1
|
Acharya N, Jha SK. Dry Molten Globule-Like Intermediates in Protein Folding, Function, and Disease. J Phys Chem B 2022; 126:8614-8622. [PMID: 36286394 DOI: 10.1021/acs.jpcb.2c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The performance of a protein depends on its correct folding to the final functional native form. Hence, understanding the process of protein folding has remained an important field of research for the scientific community for the past five decades. Two important intermediate states, namely, wet molten globule (WMG) and dry molten globule (DMG), have emerged as critical milestones during protein folding-unfolding reactions. While much has been discussed about WMGs as a common unfolding intermediate, the evidence for DMGs has remained elusive owing to their near-native features, which makes them difficult to probe using global structural probes. This Review puts together the available literature and new evidence on DMGs to give a broader perspective on the universality of DMGs and discuss their significance in protein folding, function, and disease.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
4
|
Overbeck JH, Kremer W, Sprangers R. A suite of 19F based relaxation dispersion experiments to assess biomolecular motions. JOURNAL OF BIOMOLECULAR NMR 2020; 74:753-766. [PMID: 32997265 PMCID: PMC7701166 DOI: 10.1007/s10858-020-00348-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 05/08/2023]
Abstract
Proteins and nucleic acids are highly dynamic bio-molecules that can populate a variety of conformational states. NMR relaxation dispersion (RD) methods are uniquely suited to quantify the associated kinetic and thermodynamic parameters. Here, we present a consistent suite of 19F-based CPMG, on-resonance R1ρ and off-resonance R1ρ RD experiments. We validate these experiments by studying the unfolding transition of a 7.5 kDa cold shock protein. Furthermore we show that the 19F RD experiments are applicable to very large molecular machines by quantifying dynamics in the 360 kDa half-proteasome. Our approach significantly extends the timescale of chemical exchange that can be studied with 19F RD, adds robustness to the extraction of exchange parameters and can determine the absolute chemical shifts of excited states. Importantly, due to the simplicity of 19F NMR spectra, it is possible to record complete datasets within hours on samples that are of very low costs. This makes the presented experiments ideally suited to complement static structural information from cryo-EM and X-ray crystallography with insights into functionally relevant motions.
Collapse
Affiliation(s)
- Jan H Overbeck
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Werner Kremer
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Remco Sprangers
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Di Pietrantonio C, Pandey A, Gould J, Hasabnis A, Prosser RS. Understanding Protein Function Through an Ensemble Description: Characterization of Functional States by 19F NMR. Methods Enzymol 2019; 615:103-130. [DOI: 10.1016/bs.mie.2018.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Abdelkarim H, Hitchinson B, Banerjee A, Gaponenko V. Advances in NMR Methods to Identify Allosteric Sites and Allosteric Ligands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:171-186. [PMID: 31707704 DOI: 10.1007/978-981-13-8719-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NMR allows assessment of protein structure in solution. Unlike conventional X-ray crystallography that provides snapshots of protein conformations, all conformational states are simultaneously accessible to analysis by NMR. This is a significant advantage for discovery and characterization of allosteric effects. These effects are observed when binding at one site of the protein affects another distinct site through conformational transitions. Allosteric regulation of proteins has been observed in multiple physiological processes in health and disease, providing an opportunity for the development of allosteric inhibitors. These compounds do not directly interact with the orthosteric site of the protein but influence its structure and function. In this book chapter, we provide an overview on how NMR methods are utilized to identify allosteric sites and to discover novel inhibitors, highlighting examples from the field. We also describe how NMR has contributed to understanding of allosteric mechanisms and propose that it is likely to play an important role in clarification and further development of key concepts of allostery.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Lee YJ, Schmidt MJ, Tharp JM, Weber A, Koenig AL, Zheng H, Gao J, Waters ML, Summerer D, Liu WR. Genetically encoded fluorophenylalanines enable insights into the recognition of lysine trimethylation by an epigenetic reader. Chem Commun (Camb) 2018; 52:12606-12609. [PMID: 27711380 DOI: 10.1039/c6cc05959g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorophenylalanines bearing 2-5 fluorine atoms at the phenyl ring have been genetically encoded by amber codon. Replacement of F59, a phenylalanine residue that is directly involved in interactions with trimethylated K9 of histone H3, in the Mpp8 chromodomain recombinantly with fluorophenylalanines significantly impairs the binding to a K9-trimethylated H3 peptide.
Collapse
Affiliation(s)
- Yan-Jiun Lee
- Department of Chemistry, Texas A&M University, College Station, TX 7743, USA.
| | - M J Schmidt
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX 7743, USA.
| | - Annemarie Weber
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Amber L Koenig
- Department of Chemistry, Boston College, Boston, MA 02467, USA
| | - Hong Zheng
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jianmin Gao
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marcey L Waters
- Department of Chemistry, Boston College, Boston, MA 02467, USA
| | - Daniel Summerer
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, 44227 Dortmund, Germany.
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 7743, USA.
| |
Collapse
|
8
|
Ye L, Van Eps N, Li X, Ernst OP, Prosser RS. Utilizing tagged paramagnetic shift reagents to monitor protein dynamics by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1555-1563. [PMID: 28951313 DOI: 10.1016/j.bbapap.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Calmodulin is a ubiquitous calcium sensor protein, known to serve as a critical interaction hub with a wide range of signaling partners. While the holo form of calmodulin (CaM-4Ca2+) has a well-defined ground state structure, it has been shown to undergo exchange, on a millisecond timescale, to a conformation resembling that of the peptide bound state. Tagged paramagnetic relaxation agents have been previously used to identify long-range dipolar interactions through relaxation effects on nuclear spins of interest. In the case of calmodulin, this lead to the determination of the relative orientation of the N- and C-terminal domains and the presence of a weakly populated peptide bound like state. Here, we make use of pseudocontact shifts from a tagged paramagnetic shift reagent which allows us to define minor states both in 13C and 15N NMR spectra and through 13C- and 15N-edited 1H-CPMG relaxation dispersion measurements. This is validated by pulsed EPR (DEER) spectroscopy which reveals an ensemble consisting of a compact peptide-bound like conformer, an intermediate peptide-bound like conformer, and a (dumbbell-like) extended ground state conformer of CaM-4Ca2+, where addition of the MLCK peptide increases the population of the peptide-bound conformers. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Libin Ye
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Xiang Li
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
10
|
Lima MA, Cavalheiro RP, M Viana G, Meneghetti MCZ, Rudd TR, Skidmore MA, Powell AK, Yates EA. 19F labelled glycosaminoglycan probes for solution NMR and non-linear (CARS) microscopy. Glycoconj J 2016; 34:405-410. [PMID: 27523650 DOI: 10.1007/s10719-016-9723-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
Studying polysaccharide-protein interactions under physiological conditions by conventional techniques is challenging. Ideally, macromolecules could be followed by both in vitro spectroscopy experiments as well as in tissues using microscopy, to enable a proper comparison of results over these different scales but, often, this is not feasible. The cell surface and extracellular matrix polysaccharides, glycosaminoglycans (GAGs) lack groups that can be detected selectively in the biological milieu. The introduction of 19F labels into GAG polysaccharides is explored and the interaction of a labelled GAG with the heparin-binding protein, antithrombin, employing 19F NMR spectroscopy is followed. Furthermore, the ability of 19F labelled GAGs to be imaged using CARS microscopy is demonstrated. 19F labelled GAGs enable both 19F NMR protein-GAG binding studies in solution at the molecular level and non-linear microscopy at a microscopic scale to be conducted on the same material, essentially free of background signals.
Collapse
Affiliation(s)
- Marcelo A Lima
- Department of Biochemistry, UNIFESP, Rua Três de Maio, Vila Clementino, São Paulo, SP, 40440, Brazil
- Department of Biochemistry, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Renan P Cavalheiro
- Department of Biochemistry, UNIFESP, Rua Três de Maio, Vila Clementino, São Paulo, SP, 40440, Brazil
| | - Gustavo M Viana
- Department of Biochemistry, UNIFESP, Rua Três de Maio, Vila Clementino, São Paulo, SP, 40440, Brazil
| | - Maria C Z Meneghetti
- Department of Biochemistry, UNIFESP, Rua Três de Maio, Vila Clementino, São Paulo, SP, 40440, Brazil
| | - Timothy R Rudd
- Department of Biochemistry, University of Liverpool, L69 7ZB, Liverpool, UK
- The National Institute of Biological Standards and Controls, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Mark A Skidmore
- Department of Biochemistry, University of Liverpool, L69 7ZB, Liverpool, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Andrew K Powell
- Department of Biochemistry, University of Liverpool, L69 7ZB, Liverpool, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, L3 3AF, Liverpool, UK
| | - Edwin A Yates
- Department of Biochemistry, UNIFESP, Rua Três de Maio, Vila Clementino, São Paulo, SP, 40440, Brazil.
- Department of Biochemistry, University of Liverpool, L69 7ZB, Liverpool, UK.
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
11
|
Larda ST, Pichugin D, Prosser RS. Site-Specific Labeling of Protein Lysine Residues and N-Terminal Amino Groups with Indoles and Indole-Derivatives. Bioconjug Chem 2015; 26:2376-83. [DOI: 10.1021/acs.bioconjchem.5b00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sacha Thierry Larda
- Department
of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Dmitry Pichugin
- Department
of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Robert Scott Prosser
- Department
of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department
of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Sharaf NG, Gronenborn AM. (19)F-modified proteins and (19)F-containing ligands as tools in solution NMR studies of protein interactions. Methods Enzymol 2015; 565:67-95. [PMID: 26577728 DOI: 10.1016/bs.mie.2015.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
(19)F solution NMR is a powerful and versatile tool to study protein structure and protein-ligand interactions due to the favorable NMR characteristics of the (19)F atom, its absence in naturally occurring biomolecules, and small size. Protocols to introduce (19)F atoms into both proteins and their ligands are readily available and offer the ability to conduct protein-observe (using (19)F-labeled proteins) or ligand-observe (using (19)F-containing ligands) NMR experiments. This chapter provides two protocols for the (19)F-labeling of proteins, using an Escherichia coli expression system: (i) amino acid type-specific incorporation of (19)F-modified amino acids and (ii) site-specific incorporation of (19)F-modified amino acids using recombinantly expressed orthogonal amber tRNA/tRNA synthetase pairs. In addition, we discuss several applications, involving (19)F-modified proteins and (19)F-containing ligands.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
13
|
Hoang J, Prosser RS. Conformational Selection and Functional Dynamics of Calmodulin: A 19F Nuclear Magnetic Resonance Study. Biochemistry 2014; 53:5727-36. [DOI: 10.1021/bi500679c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joshua Hoang
- Department
of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | - R. Scott Prosser
- Department
of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department
of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S
1A8, Canada
| |
Collapse
|
14
|
Marsh ENG, Suzuki Y. Using (19)F NMR to probe biological interactions of proteins and peptides. ACS Chem Biol 2014; 9:1242-50. [PMID: 24762032 DOI: 10.1021/cb500111u] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorine is a valuable probe for investigating the interactions of biological molecules because of its favorable NMR characteristics, its small size, and its near total absence from biology. Advances in biosynthetic methods allow fluorine to be introduced into peptides and proteins with high precision, and the increasing sensitivity of NMR spectrometers has facilitated the use of (19)F NMR to obtain molecular-level insights into a wide range of often-complex biological interactions. Here, we summarize the advantages of solution-state (19)F NMR for studying the interactions of peptides and proteins with other biological molecules, review methods for the production of fluorine-labeled materials, and describe some representative recent examples in which (19)F NMR has been used to study conformational changes in peptides and proteins and their interactions with other biological molecules.
Collapse
Affiliation(s)
- E. Neil G. Marsh
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuta Suzuki
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Aramini JM, Hamilton K, Ma LC, Swapna GVT, Leonard PG, Ladbury JE, Krug RM, Montelione GT. (19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus. Structure 2014; 22:515-525. [PMID: 24582435 DOI: 10.1016/j.str.2014.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 11/19/2022]
Abstract
Nonstructural protein 1 of influenza A virus (NS1A) is a conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply (19)F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan, and we demonstrate that the (19)F signal of Trp187 is a sensitive, direct monitor of the ED helix:helix dimer interface. (19)F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein:protein interface, whose rate is more than three orders of magnitude faster than the kinetics of ED dimerization. (19)F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1A at concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection.
Collapse
Affiliation(s)
- James M Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Keith Hamilton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Li-Chung Ma
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Paul G Leonard
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - John E Ladbury
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Robert M Krug
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Center for Infectious Disease, University of Texas, Austin, Texas 78712, U.S.A
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, U.S.A
| |
Collapse
|