1
|
Serrano A, Cinca-Fernando P, Carro J, Velázquez-Campoy A, Martínez-Júlvez M, Martínez ÁT, Ferreira P. Unveiling the kinetic versatility of aryl-alcohol oxidases with different electron acceptors. Front Bioeng Biotechnol 2024; 12:1440598. [PMID: 39161354 PMCID: PMC11330772 DOI: 10.3389/fbioe.2024.1440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: Aryl-alcohol oxidase (AAO) shows a pronounced duality as oxidase and dehydrogenase similar to that described for other glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily proteins involved in lignocellulose decomposition. In this work, we detail the overall mechanism of AAOs from Pleurotus eryngii and Bjerkandera adusta for catalyzing the oxidation of natural aryl-alcohol substrates using either oxygen or quinones as electron acceptors and describe the crystallographic structure of AAO from B. adusta in complex with a product analogue. Methods: Kinetic studies with 4-methoxybenzyl and 3-chloro-4- methoxybenzyl alcohols, including both transient-state and steady-state analyses, along with interaction studies, provide insight into the oxidase and dehydrogenase mechanisms of these enzymes. Moreover, the resolution of the crystal structure of AAO from B. adusta allowed us to compare their overall folding and the structure of the active sites of both AAOs in relation to their activities. Results and Discussion: Although both enzymes show similar mechanistic properties, notable differences are highlighted in this study. In B. adusta, the AAO oxidase activity is limited by the reoxidation of the flavin, while in P. eryngii the slower step takes place during the reductive half-reaction, which determines the overall reaction rate. By contrast, dehydrogenase activity in both enzymes, irrespective of the alcohol participating in the reaction, is limited by the hydroquinone release from the active site. Despite these differences, both AAOs are more efficient as dehydrogenases, supporting the physiological role of this activity in lignocellulosic decay. This dual activity would allow these enzymes to adapt to different environments based on the available electron acceptors.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Paula Cinca-Fernando
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
- Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Ángel T. Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
2
|
Maiti BK, Moura I, Moura JJG. Molybdenum-Copper Antagonism In Metalloenzymes And Anti-Copper Therapy. Chembiochem 2024; 25:e202300679. [PMID: 38205937 DOI: 10.1002/cbic.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
The connection between 3d (Cu) and 4d (Mo) via the "Mo-S-Cu" unit is called Mo-Cu antagonism. Biology offers case studies of such interactions in metalloproteins such as Mo/Cu-CO Dehydrogenases (Mo/Cu-CODH), and Mo/Cu Orange Protein (Mo/Cu-ORP). The CODH significantly maintains the CO level in the atmosphere below the toxic level by converting it to non-toxic CO2 for respiring organisms. Several models were synthesized to understand the structure-function relationship of these native enzymes. However, this interaction was first observed in ruminants, and they convert molybdate (MoO4 2- ) into tetrathiomolybdate (MoS4 2- ; TTM), reacting with cellular Cu to yield biological unavailable Mo/S/Cu cluster, then developing Cu-deficiency diseases. These findings inspire the use of TTM as a Cu-sequester drug, especially for treating Cu-dependent human diseases such as Wilson diseases (WD) and cancer. It is well known that a balanced Cu homeostasis is essential for a wide range of biological processes, but negative consequence leads to cell toxicity. Therefore, this review aims to connect the Mo-Cu antagonism in metalloproteins and anti-copper therapy.
Collapse
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry, School of sciences, Cluster University of Jammu, Canal Road, Jammu, 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus, de Caparica, Portugal
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus, de Caparica, Portugal
| |
Collapse
|
3
|
Bährle R, Böhnke S, Englhard J, Bachmann J, Perner M. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. BIORESOUR BIOPROCESS 2023; 10:84. [PMID: 38647803 PMCID: PMC10992861 DOI: 10.1186/s40643-023-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/16/2023] [Indexed: 04/25/2024] Open
Abstract
Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth's atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.
Collapse
Affiliation(s)
- Rebecca Bährle
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Stefanie Böhnke
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Jonas Englhard
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Mirjam Perner
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany.
| |
Collapse
|
4
|
Imaura Y, Okamoto S, Hino T, Ogami Y, Katayama YA, Tanimura A, Inoue M, Kamikawa R, Yoshida T, Sako Y. Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation. Appl Environ Microbiol 2023; 89:e0018523. [PMID: 37219438 PMCID: PMC10304674 DOI: 10.1128/aem.00185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
Prokaryotes that can oxidize carbon monoxide (CO oxidizers) can use this gas as a source of carbon or energy. They oxidize carbon monoxide with carbon monoxide dehydrogenases (CODHs): these are divided into nickel-containing CODH (Ni-CODH), which are sensitive to O2, and molybdenum-containing CODH (Mo-CODH), which can function aerobically. The oxygen conditions required for CO oxidizers to oxidize CO may be limited, as those which have been isolated and characterized so far contain either Ni- or Mo-CODH. Here, we report a novel CO oxidizer, Parageobacillus sp. G301, which is capable of CO oxidation using both types of CODH based on genomic and physiological characterization. This thermophilic, facultatively anaerobic Bacillota bacterium was isolated from the sediments of a freshwater lake. Genomic analyses revealed that strain G301 possessed both Ni-CODH and Mo-CODH. Genome-based reconstruction of its respiratory machinery and physiological investigations indicated that CO oxidation by Ni-CODH was coupled with H2 production (proton reduction), whereas CO oxidation by Mo-CODH was coupled with O2 reduction under aerobic conditions and nitrate reduction under anaerobic conditions. G301 would thus be able to thrive via CO oxidation under a wide range of conditions, from aerobic environments to anaerobic environments, even with no terminal electron acceptors other than protons. Comparative genome analyses revealed no significant differences in genome structures and encoded cellular functions, except for CO oxidation between CO oxidizers and non-CO oxidizers in the genus Parageobacillus; CO oxidation genes are retained exclusively for CO metabolism and related respiration. IMPORTANCE Microbial CO oxidation has received much attention because it contributes to global carbon cycling in addition to functioning as a remover of CO, which is toxic to many organisms. Some microbial CO oxidizers, including both bacteria and archaea, exhibit sister relationships with non-CO oxidizers even in genus-level monophyletic groups. In this study, we demonstrated that a new isolate, Parageobacillus sp. G301, is capable of both anaerobic (hydrogenogenic) and aerobic CO oxidation, which has not been previously reported. The discovery of this new isolate, which is versatile in CO metabolism, will accelerate research on CO oxidizers with diverse CO metabolisms, expanding our understanding of microbial diversity. Through comparative genomic analyses, we propose that CO oxidation genes are not essential genetic elements in the genus Parageobacillus, providing insights into the factors which shape the punctate distribution of CO oxidizers in the prokaryote tree, even in genus-level monophyletic groups.
Collapse
Affiliation(s)
| | | | - Taiki Hino
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yusuke Ogami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ayumi Tanimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- R-GIRO, Ritsumeikan University, Kusatsu, Shiga, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Ferreira P, Carro J, Balcells B, Martínez AT, Serrano A. Expanding the Physiological Role of Aryl-Alcohol Flavooxidases as Quinone Reductases. Appl Environ Microbiol 2023; 89:e0184422. [PMID: 37154753 DOI: 10.1128/aem.01844-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Aryl-alcohol oxidases (AAOs) are members of the glucose-methanol-choline oxidase/dehydrogenase (GMC) superfamily. These extracellular flavoproteins have been described as auxiliary enzymes in the degradation of lignin by several white-rot basidiomycetes. In this context, they oxidize fungal secondary metabolites and lignin-derived compounds using O2 as an electron acceptor, and supply H2O2 to ligninolytic peroxidases. Their substrate specificity, including mechanistic aspects of the oxidation reaction, has been characterized in Pleurotus eryngii AAO, taken as a model enzyme of this GMC superfamily. AAOs show broad reducing-substrate specificity in agreement with their role in lignin degradation, being able to oxidize both nonphenolic and phenolic aryl alcohols (and hydrated aldehydes). In the present work, the AAOs from Pleurotus ostreatus and Bjerkandera adusta were heterologously expressed in Escherichia coli, and their physicochemical properties and oxidizing abilities were compared with those of the well-known recombinant AAO from P. eryngii. In addition, electron acceptors different from O2, such as p-benzoquinone and the artificial redox dye 2,6-Dichlorophenolindophenol, were also studied. Differences in reducing-substrate specificity were found between the AAO enzymes from B. adusta and the two Pleurotus species. Moreover, the three AAOs oxidized aryl alcohols concomitantly with the reduction of p-benzoquinone, with similar or even higher efficiencies than when using their preferred oxidizing-substrate, O2. IMPORTANCE In this work, quinone reductase activity is analyzed in three AAO flavooxidases, whose preferred oxidizing-substrate is O2. The results presented, including reactions in the presence of both oxidizing substrates-benzoquinone and molecular oxygen-suggest that such aryl-alcohol dehydrogenase activity, although less important than its oxidase activity in terms of maximal turnover, may have a physiological role during fungal decay of lignocellulose by the reduction of quinones (and phenoxy radicals) from lignin degradation, preventing repolymerization. Moreover, the resulting hydroquinones would participate in redox-cycling reactions for the production of hydroxyl free radical involved in the oxidative attack of the plant cell-wall. Hydroquinones can also act as mediators for laccases and peroxidases in lignin degradation in the form of semiquinone radicals, as well as activators of lytic polysaccharide monooxygenases in the attack of crystalline cellulose. Moreover, reduction of these, and other phenoxy radicals produced by laccases and peroxidases, promotes lignin degradation by limiting repolymerization reactions. These findings expand the role of AAO in lignin biodegradation.
Collapse
Affiliation(s)
- Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - Beatriz Balcells
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - Ana Serrano
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| |
Collapse
|
6
|
Partipilo M, Claassens NJ, Slotboom DJ. A Hitchhiker's Guide to Supplying Enzymatic Reducing Power into Synthetic Cells. ACS Synth Biol 2023; 12:947-962. [PMID: 37052416 PMCID: PMC10127272 DOI: 10.1021/acssynbio.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 04/14/2023]
Abstract
The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico J. Claassens
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Ritacca AG, Rovaletti A, Moro G, Cosentino U, Ryde U, Sicilia E, Greco C. Unraveling the Reaction Mechanism of Mo/Cu CO Dehydrogenase Using QM/MM Calculations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandra G. Ritacca
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Giorgio Moro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Ugo Cosentino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| |
Collapse
|
8
|
Rovaletti A, Moro G, Cosentino U, Ryde U, Greco C. Can water act as a nucleophile in CO oxidation catalysed by Mo/Cu CO-dehydrogenase? Answers from theory. Chemphyschem 2022; 23:e202200053. [PMID: 35170169 PMCID: PMC9310835 DOI: 10.1002/cphc.202200053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Indexed: 11/14/2022]
Abstract
The aerobic CO dehydrogenase from Oligotropha carboxidovorans is an environmentally crucial bacterial enzyme for maintenance of subtoxic concentration of CO in the lower atmosphere, as it allows for the oxidation of CO to CO2 which takes place at its Mo−Cu heterobimetallic active site. Despite extensive experimental and theoretical efforts, significant uncertainties still concern the reaction mechanism for the CO oxidation. In this work, we used the hybrid quantum mechanical/molecular mechanical approach to evaluate whether a water molecule present in the active site might act as a nucleophile upon formation of the new C−O bond, a hypothesis recently suggested in the literature. Our study shows that activation of H2O can be favoured by the presence of the Mo=Oeq group. However, overall our results suggest that mechanisms other than the nucleophilic attack by Mo=Oeq to the activated carbon of the CO substrate are not likely to constitute reactive channels for the oxidation of CO by the enzyme.
Collapse
Affiliation(s)
- Anna Rovaletti
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences, ITALY
| | - Giorgio Moro
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Biotechnology and Biosciences, ITALY
| | - Ugo Cosentino
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences, ITALY
| | - Ulf Ryde
- Lund University: Lunds Universitet, Department of Theoretical Chemistry, ITALY
| | - Claudio Greco
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca, earth and environmental sciences, Piazza della Scienza 1, 20126, Milan, ITALY
| |
Collapse
|
9
|
Jain S, Katsyv A, Basen M, Müller V. The monofunctional CO dehydrogenase CooS is essential for growth of Thermoanaerobacter kivui on carbon monoxide. Extremophiles 2021; 26:4. [PMID: 34919167 PMCID: PMC8683389 DOI: 10.1007/s00792-021-01251-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Thermoanaerobacter kivui is a thermophilic acetogen that can grow on carbon monoxide as sole carbon and energy source. To identify the gene(s) involved in CO oxidation, the genome sequence was analyzed. Two genes potentially encoding CO dehydrogenases were identified. One, cooS, potentially encodes a monofunctional CO dehydrogenase, whereas another, acsA, potentially encodes the CODH component of the CODH/ACS complex. Both genes were cloned, a His-tag encoding sequence was added, and the proteins were produced from a plasmid in T. kivui. His-AcsA copurified by affinity chromatography with AcsB, the acetyl-CoA synthase of the CO dehydrogenase/acetyl CoA synthase complex. His-CooS copurified with CooF1, a small iron-sulfur center containing protein likely involved in electron transport. Both protein complexes had CO:ferredoxin oxidoreductase as well as CO:methyl viologen oxidoreductase activity, but the activity of CooSF1 was 15-times and 231-times lower, respectively. To underline the importance of CooS, the gene was deleted in the CO-adapted strain. Interestingly, the ∆cooS deletion mutant did not grow on CO anymore. These experiments clearly demonstrated that CooS is essential for growth of T. kivui on CO. This is in line with the hypothesis that CooS is the CO-oxidizing enzyme in cells growing on CO.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Alexander Katsyv
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, 18059, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
10
|
Exploiting Aerobic Carboxydotrophic Bacteria for Industrial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:1-32. [PMID: 34894287 DOI: 10.1007/10_2021_178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aerobic carboxydotrophic bacteria are a group of microorganisms which possess the unique trait to oxidize carbon monoxide (CO) as sole energy source with molecular oxygen (O2) to produce carbon dioxide (CO2) which subsequently is used for biomass formation via the Calvin-Benson-Bassham cycle. Moreover, most carboxydotrophs are also able to oxidize hydrogen (H2) with hydrogenases to drive the reduction of carbon dioxide in the absence of CO. As several abundant industrial off-gases contain significant amounts of CO, CO2, H2 as well as O2, these bacteria come into focus for industrial application to produce chemicals and fuels from such gases in gas fermentation approaches. Since the group of carboxydotrophic bacteria is rather unknown and not very well investigated, we will provide an overview about their lifestyle and the underlying metabolic characteristics, introduce promising members for industrial application, and give an overview of available genetic engineering tools. We will point to limitations and discuss challenges, which have to be overcome to apply metabolic engineering approaches and to utilize aerobic carboxydotrophs in the industrial environment.
Collapse
|
11
|
Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, Handley KM, Steindler L. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. THE ISME JOURNAL 2021; 16:1163-1175. [PMID: 34876682 PMCID: PMC8941161 DOI: 10.1038/s41396-021-01165-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023]
Abstract
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
Collapse
Affiliation(s)
- I Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - V Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - M Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - B M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - K M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - L Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
12
|
Zhou H, Pang XY, Wang X, Yao H, Yang LP, Jiang W. Biomimetic Recognition of Quinones in Water by an Endo-Functionalized Cavity with Anthracene Sidewalls. Angew Chem Int Ed Engl 2021; 60:25981-25987. [PMID: 34569134 DOI: 10.1002/anie.202112267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Selective molecular recognition in water is the foundation of numerous biological functions but is a challenge for most synthetic hosts. We employ the concept of endo-functionalized cavity and the strategy of simultaneous construction to address this issue. The concept and the strategy were demonstrated in the construction of a biomimetic host for selectively recognizing quinones in water. The host was synthesized by joining two pieces of bent anthracene dimer through amide bond formation, affording a deep hydrophobic cavity and inward-directing hydrogen bonding sites. The host can recognize quinones over their close analogues in water, and its association affinity to p-benzoquinone is the highest among all the known hosts and is even comparable to that of the bioreceptor. The binding with an anthraquinone reaches nanomolar affinity. Shielded hydrogen bonding, C-H⋅⋅⋅π, and charge transfer interactions, and the hydrophobic effect are responsible for the high binding affinity and selectivity.
Collapse
Affiliation(s)
- Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
13
|
Zhou H, Pang X, Wang X, Yao H, Yang L, Jiang W. Biomimetic Recognition of Quinones in Water by an
Endo
‐Functionalized Cavity with Anthracene Sidewalls. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xin‐Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
14
|
Coskun ÖK, Vuillemin A, Schubotz F, Klein F, Sichel SE, Eisenreich W, Orsi WD. Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks. ISME JOURNAL 2021; 16:257-271. [PMID: 34312482 PMCID: PMC8692406 DOI: 10.1038/s41396-021-01066-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022]
Abstract
Thermodynamic models predict that H2 is energetically favorable for seafloor microbial life, but how H2 affects anabolic processes in seafloor-associated communities is poorly understood. Here, we used quantitative 13C DNA stable isotope probing (qSIP) to quantify the effect of H2 on carbon assimilation by microbial taxa synthesizing 13C-labeled DNA that are associated with partially serpentinized peridotite rocks from the equatorial Mid-Atlantic Ridge. The rock-hosted seafloor community was an order of magnitude more diverse compared to the seawater community directly above the rocks. With added H2, peridotite-associated taxa increased assimilation of 13C-bicarbonate and 13C-acetate into 16S rRNA genes of operational taxonomic units by 146% (±29%) and 55% (±34%), respectively, which correlated with enrichment of H2-oxidizing NiFe-hydrogenases encoded in peridotite-associated metagenomes. The effect of H2 on anabolism was phylogenetically organized, with taxa affiliated with Atribacteria, Nitrospira, and Thaumarchaeota exhibiting the most significant increases in 13C-substrate assimilation in the presence of H2. In SIP incubations with added H2, an order of magnitude higher number of peridotite rock-associated taxa assimilated 13C-bicarbonate, 13C-acetate, and 13C-formate compared to taxa that were not associated with peridotites. Collectively, these findings indicate that the unique geochemical nature of the peridotite-hosted ecosystem has selected for H2-metabolizing, rock-associated taxa that can increase anabolism under high H2 concentrations. Because ultramafic rocks are widespread in slow-, and ultraslow-spreading oceanic lithosphere, continental margins, and subduction zones where H2 is formed in copious amounts, the link between H2 and carbon assimilation demonstrated here may be widespread within these geological settings.
Collapse
Affiliation(s)
- Ömer K Coskun
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aurèle Vuillemin
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Frieder Klein
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Susanna E Sichel
- Departamento de Geologia e Geofísica/LAGEMAR-Universidade Federal Fluminense-Brazil, Niterói, RJ, Brazil
| | - Wolfgang Eisenreich
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany. .,GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
15
|
Rovaletti A, Greco C, Ryde U. QM/MM study of the binding of H 2 to MoCu CO dehydrogenase: development and applications of improved H 2 van der Waals parameters. J Mol Model 2021; 27:68. [PMID: 33538901 PMCID: PMC7862525 DOI: 10.1007/s00894-020-04655-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/20/2020] [Indexed: 11/28/2022]
Abstract
The MoCu CO dehydrogenase enzyme not only transforms CO into CO2 but it can also oxidise H2. Even if its hydrogenase activity has been known for decades, a debate is ongoing on the most plausible mode for the binding of H2 to the enzyme active site and the hydrogen oxidation mechanism. In the present work, we provide a new perspective on the MoCu-CODH hydrogenase activity by improving the in silico description of the enzyme. Energy refinement—by means of the BigQM approach—was performed on the intermediates involved in the dihydrogen oxidation catalysis reported in our previously published work (Rovaletti, et al. “Theoretical Insights into the Aerobic Hydrogenase Activity of Molybdenum–Copper CO Dehydrogenase.” Inorganics 7 (2019) 135). A suboptimal description of the H2–HN(backbone) interaction was observed when the van der Waals parameters described in previous literature for H2 were employed. Therefore, a new set of van der Waals parameters is developed here in order to better describe the hydrogen–backbone interaction. They give rise to improved binding modes of H2 in the active site of MoCu CO dehydrogenase. Implications of the resulting outcomes for a better understanding of hydrogen oxidation catalysis mechanisms are proposed and discussed.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della Scienza 1, 20126, Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della Scienza 1, 20126, Milan, Italy.
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
16
|
Breglia R, Arrigoni F, Sensi M, Greco C, Fantucci P, De Gioia L, Bruschi M. First-Principles Calculations on Ni,Fe-Containing Carbon Monoxide Dehydrogenases Reveal Key Stereoelectronic Features for Binding and Release of CO 2 to/from the C-Cluster. Inorg Chem 2020; 60:387-402. [PMID: 33321036 PMCID: PMC7872322 DOI: 10.1021/acs.inorgchem.0c03034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
In view of the depletion of fossil
fuel reserves and climatic effects
of greenhouse gas emissions, Ni,Fe-containing carbon monoxide dehydrogenase
(Ni-CODH) enzymes have attracted increasing interest in recent years
for their capability to selectively catalyze the reversible reduction
of CO2 to CO (CO2 + 2H+ + 2e– CO + H2O). The possibility of
converting the greenhouse gas CO2 into useful materials
that can be used as synthetic building blocks or, remarkably, as carbon
fuels makes Ni-CODH a very promising target for reverse-engineering
studies. In this context, in order to provide insights into the chemical
principles underlying the biological catalysis of CO2 activation
and reduction, quantum mechanics calculations have been carried out
in the framework of density functional theory (DFT) on different-sized
models of the Ni-CODH active site. With the aim of uncovering which
stereoelectronic properties of the active site (known as the C-cluster)
are crucial for the efficient binding and release of CO2, different coordination modes of CO2 to different forms
and redox states of the C-cluster have been investigated. The results
obtained from this study highlight the key role of the protein environment
in tuning the reactivity and the geometry of the C-cluster. In particular,
the protonation state of His93 is found to be crucial for promoting
the binding or the dissociation of CO2. The oxidation state
of the C-cluster is also shown to be critical. CO2 binds
to Cred2 according to a dissociative mechanism (i.e., CO2 binds to the C-cluster after the release of possible ligands
from Feu) when His93 is doubly protonated. CO2 can also bind noncatalytically to Cred1 according to
an associative mechanism (i.e., CO2 binding is preceded
by the binding of H2O to Feu). Conversely, CO2 dissociates when His93 is singly protonated and the C-cluster
is oxidized at least to the Cint redox state. Density functional theory was used to investigate Ni,Fe-containing
carbon monoxide dehydrogenase enzymes. Different coordination modes
of the substrate CO2 to several forms and redox states
of the C-cluster—the enzyme active site—were considered.
The obtained results highlight the key role of the protein environment
in tuning the reactivity and the geometry of the C-cluster. This helps
to uncover which stereoelectronic properties of the active site are
crucial for the efficient binding and release of CO2.
Collapse
Affiliation(s)
- Raffaella Breglia
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Matteo Sensi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
17
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Kalimuthu P, Petitgenet M, Niks D, Dingwall S, Harmer JR, Hille R, Bernhardt PV. The oxidation-reduction and electrocatalytic properties of CO dehydrogenase from Oligotropha carboxidovorans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148118. [PMID: 31734195 DOI: 10.1016/j.bbabio.2019.148118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/19/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023]
Abstract
CO dehydrogenase (CODH) from the Gram-negative bacterium Oligotropha carboxidovorans is a complex metalloenzyme from the xanthine oxidase family of molybdenum-containing enzymes, bearing a unique binuclear Mo-S-Cu active site in addition to two [2Fe-2S] clusters (FeSI and FeSII) and one equivalent of FAD. CODH catalyzes the oxidation of CO to CO2 with the concomitant introduction of reducing equivalents into the quinone pool, thus enabling the organism to utilize CO as sole source of both carbon and energy. Using a variety of EPR monitored redox titrations and spectroelectrochemistry, we report the redox potentials of CO dehydrogenase at pH 7.2 namely MoVI/V, MoV/IV, FeSI2+/+, FeSII2+/+, FAD/FADH and FADH/FADH-. These potentials are systematically higher than the corresponding potentials seen for other members of the xanthine oxidase family of Mo enzymes, and are in line with CODH utilising the higher potential quinone pool as an electron acceptor instead of pyridine nucleotides. CODH is also active when immobilised on a modified Au working electrode as demonstrated by cyclic voltammetry in the presence of CO.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mélanie Petitgenet
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Stephanie Dingwall
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
19
|
Abstract
Carbon monoxide dehydrogenases (CODHs) catalyze the reversible oxidation of CO with water to CO2, two electrons, and two protons. Two classes of CODHs exist, having evolved from different scaffolds featuring active sites built from different transition metals. The basic properties of both classes are described in this overview chapter.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Berta M Martins
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Dobbek
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Xavier JC, Preiner M, Martin WF. Something special about CO-dependent CO 2 fixation. FEBS J 2018; 285:4181-4195. [PMID: 30240136 PMCID: PMC6282760 DOI: 10.1111/febs.14664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Abstract
Carbon dioxide enters metabolism via six known CO2 fixation pathways, of which only one is linear, exergonic in the direction of CO2‐assimilation, and present in both bacterial and archaeal anaerobes – the Wood‐Ljungdahl (WL) or reductive acetyl‐CoA pathway. Carbon monoxide (CO) plays a central role in the WL pathway as an energy rich intermediate. Here, we scan the major biochemical reaction databases for reactions involving CO and CO2. We identified 415 reactions corresponding to enzyme commission (EC) numbers involving CO2, which are non‐randomly distributed across different biochemical pathways. Their taxonomic distribution, reversibility under physiological conditions, cofactors and prosthetic groups are summarized. In contrast to CO2, only 15 reaction classes involving CO were detected. Closer inspection reveals that CO interfaces with metabolism and the carbon cycle at only two enzymes: anaerobic carbon monoxide dehydrogenase (CODH), a Ni‐ and Fe‐containing enzyme that generates CO for CO2 fixation in the WL pathway, and aerobic CODH, a Mo‐ and Cu‐containing enzyme that oxidizes environmental CO as an electron source. The CO‐dependent reaction of the WL pathway involves carbonyl insertion into a methyl carbon‐nickel at the Ni‐Fe‐S A‐cluster of acetyl‐CoA synthase (ACS). It appears that no alternative mechanisms to the CO‐dependent reaction of ACS have evolved in nearly 4 billion years, indicating an ancient and mechanistically essential role for CO at the onset of metabolism.
Collapse
Affiliation(s)
- Joana C Xavier
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany
| | - Martina Preiner
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany
| | - William F Martin
- Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
21
|
Kaufmann P, Duffus BR, Teutloff C, Leimkühler S. Functional Studies on Oligotropha carboxidovorans Molybdenum–Copper CO Dehydrogenase Produced in Escherichia coli. Biochemistry 2018; 57:2889-2901. [DOI: 10.1021/acs.biochem.8b00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Kaufmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Benjamin R. Duffus
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Christian Teutloff
- Institute for Experimental Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
22
|
Heinrich D, Raberg M, Steinbüchel A. Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16. Microb Biotechnol 2017; 11:647-656. [PMID: 29027357 PMCID: PMC6011924 DOI: 10.1111/1751-7915.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
The biotechnical platform strain Ralstonia eutropha H16 was genetically engineered to express a cox subcluster of the carboxydotrophic Oligotropha carboxidovoransOM5, including (i) the structural genes coxM, -S and -L, coding for an aerobic carbon monoxide dehydrogenase (CODH) and (ii) the genes coxD, -E, -F and -G, essential for the maturation of CODH. The coxOc genes expressed under control of the CO2 -inducible promoter PL enabled R. eutropha to oxidize CO to CO2 for the use as carbon source, as demonstrated by 13 CO experiments, but the recombinant strains remained dependent on H2 as external energy supply. Therefore, a synthetic metabolism, which could be described as 'carboxyhydrogenotrophic', was established in R. eutropha. With this extension of the bacterium's substrate range, growth in CO-, H2 - and CO2 -containing artificial synthesis gas atmosphere was enhanced, and poly(3-hydroxybutyrate) synthesis was increased by more than 20%.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany.,Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Breglia R, Bruschi M, Cosentino U, De Gioia L, Greco C, Miyake T, Moro G. A theoretical study on the reactivity of the Mo/Cu-containing carbon monoxide dehydrogenase with dihydrogen. Protein Eng Des Sel 2017; 30:167-172. [PMID: 27999092 DOI: 10.1093/protein/gzw071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/28/2016] [Indexed: 11/14/2022] Open
Abstract
The Mo/Cu-dependent CO dehydrogenase from Oligotropha carboxidovorans is an enzyme that is able to catalyze CO oxidation to CO2; moreover, it can also oxidize H2, thus eliciting a characteristic EPR signal. Interestingly, the Ag-substituted enzyme form proved unable to catalyze H2 oxidation. In the present contribution, we characterized the reactivity of the enzyme with H2 by quantum-chemical calculations. It was found that dihydrogen binding to the wild-type enzyme requires significant structural rearrangements of the active site Theoretical EPR spectra for plausible H2-bound models of the partially reduced, paramagnetic active site are also presented and compared with the experimental counterpart. Finally, density functional theory modeling shows that Ag substitution impairs H2 binding at the active site.
Collapse
Affiliation(s)
- Raffaella Breglia
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126Milan, Italy
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126Milan, Italy
| | - Ugo Cosentino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126Milan, Italy
| | - Toshiko Miyake
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126Milan, Italy
| | - Giorgio Moro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126Milan, Italy
| |
Collapse
|
24
|
Dingwall S, Wilcoxen J, Niks D, Hille R. Studies of carbon monoxide dehydrogenase from Oligotropha carboxidovorans. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Jiang C, Garg S, Waite TD. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14076-14084. [PMID: 26579728 DOI: 10.1021/acs.est.5b03189] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactions of 1,4-hydroquinone with soluble iron species over a pH range of 3-5 in the air-saturated and partially deoxygenated solution are examined here. Our results show that 1,4-hydroquinone reduces Fe(III) in acidic conditions, generating semiquinone radicals (Q(•-)) that can oxidize Fe(II) back to Fe(III). The oxidation rate of Fe(II) by Q(•-)increases with increase in pH due to the speciation change of Q(•-) with its deprotonated form (Q(•-)) oxidizing Fe(II) more rapidly than the protonated form (HQ(•)). Although the oxygenation of Fe(II) is negligible at pH < 5, O2 still plays an important role in iron redox transformation by rapidly oxidizing Q(•-) to form benzoquinone (Q). A kinetic model is developed to describe the transformation of quinone and iron under all experimental conditions. The results obtained here are compared with those obtained in our previous studies of iron-Suwannee River fulvic acid (SRFA) interactions in acidic solutions and support the hypothesis that hydroquinone moieties can reduce Fe(III) in natural waters. However, the semiquinone radicals generated in pure hydroquinone solution are rapidly oxidized by dioxygen, while the semiquinone radicals generated in SRFA solution are resistant to oxidation by dioxygen, with the result that steady-state semiquinone concentrations in SRFA solutions are 2-3 orders of magnitude greater than in solutions of 1,4-hydroquinone. As a result, semiquinone moieties in SRFA play a much more important role in iron redox transformations than is the case in solutions of simple quinones such as 1,4-hydroquinone. This difference in the steady-state concentration of semiquinone species has a dramatic effect on the cycling of iron between the +II and +III oxidation states, with iron turnover frequencies in solutions containing SRFA being 10-20 times higher than those observed in solutions of 1,4-hydroquinone.
Collapse
Affiliation(s)
- Chao Jiang
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Majumdar A. Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes. Dalton Trans 2015; 43:12135-45. [PMID: 24984248 DOI: 10.1039/c4dt00729h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carbon monoxide dehydrogenases (CODHs) use CO as their sole source of carbon and energy and are found in both aerobic and anaerobic carboxidotrophic bacteria. Reversible transformation of CO to CO2 is catalyzed by a bimetallic [Mo-(μ2-S)-Cu] system in aerobic and by a highly asymmetric [Ni-Fe-S] cluster in anaerobic CODH active sites. The CODH activity in the microorganisms effects the removal of almost 10(8) tons of CO annually from the lower atmosphere and earth and thus help to maintain a sub-toxic concentration of CO. Despite an appreciable amount of work, the mechanism of CODH activity is not clearly understood yet. Moreover, biomimetic chemistry directed towards the active sites of CODHs faces several synthetic challenges. The synthetic problems associated with the modeling chemistry and strategies adopted to overcome those problems are discussed along with their limitations. A critical analysis of the exciting results delineating the present status of CODH modeling chemistry and its future prospects are presented.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
27
|
Pelzmann AM, Mickoleit F, Meyer O. Insights into the posttranslational assembly of the Mo-, S- and Cu-containing cluster in the active site of CO dehydrogenase of Oligotropha carboxidovorans. J Biol Inorg Chem 2014; 19:1399-414. [PMID: 25377894 PMCID: PMC4240915 DOI: 10.1007/s00775-014-1201-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022]
Abstract
Oligotropha carboxidovorans is characterized by the aerobic chemolithoautotrophic utilization of CO. CO oxidation by CO dehydrogenase proceeds at a unique bimetallic [CuSMoO2] cluster which matures posttranslationally while integrated into the completely folded apoenzyme. Kanamycin insertional mutants in coxE, coxF and coxG were characterized with respect to growth, expression of CO dehydrogenase, and the type of metal center present. These data along with sequence information were taken to delineate a model of metal cluster assembly. Biosynthesis starts with the MgATP-dependent, reductive sulfuration of [Mo(VI)O3] to [Mo(V)O2SH] which entails the AAA+-ATPase chaperone CoxD. Then Mo(V) is reoxidized and Cu(1+)-ion is integrated. Copper is supplied by the soluble CoxF protein which forms a complex with the membrane-bound von Willebrand protein CoxE through RGD-integrin interactions and enables the reduction of CoxF-bound Cu(2+), employing electrons from respiration. Copper appears as Cu(2+)-phytate, is mobilized through the phytase activity of CoxF and then transferred to the CoxF putative copper-binding site. The coxG gene does not participate in the maturation of the bimetallic cluster. Mutants in coxG retained the ability to utilize CO, although at a lower growth rate. They contained a regular CO dehydrogenase with a functional catalytic site. The presence of a pleckstrin homology (PH) domain on CoxG and the observed growth rates suggest a role of the PH domain in recruiting CO dehydrogenase to the cytoplasmic membrane enabling electron transfer from the enzyme to the respiratory chain. CoxD, CoxE and CoxF combine motifs of a DEAD-box RNA helicase which would explain their mutual translation.
Collapse
Affiliation(s)
- Astrid M. Pelzmann
- Department of Microbiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Ortwin Meyer
- Department of Microbiology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
28
|
The aerobic CO dehydrogenase from Oligotropha carboxidovorans. J Biol Inorg Chem 2014; 20:243-51. [PMID: 25156151 DOI: 10.1007/s00775-014-1188-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
We review here the recent literature dealing with the molybdenum- and copper-dependent CO dehydrogenase, with particular emphasis on the structure of the enzyme and recent advances in our understanding of the reaction mechanism of the enzyme.
Collapse
|
29
|
Can M, Armstrong F, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 2014; 114:4149-74. [PMID: 24521136 PMCID: PMC4002135 DOI: 10.1021/cr400461p] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mehmet Can
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fraser
A. Armstrong
- Inorganic
Chemistry Laboratory, University of Oxford Oxford, OX1 3QR, United Kingdom
| | - Stephen W. Ragsdale
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
31
|
Shanmugam M, Wilcoxen J, Habel-Rodriguez D, Cutsail GE, Kirk ML, Hoffman BM, Hille R. (13)C and (63,65)Cu ENDOR studies of CO dehydrogenase from Oligotropha carboxidovorans. Experimental evidence in support of a copper-carbonyl intermediate. J Am Chem Soc 2013; 135:17775-82. [PMID: 24147852 DOI: 10.1021/ja406136f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here an ENDOR study of an S = 1/2 intermediate state trapped during reduction of the binuclear Mo/Cu enzyme CO dehydrogenase by CO. ENDOR spectra of this state confirm that the (63,65)Cu nuclei exhibits strong and almost entirely isotropic coupling to the unpaired electron, show that this coupling atypically has a positive sign, aiso = +148 MHz, and indicate an apparently undetectably small quadrupolar coupling. When the intermediate is generated using (13)CO, coupling to the (13)C is observed, with aiso = +17.3 MHz. A comparison with the couplings seen in related, structurally assigned Mo(V) species from xanthine oxidase, in conjunction with complementary computational studies, leads us to conclude that the intermediate contains a partially reduced Mo(V)/Cu(I) center with CO bound at the copper. Our results provide strong experimental support for a reaction mechanism that proceeds from a comparable complex of CO with fully oxidized Mo(VI)/Cu(I) enzyme.
Collapse
Affiliation(s)
- Muralidharan Shanmugam
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Wilcoxen J, Hille R. The hydrogenase activity of the molybdenum/copper-containing carbon monoxide dehydrogenase of Oligotropha carboxidovorans. J Biol Chem 2013; 288:36052-60. [PMID: 24165123 DOI: 10.1074/jbc.m113.522441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s(-1) and a dissociation constant Kd of 525 μM; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site (63,65)Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center.
Collapse
Affiliation(s)
- Jarett Wilcoxen
- From the Department of Biochemistry, University of California, Riverside, California 92521
| | | |
Collapse
|
33
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
34
|
Abstract
A perspective is provided of recent advances in our understanding of molybdenum-containing enzymes other than nitrogenase, a large and diverse group of enzymes that usually (but not always) catalyze oxygen atom transfer to or from a substrate, utilizing a Mo=O group as donor or acceptor. An emphasis is placed on the diversity of protein structure and reaction catalyzed by each of the three major families of these enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, 1643 Boyce Hall, Riverside, CA 92521, USA.
| |
Collapse
|
35
|
Bender G, Pierce E, Hill JA, Darty JE, Ragsdale SW. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 2011; 3:797-815. [PMID: 21647480 PMCID: PMC3964926 DOI: 10.1039/c1mt00042j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations.
Collapse
Affiliation(s)
- Güneş Bender
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Jeffrey A. Hill
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Joseph E. Darty
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| |
Collapse
|