1
|
Chilamakuru NB, Singirisetty T, Bodapati A, Kallam SDM, Nelson VK, Suryadevara PR, Thangaswamy S. Schiff Base Mediated Synthesis of Novel Imidazolidine-4-One Derivatives for Potential Antimicrobial and Anthelmintic Activities. LUMINESCENCE 2024; 39:e70026. [PMID: 39529222 DOI: 10.1002/bio.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study focuses on developing novel antimicrobials to combat drug-resistant pathogens, addressing compounds failing clinical trials due to inadequate physicochemical properties. Sixteen imidazolidine-4-one derivatives were synthesized by extensive evaluation using molecular docking, absorption, distribution, metabolism, excretion (ADME) predictions, and antimicrobial testing. Molecular docking studies conducted with Schrödinger's Glide revealed that compounds S4 and G8 exhibited superior docking scores of -7.839 and -7.776, respectively. The G series outperformed the S series in scores. ADME analysis confirmed all compounds adhered to Lipinski's rule of five. In addition, IR and NMR provided details about the structure of the compounds. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, and Candida albicans, with compounds G2 and S2 showing exceptional minimum inhibitory concentration (MIC) values of 6.25 μg/mL against E. coli. S2 also demonstrated impressive activity against S. aureus (MIC 3.12 μg/mL), and S4 exhibited potent activity against C. albicans (MIC 0.8 μg/mL) than fluconazole (1.6 μg/mL). Additionally, antihelmintic activity was evaluated, with G1, G3, G8, S2, S4, S7, and S8 showing effective paralysis and death time 20 min and below at 50 mg/mL concentration. These results underscore the potential of new imidazolidine-4-one derivatives as suitable sources to develop a drug candidate to treat resistant infections.
Collapse
Affiliation(s)
- Naresh Babu Chilamakuru
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Triveni Singirisetty
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Anoop Bodapati
- Department of Pharmaceutical Sciences Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Andhra Pradesh, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Andhra Pradesh, India
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Selvankumar Thangaswamy
- Center for Global Health Research, Saveetha Medical College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Aimeur S, Fas BA, Serfaty X, Santuz H, Sacquin-Mora S, Bizouarn T, Taly A, Baciou L. Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge. J Biol Chem 2024:107943. [PMID: 39481598 DOI: 10.1016/j.jbc.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.
Collapse
Affiliation(s)
- Sana Aimeur
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Xavier Serfaty
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Tania Bizouarn
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
3
|
Sari S, Sabuncuoğlu S, Koçak Aslan E, Avci A, Kart D, Özdemir Z, Acar MF, Sayoğlu B, Alagöz MA, Karakurt A, Dalkara S. Azoles containing naphthalene with activity against Gram-positive bacteria: in vitro studies and in silico predictions for flavohemoglobin inhibition. J Biomol Struct Dyn 2022; 40:10220-10229. [PMID: 34139139 DOI: 10.1080/07391102.2021.1940285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Azoles are first-line drugs used in fungal infections. Topical antifungals, such as miconazole and econazole, are known to be active against Gram-positive bacteria, which was reported to result from bacterial flavohemoglobin (flavoHb) inhibition. Dual antibacterial/antifungal action is believed to have benefits for antimicrobial chemotherapy. In this study, we tested antibacterial effects of an in-house library of naphthalene-bearing azoles, some of which were reported as potent antifungals, in an attempt to find dual-acting hits. Several potent derivatives were obtained against the Gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus. 9 was active at a minimum inhibitor concentration (MIC) less than 1 µg/ml against E. faecalis and S. aureus, and 10 against S. aureus. 16 was also potent against E. faecalis and S. aureus (MIC = 1 and 2 µg/ml, respectively). Six more were active against S. aureus with MIC ≤ 4 µg/ml. In vitro cytotoxicity studies showed that the active compounds were safe for healthy cells within their MIC ranges. According to the calculated descriptors, the library was found within the drug-like chemical space and free of pan-assay interference compounds (PAINS). Molecular docking studies suggested that the compounds might be bacterial flavohemoglobin (flavoHb) inhibitors and the azole and naphthalene rings were important pharmacophores, which was further supported by pharmacophore modeling study. As a result, the current study presents several non-toxic azole derivatives with antibacterial effects. In addition to their previously reported antifungal properties, they could set a promising starting point for the future design of dual acting antimicrobials. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ebru Koçak Aslan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ahmet Avci
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| | - M Fahir Acar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burcu Sayoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - M Abdullah Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| | - Sevim Dalkara
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Pech-Santiago EO, Argüello-García R, Vázquez C, Saavedra E, González-Hernández I, Jung-Cook H, Rafferty SP, Ortega-Pierres MG. Giardia duodenalis: Flavohemoglobin is involved in drug biotransformation and resistance to albendazole. PLoS Pathog 2022; 18:e1010840. [PMID: 36166467 PMCID: PMC9514659 DOI: 10.1371/journal.ppat.1010840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/28/2022] [Indexed: 12/12/2022] Open
Abstract
Giardia duodenalis causes giardiasis, a major diarrheal disease in humans worldwide whose treatment relies mainly on metronidazole (MTZ) and albendazole (ABZ). The emergence of ABZ resistance in this parasite has prompted studies to elucidate the molecular mechanisms underlying this phenomenon. G. duodenalis trophozoites convert ABZ into its sulfoxide (ABZSO) and sulfone (ABZSOO) forms, despite lacking canonical enzymes involved in these processes, such as cytochrome P450s (CYP450s) and flavin-containing monooxygenases (FMOs). This study aims to identify the enzyme responsible for ABZ metabolism and its role in ABZ resistance in G. duodenalis. We first determined that the iron-containing cofactor heme induces higher mRNA expression levels of flavohemoglobin (gFlHb) in Giardia trophozoites. Molecular docking analyses predict favorable interactions of gFlHb with ABZ, ABZSO and ABZSOO. Spectral analyses of recombinant gFlHb in the presence of ABZ, ABZSO and ABZSOO showed high affinities for each of these compounds with Kd values of 22.7, 19.1 and 23.8 nM respectively. ABZ and ABZSO enhanced gFlHb NADH oxidase activity (turnover number 14.5 min-1), whereas LC-MS/MS analyses of the reaction products showed that gFlHb slowly oxygenates ABZ into ABZSO at a much lower rate (turnover number 0.01 min-1). Further spectroscopic analyses showed that ABZ is indirectly oxidized to ABZSO by superoxide generated from the NADH oxidase activity of gFlHb. In a similar manner, the superoxide-generating enzyme xanthine oxidase was able to produce ABZSO in the presence of xanthine and ABZ. Interestingly, we find that gFlHb mRNA expression is lower in albendazole-resistant clones compared to those that are sensitive to this drug. Furthermore, all albendazole-resistant clones transfected to overexpress gFlHb displayed higher susceptibility to the drug than the parent clones. Collectively these findings indicate a role for gFlHb in ABZ conversion to its sulfoxide and that gFlHb down-regulation acts as a passive pharmacokinetic mechanism of resistance in this parasite.
Collapse
Affiliation(s)
- Edar O. Pech-Santiago
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Iliana González-Hernández
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | - Helgi Jung-Cook
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | | | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
5
|
Kobayashi K, Igarashi J, Kozawa T. Interdomain Electron Transfer in Flavohemoglobin from
Candida norvegensis
with Antibiotic Azole Compounds. FEBS Lett 2022; 596:938-946. [DOI: 10.1002/1873-3468.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuo Kobayashi
- Institute of Scientific and Industrial Research Osaka University Mihogaoka 8‐1 Ibaraki Osaka 567‐0047 Japan
| | - Jotaro Igarashi
- Fukushima Medical University Hikaraigaoka 1 Fukushima 960‐1295 Japan
| | - Takahiro Kozawa
- Institute of Scientific and Industrial Research Osaka University Mihogaoka 8‐1 Ibaraki Osaka 567‐0047 Japan
| |
Collapse
|
6
|
Han Mİ, İnce U, Gündüz MG, Küçükgüzel ŞG. Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of New Thiosemicarbazide-Triazole Hybrid Derivatives of (S)-Naproxen. Chem Biodivers 2022; 19:e202100900. [PMID: 35191589 DOI: 10.1002/cbdv.202100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022]
Abstract
The discovery of new antimicrobial molecules is crucial for combating drug-resistant bacterial and fungal infections that pose a dangerous threat to human health. In the current research, we applied a molecular hybridization approach to synthesize original thiosemicarbazide-triazole derivatives starting from ( S )-Naproxen ( 7a-7k ). After structural characterization using FT-IR, 1 H NMR, 13 C NMR, and HR-MS, the obtained compounds were screened for their antimicrobial activities against Staphylococcus aureus ATCC 29213 , Escherichia coli ATCC 25922 , Candida albicans ATCC 10231 and their isolates, as well. Although all compounds were found to be moderate antimicrobial agents, in general, their antibacterial activities were better than antifungal effects. Among the tested compounds, 7j carrying nitrophenyl group on the thiosemicarbazide functionality represented the best MIC value against S. aureus isolate. Finally, molecular docking studies were performed in the active pocket of S. aureus flavohemoglobin to rationalize the obtained biological data.
Collapse
Affiliation(s)
- Muhammed İhsan Han
- Erciyes University: Erciyes Universitesi, Faculty of Pharmacy, ERCİYES ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ, ERCİYES ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ, 38039, TALAS, TURKEY
| | - Ufuk İnce
- Erciyes University: Erciyes Universitesi, Faculty of Pharmacy, ERCİYES ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ, ERCİYES ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ, Türkiye, 38039, TALAS, TURKEY
| | - Miyase Gözde Gündüz
- Hacettepe University: Hacettepe Universitesi, Faculty of Pharmacy, Hacettepe University, Ankara, TURKEY
| | - Ş Güniz Küçükgüzel
- Fenerbahçe University: Fenerbahce Universitesi, Pharmacuitical Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University,, Türkiye, 34668, İSTANBUL, TURKEY
| |
Collapse
|
7
|
Gardner AM, Gardner PR. Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin. J Biol Chem 2020; 296:100186. [PMID: 33310705 PMCID: PMC7948479 DOI: 10.1074/jbc.ra120.016637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The substrates O2 and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin. Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O2 and NO movements and conserved amino acids at the E11, G8, E2, E7, B10, and F7 positions within the globin domain control activation. In the cooperative and allosteric mechanism, O2 migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/IleE15 pair and LeuE11. NO permeates this tunnel and leverages upon the gating side chains triggering the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7, and water. This allows FADH2 to reduce the ferric iron, which forms the stable ferric–superoxide–TyrB10/GlnE7 complex. This complex reacts with internalized NO with a bimolecular rate constant of 1010 M−1 s−1 forming nitrate, which migrates to the CD loop and unfurls the spring-like structure. To restart the cycle, LeuE11 toggles back to the ferric iron. Actuating electron transfer with O2 and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme. Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Chemistry and Biochemistry Department, University of Dayton, Dayton, Ohio, USA.
| |
Collapse
|
8
|
Sari S, Avci A, Koçak E, Kart D, Sabuncuoğlu S, Doğan İS, Özdemir Z, Bozbey İ, Karakurt A, Saraç S, Dalkara S. Antibacterial azole derivatives: Antibacterial activity, cytotoxicity, and in silico mechanistic studies. Drug Dev Res 2020; 81:1026-1036. [PMID: 33216362 DOI: 10.1002/ddr.21721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Azole antifungal drugs are commonly used in antifungal chemotherapy. Antibacterial effects of some topical antifungals, such as miconazole and econazole, have lately been revealed, which suggests a promising venue in antimicrobial chemotherapy. In this study, we tested an in-house azole collection with antifungal properties for their antibacterial activity to identify dual-acting hits using the broth microdilution method. The in vitro screen yielded a number of potent derivatives against gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus. Compound 73's minimum inhibitory concentration (MIC) value less than 1 μg/ml against S. aureus; however, none of the compounds showed noteworthy activity against methicillin-resistant S. aureus (MRSA). All the active compounds were found safe at their MIC values against the healthy fibroblast cells in the in vitro cytotoxicity test. Molecular docking studies of the most active compounds using a set of docking programs with flavohemoglobin (flavoHb) structure, the proposed target of the azole antifungals with antibacterial activity, presented striking similarities regarding the binding modes and interactions between the tested compounds and the antifungal drugs with crystallographic data. In addition to being noncytotoxic, the library was predicted to be drug-like and free of pan-assay interference compounds (PAINS). As a result, the current study revealed several potential azole derivatives with both antifungal and antibacterial activities. Inhibition of bacterial flavoHb was suggested as a possible mechanism of action for the title compounds.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ahmet Avci
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ebru Koçak
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - İnci Selin Doğan
- Department of Pharmaceutical Chemistry, Karadeniz Technical University Faculty of Pharmacy, Trabzon, Turkey
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - İrem Bozbey
- Department of Pharmaceutical Chemistry, Erzincan Binali Yıldırım University Faculty of Pharmacy, Erzincan, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Sevim Dalkara
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
9
|
Leclercq L, Tessier J, Douyère G, Nardello-Rataj V, Schmitzer AR. Phytochemical- and Cyclodextrin-Based Pickering Emulsions: Natural Potentiators of Antibacterial, Antifungal, and Antibiofilm Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4317-4323. [PMID: 32271592 DOI: 10.1021/acs.langmuir.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present self-assembled Pickering emulsions containing biocidal phytochemical oils (carvacrol and terpinen-4-ol) and β-cyclodextrin able to potentiate the antimicrobial and antibiofilm activity of miconazoctylium bromide. The carvacrol-containing emulsion is 2-fold more sensitive against C. albicans and S. aureus and highly active against E. coli, compared to the commercial cream containing miconazole nitrate. Moreover, this emulsion shows a synergistic effect against fungi, additive responses against bacteria, and remarkable staphylococcal biofilm eradication. These results are associated with membrane permeabilization, enzymes inhibition, and the accumulation of reactive oxygen species in microorganisms.
Collapse
Affiliation(s)
- Loïc Leclercq
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Jérémie Tessier
- Université de Montréal, Département de Chimie, CP 6128 Succursale Centre-Ville, H3C3J7 Montréal, Québec, Canada
| | - Grégory Douyère
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Véronique Nardello-Rataj
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Andreea R Schmitzer
- Université de Montréal, Département de Chimie, CP 6128 Succursale Centre-Ville, H3C3J7 Montréal, Québec, Canada
| |
Collapse
|
10
|
Bozbey İ, Sari S, Şalva E, Kart D, Karakurt A. p-Trifluoroacetophenone Oxime Ester Derivatives: Synthesis, Antimicrobial and Cytotoxic Evaluation and Molecular Modeling Studies. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666181128112249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background:
Azole antifungals are among the first-line drugs clinically used for the
treatment of systemic candidiasis, a deadly type of fungal infection that threatens mostly immunecompromised
and hospitalized patients. Some azole derivatives were also reported to have
antiproliferative effects on cancer cells.
Objective:
In this study, 1-(4-trifluoromethylphenyl)-2-(1H-imidazol-1-yl)ethanone (3), its oxime
(4), and a series of its novel oxime ester derivatives (5a-v) were synthesized and tested for their in
vitro antimicrobial activities against certain ATCC standard strains of Candida sp. fungi and
bacteria. The compounds were also tested for their cytotoxic effects against mouse fibroblast and
human neuroblastoma cell lines. Molecular modeling studies were performed to provide insights into
their possible mechanisms for antifungal and antibacterial actions.
Methods:
The compounds were synthesized by the reaction of various oximes with acyl chlorides.
Antimicrobial activity of the compounds was determined according to the broth microdilution
method. For the determination of cytotoxic effect, we used MTS assay. Molecular docking and
QM/MM studies were performed to predict the binding mechanisms of the active compounds in the
catalytic site of C. albicans CYP51 (CACYP51) and S. aureus flavohemoglobin (SAFH), the latter
of which was created via homology modeling.
Results:
5d, 5l, and 5t showed moderate antifungal activity against C. albicans, while 3, 5c, and 5r
showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas
aeruginosa. Most of the compounds showed approximately 40-50% inhibition against the human
neuroblastoma cells at 100 µM. In this line, 3 was the most potent with an IC50 value of 82.18 μM
followed by 5a, 5o, and 5t. 3 and 5a were highly selective to the neuroblastoma cells. Molecular
modelling results supported the hypothesis that our compounds were inhibitors of CAYP51 and
SAFH.
Conclusion:
This study supports that oxime ester derivatives may be used for the development of
new antimicrobial and cytotoxic agents.
Collapse
Affiliation(s)
- İrem Bozbey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Emine Şalva
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
11
|
Abstract
Flavohaemoglobins were first described in yeast as early as the 1970s but their functions were unclear. The surge in interest in nitric oxide biology and both serendipitous and hypothesis-driven discoveries in bacterial systems have transformed our understanding of this unusual two-domain globin into a comprehensive, yet undoubtedly incomplete, appreciation of its pre-eminent role in nitric oxide detoxification. Here, I focus on research on the flavohaemoglobins of microorganisms, especially of bacteria, and update several earlier and more comprehensive reviews, emphasising advances over the past 5 to 10 years and some controversies that have arisen. Inevitably, in light of space restrictions, details of nitric oxide metabolism and globins in higher organisms are brief.
Collapse
Affiliation(s)
- Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
12
|
Butcher D, Moussaoui M, Baciou L, Miksovska J. Impact of azole drugs on energetics, kinetics, and ligand migration pathways of CO photo-dissociation in bacterial flavohemoglobins. RSC Adv 2020; 10:17930-17941. [PMID: 35515592 PMCID: PMC9053618 DOI: 10.1039/d0ra02529a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/21/2020] [Indexed: 01/18/2023] Open
Abstract
Flavohemoglobins (fHbs) are heme proteins found in prokaryotic and eukaryotic microbes. They are involved in NO detoxification through an NO˙ dioxygenase mechanism. The N-terminal heme globin domain allows for binding of gaseous ligands whereas a C-terminal NADH/FADH binding domain facilitates association of redox cofactors necessary for ligand reduction. The NO˙ dioxygenase function is important in facilitating immune resistance by protecting the cell from nitrosative stress brought about by a host organism; as a result, bacterial flavoHbs have recently been considered as targets for the development of new antibiotics. Here, photoacoustic calorimetry and transient absorption spectroscopy have been used to characterize energetics, structural dynamics, and kinetics of CO migration within bacterial flavoHbs from Ralstonia eutropha (FHP) and Staphylococcus aureus (HMPSa) in the presence and absence of antibiotic azole compounds. In FHP, the ligand photo-release is associated with ΔH = 26.2 ± 7.0 kcal mol−1 and ΔV = 25.0 ± 1.5 mL mol−1 while in HMPSa, ΔH = 34.7 ± 8.0 kcal mol−1 and ΔV = 28.6 ± 17 mL mol−1 were observed, suggesting distinct structural changes associated with ligand escape from FHP and HMPSa. In the presence of ketoconazole, the CO escape leads to a more negative enthalpy change and volume change whereas association of miconazole to FHP or HMPSa does not impact the reaction volume. These data are in agreement with the computational results that propose distinct binding sites for ketoconazole and miconazole on CO bound FHP. Miconazole or ketoconazole binding to either protein has only a negligible impact on the CO association rates, indicating that azole drugs do not impact flavoHbs interactions with gaseous ligands but may inhibit the NOD activity through preventing the electron transfer between FAD and heme cofactors. Impact of ketoconalzole and miconazole on structural dynamics of flavohemoglobin.![]()
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Myriam Moussaoui
- Laboratoire de Chimie Physique
- UMR8000
- Université Paris Sud
- CNRS
- Université Paris Saclay
| | - Laura Baciou
- Laboratoire de Chimie Physique
- UMR8000
- Université Paris Sud
- CNRS
- Université Paris Saclay
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
13
|
Moussaoui M, Misevičienė L, Anusevičius Ž, Marozienė A, Lederer F, Baciou L, Čėnas N. Quinones and nitroaromatic compounds as subversive substrates of Staphylococcus aureus flavohemoglobin. Free Radic Biol Med 2018; 123:107-115. [PMID: 29793040 DOI: 10.1016/j.freeradbiomed.2018.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022]
Abstract
In microorganisms, flavohemoglobins (FHbs) containing FAD and heme (Fe3+, metHb) convert NO. into nitrate at the expense of NADH and O2. FHbs contribute to bacterial resistance to nitrosative stress. Therefore, inhibition of FHbs functions may decrease the pathogen virulence. We report here a kinetic study of the reduction of quinones and nitroaromatic compounds by S. aureus FHb. We show that this enzyme rapidly reduces quinones and nitroaromatic compounds in a mixed single- and two-electron pathway. The reactivity of nitroaromatics increased upon an increase in their single-electron reduction potential (E17), whereas the reactivity of quinones poorly depended on their E17 with a strong preference for a 2-hydroxy-1,4-naphthoquinone structure. The reaction followed a 'ping-pong' mechanism. In general, the maximal reaction rates were found lower than the maximal presteady-state rate of FAD reduction by NADH and/or of oxyhemoglobin (HbFe2+O2) formation (~130 s-1, pH 7.0, 25 °C), indicating that the enzyme turnover is limited by the oxidative half-reaction. The turnover studies showed that quinones prefreqently accept electrons from reduced FAD, and not from HbFe2+O2. These results suggest that quinones and nitroaromatics act as 'subversive substrates' for FHb, and may enhance the cytotoxicity of NO. by formation of superoxide and by diverting the electron flux coming from reduced FAD. Because quinone reduction rate was increased by FHb inhibitors such as econazole, ketoconazole, and miconazole, their combined use may represent a novel chemotherapeutical approach.
Collapse
Affiliation(s)
- Myriam Moussaoui
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405 Orsay Cedex France
| | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Žilvinas Anusevičius
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Audronė Marozienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Florence Lederer
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405 Orsay Cedex France
| | - Laura Baciou
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405 Orsay Cedex France
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
14
|
Tessier J, Golmohamadi M, Wilkinson KJ, Schmitzer AR. Anti-staphylococcal biofilm activity of miconazoctylium bromide. Org Biomol Chem 2018; 16:4288-4294. [DOI: 10.1039/c8ob00897c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alkylmiconazolium salts possess a high potency to disrupt bacterial biofilms.
Collapse
Affiliation(s)
- Jérémie Tessier
- Department of Chemistry
- University of Montreal
- Succursale Centre-Ville Montreal
- Canada
| | - Mahmood Golmohamadi
- Department of Chemistry
- University of Montreal
- Succursale Centre-Ville Montreal
- Canada
| | - Kevin J. Wilkinson
- Department of Chemistry
- University of Montreal
- Succursale Centre-Ville Montreal
- Canada
| | - Andreea R. Schmitzer
- Department of Chemistry
- University of Montreal
- Succursale Centre-Ville Montreal
- Canada
| |
Collapse
|
15
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
16
|
Tejero J, Kapralov AA, Baumgartner MP, Sparacino-Watkins CE, Anthonymutu TS, Vlasova II, Camacho CJ, Gladwin MT, Bayir H, Kagan VE. Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:391-401. [PMID: 26928591 PMCID: PMC4821708 DOI: 10.1016/j.bbalip.2016.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Cytoglobin (Cygb) is a hexa-coordinated hemoprotein with yet to be defined physiological functions. The iron coordination and spin state of the Cygb heme group are sensitive to oxidation of two cysteine residues (Cys38/Cys83) and/or the binding of free fatty acids. However, the roles of redox vs lipid regulators of Cygb's structural rearrangements in the context of the protein peroxidase competence are not known. Searching for physiologically relevant lipid regulators of Cygb, here we report that anionic phospholipids, particularly phosphatidylinositolphosphates, affect structural organization of the protein and modulate its iron state and peroxidase activity both conjointly and/or independently of cysteine oxidation. Thus, different anionic lipids can operate in cysteine-dependent and cysteine-independent ways as inducers of the peroxidase activity. We establish that Cygb's peroxidase activity can be utilized for the catalysis of peroxidation of anionic phospholipids (including phosphatidylinositolphosphates) yielding mono-oxygenated molecular species. Combined with the computational simulations we propose a bipartite lipid binding model that rationalizes the modes of interactions with phospholipids, the effects on structural re-arrangements and the peroxidase activity of the hemoprotein.
Collapse
Affiliation(s)
- Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Matthew P Baumgartner
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney E Sparacino-Watkins
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tamil S Anthonymutu
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Irina I Vlasova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hülya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
17
|
Open and Lys-His Hexacoordinated Closed Structures of a Globin with Swapped Proximal and Distal Sites. Sci Rep 2015; 5:11407. [PMID: 26094577 PMCID: PMC4476040 DOI: 10.1038/srep11407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/22/2015] [Indexed: 11/24/2022] Open
Abstract
Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A–E, hence the distal site, from one subunit and helices F–H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys–His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions.
Collapse
|
18
|
Antimicrobial Agents Act Differently on Staphyloccocus aureus and Ralstonia eutropha Flavohemoglobins. Appl Biochem Biotechnol 2014; 173:1023-37. [DOI: 10.1007/s12010-014-0938-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
|
19
|
Vinogradov SN, Bailly X, Smith DR, Tinajero-Trejo M, Poole RK, Hoogewijs D. Microbial eukaryote globins. Adv Microb Physiol 2013; 63:391-446. [PMID: 24054801 DOI: 10.1016/b978-0-12-407693-8.00009-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A bioinformatics survey of about 120 protist and 240 fungal genomes and transcriptomes revealed a broad array of globins, representing five of the eight subfamilies identified in bacteria. Most conspicuous is the absence of protoglobins and globin-coupled sensors, except for a two-domain globin in Leishmanias, that comprises a nucleotidyl cyclase domain, and the virtual absence of truncated group 3 globins. In contrast to bacteria, co-occurrence of more than two globin subfamilies appears to be rare in protists. Although globins were lacking in the Apicomplexa and the Microsporidia intracellular pathogens, they occurred in the pathogenic Trypanosomatidae, Stramenopiles and certain fungi. Flavohaemoglobins (FHbs) and related single-domain globins occur across the protist groups. Fungi are unique in having FHbs co-occurring with sensor single-domain globins (SSDgbs). Obligately biotrophic fungi covered in our analysis lack globins. Furthermore, SSDgbs occur only in a heterolobosean amoeba, Naegleria and the stramenopile Hyphochytrium. Of the three subfamilies of truncated Mb-fold globins, TrHb1s appear to be the most widespread, occurring as multiple copies in chlorophyte and ciliophora genomes, many as multidomain proteins. Although the ciliates appear to have only TrHb1s, the chlorophytes have Mb-like globins and TrHb2s, both closely related to the corresponding plant globins. The presently available number of protist genomes is inadequate to provide a definitive census of their globins. Bayesian molecular analyses of single-domain 3/3 Mb-fold globins suggest a close relationship of chlorophyte and haptophyte globins, including choanoflagellate and Capsaspora globins to land plant symbiotic and non-symbiotic haemoglobins and to vertebrate neuroglobins.
Collapse
|
20
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
21
|
El Hammi E, Warkentin E, Demmer U, Marzouki NM, Ermler U, Baciou L. Active site analysis of yeast flavohemoglobin based on its structure with a small ligand or econazole. FEBS J 2012; 279:4565-75. [DOI: 10.1111/febs.12043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Ulrike Demmer
- Max-Planck-Institut für Biophysik; Frankfurt; Germany
| | - Nejib M. Marzouki
- Laboratory of Protein Engineering; INSAT University of Carthage; Tunis; Tunisia
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik; Frankfurt; Germany
| | - Laura Baciou
- Laboratoire de Chimie Physique; CNRS - Université Paris-Sud; Orsay; France
| |
Collapse
|
22
|
Ferreiro DN, Boechi L, Estrin DA, Martí MA. The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin. J Inorg Biochem 2012; 119:75-84. [PMID: 23220591 DOI: 10.1016/j.jinorgbio.2012.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
Flavohemoglobins (FHbs) are members of the globin superfamily, widely distributed among prokaryotes and eukaryotes that have been shown to carry out nitric oxide dioxygenase (NOD) activity. In prokaryotes, such as Escherichia coli, NOD activity is a defence mechanism against the NO release by the macrophages of the hosts' immune system during infection. Because of that, FHbs have been studied thoroughly and several drugs have been developed in an effort to fight infectious processes. Nevertheless, the protein's structural determinants involved in the NOD activity are still poorly understood. In this context, the aim of the present work is to unravel the molecular basis of FHbs structural dynamics-to-function relationship using state of the art computer simulation tools. In an effort to fulfill this goal, we studied three key processes that determine NOD activity, namely i) ligand migration into the active site ii) stabilization of the coordinated oxygen and iii) intra-protein electron transfer (ET). Our results allowed us to determine key factors related to all three processes like the presence of a long hydrophobic tunnel for ligand migration, the presence of a water mediated hydrogen bond to stabilize the coordinated oxygen and therefore achieve a high affinity, and the best possible ET paths between the FAD and the heme, where water molecules play an important role. Taken together the presented results close an important gap in our understanding of the wide and diverse globin structural-functional relationships.
Collapse
Affiliation(s)
- Dardo N Ferreiro
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
23
|
El Hammi E, Houée-Lévin C, Řezáč J, Lévy B, Demachy I, Baciou L, de la Lande A. New insights into the mechanism of electron transfer within flavohemoglobins: tunnelling pathways, packing density, thermodynamic and kinetic analyses. Phys Chem Chem Phys 2012; 14:13872-80. [PMID: 22948361 DOI: 10.1039/c2cp41261f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Flavohemoglobins (FlavoHb) are metalloenzymes catalyzing the reaction of nitric oxide dioxygenation. The iron cation of the heme group needs to be preliminarily reduced to the ferrous state to be catalytically competent. This reduction is triggered by a flavin adenine dinucleotide (FAD) prosthetic group which is localized in a distinct domain of the protein. In this paper we obtain new insights into the internal long range electron transfer (over ca. 12 Å) using a combination of experimental and computational approaches. Employing a time-resolved pulse radiolysis technique we report the first direct measurement of the FADH˙→ HemeFe(III) electron transfer rate. A rate constant of (6.8 ± 0.5) × 10(3) s(-1) is found. A large panel of computational approaches are used to provide the first estimation of the thermodynamic characteristics of the internal electron transfer step within flavoHb: both the driving force and the reorganization energy are estimated as a function of the protonated state of the flavin semi-quinone. We also report an analysis of the electron pathways involved in the tunnelling of the electron through the aqueous interface between the globin and the flavin domains.
Collapse
Affiliation(s)
- Emna El Hammi
- Laboratoire de Chimie Physique-CNRS UMR 8000, Université Paris-Sud. Bât. 349-350, Campus d'Orsay. 15, avenue Jean Perrin, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Forrester MT, Foster MW. Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 2012; 52:1620-33. [PMID: 22343413 DOI: 10.1016/j.freeradbiomed.2012.01.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) is an inevitable product of life in an oxygen- and nitrogen-rich environment. This reactive diatomic molecule exhibits microbial cytotoxicity, in large part by facilitating nitrosative stress and inhibiting heme-containing proteins within the aerobic respiratory chain. Metabolism of NO is therefore essential for microbial life. In many bacteria, fungi, and protozoa, the evolutionarily ancient flavohemoglobin (flavoHb) converts NO and O(2) to inert nitrate (NO(3)(-)) and undergoes catalytic regeneration via flavin-dependent reduction. Since its identification, widespread efforts have characterized roles for flavoHb in microbial nitrosative stress protection. Subsequent genomic studies focused on flavoHb have elucidated the transcriptional machinery necessary for inducible NO protection, such as NsrR in Escherichia coli, as well as additional proteins that constitute a nitrosative stress protection program. As an alternative strategy, flavoHb has been heterologously employed in higher eukaryotic organisms such as plants and human tumors to probe the function(s) of endogenous NO signaling. Such an approach may also provide a therapeutic route to in vivo NO depletion. Here we focus on the molecular features of flavoHb, the hitherto characterized NO-sensitive transcriptional machinery responsible for its induction, the roles of flavoHb in resisting mammalian host defense systems, and heterologous applications of flavoHb in plant/mammalian systems (including human tumors), as well as unresolved questions surrounding this paradigmatic NO-consuming enzyme.
Collapse
Affiliation(s)
- Michael T Forrester
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
25
|
D'Antonio EL, D'Antonio J, de Serrano V, Gracz H, Thompson MK, Ghiladi RA, Bowden EF, Franzen S. Functional consequences of the creation of an Asp-His-Fe triad in a 3/3 globin. Biochemistry 2011; 50:9664-80. [PMID: 21950839 DOI: 10.1021/bi201368u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proximal side of dehaloperoxidase-hemoglobin A (DHP A) from Amphitrite ornata has been modified via site-directed mutagenesis of methionine 86 into aspartate (M86D) to introduce an Asp-His-Fe triad charge relay. X-ray crystallographic structure determination of the metcyano forms of M86D [Protein Data Bank (PDB) entry 3MYN ] and M86E (PDB entry 3MYM ) mutants reveal the structural origins of a stable catalytic triad in DHP A. A decrease in the rate of H(2)O(2) activation as well as a lowered reduction potential versus that of the wild-type enzyme was observed in M86D. One possible explanation for the significantly lower activity is an increased affinity for the distal histidine in binding to the heme Fe to form a bis-histidine adduct. Resonance Raman spectroscopy demonstrates a pH-dependent ligation by the distal histidine in M86D, which is indicative of an increased trans effect. At pH 5.0, the heme Fe is five-coordinate, and this structure resembles the wild-type DHP A resting state. However, at pH 7.0, the distal histidine appears to form a six-coordinate ferric bis-histidine (hemichrome) adduct. These observations can be explained by the effect of the increased positive charge on the heme Fe on the formation of a six-coordinate low-spin adduct, which inhibits the ligation and activation of H(2)O(2) as required for peroxidase activity. The results suggest that the proximal charge relay in peroxidases regulate the redox potential of the heme Fe but that the trans effect is a carefully balanced property that can both activate H(2)O(2) and attract ligation by the distal histidine. To understand the balance of forces that modulate peroxidase reactivity, we studied three M86 mutants, M86A, M86D, and M86E, by spectroelectrochemistry and nuclear magnetic resonance spectroscopy of (13)C- and (15)N-labeled cyanide adducts as probes of the redox potential and of the trans effect in the heme Fe, both of which can be correlated with the proximity of negative charge to the N(δ) hydrogen of the proximal histidine, consistent with an Asp-His-Fe charge relay observed in heme peroxidases.
Collapse
Affiliation(s)
- Edward L D'Antonio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | | | | | | | | | | | | | | |
Collapse
|