome sequencing was used to identify sequence types, antimicrobial resistance profiles, and phylogenetic relationships across demographic and geographic populations. RESULTS Genetic characterization identified that (1) 80% of the GC isolates were represented in 33 multilocus sequence types, (2) isolates clustered in 23 major phylogenetic clusters with select phenotypic and demographic prevalence, and (3) common antimicrobial resistance determinants associated with low-level or high-level decreased susceptibility or resistance to relevant antibiotics. CONCLUSIONS Characterization of this 2018 Gonococcal Isolate Surveillance Project genomic data set, which is the largest US whole-genome sequence data set to date, sets the basis for future prospective studies, and establishes a genomic baseline of GC populations for local and national monitoring.
Collapse
Affiliation(s)
- Jennifer L. Reimche
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
- Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN
| | - Vasanta L. Chivukula
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
- Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN
| | - Matthew W. Schmerer
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Sandeep J. Joseph
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Cau D. Pham
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Karen Schlanger
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Sancta B. St Cyr
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Hillard S. Weinstock
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Brian H. Raphael
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Ellen N. Kersh
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Kim M. Gernert
- From the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
24
|
Thomas JC, Joseph SJ, Cartee JC, Pham CD, Schmerer MW, Schlanger K, St Cyr SB, Kersh EN, Raphael BH. Phylogenomic analysis reveals persistence of gonococcal strains with reduced-susceptibility to extended-spectrum cephalosporins and mosaic penA-34. Nat Commun 2021; 12:3801. [PMID: 34155204 PMCID: PMC8217231 DOI: 10.1038/s41467-021-24072-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
The recent emergence of strains of Neisseria gonorrhoeae associated with treatment failures to ceftriaxone, the foundation of current treatment options, has raised concerns over a future of untreatable gonorrhea. Current global data on gonococcal strains suggest that several lineages, predominately characterized by mosaic penA alleles, are associated with elevated minimum inhibitory concentrations (MICs) to extended spectrum cephalosporins (ESCs). Here we report on whole genome sequences of 813 N. gonorrhoeae isolates collected through the Gonococcal Isolate Surveillance Project in the United States. Phylogenomic analysis revealed that one persisting lineage (Clade A, multi-locus sequence type [MLST] ST1901) with mosaic penA-34 alleles, contained the majority of isolates with elevated MICs to ESCs. We provide evidence that an ancestor to the globally circulating MLST ST1901 clones potentially emerged around the early to mid-20th century (1944, credibility intervals [CI]: 1935-1953), predating the introduction of cephalosporins, but coinciding with the use of penicillin. Such results indicate that drugs with novel mechanisms of action are needed as these strains continue to persist and disseminate globally.
Collapse
Affiliation(s)
- Jesse C Thomas
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sandeep J Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John C Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cau D Pham
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Matthew W Schmerer
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen Schlanger
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sancta B St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
25
|
Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A, Abudahab K, Argimón S, Ma KC, Mortimer TD, Golparian D, Cole MJ, Grad YH, Martin I, Raphael BH, Shafer WM, Town K, Wi T, Harris SR, Unemo M, Aanensen DM. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med 2021; 13:61. [PMID: 33875000 PMCID: PMC8054416 DOI: 10.1186/s13073-021-00858-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. METHODS Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. RESULTS AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. CONCLUSIONS The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain.
| | - Corin A Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Benjamin Taylor
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Richard J Goater
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
- European Molecular Biology Lab, Heidelberg, Baden-Wuerttemberg, Germany
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, London, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Brian H Raphael
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Katy Town
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, World Health Organization, Geneva, Switzerland
| | - Simon R Harris
- Microbiotica, Biodata Innovation Centre, Cambridge, Cambridgeshire, UK
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
26
|
Town K, Harris S, Sánchez-Busó L, Cole MJ, Pitt R, Fifer H, Mohammed H, Field N, Hughes G. Genomic and Phenotypic Variability in Neisseria gonorrhoeae Antimicrobial Susceptibility, England. Emerg Infect Dis 2021; 26:505-515. [PMID: 32091356 PMCID: PMC7045833 DOI: 10.3201/eid2603.190732] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global concern. Phylogenetic analyses resolve uncertainties regarding genetic relatedness of isolates with identical phenotypes and inform whether AMR is due to new mutations and clonal expansion or separate introductions by importation. We sequenced 1,277 isolates with associated epidemiologic and antimicrobial susceptibility data collected during 2013–2016 to investigate N. gonorrhoeae genomic variability in England. Comparing genetic markers and phenotypes for AMR, we identified 2 N. gonorrhoeae lineages with different antimicrobial susceptibility profiles and 3 clusters with elevated MICs for ceftriaxone, varying mutations in the penA allele, and different epidemiologic characteristics. Our results indicate N. gonorrhoeae with reduced antimicrobial susceptibility emerged independently and multiple times in different sexual networks in England, through new mutation or recombination events and by importation. Monitoring and control for AMR in N. gonorrhoeae should cover the entire population affected, rather than focusing on specific risk groups or locations.
Collapse
|
27
|
Sukhum KV, Jean S, Wallace M, Anderson N, Burnham CA, Dantas G. Genomic Characterization of Emerging Bacterial Uropathogen Neisseria meningitidis, Which Was Misidentified as Neisseria gonorrhoeae by Nucleic Acid Amplification Testing. J Clin Microbiol 2021; 59:e01699-20. [PMID: 33177123 PMCID: PMC8111160 DOI: 10.1128/jcm.01699-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are pathogenic bacteria that can cause human infections. While N. meningitidis infections are associated with bacterial meningitis and bacteremia, a strain of N. meningitidis, isolated from the urogenital system, has recently been associated with urethritis. As this strain is becoming prominent as an emerging pathogen, it is essential to assess identification tools for N. meningitidis and N. gonorrhoeae urogenital isolates. Consecutive N. meningitidis isolates recovered from urogenital cultures of symptomatic patients with presumptive diagnoses of gonorrhea and a random selection of N. gonorrhoeae isolates recovered from the same population within the same time frame were characterized with routine identification systems, antimicrobial susceptibility testing, and whole-genome sequencing. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), multilocus sequence typing, 16S rRNA gene sequence, and average nucleotide identity methods accurately identified 95% (18/19) of N. meningitidis and N. gonorrhoeae isolates. With the Aptima Combo 2 CT/NG test, 30% (3/10) of N. meningitidis isolates were misidentified as N. gonorrhoeae, but no misidentifications were found with the Xpert CT/NG nucleic acid amplification test (NAAT). Phylogenetic core genome and single nucleotide polymorphism (SNP)-based grouping analyses showed that urogenital N. meningitidis isolates were highly related and phylogenetically distinct from N. gonorrhoeae and respiratory N. meningitidis isolates but similar to urogenital N. meningitidis isolates from patients with urethritis in the United States. Urogenital N. meningitidis isolates were predominantly azithromycin resistant, while N. gonorrhoeae isolates were azithromycin susceptible. These data indicate that urogenital isolates of N. meningitidis can cause false-positive detections with N. gonorrhoeae diagnostic assays. Misidentification of urogenital N. meningitidis isolates may confound public health-related activities for gonorrhea, and future studies are needed to understand the impact on clinical outcome of N. meningitidis urogenital infection.
Collapse
Affiliation(s)
- Kimberley V Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sophonie Jean
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Meghan Wallace
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Neil Anderson
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - C A Burnham
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Zhou K, Chen SC, Yang F, van der Veen S, Yin YP. Impact of the gonococcal FC428 penA allele 60.001 on ceftriaxone resistance and biological fitness. Emerg Microbes Infect 2020; 9:1219-1229. [PMID: 32438866 PMCID: PMC7448936 DOI: 10.1080/22221751.2020.1773325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
Global dissemination of the Neisseria gonorrhoeae ceftriaxone-resistant FC428 clone jeopardizes the currently recommended ceftriaxone-based first-line therapies. Ceftriaxone resistance in the FC428 clone has been associated with the presence of its mosaic penA allele 60.001. Here we investigated the contribution penA allele 60.001 to ceftriaxone resistance and its impact on biological fitness. Gonococcal isolates expressing penA allele 60.001 and mosaic penA allele 10.001, which is widespread in the Asia-Pacific region and associated with reduced susceptibility to ceftriaxone and cefixime, were genetic engineered to exchange their penA alleles. Subsequent antimicrobial susceptibility analyses showed that mutants containing penA 60.001 displayed 8- to 16-fold higher ceftriaxone and cefixime minimal inhibitory concentrations (MICs) compared with otherwise isogenic mutants containing penA 10.001. Further analysis of biological fitness showed that in vitro liquid growth of single strains and in the competition was identical between the isogenic penA allele exchange mutants. However, in the presence of high concentrations of palmitic acid or lithocholic acid, the penA 60.001-containing mutants grew better than the isogenic penA 10.001-containing mutants when grown as single strains. In contrast, the penA 10.001 mutants outcompeted the penA 60.001 mutants when grown in competition at slightly lower palmitic acid or lithocholic acid concentrations. Finally, the penA 60.001 mutants were outcompeted by their penA 10.001 counterparts for in vivo colonization and survival in a mouse vaginal tract infection model. In conclusion, penA allele 60.001 is essential for ceftriaxone resistance of the FC428 clone, while its impact on biological fitness is dependent on the specific growth conditions.
Collapse
Affiliation(s)
- Ke Zhou
- Peking Union Medical College, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
- National Center for STD Control, China Center for Disease Control and Prevention, Nanjing, People’s Republic of China
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shao-Chun Chen
- Peking Union Medical College, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
- National Center for STD Control, China Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Fan Yang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Department of Dermatology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue-Ping Yin
- Peking Union Medical College, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China
- National Center for STD Control, China Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| |
Collapse
|
29
|
Genomic Analysis Reveals Antibiotic-Susceptible Clones and Emerging Resistance in Neisseria gonorrhoeae in Saskatchewan, Canada. Antimicrob Agents Chemother 2020; 64:AAC.02514-19. [PMID: 32571818 DOI: 10.1128/aac.02514-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Whole-genome sequencing was used to identify mutations in antibiotic resistance-conferring genes to compare susceptibility predictions with MICs and to ascertain strain types in 99 isolates of Neisseria gonorrhoeae Genotypes associated with susceptibility, as well as MIC creep or emerging resistance, were noted. Phylogenomic analysis revealed three distinctive clades and putative gonococcal transmission linkages involving a tetracycline-resistant N. gonorrhoeae outbreak and the clonal spread of susceptible isolates in men.
Collapse
|
30
|
Lin EY, Adamson PC, Deng X, Klausner JD. Establishing Novel Molecular Algorithms to Predict Decreased Susceptibility to Ceftriaxone in Neisseria gonorrhoeae Strains. J Infect Dis 2020; 223:1232-1240. [PMID: 32779717 DOI: 10.1093/infdis/jiaa495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Globally, decreased susceptibility to ceftriaxone in Neisseria gonorrhoeae is rising. We aimed to compile a global collection of N. gonorrhoeae strains and assess the genetic characteristics associated with decreased susceptibility to ceftriaxone. METHODS We performed a literature review of all published reports of N. gonorrhoeae strains with decreased susceptibility to ceftriaxone (>0.064 mg/L minimum inhibitory concentration) through October 2019. Genetic mutations in N. gonorrhoeae genes (penA, penB, mtrR, and ponA), including determination of penA mosaicism, were compiled and evaluated for predicting decreased susceptibility to ceftriaxone. RESULTS There were 3821 N. gonorrhoeae strains identified from 23 countries and 684 (18%) had decreased susceptibility to ceftriaxone. High sensitivities or specificities (>95%) were found for specific genetic mutations in penA, penB, mtrR, and ponA, both with and without determination of penA mosaicism. Four algorithms to predict ceftriaxone susceptibility were proposed based on penA mosaicism determination and penA or non-penA genetic mutations, with sensitivity and specificity combinations up to 95% and 62%, respectively. CONCLUSION Molecular algorithms based on genetic mutations were proposed to predict decreased susceptibility to ceftriaxone in N. gonorrhoeae. Those algorithms can serve as a foundation for the development of future assays predicting ceftriaxone decreased susceptibility within N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiaomeng Deng
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
31
|
Singh A, Turner JM, Tomberg J, Fedarovich A, Unemo M, Nicholas RA, Davies C. Mutations in penicillin-binding protein 2 from cephalosporin-resistant Neisseria gonorrhoeae hinder ceftriaxone acylation by restricting protein dynamics. J Biol Chem 2020; 295:7529-7543. [PMID: 32253235 PMCID: PMC7247294 DOI: 10.1074/jbc.ra120.012617] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The global incidence of the sexually transmitted disease gonorrhea is expected to rise due to the spread of Neisseria gonorrhoeae strains with decreased susceptibility to extended-spectrum cephalosporins (ESCs). ESC resistance is conferred by mosaic variants of penicillin-binding protein 2 (PBP2) that have diminished capacity to form acylated adducts with cephalosporins. To elucidate the molecular mechanisms of ESC resistance, we conducted a biochemical and high-resolution structural analysis of PBP2 variants derived from the decreased-susceptibility N. gonorrhoeae strain 35/02 and ESC-resistant strain H041. Our data reveal that mutations both lower affinity of PBP2 for ceftriaxone and restrict conformational changes that normally accompany acylation. Specifically, we observe that a G545S substitution hinders rotation of the β3 strand necessary to form the oxyanion hole for acylation and also traps ceftriaxone in a noncanonical configuration. In addition, F504L and N512Y substitutions appear to prevent bending of the β3-β4 loop that is required to contact the R1 group of ceftriaxone in the active site. Other mutations also appear to act by reducing flexibility in the protein. Overall, our findings reveal that restriction of protein dynamics in PBP2 underpins the ESC resistance of N. gonorrhoeae.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jonathan M Turner
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua Tomberg
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert A Nicholas
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
32
|
Equations To Predict Antimicrobial MICs in Neisseria gonorrhoeae Using Molecular Antimicrobial Resistance Determinants. Antimicrob Agents Chemother 2020; 64:AAC.02005-19. [PMID: 31871081 DOI: 10.1128/aac.02005-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/22/2023] Open
Abstract
The emergence of Neisseria gonorrhoeae strains that are resistant to azithromycin and extended-spectrum cephalosporins represents a public health threat, that of untreatable gonorrhea infections. Multivariate regression modeling was used to determine the contributions of molecular antimicrobial resistance determinants to the overall antimicrobial MICs for ceftriaxone, cefixime, azithromycin, tetracycline, ciprofloxacin, and penicillin. A training data set consisting of 1,280 N. gonorrhoeae strains was used to generate regression equations which were then applied to validation data sets of Canadian (n = 1,095) and international (n = 431) strains. The predicted MICs for extended-spectrum cephalosporins (ceftriaxone and cefixime) were fully explained by 5 amino acid substitutions in PenA, A311V, A501P/T/V, N513Y, A517G, and G543S; the presence of a disrupted mtrR promoter; and the PorB G120 and PonA L421P mutations. The correlation of predicted MICs within one doubling dilution to phenotypically determined MICs of the Canadian validation data set was 95.0% for ceftriaxone, 95.6% for cefixime, 91.4% for azithromycin, 98.2% for tetracycline, 90.4% for ciprofloxacin, and 92.3% for penicillin, with an overall sensitivity of 99.9% and specificity of 97.1%. The correlations of predicted MIC values to the phenotypically determined MICs were similar to those from phenotype MIC-only comparison studies. The ability to acquire detailed antimicrobial resistance information directly from molecular data will facilitate the transition to whole-genome sequencing analysis from phenotypic testing and can fill the surveillance gap in an era of increased reliance on nucleic acid assay testing (NAAT) diagnostics to better monitor the dynamics of N. gonorrhoeae.
Collapse
|
33
|
Parmar NR, Perera SR, Wang J, Levett PN, Minion J, Dillon JAR. Characterization of antimicrobial resistance genes from Neisseria gonorrhoeae positive remnant Aptima urine specimens. Future Microbiol 2020; 14:1559-1571. [PMID: 31992068 DOI: 10.2217/fmb-2019-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: To ascertain the antimicrobial resistance and strain types (STs) of Neisseria gonorrhoeae from 50 remnant Aptima urine specimens using molecular methods. Methods: Mutations predictive of resistance to six antibiotics were identified in eight genes. STs were determined using NG-MAST and NG-STAR. Results: All eight antimicrobial resistance genes could be characterized in 36 specimens. A total of 17 specimens were predicted to be susceptible to all antibiotics, including ceftriaxone. Decreased susceptibility to cefixime and ciprofloxacin resistance was predicted in 11 specimens (PBP2 type 34.001). Overall, 38/50 specimens were predicted to be ciprofloxacin susceptible; three were azithromycin resistant. Nineteen NG-MAST and 21 NG-STAR STs were noted. Conclusion: Molecular analysis of remnant Aptima specimens enabled the prediction of emerging gonococcal cefixime and azithromycin resistance which would otherwise have been undetected.
Collapse
Affiliation(s)
- Nidhi R Parmar
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Jin Wang
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Paul N Levett
- Roy Romanow Provincial Laboratory, 5 Research Drive, Regina, SK, S4S 0A4, Canada
| | - Jessica Minion
- Roy Romanow Provincial Laboratory, 5 Research Drive, Regina, SK, S4S 0A4, Canada
| | - Jo-Anne R Dillon
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| |
Collapse
|
34
|
Abstract
The bacterium Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhoea, which has an estimated global annual incidence of 86.9 million adults. Gonorrhoea can present as urethritis in men, cervicitis or urethritis in women, and in extragenital sites (pharynx, rectum, conjunctiva and, rarely, systemically) in both sexes. Confirmation of diagnosis requires microscopy of Gram-stained samples, bacterial culture or nucleic acid amplification tests. As no gonococcal vaccine is available, prevention relies on promoting safe sexual behaviours and reducing STI-associated stigma, which hinders timely diagnosis and treatment thereby increasing transmission. Single-dose systemic therapy (usually injectable ceftriaxone plus oral azithromycin) is the recommended first-line treatment. However, a major public health concern globally is that N. gonorrhoeae is evolving high levels of antimicrobial resistance (AMR), which threatens the effectiveness of the available gonorrhoea treatments. Improved global surveillance of the emergence, evolution, fitness, and geographical and temporal spread of AMR in N. gonorrhoeae, and improved understanding of the pharmacokinetics and pharmacodynamics for current and future antimicrobials in the treatment of urogenital and extragenital gonorrhoea, are essential to inform treatment guidelines. Key priorities for gonorrhoea control include strengthening prevention, early diagnosis, and treatment of patients and their partners; decreasing stigma; expanding surveillance of AMR and treatment failures; and promoting responsible antimicrobial use and stewardship. To achieve these goals, the development of rapid and affordable point-of-care diagnostic tests that can simultaneously detect AMR, novel therapeutic antimicrobials and gonococcal vaccine(s) in particular is crucial.
Collapse
|
35
|
Attram N, Agbodzi B, Dela H, Behene E, Nyarko EO, Kyei NNA, Larbi JA, Lawson BWL, Addo KK, Newman MJ, Duplessis CA, Adams N, Unemo M, Letizia AG. Antimicrobial resistance (AMR) and molecular characterization of Neisseria gonorrhoeae in Ghana, 2012-2015. PLoS One 2019; 14:e0223598. [PMID: 31600300 PMCID: PMC6786528 DOI: 10.1371/journal.pone.0223598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Neisseria gonorrhoeae antimicrobial resistance (AMR) surveillance is essential for tracking the emergence and spread of AMR strains in local, national and international populations. This is crucial for developing or refining treatment guidelines. N. gonorrhoeae multiantigen sequence typing (NG-MAST) is beneficial for describing the molecular epidemiology of gonococci at national and international levels. Elucidation of AMR determinants to β-lactam drugs, is a means of monitoring the development of resistance. In Ghana, little is known about the current gonococcal AMR prevalence and no characterization of gonococcal isolates has been previously performed. In this study, gonococcal isolates (n = 44) collected from five health facilities in Ghana from 2012 to 2015, were examined using AMR testing, NG-MAST and sequencing of penA. High rates of resistance were identified to tetracycline (100%), benzylpenicillin (90.9%), and ciprofloxacin (81.8%). One isolate had a high cefixime MIC (0.75 μg/ml). Twenty-eight NG-MAST sequence types (STs) were identified, seventeen of which were novel. The isolate with the high cefixime MIC contained a mosaic penA-34 allele and belonged to NG-MAST ST1407, an internationally spreading multidrug-resistant clone that has accounted for most cefixime resistance in many countries. In conclusion, AMR testing, NG-MAST, and sequencing of the AMR determinant penA, revealed high rates of resistance to tetracycline, benzylpenicillin, and ciprofloxacin; as well as a highly diverse population of N. gonorrhoeae in Ghana. It is imperative to continue with enhanced AMR surveillance and to understand the molecular epidemiology of gonococcal strains circulating in Ghana and other African countries.
Collapse
Affiliation(s)
- Naiki Attram
- US Naval Medical Research Unit Number Three, Ghana Laboratory, Legon, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- * E-mail: ,
| | - Bright Agbodzi
- US Naval Medical Research Unit Number Three, Ghana Laboratory, Legon, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Helena Dela
- US Naval Medical Research Unit Number Three, Ghana Laboratory, Legon, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Eric Behene
- US Naval Medical Research Unit Number Three, Ghana Laboratory, Legon, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | | | - John A. Larbi
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bernard W. L. Lawson
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kennedy K. Addo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mercy J. Newman
- Department of Medical Microbiology, School of Biomedical and Allied Health Science, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Nehkonti Adams
- US Naval Medical Research Unit Number Three, Ghana Laboratory, Legon, Ghana
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Andrew G. Letizia
- US Naval Medical Research Unit Number Three, Ghana Laboratory, Legon, Ghana
| |
Collapse
|
36
|
Singh A, Tomberg J, Nicholas RA, Davies C. Recognition of the β-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. J Biol Chem 2019; 294:14020-14032. [PMID: 31362987 PMCID: PMC6755799 DOI: 10.1074/jbc.ra119.009942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Resistance of Neisseria gonorrhoeae to extended-spectrum cephalosporins (ESCs) has become a major threat to human health. The primary mechanism by which N. gonorrhoeae becomes resistant to ESCs is by acquiring a mosaic penA allele, encoding penicillin-binding protein 2 (PBP2) variants containing up to 62 mutations compared with WT, of which a subset contribute to resistance. To interpret molecular mechanisms underpinning cephalosporin resistance, it is necessary to know how PBP2 is acylated by ESCs. Here, we report the crystal structures of the transpeptidase domain of WT PBP2 in complex with cefixime and ceftriaxone, along with structures of PBP2 in the apo form and with a phosphate ion bound in the active site at resolutions of 1-7-1.9 Å. These structures reveal that acylation of PBP2 by ESCs is accompanied by rotation of the Thr-498 side chain in the KTG motif to contact the cephalosporin carboxylate, twisting of the β3 strand to form the oxyanion hole, and rolling of the β3-β4 loop toward the active site. Recognition of the cephalosporin carboxylate appears to be the key trigger for formation of an acylation-competent state of PBP2. The structures also begin to explain the impact of mutations implicated in ESC resistance. In particular, a G545S mutation may hinder twisting of β3 because its side chain hydroxyl forms a hydrogen bond with Thr-498. Overall, our data suggest that acylation is initiated by conformational changes elicited or trapped by binding of ESCs and that these movements are restricted by mutations associated with resistance against ESCs.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, To whom correspondence should be addressed:
Dept. of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425. Tel.:
843-876-2302; Fax:
843-792-8568; E-mail:
| |
Collapse
|
37
|
Deng X, Allan-Blitz LT, Klausner JD. Using the genetic characteristics of Neisseria gonorrhoeae strains with decreased susceptibility to cefixime to develop a molecular assay to predict cefixime susceptibility. Sex Health 2019; 16:488-499. [PMID: 31230613 PMCID: PMC7386398 DOI: 10.1071/sh18227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND In the last two decades, gonococcal strains with decreased cefixime susceptibility and cases of clinical treatment failure have been reported worldwide. Gonococcal strains with a cefixime minimum inhibitory concentration (MIC) ≥0.12 µg mL-1 are significantly more likely to fail cefixime treatment than strains with an MIC <0.12 µg mL-1. Various researchers have described the molecular characteristics of gonococcal strains with reduced cefixime susceptibility, and many have proposed critical molecular alterations that contribute to this decreased susceptibility. METHODS A systematic review of all published articles in PubMed through 1 November 2018 was conducted that report findings on the molecular characteristics and potential mechanisms of resistance for gonococcal strains with decreased cefixime susceptibility. The findings were summarised and suggestions were made for the development of a molecular-based cefixime susceptibility assay. RESULTS The penicillin-binding protein 2 (PBP2) encoded by the penA gene is the primary target of cefixime antimicrobial activity. Decreased cefixime susceptibility is conferred by altered penA genes with mosaic substitute sequences from other Neisseria (N.) species (identifiable by alterations at amino acid position 375-377) or by non-mosaic penA genes with at least one of the critical amino acid substitutions at positions 501, 542 and 551. Based on this review of 415 international cefixime decreased susceptible N. gonorrhoeae isolates, the estimated sensitivity for an assay detecting the aforementioned amino acid alterations would be 99.5% (413/415). CONCLUSIONS Targeting mosaic penA and critical amino acid substitutions in non-mosaic penA are necessary and may be sufficient to produce a robust, universal molecular assay to predict cefixime susceptibility.
Collapse
Affiliation(s)
- Xiaomeng Deng
- David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; and Corresponding author.
| | - Lao-Tzu Allan-Blitz
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; and Department of Medicine, Children's Hospital of Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jeffrey D Klausner
- David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; and Division of Infectious Disease, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Center for Health Sciences, 37-121, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; and Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, 650 Charles E. Young Drive S., Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Kim WJ, Higashi D, Goytia M, Rendón MA, Pilligua-Lucas M, Bronnimann M, McLean JA, Duncan J, Trees D, Jerse AE, So M. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host Microbe 2019; 26:228-239.e8. [PMID: 31378677 DOI: 10.1016/j.chom.2019.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
The mucosa is colonized with commensal Neisseria. Some of these niches are sites of infection for the STD pathogen Neisseria gonorrhoeae (Ngo). Given the antagonistic behavior of commensal bacteria toward their pathogenic relatives, we hypothesized that commensal Neisseria may negatively affect Ngo colonization. Here, we report that commensal species of Neisseria kill Ngo through a mechanism based on genetic competence and DNA methylation state. Specifically, commensal-triggered killing occurs when the pathogen takes up commensal DNA containing a methylation pattern that it does not recognize. Indeed, any DNA will kill Ngo if it can enter the cell, is differentially methylated, and has homology to the pathogen genome. Consistent with these findings, commensal Neisseria elongata accelerates Ngo clearance from the mouse in a DNA-uptake-dependent manner. Collectively, we propose that commensal Neisseria antagonizes Ngo infection through a DNA-mediated mechanism and that DNA is a potential microbicide against this highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Won Jong Kim
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Dustin Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Maira Goytia
- Department of Biology, Spelman College, Atlanta, GA 30314, USA
| | - Maria A Rendón
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Matthew Bronnimann
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Jeanine A McLean
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joseph Duncan
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Trees
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
39
|
Novel and Improved Crystal Structures of H. influenzae, E. coli and P. aeruginosa Penicillin-Binding Protein 3 (PBP3) and N. gonorrhoeae PBP2: Toward a Better Understanding of β-Lactam Target-Mediated Resistance. J Mol Biol 2019; 431:3501-3519. [PMID: 31301409 DOI: 10.1016/j.jmb.2019.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/26/2023]
Abstract
Even with the emergence of antibiotic resistance, penicillin and the wider family of β-lactams have remained the single most important family of antibiotics. The periplasmic/extra-cytoplasmic targets of penicillin are a family of enzymes with a highly conserved catalytic activity involved in the final stage of bacterial cell wall (peptidoglycan) biosynthesis. Named after their ability to bind penicillin, rather than their catalytic activity, these key targets are called penicillin-binding proteins (PBPs). Resistance is predominantly mediated by reducing the target drug concentration via β-lactamases; however, naturally transformable bacteria have also acquired target-mediated resistance by inter-species recombination. Here we focus on structural based interpretations of amino acid alterations associated with the emergence of resistance within clinical isolates and include new PBP3 structures along with new, and improved, PBP-β-lactam co-structures.
Collapse
|
40
|
Wang LL, Battini N, Bheemanaboina RRY, Ansari MF, Chen JP, Xie YP, Cai GX, Zhang SL, Zhou CH. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur J Med Chem 2019; 179:166-181. [PMID: 31254919 DOI: 10.1016/j.ejmech.2019.06.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/26/2023]
Abstract
This work did a new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antimicrobial agents. A class of novel hybrids of quinolone, aminothiazole, piperazine and oxime fragments were designed for the first time, conveniently synthesized as well as characterized by 1H NMR, 13C NMR and HRMS spectra. Biological activity showed that some of the synthesized compounds exhibited good antimicrobial activities in comparison with the reference drugs. Especially, O-methyl oxime derivative 10b displayed excellent inhibitory efficacy against MRSA and S. aureus 25923 with MIC values of 0.009 and 0.017 mM, respectively. Further studies indicated that the highly active compound 10b showed low toxicity toward BEAS-2B and A549 cell lines and no obvious propensity to trigger the development of bacterial resistance. Quantum chemical studies have also been conducted and rationally explained the structural features essential for activity. The preliminarily mechanism exploration revealed that compound 10b could not only exert efficient membrane permeability by interfering with the integrity of cells, bind with topoisomerase IV-DNA complex through hydrogen bonds and π-π stacking, but also form a steady biosupramolecular complex by intercalating into DNA to exert the efficient antibacterial activity. The supramolecular interaction between compound 10b and human serum albumin (HSA) was a static quenching, and the binding process was spontaneous, where hydrogen bonds and van der Waals force played vital roles in the supramolecular transportation of the active compound 10b by HSA.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
41
|
Corich L, Campisciano G, Zanotta N, Monasta L, Petix V, Favero B, Colli C, De Seta FD, Comar M. Neisseria gonorrhoeae ciprofloxacin-resistant strains were associated with Chlamydia trachomatis coinfection. Future Microbiol 2019; 14:653-660. [PMID: 31137965 DOI: 10.2217/fmb-2019-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aims to characterize circulating strains to predict their relationship with sexually transmitted microorganisms, Chlamydia trachomatis, HIV, HCV, Treponema pallidum, HPV, Mycoplasmas, in an Italian multiethnic area, which has revealed a recent increase of Neisseria gonorrhoeae first-line antibiotic resistance. Materials & methods: We performed N. gonorrhoeae multiantigen sequence typing and the N. gonorrhoeae sequence typing for antimicrobial resistance. Results: We identified mutations in genes conferring resistance to cephalosporins, macrolides, fluoroquinolones through por and tbpB loci, and we reported new combinations of already known alleles. N. gonorrhoeae resistance to ciprofloxacin was associated with C. trachomatis coinfection. Conclusion: This study's data proved the utility of a routine N. gonorrhoeae molecular characterization to monitor the evolution of antibiotic resistance and to detect the most effective clinical treatment.
Collapse
Affiliation(s)
- Lucia Corich
- Institute for Maternal & Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | - Nunzia Zanotta
- Institute for Maternal & Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal & Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Vincenzo Petix
- Institute for Maternal & Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | | | - Francesco De De Seta
- Institute for Maternal & Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy.,Department of Medicine, Surgery & Health Sciences, University of Trieste, Trieste, Italy
| | - Manola Comar
- Institute for Maternal & Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy.,Department of Medicine, Surgery & Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
42
|
Jamaludin N, Gedye K, Collins-Emerson J, Benschop J, Nulsen M. Phenotypic and Genotypic Characterization of Neisseria gonorrhoeae Isolates from New Zealand with Reduced Susceptibility to Ceftriaxone. Microb Drug Resist 2019; 25:1003-1011. [PMID: 31021281 DOI: 10.1089/mdr.2018.0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To characterize mutations in penA, mtrR, ponA, and porBIB, considered target genes for antimicrobial resistance, in Neisseria gonorrhoeae isolates with elevated minimum inhibitory concentrations (MICs) of ceftriaxone cultured from patients in New Zealand. Results: Out of 28 isolates supplied by the Institute of Environmental Science and Research Limited (ESR), Porirua, New Zealand, 14 were found to show reduced susceptibility to ceftriaxone (MIC of 0.06 mg/L) according to criteria used by the ESR and the Australian Gonococcal Surveillance Programme (AGSP) when tested in our laboratory. Rates of resistance to ciprofloxacin, azithromycin, penicillin, and tetracycline were 100% (28/28), 7% (2/28), 36% (10/28), and 25% (7/28), respectively. Ten different penA (Penicillin binding protein 2 [PBP2]) sequences were observed. The most common mosaic penA M-1 resembled mosaic penA XXXIV, which has been associated with ceftriaxone treatment failures in other countries. Four semimosaic PBP2 sequences were observed and may be novel PBP sequences, while four out of five nonmosaic PBP2 sequences were similar to PBP2 sequences reported in Australia. Twenty-one isolates harbored mutations in all 4 genes (penA, mtrR, porBIB, and ponA), and 13 of these exhibited reduced susceptibility to ceftriaxone. Conclusion: Mutations in penA, mtrR, porBIB, and ponA observed in this study may have contributed to reduced susceptibility to ceftriaxone among New Zealand gonococcal isolates. Over half (16/22) of mosaic penA sequences from the gonococcal isolates resembled penA XXXIV.
Collapse
Affiliation(s)
- Norshuhaidah Jamaludin
- College of Health, Massey University, Palmerston North, New Zealand.,National Blood Centre (PDN), Transfusion Microbiology Laboratory Department, Kuala Lumpur, Malaysia
| | - Kristene Gedye
- College of Sciences, Massey University, Palmerston North, New Zealand
| | | | - Jackie Benschop
- Epilab, Hopkirk Institute, Massey University, Palmerston North, New Zealand
| | - Mary Nulsen
- College of Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
43
|
Lee RS, Seemann T, Heffernan H, Kwong JC, Gonçalves da Silva A, Carter GP, Woodhouse R, Dyet KH, Bulach DM, Stinear TP, Howden BP, Williamson DA. Genomic epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in New Zealand. J Antimicrob Chemother 2019; 73:353-364. [PMID: 29182725 PMCID: PMC5890773 DOI: 10.1093/jac/dkx405] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background Antimicrobial-resistant Neisseria gonorrhoeae is a major threat to public health. No studies to date have examined the genomic epidemiology of gonorrhoea in the Western Pacific Region, where the incidence of gonorrhoea is particularly high. Methods A population-level study of N. gonorrhoeae in New Zealand (October 2014 to May 2015). Comprehensive susceptibility testing and WGS data were obtained for 398 isolates. Relatedness was inferred using phylogenetic trees, and pairwise core SNPs. Mutations and genes known to be associated with resistance were identified, and correlated with phenotype. Results Eleven clusters were identified. In six of these clusters, >25% of isolates were from females, while in eight of them, >15% of isolates were from females. Drug resistance was common; 98%, 32% and 68% of isolates were non-susceptible to penicillin, ciprofloxacin and tetracycline, respectively. Elevated MICs to extended-spectrum cephalosporins (ESCs) were observed in 3.5% of isolates (cefixime MICs ≥ 0.12 mg/L, ceftriaxone MICs ≥ 0.06 mg/L). Only nine isolates had penA XXXIV genotypes, three of which had decreased susceptibility to ESCs (MIC = 0.12 mg/L). Azithromycin non-susceptibility was identified in 43 isolates (10.8%); two of these isolates had 23S mutations (C2611T, 4/4 alleles), while all had mutations in mtrR or its promoter. Conclusions The high proportion of females in clusters suggests transmission is not exclusively among MSM in New Zealand; re-assessment of risk factors for transmission may be warranted in this context. As elevated MICs of ESCs and/or azithromycin were found in closely related strains, targeted public health interventions to halt transmission are urgently needed.
Collapse
Affiliation(s)
- Robyn S Lee
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia.,The Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| | - Torsten Seemann
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia.,The Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia.,Melbourne Bioinformatics Group, The University of Melbourne, 187 Grattan Street, Melbourne, Victoria, 3010, Australia
| | - Helen Heffernan
- The Institute of Environmental Science and Research, 34 Kenepuru Drive, Porirua 5022, New Zealand
| | - Jason C Kwong
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia.,The Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| | - Anders Gonçalves da Silva
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia.,The Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| | - Rosemary Woodhouse
- The Institute of Environmental Science and Research, 34 Kenepuru Drive, Porirua 5022, New Zealand
| | - Kristin H Dyet
- The Institute of Environmental Science and Research, 34 Kenepuru Drive, Porirua 5022, New Zealand
| | - Dieter M Bulach
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| | - Timothy P Stinear
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| | - Benjamin P Howden
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia.,The Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| | - Deborah A Williamson
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia.,The Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Level 1, Melbourne, Victoria 3000, Australia
| |
Collapse
|
44
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
45
|
Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like mtr Efflux Pump Locus. mBio 2018; 9:mBio.02281-18. [PMID: 30482834 PMCID: PMC6282211 DOI: 10.1128/mbio.02281-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Historically, after introduction of an antibiotic for treatment of gonorrhea, strains of N. gonorrhoeae emerge that display clinical resistance due to spontaneous mutation or acquisition of resistance genes. Genetic exchange between members of the Neisseria genus occurring by transformation can cause significant changes in gonococci that impact the structure of an antibiotic target or expression of genes involved in resistance. The results presented here provide a framework for understanding how mosaic-like DNA sequences from commensal Neisseria that recombine within the gonococcal mtr efflux pump locus function to decrease bacterial susceptibility to antimicrobials, including antibiotics used in therapy of gonorrhea. Recent reports suggest that mosaic-like sequences within the mtr (multiple transferable resistance) efflux pump locus of Neisseria gonorrhoeae, likely originating from commensal Neisseria sp. by transformation, can increase the ability of gonococci to resist structurally diverse antimicrobials. Thus, acquisition of numerous nucleotide changes within the mtrR gene encoding the transcriptional repressor (MtrR) of the mtrCDE efflux pump-encoding operon or overlapping promoter region for both along with those that cause amino acid changes in the MtrD transporter protein were recently reported to decrease gonococcal susceptibility to numerous antimicrobials, including azithromycin (Azi) (C. B. Wadsworth, B. J. Arnold, M. R. A. Satar, and Y. H. Grad, mBio 9:e01419-18, 2018, https://doi.org/10.1128/mBio.01419-18). We performed detailed genetic and molecular studies to define the mechanistic basis for why such strains can exhibit decreased susceptibility to MtrCDE antimicrobial substrates, including Azi. We report that a strong cis-acting transcriptional impact of a single nucleotide change within the −35 hexamer of the mtrCDE promoter as well gain-of-function amino acid changes at the C-terminal region of MtrD can mechanistically account for the decreased antimicrobial susceptibility of gonococci with a mosaic-like mtr locus.
Collapse
|
46
|
Tanaka M, Furuya R, Kobayashi I, Kanesaka I, Ohno A, Katsuse AK. Antimicrobial resistance and molecular characterisation of Neisseria gonorrhoeae isolates in Fukuoka, Japan, 1996-2016. J Glob Antimicrob Resist 2018; 17:3-7. [PMID: 30448519 DOI: 10.1016/j.jgar.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance and molecular characteristics of Neisseria gonorrhoeae isolates obtained from 1996-2005 (n=200) and 2008-2016 (n=200) in Fukuoka, Japan, were examined. METHODS MICs were determined by agar dilution. Sequence types (STs) were examined using N. gonorrhoeae multiantigen sequence typing (NG-MAST). Sequencing of major extended-spectrum cephalosporin (ESC) resistance determinants (penA, mtrR and ponA) was performed. RESULTS Increases in the proportion of gonococci with decreased susceptibility or resistance to cefixime (from 18.0% in 1996-2005 to 46.0% in 2008-2016) and ceftriaxone (from 2.5% to 4.0%) were observed. Gonococcal isolates also showed increased resistance to ciprofloxacin and azithromycin. The four most prevalent NG-MAST STs with a multidrug-resistant phenotype were ST2958 (n=18), ST1407 (n=14), ST6798 (n=12) and ST4015 (n=10). The number of isolates belonging to these four STs rose between the first and second period. Among the 54 isolates belonging to the four major STs, 42 (77.8%) contained a penA mosaic allele and 12 (22.2%) contained a penA non-mosaic allele. The sequence pattern types in the 42 isolates with a penA mosaic allele included type X (64.3%), type XXXIV (33.3%) and a novel pattern type (2.4%). In contrast, all 12 isolates with the penA non-mosaic allele included the sequence pattern type V. CONCLUSION Neisseria gonorrhoeae isolates with decreased susceptibility or resistance to ESC have increased over the years. Four major STs with a multidrug-resistant phenotype were identified. These isolates contained a penA mosaic allele or a non-mosaic allele.
Collapse
Affiliation(s)
- Masatoshi Tanaka
- Department of Urology, Faculty of Medical, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Ryusaburo Furuya
- Department of Urology, Faculty of Medical, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, Tokyo, Japan
| | - Izumo Kanesaka
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, Tokyo, Japan
| | - Akira Ohno
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, Tokyo, Japan
| | - Akiko Kanayama Katsuse
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, Tokyo, Japan
| |
Collapse
|
47
|
Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. mBio 2018; 9:mBio.01419-18. [PMID: 30087172 PMCID: PMC6083905 DOI: 10.1128/mbio.01419-18] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mosaic interspecifically acquired alleles of the multiple transferable resistance (mtr) efflux pump operon correlate with increased resistance to azithromycin in Neisseria gonorrhoeae in epidemiological studies. However, whether and how these alleles cause resistance is unclear. Here, we use population genomics, transformations, and transcriptional analyses to dissect the relationship between variant mtr alleles and azithromycin resistance. We find that the locus encompassing the mtrR transcriptional repressor and the mtrCDE pump is a hot spot of interspecific recombination introducing alleles from Neisseria meningitidis and Neisseria lactamica into N. gonorrhoeae, with multiple rare haplotypes in linkage disequilibrium at mtrD and the mtr promoter region. Transformations demonstrate that resistance to azithromycin, as well as to other antimicrobial compounds such as polymyxin B and crystal violet, is mediated through epistasis between these two loci and that the full-length mosaic mtrD allele is required. Gene expression profiling reveals the mechanism of resistance in mosaics couples novel mtrD alleles with promoter mutations that increase expression of the pump. Overall, our results demonstrate that epistatic interactions at mtr gained from multiple neisserial species has contributed to increased gonococcal resistance to diverse antimicrobial agents.IMPORTANCENeisseria gonorrhoeae is the sexually transmitted bacterial pathogen responsible for more than 100 million cases of gonorrhea worldwide each year. The incidence of resistance to the macrolide azithromycin has increased in the past decade; however, a large proportion of the genetic basis of resistance remains unexplained. This study is the first to conclusively demonstrate the acquisition of macrolide resistance through mtr alleles from other Neisseria species, demonstrating that commensal Neisseria bacteria are a reservoir for antibiotic resistance to macrolides, extending the role of interspecies mosaicism in resistance beyond what has been previously described for cephalosporins. Ultimately, our results emphasize that future fine-mapping of genome-wide interspecies mosaicism may be valuable in understanding the pathways to antimicrobial resistance. Our results also have implications for diagnostics and public health surveillance and control, as they can be used to inform the development of sequence-based tools to monitor and control the spread of antibiotic-resistant gonorrhea.
Collapse
|
48
|
Antibiotic Targets in Gonococcal Cell Wall Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7030064. [PMID: 30037076 PMCID: PMC6164560 DOI: 10.3390/antibiotics7030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
The peptidoglycan cell wall that encloses the bacterial cell and provides structural support and protection is remodeled by multiple enzymes that synthesize and cleave the polymer during growth. This essential and dynamic structure has been targeted by multiple antibiotics to treat gonococcal infections. Up until now, antibiotics have been used against the biosynthetic machinery and the therapeutic potential of inhibiting enzymatic activities involved in peptidoglycan breakdown has not been explored. Given the major antibiotic resistance problems we currently face, it is crucial to identify other possible targets that are key to maintaining cell integrity and contribute to disease development. This article reviews peptidoglycan as an antibiotic target, how N. gonorrhoeae has developed resistance to currently available antibiotics, and the potential of continuing to target this essential structure to combat gonococcal infections by attacking alternative enzymatic activities involved in cell wall modification and metabolism.
Collapse
|
49
|
Kubanov AA, Runina AV, Chestkov AV, Kudryavtseva AV, Pekov YA, Korvigo IO, Deryabin DG. Whole-Genome Sequencing of Russian Neisseria Gonorrhoeae Isolates Related to ST 1407 Genogroup. Acta Naturae 2018; 10:68-76. [PMID: 30397529 PMCID: PMC6209400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
The whole-genome sequencing data of three N. gonorrhoeae strains isolated in the Russian Federation in 2015 are presented. According to the NG-MAST protocol, these strains are related to the globally spread ST 1407 genogroup. The analysis of their resistomes showed the absence of ermA/B/C/F genes and the presence of wild-type alleles of rpsE, rrs, rrl, rplD, rplV, macAB, and mefA genes, and these patterns explain the susceptibility of the sequenced strains to aminocyclitols (spectinomycin) and macrolides (azithromycin). Conjugative resistance determinants (blaTEM, tetM) were absent in the genomes, and the penC/ pilQ, parE, and norM alleles were shown to be wild-type, whereas single or multiple nucleotide substitutions were identified in the genes encoding targets for β-lactams (ponA, penA), tetracyclines (rpsJ), and fluoroquinolones (gyrA, parC). The additional mutations were found in porB gene and the promoter of mtrR gene, which nonspecifically reduced the susceptibility to antimicrobials due to the membrane permeability decrease and efflux pump overexpression. The diversity of mutations observed in the analyzed genomes prompted a revision of the phylogenetic relationships between the strains by comparing more than 790 groups of housekeeping genes. A high homology between the N. gonorrhoeae ST 1407 and N. gonorrhoeae ST 12556 genomes was confirmed; the latter had probably diverged from a common ancestor as a result of single mutation events. On the other hand, N. gonorrhoeae ST 12450 was an example of phenotypic convergence which appeared in the emergence of new drug resistance determinants that partially coincide with those of the ST 1407 genogroup.
Collapse
Affiliation(s)
- A. A. Kubanov
- State Research Centre of Dermatovenerology and Cosmetology, Korolenko Str., 3/6, Moscow, 107076 , Russia
| | - A. V. Runina
- State Research Centre of Dermatovenerology and Cosmetology, Korolenko Str., 3/6, Moscow, 107076 , Russia
| | - A. V. Chestkov
- State Research Centre of Dermatovenerology and Cosmetology, Korolenko Str., 3/6, Moscow, 107076 , Russia
| | - A. V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - Y. A. Pekov
- Ksivalue Data Analysis Studio, Leninsky Ave., 30A, Moscow, 117628, Russia
| | - I. O. Korvigo
- Ksivalue Data Analysis Studio, Leninsky Ave., 30A, Moscow, 117628, Russia
| | - D. G. Deryabin
- State Research Centre of Dermatovenerology and Cosmetology, Korolenko Str., 3/6, Moscow, 107076 , Russia
| |
Collapse
|
50
|
Vincent LR, Kerr SR, Tan Y, Tomberg J, Raterman EL, Dunning Hotopp JC, Unemo M, Nicholas RA, Jerse AE. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae. mBio 2018; 9:e01905-17. [PMID: 29615507 PMCID: PMC5885032 DOI: 10.1128/mbio.01905-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cror) clinical isolates (H041 and F89) into a Cros strain (FA19) by allelic exchange and showed that the resultant Cror mutants were significantly outcompeted by the Cros parent strain in vitro and in a murine infection model. Four Cror compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnBG348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnBG348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cror gonococcal strains that increase metabolism to ameliorate their fitness deficit.IMPORTANCE The emergence of ceftriaxone-resistant (Cror) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of susceptible and resistant strains that differ only in the penA gene that confers Cro resistance. We showed that mosaic penA alleles found in Cror clinical isolates are outcompeted by the Cros parent strain in vitro and in vivo but that compensatory mutations that allow ceftriaxone resistance to be maintained by increasing bacterial fitness are selected during mouse infection. One compensatory mutant that was studied in more detail had a mutation in acnB, which encodes the aconitase that functions in the tricarboxylic acid (TCA) cycle. This study illustrates that compensatory mutations can be selected during infection, which we hypothesize may allow the spread of Cro resistance in nature. This study also provides novel insights into gonococcal metabolism and physiology.
Collapse
Affiliation(s)
- Leah R Vincent
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Samuel R Kerr
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yang Tan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erica L Raterman
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Julie C Dunning Hotopp
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|