1
|
Muniz-Miranda F, Pedone A, Menziani MC. Blueshift of the CN stretching vibration of acetonitrile in solution: computational and experimental study. J Comput Chem 2024; 45:2352-2359. [PMID: 39031704 DOI: 10.1002/jcc.27452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024]
Abstract
Acetonitrile, a polar molecule that cannot form hydrogen bonds on its own, interacts with solvent molecules mainly through the lone pair of its nitrogen atom and the π electrons of its CN triple bond [Correction added on 17 July 2024, after first online publication: Acetole has been changed to Acetonitrile in the preceeding sentence.]. Interestingly, acetonitrile exhibits an unexpected strengthening of the triple bond's force constant in an aqueous environment, leading to an upshift (blueshift) in the corresponding stretching vibration: this effect contrasts with the usual consequence of hydrogen bonding on the vibrational frequencies of the acceptor groups, that is, frequency redshift. This investigation elucidates this phenomenon using Raman spectroscopy to examine the behavior of acetonitrile in organic solvent, water, and silver ion aqueous solutions, where an even more pronounced upshift is observed. Raman spectroscopy is particularly well suited for analyzing aqueous solutions due to the minimal scattering effect of water molecules across most of the vibrational spectrum. Computational approaches, both static and dynamical, based on Density Functional Theory and hybrid functionals, are employed here to interpret these findings, and accurately reproduce the vibrational frequencies of acetonitrile in different environments. Our calculations also allow an explanation for this unique behavior in terms of electric charge displacements. On the other hand, the study of the interaction of acetonitrile with water molecules and metal ions is relevant for the use of this molecule as a solvent in both chemical and pharmaceutical applications.
Collapse
Affiliation(s)
- Francesco Muniz-Miranda
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio-Emilia (UNIMORE), Modena, Italy
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio-Emilia (UNIMORE), Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio-Emilia (UNIMORE), Modena, Italy
| |
Collapse
|
2
|
Maitra A, Lake WR, Mohamed A, Edington SC, Das P, Thompson BC, Hammes-Schiffer S, Johnson M, Dawlaty JM. Measuring the Electric Fields of Ions Captured in Crown Ethers. J Phys Chem Lett 2024; 15:7458-7465. [PMID: 39008844 DOI: 10.1021/acs.jpclett.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Controlling reactivity with electric fields is a persistent challenge in chemistry. One approach is to tether ions at well-defined locations near a reactive center. To quantify fields arising from ions, we report crown ethers that capture metal cations as field sources and a covalently bound vibrational Stark shift probe as a field sensor. We use experiments and computations in both the gas and liquid phases to quantify the vibrational frequencies of the probe and estimate the electric fields from the captured ions. Cations, in general, blue shift the probe frequency, with effective fields estimated to vary in the range of ∼0.2-3 V/nm in the liquid phase. Comparison of the gas and liquid phase data provides insight into the effects of mutual polarization of the molecule and solvent and screening of the ion's field. These findings reveal the roles of charge, local screening, and geometry in the design of tailored electric fields.
Collapse
Affiliation(s)
- Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ahmed Mohamed
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sean C Edington
- Department of Molecular, Cellular, and Biomedical Sciences and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Pratyusha Das
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mark Johnson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Blain-Hartung M, Johannes von Sass G, Plaickner J, Katz S, Tu Hoang O, Andrea Mroginski M, Esser N, Budisa N, Forest KT, Hildebrandt P. On the Role of a Conserved Tryptophan in the Chromophore Pocket of Cyanobacteriochrome. J Mol Biol 2024; 436:168227. [PMID: 37544357 DOI: 10.1016/j.jmb.2023.168227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids. These variants and the native protein were studied by various spectroscopic techniques (UV-vis absorption, fluorescence, IR, NIR and UV resonance Raman) complemented by theoretical approaches. Trp496 is shown to affect the electronic transition of PCB and to be essential for the thermal equilibrium between Pr and an intermediate state O600. However, Trp496 is not required to stabilize the tilted orientation of ring D in Pr, and does not play a role in the secondary structure changes of Slr1393 during the Pr/Pg transition. The present results confirm the re-orientation of Trp496 upon Pr → Pg conversion, but do not provide evidence of a major change in the microenvironment of this residue. Structural models indicate the penetration of water molecules into the chromophore pocket in both Pr and Pg states and thus water-Trp contacts, which can readily account for the subtle spectral changes between Pr and Pg. Thus, we conclude that reorientation of Trp496 during the Pr-to-Pg photoconversion in solution is not associated with a major change in the dielectric environment in the two states.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Georg Johannes von Sass
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany
| | - Julian Plaickner
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Sagie Katz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Oanh Tu Hoang
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Esser
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Schwarzschildstraße 8, 12489 Berlin, Germany
| | - Nediljko Budisa
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany; Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, R3T 2N2 Winnipeg, Manitoba, Canada
| | - Katrina T Forest
- University of Wisconsin-Madison, Department of Bacteriology, 1550 Linden Dr., Madison, WI 53706, USA
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
5
|
Bhat MY, Padder AH, Gupta R, Ahmed QN. Tf 2O-Promoted Regioselective Heteronucleophilic Ring-Opening Approaches of Tetrahydrofuran. J Org Chem 2023; 88:14323-14338. [PMID: 37817465 DOI: 10.1021/acs.joc.3c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The ring-opening functionalization strategy in tetrahydrofuran (THF) represents an ideal approach to access different valuable structures. Herein, we report different operationally simple, efficient, unique, and practical regioselective heteronucleophilic ring-opening strategies for the THF system. Tf2O, which is a strong electrophilic activator, was found to generate a THF triflate intermediate that triggers the nucleophilicity of nitriles (Nu1) and led to regioselective ring opening in the presence of different nucleophiles (Nu2). Furthermore, the synthesis of different heteronucleophilic ring-opening dimerization products was attributed to the nucleophilicity of Nu2. We also demonstrated that use of borane-tetrahydrofuran (BTHF) can achieve challenging hydride addition in a similar manner.
Collapse
Affiliation(s)
- Mohammad Yaqoob Bhat
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashiq Hussain Padder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Raman Gupta
- Department of Chemistry, Govt. College of Engineering and Technology, Jammu 181122, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Qi R, Chen Q, Liu L, Ma Z, Pan D, Wang H, Li Z, Wang C, Xu Z. Copper-catalyzed asymmetric C(sp 3)-H cyanoalkylation of glycine derivatives and peptides. Nat Commun 2023; 14:3295. [PMID: 37280209 DOI: 10.1038/s41467-023-38871-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Alkylnitriles play important roles in many fields because of their unique electronic properties and structural characteristics. Incorporating cyanoalkyl with characteristic spectroscopy and reactivity properties into amino acids and peptides is of special interest for potential imaging and therapeutic purposes. Here, we report a copper-catalyzed asymmetric cyanoalkylation of C(sp3)-H. In the reactions, glycine derivatives can effectively couple with various cycloalkanone oxime esters with high enantioselectivities, and the reaction can be applied to the late-stage modification of peptides with good yields and excellent stereoselectivities, which is useful for modern peptide synthesis and drug discovery. The mechanistic studies show that the in situ formed copper complex by the coordination of glycine derivatives and chiral phosphine Cu catalyst can not only mediate the single electronic reduction of cycloalkanone oxime ester but also control the stereoselectivity of the cyanoalkylation reaction.
Collapse
Affiliation(s)
- Rupeng Qi
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
| | - Liangyu Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Chao Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China.
| | - Zhaoqing Xu
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
7
|
Maitra A, Das P, Thompson BC, Dawlaty JM. Distinguishing between the Electrostatic Effects and Explicit Ion Interactions in a Stark Probe. J Phys Chem B 2023; 127:2511-2520. [PMID: 36917012 DOI: 10.1021/acs.jpcb.2c08030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Vibrational Stark probes are incisive tools for measuring local electric fields in a wide range of chemical environments. The interpretation of the frequency shift often gets complicated due to the specific interactions of the probe, such as hydrogen bonding and Lewis bonding. Therefore, it is important to distinguish between the pure electrostatic response and the response due to such specific interactions. Here we report a molecular system that is sensitive to both the Stark effect from a single ion and the explicit Lewis bonding of ions with the probe. The molecule consists of a crown ether with an appended benzonitrile. The crown captures cations of various charges, and the electric field from the ions is sensed by the benzonitrile probe. Additionally, the lone pair of the benzonitrile can engage in Lewis interactions with some of the ions by donating partial charge density to the ions. Our system exhibits both of these effects and therefore is a suitable test bed for distinguishing between the pure electrostatic and the Lewis interactions. Our computational results show that the electrostatic influence of the ion is operative at large distances, while the Lewis interaction becomes important only within distances that permit orbital overlap. Our results may be useful for using the nitrile probe for measuring electrostatic and coordination effects in complex ionic environments such as the electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Pratyusha Das
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Barry C Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Mukherjee D, Ahmed IA, Gai F. Site-Specific Interrogation of Protein Structure and Stability. Methods Mol Biol 2022; 2376:65-87. [PMID: 34845603 DOI: 10.1007/978-1-0716-1716-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To execute their function or activity, proteins need to possess variability in local electrostatic environment, solvent accessibility, structure, and stability. However, assessing any protein property in a site-specific manner is not easy since native spectroscopic signals often lack the needed specificity. One strategy that overcomes this limitation is to use unnatural amino acids that exhibit distinct spectroscopic features. In this chapter, we describe several such unnatural amino acids (UAAs) and their respective applications in site-specific interrogation of protein structure and stability using standard biophysical methods, including circular dichroism (CD), infrared (IR), and fluorescence spectroscopies.
Collapse
Affiliation(s)
| | - Ismail A Ahmed
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Maitra A, Sarkar S, Leitner DM, Dawlaty JM. Electric Fields Influence Intramolecular Vibrational Energy Relaxation and Line Widths. J Phys Chem Lett 2021; 12:7818-7825. [PMID: 34378946 DOI: 10.1021/acs.jpclett.1c02238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intramolecular vibrational energy relaxation (IVR) is fundamentally important to chemical dynamics. We show that externally applied electric fields affect IVR and vibrational line widths by changing the anharmonic couplings and frequency detunings between modes. We demonstrate this effect in benzonitrile for which prior experimental results show a decrease in vibrational line width as a function of applied electric field. We identify three major channels for IVR that depend on electric field. In the dominant channel, the electric field affects the frequency detuning, while in the other two channels, variation of anharmonic couplings as a function of field is the underlying mechanism. Consistent with experimental results, we show that the combination of all channels gives rise to reduced line widths with increasing electric field in benzonitrile. Our results are relevant for controlling IVR with external or internal fields and for gaining a more complete interpretation of line widths of vibrational Stark probes.
Collapse
Affiliation(s)
- Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0001, United States
| | - Sohini Sarkar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0001, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89519, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0001, United States
| |
Collapse
|
10
|
Lu D, Cui J, Yang S, Gong Y. Iron-Catalyzed Cyanoalkylation of Glycine Derivatives Promoted by Pyridine-Oxazoline Ligands. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Jiajia Cui
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Sen Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Qin L, Yuan X, Cui Y, Sun Q, Duan X, Zhuang K, Chen L, Qiu J, Guo K. Visible‐Light‐Mediated S−H Bond Insertion Reactions of Diazoalkanes with Cysteine Residues in Batch and Flow. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Kai‐Qiang Zhuang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|
12
|
|
13
|
Muhammad P, Hanif S, Yan J, Rehman FU, Wang J, Khan M, Chung R, Lee A, Zheng M, Wang Y, Shi B. SERS-based nanostrategy for rapid anemia diagnosis. NANOSCALE 2020; 12:1948-1957. [PMID: 31907500 DOI: 10.1039/c9nr09152a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iron detection is one of the critical markers to diagnose multiple blood-related disorders that correspond to various biological dysfunctions. The currently available anemia detection approach can be used only for pre-treated blood samples that interfere with the actual iron level in blood. Real-time detection approaches with higher sensitivity and specificity are certainly needed to cope with the commercial level clinical analyses. Herein, we presented a novel strategy to determine the blood iron that can be easily practiced at commercial levels. The blend of well-known iron-cyanide chemistry with nanotechnology is advantageous with ultrahigh sensitivity in whole blood analysis without any pre-treatments. This approach is a combined detection system of the conventional assay (UV-visible spectroscopy) with surface-enhanced Raman scattering (SERS). Organic cyanide modified silver nanoparticles (cAgNPs) can selectively respond to Fe3+ ions and Hb protein with a detection limit of 10 fM and 0.46 μg mL-1, respectively, without being affected by matrix interfering species in the complex biological fluid. We confirmed the clinical potential of our new cAgNPs by assessing iron-status in multiple anemia patients and normal controls. Our SERS-based iron quantitation approach is highly affordable for bulk-samples, cheap, quick, flexible, and useful for real-time clinical assays. Such a method for metal-chelation has extendable features of therapeutics molecular tracking within more complex living systems at cellular levels.
Collapse
Affiliation(s)
- Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences Henan University Kaifeng, Henan 475004, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Saggu M, Fried SD, Boxer SG. Local and Global Electric Field Asymmetry in Photosynthetic Reaction Centers. J Phys Chem B 2019; 123:1527-1536. [PMID: 30668130 DOI: 10.1021/acs.jpcb.8b11458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of unidirectional electron transfer in photosynthetic reaction centers (RCs) has been widely discussed. Despite the high level of structural similarity between the two branches of pigments that participate in the initial electron transfer steps of photosynthesis, electron transfer only occurs along one branch. One possible explanation for this functional asymmetry is the differences in the electrostatic environment between the active and the inactive branches arising from the charges and dipoles of the organized protein structure. We present an analysis of electric fields in the RC of the purple bacterium Rhodobacter sphaeroides using the intrinsic carbonyl groups of the pigments as vibrational reporters whose vibrational frequency shifts can be converted into electric fields based on the vibrational Stark effect and also provide Stark effect data for plant pigments that can be used in future studies. The carbonyl stretches of the isolated pigments show pronounced Stark effects. We use these data, solvatochromism, molecular dynamics simulations, and data in the literature from IR and Raman spectra to evaluate differences in fields at symmetry-related positions, in particular at the 9-keto and 2-acetyl positions of the pigments involved in primary charge separation.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Stephen D Fried
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Steven G Boxer
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| |
Collapse
|
15
|
Krause BS, Kaufmann JCD, Kuhne J, Vierock J, Huber T, Sakmar TP, Gerwert K, Bartl FJ, Hegemann P. Tracking Pore Hydration in Channelrhodopsin by Site-Directed Infrared-Active Azido Probes. Biochemistry 2019; 58:1275-1286. [DOI: 10.1021/acs.biochem.8b01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Benjamin S. Krause
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Joel C. D. Kaufmann
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Kuhne
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Johannes Vierock
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Thomas Huber
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Alfred Nobels Allé 23, 141 57 Huddinge, Sweden
| | - Klaus Gerwert
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Franz J. Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
16
|
Liang H, Ma L, Li C, Peng Q, Wang Z, Zhang ZX, Yu L, Liu H, An F, Xue W. Efficient glycosylation with glycosyl ortho-allylbenzoates as donors. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Dalton SR, Vienneau AR, Burstein SR, Xu RJ, Linse S, Londergan CH. Cyanylated Cysteine Reports Site-Specific Changes at Protein-Protein-Binding Interfaces Without Perturbation. Biochemistry 2018; 57:3702-3712. [PMID: 29787228 PMCID: PMC6034165 DOI: 10.1021/acs.biochem.8b00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
To investigate the
cyanylated cysteine vibrational probe group’s
ability to report on binding-induced changes along a protein–protein
interface, the probe group was incorporated at several sites in a
peptide of the calmodulin (CaM)-binding domain of skeletal muscle
myosin light chain kinase. Isothermal titration calorimetry was used
to determine the binding thermodynamics between calmodulin and each
peptide. For all probe positions, the binding affinity was nearly
identical to that of the unlabeled peptide. The CN stretching infrared
band was collected for each peptide free in solution and bound to
calmodulin. Binding-induced shifts in the IR spectral frequencies
were correlated with estimated solvent accessibility based on molecular
dynamics simulations. This work generally suggests (1) that site-specific
incorporation of this vibrational probe group does not cause major
perturbations to its local structural environment and (2) that this
small probe group might be used quite broadly to map dynamic protein-binding
interfaces. However, site-specific perturbations due to artificial
labeling groups can be somewhat unpredictable and should be evaluated
on a site-by-site basis through complementary measurements. A fully
quantitative, simulation-based interpretation of the rich probe IR
spectra is still needed but appears to be possible given recent advances
in simulation techniques.
Collapse
Affiliation(s)
- Shannon R Dalton
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Alice R Vienneau
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Shana R Burstein
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Rosalind J Xu
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| | - Sara Linse
- Department of Chemistry and Biochemistry , Lund University , Kemicentrum, Box 118 , 221 00 Lund , Sweden
| | - Casey H Londergan
- Department of Chemistry , Haverford College , 370 Lancaster Ave , Haverford , Pennsylvania 19041-1392 , United States
| |
Collapse
|
18
|
Fetto NR, Cao W, Wallace IS, Tucker MJ. Selective Excitation of Cyanophenylalanine Fluorophores for Multi-Site Binding Studies. J Phys Chem B 2017; 121:9566-9571. [PMID: 28949137 DOI: 10.1021/acs.jpcb.7b08442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, it has been shown that nitrile-derivatized phenylalanines possess distinct fluorescent properties depending on the position of the cyano-group within the aromatic ring. These fluorophores have potential as probes for studying protein dynamics due to their sensitivity to local environment. Herein, we demonstrate that 2-cyanophenylalanine (Phe2CN) and Phe4CN can independently monitor multiple sites during the Ca2+ dependent binding of a skeletal muscle myosin light chain kinase (MLCK) peptide fragment to the protein calmodulin (CaM). These cyano-probes were incorporated at two different positions along the peptide chain and monitored simultaneously via selective excitation of the two chromophores. The peptide was labeled with Phe4CN at a residue known to bind to a hydrophobic binding pocket of CaM, while Phe2CN was designed to acquire dynamics external to the binding pocket. By selectively exciting each of the chromophores, it was determined that the fluorescence emission of Phe4CN located at position 581 of MLCK was quenched in the presence of CaM, while no significant change in Phe2CN emission was observed at exposed position 594. The CaM binding affinity (Kd) of the double labeled MLCK peptide was calculated to be approximately 64 nM, which is in agreement with previous measurements. These results indicate that multiple PheCN reporters within the same peptide can simultaneously detect variations in the local environment, and that these fluorophores could be utilized to investigate a wide variety of biological problems.
Collapse
Affiliation(s)
- Natalie R Fetto
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Wenqiang Cao
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Ian S Wallace
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States.,Department of Biochemistry and Molecular Biology, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
19
|
Bottecchia C, Rubens M, Gunnoo SB, Hessel V, Madder A, Noël T. Visible-Light-Mediated Selective Arylation of Cysteine in Batch and Flow. Angew Chem Int Ed Engl 2017; 56:12702-12707. [PMID: 28805276 PMCID: PMC5656832 DOI: 10.1002/anie.201706700] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 12/02/2022]
Abstract
A mild visible-light-mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal-free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine-containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate-buffered saline (PBS) buffer) within a short reaction time.
Collapse
Affiliation(s)
- Cecilia Bottecchia
- Eindhoven University of TechnologyDepartment of Chemical Engineering and ChemistryDen Dolech 2Eindhoven5614 AZThe Netherlands
| | - Maarten Rubens
- Eindhoven University of TechnologyDepartment of Chemical Engineering and ChemistryDen Dolech 2Eindhoven5614 AZThe Netherlands
| | - Smita B. Gunnoo
- Organic and Biomimetic Chemistry Research GroupDepartment of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 2819000GentBelgium
| | - Volker Hessel
- Eindhoven University of TechnologyDepartment of Chemical Engineering and ChemistryDen Dolech 2Eindhoven5614 AZThe Netherlands
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research GroupDepartment of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 2819000GentBelgium
| | - Timothy Noël
- Eindhoven University of TechnologyDepartment of Chemical Engineering and ChemistryDen Dolech 2Eindhoven5614 AZThe Netherlands
| |
Collapse
|
20
|
Bottecchia C, Rubens M, Gunnoo SB, Hessel V, Madder A, Noël T. Visible‐Light‐Mediated Selective Arylation of Cysteine in Batch and Flow. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706700] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cecilia Bottecchia
- Eindhoven University of Technology Department of Chemical Engineering and Chemistry Den Dolech 2 Eindhoven 5614 AZ The Netherlands
| | - Maarten Rubens
- Eindhoven University of Technology Department of Chemical Engineering and Chemistry Den Dolech 2 Eindhoven 5614 AZ The Netherlands
| | - Smita B. Gunnoo
- Organic and Biomimetic Chemistry Research Group Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 9000 Gent Belgium
| | - Volker Hessel
- Eindhoven University of Technology Department of Chemical Engineering and Chemistry Den Dolech 2 Eindhoven 5614 AZ The Netherlands
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 9000 Gent Belgium
| | - Timothy Noël
- Eindhoven University of Technology Department of Chemical Engineering and Chemistry Den Dolech 2 Eindhoven 5614 AZ The Netherlands
| |
Collapse
|
21
|
Chalyavi F, Hogle DG, Tucker MJ. Tyrosine as a Non-perturbing Site-Specific Vibrational Reporter for Protein Dynamics. J Phys Chem B 2017; 121:6380-6389. [DOI: 10.1021/acs.jpcb.7b04999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - David G. Hogle
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
22
|
Ahmed IA, Gai F. Simple method to introduce an ester infrared probe into proteins. Protein Sci 2017; 26:375-381. [PMID: 27813296 DOI: 10.1002/pro.3076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023]
Abstract
The ester carbonyl stretching vibration has recently been shown to be a sensitive and convenient infrared (IR) probe of protein electrostatics due to the linear dependence of its frequency on local electric field. While an ester moiety can be easily incorporated into peptides via solid-phase synthesis, currently there is no method available to site-specifically incorporate it into a large protein. Herein, we show that it is possible to use a cysteine alkylation reaction to achieve this goal and demonstrate the feasibility of this simple method by successfully incorporating a methyl ester group (CH2 COOCH3 ) into a model peptide (YGGCGG), two amyloid-forming peptides derived from the insulin B chain and Aβ, and bovine serum albumin (BSA). IR results obtained with those peptide and protein systems further confirm the utility of this vibrational probe in monitoring, for example, the structural integrity of amyloid fibrils and ligand binding-induced changes in protein local hydration status.
Collapse
Affiliation(s)
- Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
23
|
Gosavi PM, Korendovych IV. Minimalist IR and fluorescence probes of protein function. Curr Opin Chem Biol 2016; 34:103-109. [PMID: 27599185 DOI: 10.1016/j.cbpa.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
Spectroscopic studies of small proteins and peptides, especially those requiring fine spatial and/or temporal resolution, demand synthetic probes that confer the minimal possible steric and functional change on the native properties. Here we review the recent progress in development of minimally disruptive probes for fluorescence and infrared spectroscopies, as well as the methods to efficiently incorporate them into proteins. Advances in spectroscopy on the one hand result in high specialization of synthetic probes for a particular purpose, but on the other hand allow for the same probes be used for different techniques to gather complementary biochemical information.
Collapse
Affiliation(s)
- Pallavi M Gosavi
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
24
|
Schmitz AJ, Hogle DG, Gai XS, Fenlon EE, Brewer SH, Tucker MJ. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside. J Phys Chem B 2016; 120:9387-94. [PMID: 27510724 DOI: 10.1021/acs.jpcb.6b07212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vibrations in the azide, N3, asymmetric stretching region and nitrile, CN, symmetric stretching region of 2'-azido-5-cyano-2'-deoxyuridine (N3CNdU) are examined by two-dimensional infrared (2D IR) spectroscopy. At earlier waiting times, the 2D IR spectrum shows the presence of both vibrational transitions along the diagonal and off-diagonal cross peaks indicating vibrational coupling. The coupling strength is determined from the off-diagonal anharmonicity to be 66 cm(-1) for the intramolecular distance of ∼7.9 Å, based on a structural map generated for this model system. In addition, the frequency-frequency correlation decay is detected, monitoring the solvent dynamics around each individual probe position. Overall, these vibrational reporters can be utilized in tandem to simultaneously track global structural information and fast structural fluctuations.
Collapse
Affiliation(s)
- Andrew J Schmitz
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| | - David G Hogle
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| | - Xin Sonia Gai
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Edward E Fenlon
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H Brewer
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| |
Collapse
|
25
|
Deb P, Haldar T, Kashid SM, Banerjee S, Chakrabarty S, Bagchi S. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins. J Phys Chem B 2016; 120:4034-46. [DOI: 10.1021/acs.jpcb.6b02732] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pranab Deb
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tapas Haldar
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Somnath M Kashid
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Subhrashis Banerjee
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
26
|
Gunnoo SB, Madder A. Chemical Protein Modification through Cysteine. Chembiochem 2016; 17:529-53. [DOI: 10.1002/cbic.201500667] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Smita B. Gunnoo
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| | - Annemieke Madder
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| |
Collapse
|
27
|
Gao Y, Zou Y, Ma Y, Wang D, Sun Y, Ma G. Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8-28) Amyloid Fibril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:937-946. [PMID: 26796491 DOI: 10.1021/acs.langmuir.5b03616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are unique fibrous polypeptide aggregates. They have been associated with more than 20 serious human diseases including Alzheimer's disease and Parkinson's disease. Besides their pathological significance, amyloid fibrils are also gaining increasing attention as emerging nanomaterials with novel functions. Structural characterization of amyloid fibril is no doubt fundamentally important for the development of therapeutics for amyloid-related diseases and for the rational design of amyloid-based materials. In this study, we explored to use side-chain-based infrared (IR) probe to gain detailed structural insights into the amyloid fibril by a 21-residue model amyloidogenic peptide, Aβ(8-28). We first proposed an approach to incorporate thiocyanate (SCN) IR probe in a site-specific manner into amyloidogenic peptide using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as cyanylating agent. Using this approach, we obtained three Aβ(8-28) variants, labeled with SCN probe at three different positions. We then showed with thioflavin T fluorescence assay, Congo red assay, and atomic force microscopy that the three labeled Aβ(8-28) peptides can quickly form amyloid fibrils under high concentration and high salt conditions. Finally, we performed a detailed IR spectral analysis of the Aβ(8-28) fibril in both amide I and probe regions and proposed a millipede-like structure for the Aβ(8-28) fibril.
Collapse
Affiliation(s)
- Yachao Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Yan Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| |
Collapse
|
28
|
Völler J, Biava H, Koksch B, Hildebrandt P, Budisa N. Orthogonal Translation Meets Electron Transfer: In Vivo Labeling of Cytochromecfor Probing Local Electric Fields. Chembiochem 2015; 16:742-5. [DOI: 10.1002/cbic.201500022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Indexed: 02/02/2023]
|
29
|
Affiliation(s)
- Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, 10623 Berlin, Germany.
| |
Collapse
|
30
|
Abstract
Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.
Collapse
|
31
|
Tookmanian EM, Fenlon EE, Brewer SH. Synthesis and Protein Incorporation of Azido-Modified Unnatural Amino Acids. RSC Adv 2014; 5:1274-1281. [PMID: 26478813 PMCID: PMC4603873 DOI: 10.1039/c4ra14244f] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two new azidophenylalanine residues (3 and 4) have been synthesized and, in combination with 4-azido-L-phenylalanine (1) and 4-azidomethyl-L-phenylalanine (2), form a series of unnatural amino acids (UAAs) containing the azide vibrational reporter at varying distances from the aromatic ring of phenylalanine. These UAAs were designed to probe protein hydration with high spatial resolution by utilizing the large extinction coefficient and environmental sensitivity of the azide asymmetric stretch vibration. The sensitivity of the azide reporters was investigated in solvents that mimic distinct local protein environments. Three of the four azido-modified phenylalanine residues were successfully genetically incorporated into a surface site in superfolder green fluorescent protein (sfGFP) utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity. SDS-PAGE and ESI-Q-TOF mass analysis verified the site-specific incorporation of these UAAs. The observed azide asymmetric stretch in the linear IR spectra of these UAAs incorporated into sfGFP indicated that the azide groups were hydrated in the protein.
Collapse
Affiliation(s)
- Elise M. Tookmanian
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003 USA
| | - Edward E. Fenlon
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003 USA
| | - Scott H. Brewer
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003 USA
| |
Collapse
|
32
|
Peran I, Oudenhoven T, Woys AM, Watson M, Zhang TO, Carrico I, Zanni MT, Raleigh DP. General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins. J Phys Chem B 2014; 118:7946-53. [PMID: 24749542 PMCID: PMC4317048 DOI: 10.1021/jp5008279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/19/2014] [Indexed: 11/28/2022]
Abstract
A high-sensitivity metal-carbonyl-based IR probe is described that can be incorporated into proteins or other biomolecules in very high yield via Click chemistry. A two-step strategy is demonstrated. First, a methionine auxotroph is used to incorporate the unnatural amino acid azidohomoalanine at high levels. Second, a tricarbonyl (η(5)-cyclopentadienyl) rhenium(I) probe modified with an alkynyl linkage is coupled via the Click reaction. We demonstrate these steps using the C-terminal domain of the ribosomal protein L9 as a model system. An overall incorporation level of 92% was obtained at residue 109, which is a surface-exposed residue. Incorporation of the probe into a surface site is shown not to perturb the stability or structure of the target protein. Metal carbonyls are known to be sensitive to solvation and protein electrostatics through vibrational lifetimes and frequency shifts. We report that the frequencies and lifetimes of this probe also depend on the isotopic composition of the solvent. Comparison of the lifetimes measured in H2O versus D2O provides a probe of solvent accessibility. The metal carbonyl probe reported here provides an easy and robust method to label very large proteins with an amino-acid-specific tag that is both environmentally sensitive and a very strong absorber.
Collapse
Affiliation(s)
- Ivan Peran
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tracey Oudenhoven
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Ann Marie Woys
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Matthew
D. Watson
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tianqi O. Zhang
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Isaac Carrico
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Daniel P. Raleigh
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
33
|
Moran SD, Zhang TO, Zanni MT. An alternative structural isoform in amyloid-like aggregates formed from thermally denatured human γD-crystallin. Protein Sci 2014; 23:321-31. [PMID: 24415662 DOI: 10.1002/pro.2422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/11/2022]
Abstract
The eye lens protein γD-crystallin contributes to cataract formation in the lens. In vitro experiments show that γD-crystallin has a high propensity to form amyloid fibers when denatured, and that denaturation by acid or UV-B photodamage results in its C-terminal domain forming the β-sheet core of amyloid fibers. Here, we show that thermal denaturation results in sheet-like aggregates that contain cross-linked oligomers of the protein, according to transmission electron microscopy and SDS-PAGE. We use two-dimensional infrared spectroscopy to show that these aggregates have an amyloid-like secondary structure with extended β-sheets, and use isotope dilution experiments to show that each protein contributes approximately one β-strand to each β-sheet in the aggregates. Using segmental (13) C labeling, we show that the organization of the protein's two domains in thermally induced aggregates results in a previously unobserved structure in which both the N-terminal and C-terminal domains contribute to β-sheets. We propose a model for the structural organization of the aggregates and attribute the recruitment of the N-terminal domain into the fiber structure to intermolecular cross linking.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | | | | |
Collapse
|
34
|
Woys AM, Mukherjee SS, Skoff DR, Moran SD, Zanni MT. A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies. J Phys Chem B 2013; 117:5009-18. [PMID: 23537223 DOI: 10.1021/jp402946c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of non-natural infrared probes is reported that consist of a metal-tricarbonyl modified with a -(CH2)n- linker and cysteine-specific leaving group. They can be site-specifically attached to proteins using mutagenesis and similar protocols for EPR spin labels, which have the same leaving group. We characterize the label's frequencies and lifetimes using 2D IR spectroscopy in solvents of varying dielectric. The frequency range spans 10 cm(-1), and the variation in lifetimes ranges from 6 to 19 ps, indicating that these probes are very sensitive to their environments. Also, we attached probes with -(CH2)-, -(CH2)3-, and -(CH2)4- linkers to ubiquitin at positions 6 and 63 and collected spectra in aqueous buffer. The frequencies and lifetimes were correlated for 3C and 4C linkers, as they were in the solvents, but did not correlate for the 1C linker. We conclude that lifetime measures solvation, whereas frequency reflects the electrostatics of the environment, which in the case of the 1C linker is a measure of the protein electrostatic field. We also labeled V71C α-synuclein in buffer and membrane-bound. Unlike most other infrared labels, this label has extremely strong cross sections and thus can be measured with 2D IR spectroscopy at sub-millimolar concentrations. We expect that these labels will find use in studying the structure and dynamics of membrane-bound, aggregated, and kinetically evolving proteins for which high signal-to-noise at low protein concentrations is imperative.
Collapse
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | | | | | | | | |
Collapse
|
35
|
Moroz YS, Binder W, Nygren P, Caputo GA, Korendovych IV. Painting proteins blue: β-(1-azulenyl)-L-alanine as a probe for studying protein-protein interactions. Chem Commun (Camb) 2013; 49:490-2. [PMID: 23207368 PMCID: PMC3547328 DOI: 10.1039/c2cc37550h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrated that β-(1-azulenyl)-L-alanine, a fluorescent pseudoisosteric analog of tryptophan, exhibits weak environmental dependence and thus allows for using weak intrinsic quenchers, such as methionines, to monitor protein-protein interactions while not perturbing them.
Collapse
Affiliation(s)
- Yurii S. Moroz
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Wolfgang Binder
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
- Department of Chemistry, Technical University of Graz, Graz, Austria
| | - Patrik Nygren
- Department of Hematology and Oncology, University of Pennsylvania Medical School, Philadelphia, PA 19014, USA
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
36
|
Schkolnik G, Utesch T, Zhao J, Jiang S, Thompson MK, Mroginski MA, Hildebrandt P, Franzen S. Catalytic efficiency of dehaloperoxidase A is controlled by electrostatics – application of the vibrational Stark effect to understand enzyme kinetics. Biochem Biophys Res Commun 2013; 430:1011-5. [DOI: 10.1016/j.bbrc.2012.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 11/17/2022]
|
37
|
Bloem E, Koziol K, Waldauer SA, Buchli B, Walser R, Samatanga B, Jelesarov I, Hamm P. Ligand binding studied by 2D IR spectroscopy using the azidohomoalanine label. J Phys Chem B 2012; 116:13705-12. [PMID: 23116486 DOI: 10.1021/jp3095209] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We explore the capability of the azidohomoalanine (Aha) as a vibrational label for 2D IR spectroscopy to study the binding of the target peptide to the PDZ2 domain. The Aha label responds sensitively to its local environment and its peak extinction coefficient of 350-400 M(-1) cm(-1) is high enough to routinely measure it in the low millimolar concentration regime. The central frequency, inhomogeneous width and spectral diffusion times deduced from the 2D IR line shapes of the Aha label at various positions in the peptide sequence is discussed in relationship to the known X-ray structure of the peptide bound to the PDZ2 domain. The results suggest that the Aha label introduces only a small perturbation to the overall structure of the peptide in the binding pocket. Finally, Aha is a methionine analog that can be incorporated also into larger proteins at essentially any position using protein expression. Altogether, Aha thus fulfills the requirements a versatile label should have for studies of protein structure and dynamics by 2D IR spectroscopy.
Collapse
Affiliation(s)
- Elin Bloem
- Institute of Physical Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xue L, Zou F, Zhao Y, Huang X, Qu Y. Nitrile group as infrared probe for the characterization of the conformation of bovine serum albumin solubilized in reverse micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 97:858-863. [PMID: 22902928 DOI: 10.1016/j.saa.2012.07.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/08/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Infrared spectroscopy is a powerful technique for structure characterization. For a protein hosted in a reversed micellar medium, the spectral features of the protein are always interfered by the IR absorption bands of the medium in addition to the congestion in their IR spectra. Fortunately, there is a transparent window in the 2500-2200 cm(-1) region. Incorporation of a vibrational probe with IR absorption frequencies in this region into proteins represents a promising strategy for the study of the conformation of a protein in a reverse micelle. In the present work, we incorporated 4-cyanobenzyl group (CN) into bovine serum albumin (BSA) via cysteine alkylation reactions under mild conditions. Circular dichroism spectroscopy showed that the CN modified BSA (CNBSA) could retain its conformation. When CNBSA was hosted in AOT reverse micelle, it was found that the nitrile group on BSA was sensitive to the conformational change of BSA induced by urea as an additive in the reverse micelle. The peak splitting of nitrile group was also observed when the size of AOT reverse micelle and the concentration of an electrolyte were varied. Obviously, the shift of the IR absorption peak and/or peak splitting of nitrile group on BSA are correlated with the change of BSA conformation in AOT reverse micelle. So we conclude that the nitrile infrared probe can be used to study protein conformation in a reverse micelle.
Collapse
Affiliation(s)
- Luyan Xue
- Key Laboratory of Colloid & Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, PR China
| | | | | | | | | |
Collapse
|
39
|
Jha SK, Ji M, Gaffney KJ, Boxer SG. Site-specific measurement of water dynamics in the substrate pocket of ketosteroid isomerase using time-resolved vibrational spectroscopy. J Phys Chem B 2012; 116:11414-21. [PMID: 22931297 DOI: 10.1021/jp305225r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ(5)-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photoexcitation of a nitrile-containing photoacid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. On the basis of this result, we hypothesize that rigid water dipoles at the active site might help in the maintenance of the preorganized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation.
Collapse
Affiliation(s)
- Santosh Kumar Jha
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, USA
| | | | | | | |
Collapse
|
40
|
Schkolnik G, Salewski J, Millo D, Zebger I, Franzen S, Hildebrandt P. Vibrational stark effect of the electric-field reporter 4-mercaptobenzonitrile as a tool for investigating electrostatics at electrode/SAM/solution interfaces. Int J Mol Sci 2012; 13:7466-7482. [PMID: 22837705 PMCID: PMC3397537 DOI: 10.3390/ijms13067466] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 01/24/2023] Open
Abstract
4-mercaptobenzonitrile (MBN) in self-assembled monolayers (SAMs) on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE). Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.
Collapse
Affiliation(s)
- Gal Schkolnik
- Technische Universität Berlin, Insitut für Chemie, Sekr. PC14, Straße des 17, Juni 135, Berlin, D-10623, Germany; E-Mails: (G.S.); (J.S.); (D.M.); (I.Z.)
| | - Johannes Salewski
- Technische Universität Berlin, Insitut für Chemie, Sekr. PC14, Straße des 17, Juni 135, Berlin, D-10623, Germany; E-Mails: (G.S.); (J.S.); (D.M.); (I.Z.)
| | - Diego Millo
- Technische Universität Berlin, Insitut für Chemie, Sekr. PC14, Straße des 17, Juni 135, Berlin, D-10623, Germany; E-Mails: (G.S.); (J.S.); (D.M.); (I.Z.)
- Biomolecular Spectroscopy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam, NL-1081 HV, The Netherlands
| | - Ingo Zebger
- Technische Universität Berlin, Insitut für Chemie, Sekr. PC14, Straße des 17, Juni 135, Berlin, D-10623, Germany; E-Mails: (G.S.); (J.S.); (D.M.); (I.Z.)
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, NC 27695, USA; E-Mail:
| | - Peter Hildebrandt
- Technische Universität Berlin, Insitut für Chemie, Sekr. PC14, Straße des 17, Juni 135, Berlin, D-10623, Germany; E-Mails: (G.S.); (J.S.); (D.M.); (I.Z.)
| |
Collapse
|
41
|
Wolfshorndl MP, Baskin R, Dhawan I, Londergan CH. Covalently Bound Azido Groups Are Very Specific Water Sensors, Even in Hydrogen-Bonding Environments. J Phys Chem B 2012; 116:1172-9. [DOI: 10.1021/jp209899m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marta P. Wolfshorndl
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Rachel Baskin
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Ishita Dhawan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| |
Collapse
|
42
|
Bazewicz CG, Lipkin JS, Lozinak KA, Watson MD, Brewer SH. Synthesis of isotopomers of N-(tert-butoxycarbonyl)-4-cyano-l-phenylalanine methyl ester: choice of cyanation solvent. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Waegele MM, Culik RM, Gai F. Site-Specific Spectroscopic Reporters of the Local Electric Field, Hydration, Structure, and Dynamics of Biomolecules. J Phys Chem Lett 2011; 2:2598-2609. [PMID: 22003429 PMCID: PMC3192500 DOI: 10.1021/jz201161b] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elucidating the underlying molecular mechanisms of protein folding and function is a very exciting and active research area, but poses significant challenges. This is due in part to the fact that existing experimental techniques are incapable of capturing snapshots along the 'reaction coordinate' in question with both sufficient spatial and temporal resolutions. In this regard, recent years have seen increased interests and efforts in development and employment of site-specific probes to enhance the structural sensitivity of spectroscopic techniques in conformational and dynamical studies of biological molecules. In particular, the spectroscopic and chemical properties of nitriles, thiocyanates, and azides render these groups attractive for the interrogation of complex biochemical constructs and processes. Here, we review their signatures in vibrational, fluorescence and NMR spectra and their utility in the context of elucidating chemical structure and dynamics of protein and DNA molecules.
Collapse
Affiliation(s)
| | | | - Feng Gai
- To whom correspondence should be addressed; ; Phone: 215-573-6256; Fax: 215-573-2112
| |
Collapse
|
44
|
Gai XS, Coutifaris BA, Brewer SH, Fenlon EE. A direct comparison of azide and nitrile vibrational probes. Phys Chem Chem Phys 2011; 13:5926-30. [PMID: 21336362 DOI: 10.1039/c0cp02774j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthesis of 2'-azido-5-cyano-2'-deoxyuridine, N(3)CNdU (1), from trityl-protected 2'-amino-2'-deoxyuridine was accomplished in four steps with a 12.5% overall yield. The IR absorption positions and profiles of the azide and nitrile group of N(3)CNdU were investigated in 14 different solvents and water/DMSO solvent mixtures. The azide probe was superior to the nitrile probe in terms of its extinction coefficient, which is 2-4 times larger. However, the nitrile IR absorbance profile is generally less complicated by accidental Fermi resonance. The IR frequencies of both probes undergo a substantial red shift upon going from water to aprotic solvents such as THF or DMSO. DFT calculations supported the hypothesis that the molecular origin of the higher observed frequency in water is primarily due to hydrogen bonds between the probes and water molecules.
Collapse
Affiliation(s)
- Xin Sonia Gai
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003, USA
| | | | | | | |
Collapse
|