1
|
Agarkar T, Nair VK, Tripathy S, Chawla V, Ghosh S, Kumar A. Oxygen vacancy modulated MnO2 bi-electrode system for attomole-level pathogen nucleic acid sequence detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
2
|
Effects of N-terminus modified Hx-amides on DNA binding affinity, sequence specificity, cellular uptake, and gene expression. Bioorg Med Chem Lett 2021; 47:128158. [PMID: 34058343 DOI: 10.1016/j.bmcl.2021.128158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Five X-HxIP (Hx-amides) 6a-e, in which the N-terminus p-anisyl moiety is modified, were designed and synthesised with the purpose of optimising DNA binding, improving cellular uptake/nuclear penetration, and enhancing the modulation of the topoisomerase IIα (TOP2A) gene expression. The modifications include a fluorophenyl group and other heterocycles bearing different molecular shapes, size, and polarity. Like their parent compound HxIP 3, all five X-HxIP analogues bind preferentially to their cognate sequence 5'-TACGAT-3', which is found embedded on the 5' flank of the inverted CCAAT box-2 (ICB2) site in the TOP2A gene promoter, and inhibit protein complex binding. Interestingly, the 4-pyridyl analog 6a exhibits greater binding affinity for the target DNA sequence and abolishes the protein:ICB2 interaction in vitro, at a lower concentration, compared to the prototypical compound HxIP 3. Analogues 6b-e, display improved DNA sequence specificity, but reduced binding affinity for the cognate sequence, relative to the unmodified HxIP 3, with polyamides 6b and 6e being the most sequence selective. However, unlike 3 and 6b, 6a was unable to enter cells, access the nucleus and thereby affect TOP2A gene expression in confluent human lung cancer cells. These results show that while DNA binding affinity and sequence selectivity are important, consideration of cellular uptake and concentration in the nucleus are critical when exerting biological activity is the desired outcome. By characterising the DNA binding, cellular uptake and gene regulatory properties of these small molecules, we can elucidate the determinants of the elicited biological activity, which can be impacted by even small structural modifications in the polyamide molecular design.
Collapse
|
3
|
Liu B, Pett L, Kiakos K, Patil PC, Satam V, Hartley JA, Lee M, Wilson WD. DNA-Binding Properties of New Fluorescent AzaHx Amides: Methoxypyridylazabenzimidazolepyrroleimidazole/pyrrole. Chembiochem 2018; 19:1979-1987. [PMID: 29974647 DOI: 10.1002/cbic.201800273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/11/2022]
Abstract
DNA minor groove binding polyamides have been extensively developed to control abnormal gene expression. The establishment of novel, inherently fluorescent 2-(p-anisyl)benzimidazole (Hx) amides has provided an alternative path for studying DNA binding in cells by direct observation of cell localization. Because of the 2:1 antiparallel stacking homodimer binding mode of these molecules to DNA, modification of Hx amides to 2-(p-anisyl)-4-azabenzimidazole (AzaHx) amides has successfully extended the DNA-recognition repertoire from central CG [recognized by Hx-I (I=N-methylimidazole)] to central GC [recognized by AzaHx-P (P=N-methylpyrrole)] recognition. For potential targeting of two consecutive GG bases, modification of the AzaHx moiety to 2- and 3-pyridyl-aza-benzimidazole (Pyr-AzaHx) moieties was explored. The newly designed molecules are also small-sized, fluorescent amides with the Pyr-AzaHx moiety connected to two conventional five-membered heterocycles. Complementary biophysical methods were performed to investigate the DNA-binding properties of these molecules. The results showed that neither 3-Pyr-AzaHx nor 2-Pyr-AzaHx was able to mimic I-I=N-methylimidazole-N-methylimidazole to target GG dinucleotides specifically. Rather, 3-Pyr-AzaHx was found to function like AzaHx, f-I (f=formamide), or P-I as an antiparallel stacked dimer. 3-Pyr-AzaHx-PI (2) binds 5'-ACGCGT'-3' with improved binding affinity and high sequence specificity in comparison to its parent molecule AzaHx-PI (1). However, 2-Pyr-AzaHx is detrimental to DNA binding because of an unfavorable steric clash upon stacking in the minor groove.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, GA, 30303, USA
| | - Luke Pett
- Cancer Research (UK) Drug-DNA Interactions Research Group, UCL Cancer Institute, Gower Street, London, WC1E 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research (UK) Drug-DNA Interactions Research Group, UCL Cancer Institute, Gower Street, London, WC1E 6BT, UK
| | - Pravin C Patil
- Department of Chemistry, Hope College, 141 E 12th Street, Holland, MI, 49423, USA
| | - Vijay Satam
- Department of Chemistry, Hope College, 141 E 12th Street, Holland, MI, 49423, USA
| | - John A Hartley
- Cancer Research (UK) Drug-DNA Interactions Research Group, UCL Cancer Institute, Gower Street, London, WC1E 6BT, UK
| | - Moses Lee
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, GA, 30303, USA.,Department of Chemistry, Hope College, 141 E 12th Street, Holland, MI, 49423, USA.,Current address: M. J. Murdock Charitable Trust, 703 Broadway Street, Suite, 710, Vancouver, WA, 98660, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, GA, 30303, USA
| |
Collapse
|
4
|
Kiakos K, Englinger B, Yanow SK, Wernitznig D, Jakupec MA, Berger W, Keppler BK, Hartley JA, Lee M, Patil PC. Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA. Bioorg Med Chem Lett 2018; 28:1342-1347. [PMID: 29548574 DOI: 10.1016/j.bmcl.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/20/2023]
Abstract
HxTfA 4 is a fluorescent analog of a potent cytotoxic and antimalarial agent, TfA 3, which is currently being investigated for the development of an antimalarial vaccine, PlasProtect®. HxTfA contains a p-anisylbenzimidazole or Hx moiety, which is endowed with a blue emission upon excitation at 318 nm; thus enabling it to be used as a surrogate for probing the cellular fate of TfA using confocal microscopy, and addressing the question of nuclear localization. HxTfA exhibits similar selectivity to TfA for A-tract sequences of DNA, alkylating adenine-N3, albeit at 10-fold higher concentrations. It also possesses in vitro cytotoxicity against A549 human lung carcinoma cells and Plasmodium falciparum. Confocal microscopy studies showed for the first time that HxTfA, and by inference TfA, entered A549 cells and localized in the nucleus to exert its biological activity. At biologically relevant concentrations, HxTfA elicits DNA damage response as evidenced by a marked increase in the levels of γH2AX observed by confocal microscopy and immunoblotting studies, and ultimately induces apoptosis.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom; Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
| | - Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | - Debora Wernitznig
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin C Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| |
Collapse
|
5
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Pett L, Kiakos K, Satam V, Patil P, Laughlin-Toth S, Gregory M, Bowerman M, Olson K, Savagian M, Lee M, Lee M, Wilson WD, Hochhauser D, Hartley JA. Modulation of topoisomerase IIα expression and chemosensitivity through targeted inhibition of NF-Y:DNA binding by a diamino p-anisyl-benzimidazole (Hx) polyamide. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:617-629. [PMID: 27750031 PMCID: PMC5757371 DOI: 10.1016/j.bbagrm.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sequence specific polyamide HxIP 1, targeted to the inverted CCAAT Box 2 (ICB2) on the topoisomerase IIα (topo IIα) promoter can inhibit NF-Y binding, re-induce gene expression and increase sensitivity to etoposide. To enhance biological activity, diamino-containing derivatives (HxI*P 2 and HxIP* 3) were synthesised incorporating an alkyl amino group at the N1-heterocyclic position of the imidazole/pyrrole. METHODS DNase I footprinting was used to evaluate DNA binding of the diamino Hx-polyamides, and their ability to disrupt the NF-Y:ICB2 interaction assessed using EMSAs. Topo IIα mRNA (RT-PCR) and protein (Immunoblotting) levels were measured following 18h polyamide treatment of confluent A549 cells. γH2AX was used as a marker for etoposide-induced DNA damage after pre-treatment with HxIP* 3 and cell viability was measured using Cell-Titer Glo®. RESULTS Introduction of the N1-alkyl amino group reduced selectivity for the target sequence 5'-TACGAT-3' on the topo IIα promoter, but increased DNA binding affinity. Confocal microscopy revealed both fluorescent diamino polyamides localised in the nucleus, yet HxI*P 2 was unable to disrupt the NF-Y:ICB2 interaction and showed no effect against the downregulation of topo IIα. In contrast, inhibition of NF-Y binding by HxIP* 3 stimulated dose-dependent (0.1-2μM) re-induction of topo IIα and potentiated cytotoxicity of topo II poisons by enhancing DNA damage. CONCLUSIONS Polyamide functionalisation at the N1-position offers a design strategy to improve drug-like properties. Dicationic HxIP* 3 increased topo IIα expression and chemosensitivity to topo II-targeting agents. GENERAL SIGNIFICANCE Pharmacological modulation of topo IIα expression has the potential to enhance cellular sensitivity to clinically-used anticancer therapeutics. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Luke Pett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK
| | - Vijay Satam
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Sarah Laughlin-Toth
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Matthew Gregory
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Michael Bowerman
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kevin Olson
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Mia Savagian
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Megan Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States; Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Guo P, Paul A, Kumar A, Farahat AA, Kumar D, Wang S, Boykin DW, Wilson WD. The Thiophene "Sigma-Hole" as a Concept for Preorganized, Specific Recognition of G⋅C Base Pairs in the DNA Minor Groove. Chemistry 2016; 22:15404-15412. [PMID: 27624927 PMCID: PMC5214980 DOI: 10.1002/chem.201603422] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
In spite of its importance in cell function, targeting DNA is under-represented in the design of small molecules. A barrier to progress in this area is the lack of a variety of modules that recognize G⋅C base pairs (bp) in DNA sequences. To overcome this barrier, an entirely new design concept for modules that can bind to mixed G⋅C and A⋅T sequences of DNA is reported herein. Because of their successes in biological applications, minor-groove-binding heterocyclic cations were selected as the platform for design. Binding to A⋅T sequences requires hydrogen-bond donors whereas recognition of the G-NH2 requires an acceptor. The concept that we report herein uses pre-organized N-methylbenzimidazole (N-MeBI) thiophene modules for selective binding with mixed bp DNA sequences. The interaction between the thiophene sigma hole (positive electrostatic potential) and the electron-donor nitrogen of N-MeBI preorganizes the conformation for accepting an hydrogen bond from G-NH2 . The compound-DNA interactions were evaluated with a powerful array of biophysical methods and the results show that N-MeBI-thiophene monomer compounds can strongly and selectively recognize single G⋅C bp sequences. Replacing the thiophene with other moieties significantly reduces binding affinity and specificity, as predicted by the design concept. These results show that the use of molecular features, such as sigma-holes, can lead to new approaches for small molecules in biomolecular interactions.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dhiraj Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Siming Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA.
| |
Collapse
|
8
|
Harika NK, Paul A, Stroeva E, Chai Y, Boykin DW, Germann MW, Wilson WD. Imino proton NMR guides the reprogramming of A•T specific minor groove binders for mixed base pair recognition. Nucleic Acids Res 2016; 44:4519-27. [PMID: 27131382 PMCID: PMC4889958 DOI: 10.1093/nar/gkw353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound. To understand the principles that determine the binding affinity and orientation in mixed sequences of DNA, over thirty DNA hairpin substrates were examined by NMR and thermal melting. The NMR exchange dynamics between major and minor species shows that the exchange is much faster than compound dissociation determined from biosensor–surface plasmon resonance. Extensive modifications of DNA sequences resulted in a unique DNA sequence with binding site AAGATA that binds DB2277 in a single orientation. A molecular docking result agrees with the model representing rapid flipping of DB2277 between major and minor species. Imino spectral analysis of a 15N-labeled central G clearly shows the crucial role of the exocyclic amino group of G in sequence-specific recognition. Our results suggest that this approach can be expanded to additional modules for recognition of more sequence-specific DNA complexes. This approach provides substantial information about the sequence-specific, highly efficient, dynamic nature of minor groove binding agents.
Collapse
Affiliation(s)
- Narinder K Harika
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ekaterina Stroeva
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Yun Chai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| |
Collapse
|
9
|
Qiao H, Ma C, Zhang X, Jing X, Li C, Zhao Y. Insight into DNA Minor Groove Unspecific Binding of Pyrrole Polyamide. Bioconjug Chem 2015; 26:2054-61. [PMID: 26301419 DOI: 10.1021/acs.bioconjchem.5b00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemistry-based approaches have exploited base-pairing for sequence-specific recognition of DNA. A variety of sequence-specific Py-Im hairpin polyamides to target sequences of biological interest have been widely developed. Here we reported that an eight-ring N-methylpyrrole polyamide can induce a strong negative signal when it interacted with ct-DNA in the minor groove, which differs from the typical CD signal induced by hairpin polyamide reported previously. Our current efforts mainly focused on investigating possible reasons and binding mode by CD spectroscopy, singular value decomposition, and atomic force microscopy. The results suggested that partly compacted DNA may form due to the unfolded binding mode that made DNA shrink along the axis of duplex. In addition, this unfolded binding was remarkably restrained in high ionic strength medium where the neutralized phosphate groups in the DNA backbone narrowed the minor groove. The present work might help to understand deeply how the Py-Im polyamides bind to duplex DNA under different conditions and, in particular, be applied to gene manipulation and expression.
Collapse
Affiliation(s)
- Hongwei Qiao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry of Tsinghua University, Beijing 100084, P. R. China
| | - Chunying Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Xi Jing
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Yufen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry of Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Satam V, Babu B, Patil P, Brien KA, Olson K, Savagian M, Lee M, Mepham A, Jobe LB, Bingham JP, Pett L, Wang S, Ferrara M, Bruce CD, Wilson WD, Lee M, Hartley JA, Kiakos K. AzaHx, a novel fluorescent, DNA minor groove and G·C recognition element: Synthesis and DNA binding properties of a p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (azaHx-PI) polyamide. Bioorg Med Chem Lett 2015; 25:3681-5. [PMID: 26122210 DOI: 10.1016/j.bmcl.2015.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)).
Collapse
Affiliation(s)
- Vijay Satam
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Balaji Babu
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kimberly A Brien
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kevin Olson
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Mia Savagian
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Megan Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Andrew Mepham
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Laura Beth Jobe
- Department of Chemistry, Erskine College, Due West, SC 29639, United States
| | - John P Bingham
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Luke Pett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Maddi Ferrara
- Department of Chemistry, John Carroll University, University Heights, OH 44118, United States
| | - Chrystal D Bruce
- Department of Chemistry, John Carroll University, University Heights, OH 44118, United States
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States; Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States.
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, UK
| |
Collapse
|
11
|
Kiakos K, Pett L, Satam V, Patil P, Hochhauser D, Lee M, Hartley JA. Nuclear Localization and Gene Expression Modulation by a Fluorescent Sequence-Selective p-Anisyl-benzimidazolecarboxamido Imidazole-Pyrrole Polyamide. CHEMISTRY & BIOLOGY 2015; 22:862-75. [PMID: 26119998 DOI: 10.1016/j.chembiol.2015.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/20/2015] [Accepted: 06/02/2015] [Indexed: 01/03/2023]
Abstract
Synthetic pyrrole (P)-imidazole (I) containing polyamides can target predetermined DNA sequences and modulate gene expression by interfering with transcription factor binding. We have previously shown that rationally designed polyamides targeting the inverted CCAAT box 2 (ICB2) of the topoisomerase IIα (topo IIα) promoter can inhibit binding of transcription factor NF-Y, re-inducing expression of the enzyme in confluent cells. Here, the A/T recognizing fluorophore, p-anisylbenzimidazolecarboxamido (Hx) was incorporated into the hybrid polyamide HxIP, which fluoresces upon binding to DNA, providing an intrinsic probe to monitor cellular uptake. HxIP targets the 5'-TACGAT-3' sequence of the 5' flank of ICB2 with high affinity and sequence specificity, eliciting an ICB2-selective inhibition/displacement of NF-Y. HxIP is readily taken up by NIH3T3 and A549 cells, and detected in the nucleus within minutes. Exposure to the polyamide at confluence resulted in a dose-dependent upregulation of topo IIα expression and enhanced formation of etoposide-induced DNA strand breaks.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Luke Pett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Vijay Satam
- Division of Natural & Applied Sciences and Department of Chemistry, Hope College, 35 East, 12(th) Street, Holland, MI 49423, USA
| | - Pravin Patil
- Division of Natural & Applied Sciences and Department of Chemistry, Hope College, 35 East, 12(th) Street, Holland, MI 49423, USA
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Moses Lee
- Division of Natural & Applied Sciences and Department of Chemistry, Hope College, 35 East, 12(th) Street, Holland, MI 49423, USA
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Paul A, Nanjunda R, Kumar A, Laughlin S, Nhili R, Depauw S, Deuser SS, Chai Y, Chaudhary AS, David-Cordonnier MH, Boykin DW, Wilson WD. Mixed up minor groove binders: Convincing A·T specific compounds to recognize a G·C base pair. Bioorg Med Chem Lett 2015; 25:4927-4932. [PMID: 26051649 DOI: 10.1016/j.bmcl.2015.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
DNA minor-groove-binding compounds have limited biological applications, in part due to problems with sequence specificity that cause off-target effects. A model to enhance specificity has been developed with the goal of preparing compounds that bind to two AT sites separated by G·C base pairs. Compounds of interest were probed using thermal melting, circular dichroism, mass spectrometry, biosensor-SPR, and molecular modeling methods. A new minor groove binder that can strongly and specifically recognize a single G·C base pair with flanking AT sequences has been prepared. This multi-site DNA recognition mode offers novel design principles to recognize entirely new DNA motifs.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Rupesh Nanjunda
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Sarah Laughlin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Raja Nhili
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - Shelby Sheldon Deuser
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yun Chai
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
13
|
Paul A, Chai Y, Boykin DW, Wilson WD. Understanding mixed sequence DNA recognition by novel designed compounds: the kinetic and thermodynamic behavior of azabenzimidazole diamidines. Biochemistry 2014; 54:577-87. [PMID: 25495885 PMCID: PMC4303320 DOI: 10.1021/bi500989r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sequence-specific recognition of DNA by small organic molecules offers a potentially effective approach for the external regulation of gene expression and is an important goal in cell biochemistry. Rational design of compounds from established modules can potentially yield compounds that bind strongly and selectively with specific DNA sequences. An initial approach is to start with common A·T bp recognition molecules and build in G·C recognition units. Here we report on the DNA interaction of a synthetic compound that specifically binds to a G·C bp in the minor groove of DNA by using an azabenzimidazole moiety. The detailed interactions were evaluated with biosensor-surface plasmon resonance (SPR), isothermal calorimetric (ITC), and mass spectrometry (ESI-MS) methods. The compound, DB2277, binds with single G·C bp containing sequences with sub-nanomolar potency and displays slow dissociation kinetics and high selectivity. A detailed thermodynamic and kinetic study at different experimental salt concentrations and temperatures shows that the binding free energy is salt concentration dependent but essentially temperature independent under our experimental conditions, and binding enthalpy is temperature dependent but salt concentration independent. The results show that in the proper compound structural context novel heterocyclic cations can be designed to strongly recognize complex DNA sequences.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303-3083, United States
| | | | | | | |
Collapse
|
14
|
Wang S, Chai Y, Babu B, Satam V, Lee M, David Wilson W. Conformational modulation of DNA by polyamide binding: structural effects of f-Im-Py-Im based derivatives on 5'-ACGCGT-3'. J Mol Recognit 2014; 26:331-40. [PMID: 23784989 DOI: 10.1002/jmr.2273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 12/13/2022]
Abstract
The DNA sequence 5'-ACGCGT-3' is in the core site of the Mlu 1 cell-cycle box, a transcriptional element in the promoter region of human Dbf4 gene that is highly correlated with a large number of aggressive solid cancers. The polyamide formamido-imidazole-pyrrole-imidazole-amine(+) (f-Im-Py-Im-Am(+) ) can target the minor groove of 5'-ACGCGT-3' as an antiparallel stacked dimer and has shown good activity in inhibiting transcription factor binding. Recently, f-Im-Py-Im-Am(+) derivatives that involve different orthogonally positioned substituents were synthesized to target the same binding site, and some of them have displayed improved binding and pharmacological properties. In this study, the gel electrophoresis-ligation ladders assay was used to evaluate the conformational effects of f-Im-Py-Im-Am(+) and derivatives on the target DNA, an essential factor for establishing the molecular basis of polyamide-DNA complexes and their transcription factor inhibition. The results show that the ACGCGT site in DNA has a relatively wide minor groove and a B-form like overall structure. After binding with f-Im-Py-Im-Am(+) derivatives, the DNA conformation is changed as indicated by the different mobilities in the gel. These conformational effects on DNA will at least help to point to the mechanism for the observed Mlu 1 inhibition activity of these polyamides. Therefore, modulating DNA transcription by locking the DNA shape or altering the minor groove geometry to affect the binding affinity of certain transcription factors is an attractive possible therapeutic mechanism for polyamides. Some of the substituents are charged with electrostatic interactions with DNA phosphate groups, and their charge effects on DNA gel mobility have been observed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ramos JP, Babu B, Chavda S, Liu Y, Plaunt A, Ferguson A, Savagian M, Lee M, Tzou S, Lin S, Kiakos K, Wang S, Lee M, Hartley JA, Wilson WD. Affinity and kinetic modulation of polyamide-DNA interactions by N-modification of the heterocycles. Biopolymers 2013; 99:497-507. [PMID: 23712486 PMCID: PMC3872963 DOI: 10.1002/bip.22205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 12/27/2022]
Abstract
Synthetic N-methyl imidazole and N-pyrrole containing polyamides (PAs) that can form "stacked" dimers can be programmed to target and bind to specific DNA sequences and control gene expression. To accomplish this goal, the development of PAs with lower molecular mass which allows for the molecules to rapidly penetrate cells and localize in the nucleus, along with increased water solubility, while maintaining DNA binding sequence specificity and high binding affinity is key. To meet these challenges, six novel f-ImPy*Im PA derivatives that contain different orthogonally positioned moieties were designed to target 5'-ACGCGT-3'. The synthesis and biophysical characterization of six f-ImPy*Im were determined by CD, ΔTM, DNase I footprinting, SPR, and ITC studies, and were compared with those of their parent compound, f-ImPyIm. The results gave evidence for the minor groove binding and selectivity of PAs 1 and 6 for the cognate sequence 5'-ACGCGT-3', and with strong affinity, Keq = 2.8 × 10(8) M(-1) and Keq = 6.2 × 10(7) M(-1), respectively. The six novel PAs presented in this study demonstrated increased water solubility, while maintaining low molecular mass, sequence specificity, and binding affinity, addressing key issues in therapeutic development.
Collapse
Affiliation(s)
- Joseph P. Ramos
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Balaji Babu
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - Sameer Chavda
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - Yang Liu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Adam Plaunt
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - Amanda Ferguson
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - Mia Savagian
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - Megan Lee
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - Samuel Tzou
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - Shicai Lin
- Cancer Research, UK Drug–DNA Interactions Research Group, UCL Cancer Institute, Paul O’ Gorman Building, 72 Huntley Street, London WCIE 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research, UK Drug–DNA Interactions Research Group, UCL Cancer Institute, Paul O’ Gorman Building, 72 Huntley Street, London WCIE 6BT, UK
| | - Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Moses Lee
- Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, MI 49423
| | - John A. Hartley
- Cancer Research, UK Drug–DNA Interactions Research Group, UCL Cancer Institute, Paul O’ Gorman Building, 72 Huntley Street, London WCIE 6BT, UK
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
16
|
Controlling the radical 5-exo-trig cyclization, and selective synthesis of seco-iso-cyclopropylfurano[e]indoline (seco-iso-CFI) and seco-cyclopropylthiophene[e]indoline (seco-CTI) DNA alkylating subunit of the duocarmycins. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Chavda S, Babu B, Patil P, Plaunt A, Ferguson A, Lee M, Tzou S, Sjoholm R, Rice T, Mackay H, Ramos J, Wang S, Lin S, Kiakos K, Wilson WD, Hartley JA, Lee M. Design, synthesis, and DNA binding characteristics of a group of orthogonally positioned diamino, N-formamido, pyrrole- and imidazole-containing polyamides. Bioorg Med Chem 2013; 21:3907-18. [PMID: 23647824 DOI: 10.1016/j.bmc.2013.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 02/08/2023]
Abstract
Orthogonally positioned diamino/dicationic polyamides (PAs) have good water solubility and enhanced binding affinity, whilst retaining DNA minor groove and sequence specificity compared to their monoamino/monocationic counterparts. The synthesis and DNA binding properties of the following diamino PAs: f-IPI (3a), f-IPP (4), f-PIP (5), and f-PPP (6) are described. P denotes the site where a 1-propylamino group is attached to the N1-position of the heterocycle. Binding of the diamino PAs to DNA was assessed by DNase I footprinting, thermal denaturation, circular dichroism titration, biosensor surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) studies. According to SPR studies, f-IPI (3a) bound more strongly (K(eq)=2.4×10(8) M(-1)) and with comparable sequence selectivity to its cognate sequence 5'-ACGCGT-3' when compared to its monoamino analog f-IPI (1). The binding of f-IPI (3a) to 5'-ACGCGT-3' via the stacked dimer motif was balanced between enthalpy and entropy, and that was quite different from the enthalpy-driven binding of its monoamino parent f-IPI (1). f-IPP (4) also bound more strongly to its cognate sequence 5'-ATGCAT-3' (K(eq)=7.4×10(6) M(-1)) via the side-by-side stacked motif than its monoamino analog f-IPP (2a). Although f-PPP (6) bound via a 1:1 motif, it bound strongly to its cognate sequence 5'-AAATTT-3' (K(eq)=4.8×10(7) M(-1)), 15-times higher than the binding of its monoamino analog f-PPP (2c), albeit f-PPP bound via the stacked motif. Finally, f-PIP (5) bound to its target sequence 5'-ATCGAT-3' as a stacked dimer and it has the lowest affinity among the diamino PAs tested (Keq <1×10(5) M(-1)). This was about two times lower in affinity than the binding of its monoamino analog f-PIP (2b). The results further demonstrated that the 'core rules' of DNA recognition by monoamino PAs also apply to their diamino analogs. Specifically, PAs that contain a stacked IP core structure bind most strongly (highest binding constants) to their cognate GC doublet, followed by the binding of PAs with a stacked PP structure to two degenerate AT base pairs, and finally the binding of PAs with a PI core to their cognate CG doublet.
Collapse
Affiliation(s)
- Sameer Chavda
- Division of Natural and Applied Sciences and Department of Chemistry, Hope College, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Blackledge MS, Melander C. Programmable DNA-binding small molecules. Bioorg Med Chem 2013; 21:6101-14. [PMID: 23665141 DOI: 10.1016/j.bmc.2013.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/29/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Aberrant gene expression is responsible for a myriad of human diseases from infectious diseases to cancer. Precise regulation of these genes via specific interactions with the DNA double helix could pave the way for novel therapeutics. Pyrrole-imidazole polyamides are small molecules capable of binding to pre-determined DNA sequences up to 16 base pairs with affinity and specificity comparable to natural transcription factors. In the three decades since their development, great strides have been made relating to synthetic accessibility and improved sequence specificity and binding affinity. This perspective presents a brief history of early seminal developments in the field and highlights recent reports of the utility of polyamides as both genetic modulators and molecular probes.
Collapse
Affiliation(s)
- Meghan S Blackledge
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8024, United States
| | | |
Collapse
|
20
|
Satam V, Patil P, Babu B, Gregory M, Bowerman M, Savagian M, Lee M, Tzou S, Olson K, Liu Y, Ramos J, Wilson WD, Bingham JP, Kiakos K, Hartley JA, Lee M. Hx-amides: DNA sequence recognition by the fluorescent Hx (p-anisylbenzimidazole)•pyrrole and Hx•imidazole pairings. Bioorg Med Chem Lett 2013; 23:1699-702. [PMID: 23395654 DOI: 10.1016/j.bmcl.2013.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/06/2013] [Accepted: 01/16/2013] [Indexed: 01/01/2023]
Abstract
Hx-amides are fluorescent hybrids of imidazole (I)- and pyrrole (P)-containing polyamides and Hoechst 33258, and they bind in the minor groove of specific DNA sequences. Synthesis and DNA binding studies of HxII (5) complete our studies on the first set of Hx-amides: Hx-I/P-I/P. HxPP (2), HxIP (3) and HxPI (4) were reported earlier. Results from DNase I footprinting, biosensor-SPR, CD and ΔTM studies showed that Hx-amides interacted with DNA via the anti-parallel and stacked, side-by-side motif. Hx was found to mimic the DNA recognition properties of two consecutive pyrrole units (PP) in polyamides. Accordingly, the stacked Hx/PP pairing binds preferentially to two consecutive AT base pairs, A/T-A/T; Hx/IP prefers C-A/T; Hx/PI prefers A/T-C; and Hx/II prefers C-C. The results also showed that Hx-amides bound their cognate sequence at a higher affinity than their formamido-triamide counterparts.
Collapse
Affiliation(s)
- Vijay Satam
- Division of Natural & Applied Sciences and Department of Chemistry, Hope College, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vaijayanthi T, Bando T, Pandian GN, Sugiyama H. Progress and prospects of pyrrole-imidazole polyamide-fluorophore conjugates as sequence-selective DNA probes. Chembiochem 2012; 13:2170-85. [PMID: 23023993 DOI: 10.1002/cbic.201200451] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Indexed: 12/24/2022]
Abstract
Recently, the versatility of N-methylpyrrole (Py)-N-methylimidazole (Im) polyamide conjugates, which have been developed from the DNA-binding antibiotics distamycin A and netropsin, has been shown. These synthetic small molecules can permeate cells to bind with duplex DNA in a sequence-specific manner, and hence can influence gene expression in vivo. Accordingly, several reports demonstrating the sequence specificity and biological activity of Py-Im polyamides have accumulated. However, the benefits of Py-Im polyamides, in particular those conjugated with fluorophores, has been overlooked. Moreover, clear directions for the employment of these attractive artificial small molecules have not yet been shown. Here, we present a detailed overview of the current and prospective applications of Py-Im polyamide-fluorophore conjugates, including sequence-specific recognition with fluorescence emission properties, and their potential roles in biological imaging.
Collapse
Affiliation(s)
- Thangavel Vaijayanthi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa oiwakecho, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
22
|
Synthesis and DNA binding properties of 1-(3-aminopropyl)-imidazole-containing triamide f-Im∗PyIm: A novel diamino polyamide designed to target 5′-ACGCGT-3′. Bioorg Med Chem Lett 2012; 22:5898-902. [DOI: 10.1016/j.bmcl.2012.07.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/20/2012] [Indexed: 12/27/2022]
|
23
|
Satam V, Babu B, Chavda S, Savagian M, Sjoholm R, Tzou S, Ramos J, Liu Y, Kiakos K, Lin S, David Wilson W, Hartley JA, Lee M. Novel diamino imidazole and pyrrole-containing polyamides: Synthesis and DNA binding studies of mono- and diamino-phenyl-ImPy*Im polyamides designed to target 5'-ACGCGT-3'. Bioorg Med Chem 2011; 20:693-701. [PMID: 22222156 DOI: 10.1016/j.bmc.2011.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022]
Abstract
Pyrrole- and imidazole-containing polyamides are widely investigated as DNA sequence selective binding agents that have potential use as gene control agents. The key challenges that must be overcome to realize this goal is the development of polyamides with low molar mass so the molecules can readily diffuse into cells and concentrate in the nucleus. In addition, the molecules must have appreciable water solubility, bind DNA sequence specifically, and with high affinity. It is on this basis that the orthogonally positioned diamino/dicationic polyamide Ph-ImPy*Im 5 was designed to target the sequence 5'-ACGCGT-3'. Py* denotes the pyrrole unit that contains a N-substituted aminopropyl pendant group. The DNA binding properties of diamino polyamide 5 were determined using a number of techniques including CD, ΔT(M), DNase I footprinting, SPR and ITC studies. The effects of the second amino moiety in Py* on DNA binding affinity over its monoamino counterpart Ph-ImPyIm 3 were assessed by conducting DNA binding studies of 3 in parallel with 5. The results confirmed the minor groove binding and selectivity of both polyamides for the cognate sequence 5'-ACGCGT-3'. The diamino/dicationic polyamide 5 showed enhanced binding affinity and higher solubility in aqueous media over its monoamino/monocationic counterpart Ph-ImPyIm 3. The binding constant of 5, determined from SPR studies, was found to be 1.5 × 10(7)M(-1), which is ∼3 times higher than that for its monoamino analog 3 (4.8 × 10(6)M(-1)). The affinity of 5 is now approaching that of the parent compound f-ImPyIm 1 and its diamino equivalent 4. The advantages of the design of diamino polyamide 5 over 1 and 4 are its sequence specificity and the ease of synthesis compared to the N-terminus pyrrole analog 2.
Collapse
Affiliation(s)
- Vijay Satam
- Division of Natural and Applied Sciences, Department of Chemistry, Hope College, 35 East, 12th Street, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lewis EA, Munde M, Wang S, Rettig M, Le V, Machha V, Wilson WD. Complexity in the binding of minor groove agents: netropsin has two thermodynamically different DNA binding modes at a single site. Nucleic Acids Res 2011; 39:9649-58. [PMID: 21890907 PMCID: PMC3239193 DOI: 10.1093/nar/gkr699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Structural results with minor groove binding agents, such as netropsin, have provided detailed, atomic level views of DNA molecular recognition. Solution studies, however, indicate that there is complexity in the binding of minor groove agents to a single site. Netropsin, for example, has two DNA binding enthalpies in isothermal titration calorimetry (ITC) experiments that indicate the compound simultaneously forms two thermodynamically different complexes at a single AATT site. Two proposals for the origin of this unusual observation have been developed: (i) two different bound species of netropsin at single binding sites and (ii) a netropsin induced DNA hairpin to duplex transition. To develop a better understanding of DNA recognition complexity, the two proposals have been tested with several DNAs and the methods of mass spectrometry (MS), polyacrylamide gel electrophoresis (PAGE) and nuclear magnetic resonance spectroscopy in addition to ITC. All of the methods with all of the DNAs investigated clearly shows that netropsin forms two different complexes at AATT sites, and that the proposal for an induced hairpin to duplex transition in this system is incorrect.
Collapse
Affiliation(s)
- Edwin A Lewis
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|