1
|
Li P, Liu S, Wallerstein J, Villones RLE, Huang P, Lindkvist-Petersson K, Meloni G, Lu K, Steen Jensen K, Liin SI, Gourdon P. Closed and open structures of the eukaryotic magnesium channel Mrs2 reveal the auto-ligand-gating regulation mechanism. Nat Struct Mol Biol 2024:10.1038/s41594-024-01432-1. [PMID: 39609652 DOI: 10.1038/s41594-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
The CorA/Mrs2 family of pentameric proteins are cardinal for the influx of Mg2+ across cellular membranes, importing the cation to mitochondria in eukaryotes. Yet, the conducting and regulation mechanisms of permeation remain elusive, particularly for the eukaryotic Mrs2 members. Here, we report closed and open Mrs2 cryo-electron microscopy structures, accompanied by functional characterization. Mg2+ flux is permitted by a narrow pore, gated by methionine and arginine residues in the closed state. Transition between the conformations is orchestrated by two pairs of conserved sensor-serving Mg2+-binding sites in the mitochondrial matrix lumen, located in between monomers. At lower levels of Mg2+, these ions are stripped, permitting an alternative, symmetrical shape, maintained by the RDLR motif that replaces one of the sensor site pairs in the open conformation. Thus, our findings collectively establish the molecular basis for selective Mg2+ influx of Mrs2 and an auto-ligand-gating regulation mechanism.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Johan Wallerstein
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Peng Huang
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kristine Steen Jensen
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Uthayabalan S, Lake T, Stathopulos PB. MRS2 missense variation at Asp216 abrogates inhibitory Mg 2+ binding, potentiating cell migration and apoptosis resistance. Protein Sci 2024; 33:e5108. [PMID: 38989547 PMCID: PMC11237551 DOI: 10.1002/pro.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial magnesium (Mg2+) is a crucial modulator of protein stability, enzymatic activity, ATP synthesis, and cell death. Mitochondrial RNA splicing protein 2 (MRS2) is the main Mg2+ channel in the inner mitochondrial membrane that mediates influx into the matrix. Recent cryo-electron microscopy (cryo-EM) human MRS2 structures exhibit minimal conformational changes at high and low Mg2+, yet the regulation of human MRS2 and orthologues by Mg2+ binding to analogous matrix domains has been well established. Further, a missense variation at D216 has been identified associated with malignant melanoma and MRS2 expression and activity is implicated in gastric cancer. Thus, to gain more mechanistic and functional insight into Mg2+ sensing by the human MRS2 matrix domain and the association with proliferative disease, we assessed the structural, biophysical, and functional effects of a D216Q mutant. We show that the D216Q mutation is sufficient to abrogate Mg2+-binding and associated conformational changes including increased α-helicity, stability, and monomerization. Further, we reveal that the MRS2 matrix domains interact with ~μM affinity, which is weakened by up to two orders of magnitude in the presence of Mg2+ for wild-type but unaffected for D216Q. Finally, we demonstrate the importance of Mg2+ sensing by MRS2 to prevent matrix Mg2+ overload as HeLa cells overexpressing MRS2 show enhanced Mg2+ uptake, cell migration, and resistance to apoptosis while MRS2 D216Q robustly potentiates these cancer phenotypes. Collectively, our findings further define the MRS2 matrix domain as a critical Mg2+ sensor that undergoes conformational and assembly changes upon Mg2+ interactions dependent on D216 to temper matrix Mg2+ overload.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Taylor Lake
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
3
|
Ponnusamy T, Velusamy P, Shanmughapriya S. Mrs2-mediated mitochondrial magnesium uptake is essential for the regulation of MCU-mediated mitochondrial Ca 2+ uptake and viability. Mitochondrion 2024; 76:101877. [PMID: 38599304 DOI: 10.1016/j.mito.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial Ca2+ uptake is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here, we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed that decreased matrix [Mg2+] is associated with increased MCU activity and significantly prompted mitochondrial permeability transition pore opening. Our findings support the critical role of mMg2+ in regulating MCU activity.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Uthayabalan S, Vishnu N, Madesh M, Stathopulos PB. The human MRS2 magnesium-binding domain is a regulatory feedback switch for channel activity. Life Sci Alliance 2023; 6:e202201742. [PMID: 36754568 PMCID: PMC9909464 DOI: 10.26508/lsa.202201742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial RNA splicing 2 (MRS2) forms a magnesium (Mg2+) entry protein channel in mitochondria. Whereas MRS2 contains two transmembrane domains constituting a pore on the inner mitochondrial membrane, most of the protein resides within the matrix. Yet, the precise structural and functional role of this obtrusive amino terminal domain (NTD) in human MRS2 is unknown. Here, we show that the MRS2 NTD self-associates into a homodimer, contrasting the pentameric assembly of CorA, an orthologous bacterial channel. Mg2+ and calcium suppress lower and higher order oligomerization of MRS2 NTD, whereas cobalt has no effect on the NTD but disassembles full-length MRS2. Mutating-pinpointed residues-mediating Mg2+ binding to the NTD not only selectively decreases Mg2+-binding affinity ∼sevenfold but also abrogates Mg2+ binding-induced secondary, tertiary, and quaternary structure changes. Disruption of NTD Mg2+ binding strikingly potentiates mitochondrial Mg2+ uptake in WT and Mrs2 knockout cells. Our work exposes a mechanism for human MRS2 autoregulation by negative feedback from the NTD and identifies a novel gain of function mutant with broad applicability to future Mg2+ signaling research.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Neelanjan Vishnu
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Muniswamy Madesh
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Tang Y, Yang X, Li H, Shuai Y, Chen W, Ma D, Lü Z. Uncovering the role of wheat magnesium transporter family genes in abiotic responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1078299. [PMID: 36844102 PMCID: PMC9948656 DOI: 10.3389/fpls.2023.1078299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The CorA / MGT / MRS2 family proteins are an important group of magnesium transporter proteins that maintain magnesium ion homeostasis in plant cells. However, little is known about the MGT functions in wheat. METHODS The known MGT sequences were used as queries to BlastP against wheat genome IWGSC RefSeq v2.1 assembly (E-value <10-5). Chromosome localization information for each TaMGT gene was obtained from the GFF3 file of the wheat genome data (IWGSCv2.1).The sequence of 1500 bp upstream of the TaMGT genes was extracted from the wheat genome data. The cis-elements were analyzed using PlantCARE online tool. RESULT A total of 24 MGT genes were identified on 18 chromosomes of wheat. After functional domain analysis, only TaMGT1A, TaMGT1B, and TaMGT1D had GMN mutations to AMN, while all the other genes had conserved GMN tripeptide motifs. Expression profiling showed that the TaMGT genes were differentially expressed under different stresses and at different growth and development stages. The expression levels of TaMGT4B and TaMGT4A were significantly up-regulated in cold damage. In addition, qRT-PCR results also confirmed that these TaMGT genes are involved in the wheat abiotic stress responses. CONCLUSION In conclusion, The results of our research provide a theoretical basis for further research on the function of TaMGT gene family in wheat.
Collapse
Affiliation(s)
- Yanhong Tang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyue Yang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yating Shuai
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Wang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Wang Chen, ; Dongfang Ma, ; Zhichuang Lü,
| | - Dongfang Ma
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wang Chen, ; Dongfang Ma, ; Zhichuang Lü,
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wang Chen, ; Dongfang Ma, ; Zhichuang Lü,
| |
Collapse
|
6
|
Zhu Y, Wang Y, Zhang Y, Pu M, Miao W, Bai M, Bao R, Geng J. Ion selectivity and gating behavior of the CorA-type channel Bpss1228. Front Chem 2022; 10:998075. [PMID: 36171999 PMCID: PMC9511408 DOI: 10.3389/fchem.2022.998075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Magnesium is an essential element to sustain all forms of life. Total intracellular magnesium content is determined by the balance of magnesium influx and efflux. CorA is a divalent selective channel in the metal ion transport superfamily and is the major Mg2+ uptake pathway in prokaryotes and eukaryotic mitochondria. Previous studies have demonstrated that CorA showed distinct magnesium bound closed conformation and Mg2+-free states. In addition, CorA is regulated by cytoplasmic magnesium ions and its gating mechanism has been investigated by electron paramagnetic resonance technique and molecular dynamic simulations. Here, we report a study of the putative CorA-type channel Bpss1228 from Burkholderia pseudomallei, which has been shown to be significantly associated with pseudomallei infection. We expressed and purified the Bpss1228 in full-length. Subsequently, electrophysiological experiments further investigated the electrical characteristics of Bpss1228 and revealed that it was a strictly cation-selective channel. We also proved that Bpss1228 not only possessed magnesium-mediated regulatory property a remarkable ability to be modulated by magnesium ions. Finally, we observed the three-step gating behavior of Bpss1228 on planar lipid bilayer, and further proposed a synergistic gating mechanism by which CorA family channels control intracellular magnesium homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rui Bao
- *Correspondence: Rui Bao, ; Jia Geng,
| | - Jia Geng
- *Correspondence: Rui Bao, ; Jia Geng,
| |
Collapse
|
7
|
Johansen NT, Bonaccorsi M, Bengtsen T, Larsen AH, Tidemand FG, Pedersen MC, Huda P, Berndtsson J, Darwish T, Yepuri NR, Martel A, Pomorski TG, Bertarello A, Sansom MS, Rapp M, Crehuet R, Schubeis T, Lindorff-Larsen K, Pintacuda G, Arleth L. Mg 2+-dependent conformational equilibria in CorA and an integrated view on transport regulation. eLife 2022; 11:71887. [PMID: 35129435 PMCID: PMC8865849 DOI: 10.7554/elife.71887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.
Collapse
Affiliation(s)
| | - Marta Bonaccorsi
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Tone Bengtsen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Haahr Larsen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | | | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | - Nageshewar Rao Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | | | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrea Bertarello
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ramon Crehuet
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Tobias Schubeis
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | | | - Guido Pintacuda
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Stetsenko A, Stehantsev P, Dranenko NO, Gelfand MS, Guskov A. Structural and biochemical characterization of a novel ZntB (CmaX) transporter protein from Pseudomonas aeruginosa. Int J Biol Macromol 2021; 184:760-767. [PMID: 34175341 DOI: 10.1016/j.ijbiomac.2021.06.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022]
Abstract
The 2-TM-GxN family of membrane proteins is widespread in prokaryotes and plays an important role in transport of divalent cations. The canonical signature motif, which is also a selectivity filter, has a composition of Gly-Met-Asn. Some members though deviate from this composition, however no data are available as to whether this has any functional implications. Here we report the functional and structural analysis of CmaX protein from a pathogenic Pseudomonas aeruginosa bacterium, which has a Gly-Ile-Asn signature motif. CmaX readily transports Zn2+, Mg2+, Cd2+, Ni2+ and Co2+ ions, but it does not utilize proton-symport as does ZntB from Escherichia coli. Together with the bioinformatics analysis, our data suggest that deviations from the canonical signature motif do not reveal any changes in substrate selectivity or transport and easily alter in course of evolution.
Collapse
Affiliation(s)
- Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Pavlo Stehantsev
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Natalia O Dranenko
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia; Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
9
|
Abstract
CorA proteins belong to 2-TM-GxN family of membrane proteins, and play a major role in Mg2+ transport in prokaryotes and eukaryotic mitochondria. The selection of substrate is believed to occur via the signature motif GxN, however there is no consensus how strict this selection within the family. To answer this question, we employed fluorescence-based transport assays on three different family members, namely CorA from bacterium Thermotoga maritima, CorA from the archeon Methanocaldococcus jannaschii and ZntB from bacterium Escherichia coli, reconstituted into proteoliposomes. Our results show that all three proteins readily transport Mg2+, Co2+, Ni2+ and Zn2+, but not Al3+. Despite the similarity in cation specificity, ZntB differs from the CorA proteins, as in the former transport is stimulated by a proton gradient, but in the latter by the membrane potential, confirming the hypothesis that CorA and ZntB proteins diverged to different transport mechanisms within the same protein scaffold.
Collapse
|
10
|
Hanner AS, Dunworth M, Casero RA, MacDiarmid CW, Park MH. Elevation of cellular Mg 2+ levels by the Mg 2+ transporter, Alr1, supports growth of polyamine-deficient Saccharomyces cerevisiae cells. J Biol Chem 2019; 294:17131-17142. [PMID: 31548311 DOI: 10.1074/jbc.ra119.009705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Indexed: 11/06/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are required for normal eukaryotic cellular functions. However, the minimum requirement for polyamines varies widely, ranging from very high concentrations (mm) in mammalian cells to extremely low in the yeast Saccharomyces cerevisiae Yeast strains deficient in polyamine biosynthesis (spe1Δ, lacking ornithine decarboxylase, and spe2Δ, lacking SAM decarboxylase) require externally supplied polyamines, but supplementation with as little as 10-8 m spermidine restores their growth. Here, we report that culturing a spe1Δ mutant or a spe2Δ mutant in a standard polyamine-free minimal medium (SDC) leads to marked increases in cellular Mg2+ content. To determine which yeast Mg2+ transporter mediated this increase, we generated mutant strains with a deletion of SPE1 or SPE2 combined with a deletion of one of the three Mg2+ transporter genes, ALR1, ALR2, and MNR2, known to maintain cytosolic Mg2+ concentration. Neither Alr2 nor Mnr2 was required for increased Mg2+ accumulation, as all four double mutants (spe1Δ alr2Δ, spe2Δ alr2Δ, spe1Δ mnr2Δ, and spe2Δ mnr2Δ) exhibited significant Mg2+ accumulation upon polyamine depletion. In contrast, a spe2Δ alr1Δ double mutant cultured in SDC exhibited little increase in Mg2+ content and displayed severe growth defects compared with single mutants alr1Δ and spe2Δ under polyamine-deficient conditions. These findings indicate that Alr1 is required for the up-regulation of the Mg2+ content in polyamine-depleted cells and suggest that elevated Mg2+ can support growth of polyamine-deficient S. cerevisiae mutants. Up-regulation of cellular polyamine content in a Mg2+-deficient alr1Δ mutant provided further evidence for a cross-talk between Mg2+ and polyamine metabolism.
Collapse
Affiliation(s)
- Ashleigh S Hanner
- Molecular and Cellular Biochemistry Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew Dunworth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at The Johns Hopkins University, Baltimore, Maryland 21287
| | - Robert A Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at The Johns Hopkins University, Baltimore, Maryland 21287
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Myung Hee Park
- Molecular and Cellular Biochemistry Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Trachsel E, Redder P, Linder P, Armitano J. Genetic screens reveal novel major and minor players in magnesium homeostasis of Staphylococcus aureus. PLoS Genet 2019; 15:e1008336. [PMID: 31415562 PMCID: PMC6711546 DOI: 10.1371/journal.pgen.1008336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Magnesium is one of the most abundant metal ions in living cells. Very specific and devoted transporters have evolved for transporting Mg2+ ions across the membrane and maintain magnesium homeostasis. Using genetic screens, we were able to identify the main players in magnesium homeostasis in the opportunistic pathogen Staphylococcus aureus. Here, we show that import of magnesium relies on the redundant activity of either CorA2 or MgtE since in absence of these two importers, bacteria require increased amounts of magnesium in the medium. A third CorA-like importer seems to play a minor role, at least under laboratory conditions. For export of magnesium, we identified two proteins, MpfA and MpfB. MpfA, is the main actor since it is essential for growth in high magnesium concentrations. We show that gain of function mutations or overexpression of the minor factor, MpfB, which is part of a sigmaB controlled stress response regulon, can compensate for the absence of MpfA.
Collapse
Affiliation(s)
- Emilie Trachsel
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Redder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- LMGM UMR5100, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Armitano
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Wang Y, Hua X, Xu J, Chen Z, Fan T, Zeng Z, Wang H, Hour AL, Yu Q, Ming R, Zhang J. Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. BMC Genomics 2019; 20:83. [PMID: 30678642 PMCID: PMC6345045 DOI: 10.1186/s12864-019-5437-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Sugarcane served as the model plant for discovery of the C4 photosynthetic pathway. Magnesium is the central atom of chlorophyll, and thus is considered as a critical nutrient for plant development and photosynthesis. In plants, the magnesium transporter (MGT) family is composed of a number of membrane proteins, which play crucial roles in maintaining Mg homeostasis. However, to date there is no information available on the genomics of MGTs in sugarcane due to the complexity of the Saccharum genome. Results Here, we identified 10 MGTs from the Saccharum spontaneum genome. Phylogenetic analysis of MGTs suggested that the MGTs contained at least 5 last common ancestors before the origin of angiosperms. Gene structure analysis suggested that MGTs family of dicotyledon may be accompanied by intron loss and pseudoexon phenomena during evolution. The pairwise synonymous substitution rates corresponding to a divergence time ranged from 142.3 to 236.6 Mya, demonstrating that the MGTs are an ancient gene family in plants. Both the phylogeny and Ks analyses indicated that SsMGT1/SsMGT2 originated from the recent ρWGD, and SsMGT7/SsMGT8 originated from the recent σ WGD. These 4 recently duplicated genes were shown low expression levels and assumed to be functionally redundant. MGT6, MGT9 and MGT10 weredominant genes in the MGT family and werepredicted to be located inthe chloroplast. Of the 3 dominant MGTs, SsMGT6 expression levels were found to be induced in the light period, while SsMGT9 and SsMTG10 displayed high expression levels in the dark period. These results suggested that SsMGT6 may have a function complementary to SsMGT9 and SsMTG10 that follows thecircadian clock for MGT in the leaf tissues of S. spontaneum. MGT3, MGT7 and MGT10 had higher expression levels Insaccharum officinarum than in S. spontaneum, suggesting their functional divergence after the split of S. spontaneum and S. officinarum. Conclusions This study of gene evolution and expression of MGTs in S. spontaneum provided basis for the comprehensive genomic study of the entire MGT genes family in Saccharum. The results are valuable for further functional analyses of MGT genes and utilization of the MGTs for Saccharum genetic improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5437-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongjun Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Xiuting Hua
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Jingsheng Xu
- Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Zhichang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tianqu Fan
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaohui Zeng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hengbo Wang
- Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Ai-Ling Hour
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., Taibei, 242, Taiwan
| | - Qingyi Yu
- Texas A&M AgriLife Research, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, TX, 75252, USA
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Resources and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
13
|
Ishijima S, Manabe Y, Shinkawa Y, Hotta A, Tokumasu A, Ida M, Sagami I. The homologous Arabidopsis MRS2/MGT/CorA-type Mg2+ channels, AtMRS2-10 and AtMRS2-1 exhibit different aluminum transport activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2184-2191. [DOI: 10.1016/j.bbamem.2018.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022]
|
14
|
Lerche M, Sandhu H, Flöckner L, Högbom M, Rapp M. Structure and Cooperativity of the Cytosolic Domain of the CorA Mg 2+ Channel from Escherichia coli. Structure 2017; 25:1175-1186.e4. [PMID: 28669631 DOI: 10.1016/j.str.2017.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 05/25/2017] [Indexed: 01/04/2023]
Abstract
Structures of the Mg2+ bound (closed) and apo (open) states of CorA suggests that channel gating is accomplished by rigid-body motions between symmetric and asymmetric assemblies of the cytosolic portions of the five subunits in response to ligand (Mg2+) binding/unbinding at interfacial sites. Here, we structurally and biochemically characterize the isolated cytosolic domain from Escherichia coli CorA. The data reveal an Mg2+-ligand binding site located in a novel position between each of the five subunits and two Mg2+ ions trapped inside the pore. Soaking experiments show that cobalt hexammine outcompetes Mg2+ at the pore site closest to the membrane. This represents the first structural information of how an analog of hexa-hydrated Mg2+ (and competitive inhibitor of CorA) associates to the CorA pore. Biochemical data on the isolated cytoplasmic domain and full-length protein suggests that gating of the CorA channel is governed cooperatively.
Collapse
Affiliation(s)
- Michael Lerche
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Hena Sandhu
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Lukas Flöckner
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
15
|
Matthies D, Dalmas O, Borgnia MJ, Dominik PK, Merk A, Rao P, Reddy BG, Islam S, Bartesaghi A, Perozo E, Subramaniam S. Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating. Cell 2016; 164:747-56. [PMID: 26871634 DOI: 10.1016/j.cell.2015.12.055] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
CorA, the major Mg(2+) uptake system in prokaryotes, is gated by intracellular Mg(2+) (KD ∼ 1-2 mM). X-ray crystallographic studies of CorA show similar conformations under Mg(2+)-bound and Mg(2+)-free conditions, but EPR spectroscopic studies reveal large Mg(2+)-driven quaternary conformational changes. Here, we determined cryo-EM structures of CorA in the Mg(2+)-bound closed conformation and in two open Mg(2+)-free states at resolutions of 3.8, 7.1, and 7.1 Å, respectively. In the absence of bound Mg(2+), four of the five subunits are displaced to variable extents (∼ 10-25 Å) by hinge-like motions as large as ∼ 35° at the stalk helix. The transition between a single 5-fold symmetric closed state and an ensemble of low Mg(2+), open, asymmetric conformational states is, thus, the key structural signature of CorA gating. This mechanism is likely to apply to other structurally similar divalent ion channels.
Collapse
Affiliation(s)
- Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Mario J Borgnia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bharat G Reddy
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Kitjaruwankul S, Wapeesittipan P, Boonamnaj P, Sompornpisut P. Inner and Outer Coordination Shells of Mg(2+) in CorA Selectivity Filter from Molecular Dynamics Simulations. J Phys Chem B 2016; 120:406-17. [PMID: 26727882 DOI: 10.1021/acs.jpcb.5b10925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.
Collapse
Affiliation(s)
- Sunan Kitjaruwankul
- Graduate School of Nanoscience and Technology, Chulalongkorn University , Bangkok 10330, Thailand.,Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Pattama Wapeesittipan
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Panisak Boonamnaj
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Pornthep Sompornpisut
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| |
Collapse
|
17
|
Neale C, Chakrabarti N, Pomorski P, Pai EF, Pomès R. Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA. PLoS Comput Biol 2015; 11:e1004303. [PMID: 26181442 PMCID: PMC4504495 DOI: 10.1371/journal.pcbi.1004303] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or “wetting” events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction. This study shows how rapid wetting/dewetting transitions in the pores of ion channels participate in the control of biological ion permeation. Ion channels catalyze ionic permeation across non-polar membranes via water-filled pores. However, non-polar stretches or hydrophobic bottlenecks are present in the pores of many ion channels. To clarify the relationship between channel regulation, pore hydration, and ion permeation, we examine how the slow relaxation of magnesium channel CorA from its closed state towards its open state modulates wetting of its hydrophobic bottleneck. Results provide a quantitative description of wetting and dewetting probabilities and kinetics and a quantitative relationship between the extent of pore hydration and the energetics of ion permeation, consistent with a mechanism of hydrophobic gating.
Collapse
Affiliation(s)
- Chris Neale
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nilmadhab Chakrabarti
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pawel Pomorski
- Shared Hierarchical Academic Research Computing Network, Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Emil F. Pai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute/Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Payandeh J, Pfoh R, Pai EF. The structure and regulation of magnesium selective ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2778-92. [PMID: 23954807 DOI: 10.1016/j.bbamem.2013.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|