1
|
Zhong BX, Shen FM, Chen JK. The role of HSP40 in cancer: Recent advances. Histol Histopathol 2024; 39:845-851. [PMID: 38189484 DOI: 10.14670/hh-18-693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Heat shock proteins (HSPs) are a family of proteins involved in protein folding and maturation that are expressed by cells in response to stressors including heat shock. Recent studies have demonstrated that HSPs play major roles in carcinogenesis by regulating angiogenesis, cell proliferation, migration, invasion, metastasis, apoptosis, as well as therapy resistance to certain anticancer drugs. Despite being the largest and most diverse subgroup of the HSP family, HSP40 (DNAJ) is an understudied family of co-chaperones. HSP40 family members are also known to be involved in various types of cancers. In this article, we review the involvement of human HSP40 family members in various aspects of cancer biology. In addition, we highlight the possible potential of HSP40 as a tumor biomarker or drug target for improving the prognosis and treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Bi-Xi Zhong
- Shanghai University School of Medicine, Shanghai, PR China
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, PR China
| | - Fu-Ming Shen
- Shanghai University School of Medicine, Shanghai, PR China.
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
2
|
Li Z, Yuan X, Wang Y, Sun Z, Ao J. DNAJA1 positively regulates amino acid-stimulated milk protein and fat synthesis in bovine mammary epithelial cells. Cell Biochem Funct 2024; 42:e3918. [PMID: 38269516 DOI: 10.1002/cbf.3918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.
Collapse
Affiliation(s)
- Zhuolin Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yuan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Yuanhao Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Zheya Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jinxia Ao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Wu J, Yang Q, Zhu Y, Xia T, Yi L, Wang J, Ren X. DNAJA1 promotes proliferation and metastasis of breast cancer by activating mutant P53/NF-κB pathway. Pathol Res Pract 2023; 252:154921. [PMID: 37977037 DOI: 10.1016/j.prp.2023.154921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Breast cancer is one of the most common tumors with high malignancy and metastatic rate. DNAJA1 is closely related to tumor progress in several tumors. However, the role and mechanisms of DNAJA1 in the metastasis and proliferation of breast cancer are unknown. METHODS Immunohistochemistry and western blot were used to detect the protein expression genes. In vivo and vitro experiments were performed to evaluate the proliferation, invasive and metastatic abilities of breast cancer cells. RESULTS DNAJA1 was high expressed in 234 cases of breast cancer tissues and associated with metastasis, p53 expression and poor survival for patients. Knock down of DNAJA1 decreased the number of plate clone formation and the OD value of CCK8 assays in breast cancer cells. Depletion of DNAJA1 also in decreased the invasive abilities of breast cancer cells. In vivo, knock down DNAJA1 decreased the growth of subcutaneous tumor and lung metastatic nodes. Mechanically, DNAJA1 could bind with P53-R175H and reduced its degradation. Up regulation of DNAJA1 in mutant P53-R175H breast cancer cell promoted the nuclear translocation of p65, activated NF-κB pathway and enhanced the transcription of its downstream genes such as MMP9, CXCL10 et al. Blockade of NF-κB pathway effectively rescued the effects of DNAJA1 on proliferation and metastasis in breast cancer. CONCLUSION Our study reveals that DNAJA1 is up regulated in breast cancer and promotes breast cancer cells proliferation and metastasis via P53-R175H/NF-κB pathway. It might be a potential prognosis marker for the breast cancer patients.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Qiao Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Ye Zhu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of gastroenterology, The People' Hospital of Leshan, Leshan 644000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Tian Xia
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Lizhi Yi
- Department of gastroenterology, The People' Hospital of Leshan, Leshan 644000, Sichuan Province, People's Republic of China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China.
| | - Xiaoli Ren
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Department of Pathology, Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou 646000, Sichuan Province, People's Republic of China.
| |
Collapse
|
4
|
Qin H, Chen J, Bouchekioua-Bouzaghou K, Meng YM, Griera JB, Jiang X, Kong X, Wang M, Xu Q, Wong PP. Immunization with a multi-antigen targeted DNA vaccine eliminates chemoresistant pancreatic cancer by disrupting tumor-stromal cell crosstalk. J Transl Med 2023; 21:702. [PMID: 37814317 PMCID: PMC10561406 DOI: 10.1186/s12967-023-04519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterised by limited responses to chemoimmunotherapy attributed to highly desmoplastic tumor microenvironment. Disrupting the tumor-stromal cell crosstalk is considered as an improved PDAC treatment strategy, whereas little progress has been made due to poor understanding of its underlying mechanism. Here, we examined the cellular role of melanoma associated antigen A isoforms (MAGEA) in regulating tumor-stromal crosstalk mediated chemoresistance. METHODS We used clinical samples to explore the correlation between MAGEA expression and patient prognosis in multiple cancers. We utilized cancer cell lines, patient derived organoids and orthotopic PDAC model to examine the function of MAGEA in chemoresistance. We performed biochemical, proteome profiler array and transcriptional analysis to uncover a mechanism that governs tumor-stromal crosstalk. We developed a multi-MAGEA antigen targeted DNA vaccine and tested its effect on PDAC tumor growth. RESULTS We establish MAGEA as a regulator of the tumor-stromal crosstalk in PDAC. We provide strong clinical evidence indicating that high MAGEA expression, including MAGEA2, MAGEA3 and MAGEA10, correlates with worse chemotherapeutic response and poor prognosis in multiple cancers, while their expression is up-regulated in chemoresistant PDAC patient derived organoids and cancer cell lines. Mechanistically, MAGEA2 prohibits gemcitabine-induced JNK-c-Jun-p53 mediated cancer cell apoptosis, while gemcitabine stimulated pancreatic stellate cells secretes GDF15 to further enhance the gemcitabine resistance of MAGEA2 expressing cells by activating GFRAL-RET mediated Akt and ERK1/2 dependent survival pathway. Strikingly, immunization with a DNA vaccine that targeting multiple MAGEA antigens, including MAGEA2, MAGEA3 and MAGEA10, elicits robust immune responses against the growth of gemcitabine resistant tumors. CONCLUSIONS These findings suggest that targeting MAGEA-mediated paracrine regulation of chemoresistance by immunotherapy can be an improved pancreatic cancer treatment strategy.
Collapse
Affiliation(s)
- Hongquan Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiali Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Katia Bouchekioua-Bouzaghou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Reserach Center for Obstetrics and Gynecology; Guangdong-HongKong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jordi Bach Griera
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Singh H, Almaazmi SY, Dutta T, Keyzers RA, Blatch GL. In silico identification of modulators of J domain protein-Hsp70 interactions in Plasmodium falciparum: a drug repurposing strategy against malaria. Front Mol Biosci 2023; 10:1158912. [PMID: 37621993 PMCID: PMC10445141 DOI: 10.3389/fmolb.2023.1158912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Plasmodium falciparum is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by P. falciparum heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships. Two complexes have been shown to be important for survival and pathology of the malaria parasite: PfHsp70-x-PFE0055c (exported); and PfHsp70-2-PfSec63 (endoplasmic reticulum). Virtual screening was conducted on the drug repurposing library, the Pandemic Response Box, to identify small-molecules that could specifically disrupt these chaperone complexes. Five top ranked compounds possessing preferential binding affinity for the malarial chaperone system compared to the human system, were identified; three top PfHsp70-PfJDP binders, MBX 1641, zoliflodacin and itraconazole; and two top J domain binders, ezetimibe and a benzo-diazepinone. These compounds were validated by repeat molecular dockings and molecular dynamics simulation, resulting in all the compounds, except for MBX 1461, being confirmed to bind preferentially to the malarial chaperone system. A detailed contact analysis of the PfHsp70-PfJDP binders identified two different types of modulators, those that potentially inhibit complex formation (MBX 1461), and those that potentially stabilize the complex (zoliflodacin and itraconazole). These data suggested that zoliflodacin and itraconazole are potential novel modulators specific to the malarial system. A detailed contact analysis of the J domain binders (ezetimibe and the benzo-diazepinone), revealed that they bound with not only greater affinity but also a better pose to the malarial J domain compared to that of the human system. These data suggested that ezetimibe and the benzo-diazepinone are potential specific inhibitors of the malarial chaperone system. Both itraconazole and ezetimibe are FDA-approved drugs, possess anti-malarial activity and have recently been repurposed for the treatment of cancer. This is the first time that such drug-like compounds have been identified as potential modulators of PfHsp70-PfJDP complexes, and they represent novel candidates for validation and development into anti-malarial drugs.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Tanima Dutta
- Department of Diagnostic Genomics, Path West Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Robert A. Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
6
|
Almaazmi SY, Kaur RP, Singh H, Blatch GL. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Front Mol Biosci 2023; 10:1216192. [PMID: 37457831 PMCID: PMC10349383 DOI: 10.3389/fmolb.2023.1216192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Rupinder P. Kaur
- The Department of Chemistry, Guru Nanak Dev University College Verka, Amritsar, Punjab, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
7
|
Gautam R, Meena RK, Rampuria S, Shukla P, Kirti PB. Ectopic expression of DnaJ type-I protein homolog of Vigna aconitifolia ( VaDJI) confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135552. [PMID: 37152162 PMCID: PMC10154610 DOI: 10.3389/fpls.2023.1135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - P. B. Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Manunu B, Serafin AM, Akudugu JM. BAG1, MGMT, FOXO1, and DNAJA1 as potential drug targets for radiosensitizing cancer cell lines. Int J Radiat Biol 2023; 99:292-307. [PMID: 35511481 DOI: 10.1080/09553002.2022.2074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Activation of some signaling pathways can promote cell survival and have a negative impact on tumor response to radiotherapy. Here, the role of differences in expression levels of genes related to the poly(ADP-ribose) polymerase-1 (PARP-1), heat shock protein 90 (Hsp90), B-cell lymphoma 2 (Bcl-2), and phosphoinositide 3-kinase (PI3K) pathways in the survival or death of cells following X-ray exposure was investigated. METHODS Eight human cell cultures (MCF-7 and MDA-MB-231: breast cancers; MCF-12A: apparently normal breast; A549: lung cancer; L132: normal lung; G28, G44 and G112: glial cancers) were irradiated with X-rays. The colony-forming and real-time PCR based on a custom human pathway RT2 Profiler PCR Array assays were used to evaluate cell survival and gene expression, respectively. RESULTS The surviving fractions at 2 Gy for the cell lines, in order of increasing radioresistance, were found to be as follows: MCF-7 (0.200 ± 0.011), G44 (0.277 ± 0.065), L132 (0.367 ± 0.023), MDA-MB-231 (0.391 ± 0.057), G112 (0.397 ± 0.113), A549 (0.490 ± 0.048), MCF-12A (0.526 ± 0.004), and G28 (0.633 ± 0.094). The rank order of radioresistance at 6 Gy was: MCF-7 < L132 < G44 < MDA-MB-231 < A549 < G28 < G112 < MCF-12A. PCR array data analysis revealed that several genes were differentially expressed between irradiated and unirradiated cell cultures. The following genes, with fold changes: BCL2A1 (21.91), TP53 (8743.75), RAD51 (11.66), FOX1 (65.86), TCP1 (141.32), DNAJB1 (3283.64), RAD51 (51.52), and HSPE1 (12887.29) were highly overexpressed, and BAX (-127.21), FOX1 (-81.79), PDPK1 (-1241.78), BRCA1 (-8.70), MLH1 (-12143.95), BCL2 (-18.69), CCND1 (-46475.98), and GJA1 (-2832.70) were highly underexpressed in the MDA-MB-231, MCF-7, MCF-12A, A549, L132, G28, G44, and G112 cell lines, respectively. The radioresistance in the malignant A549 and G28 cells was linked to upregulation in the apoptotic, DNA repair, PI3K, and Hsp90 pathway genes BAG1, MGMT, FOXO1, and DNAJA1, respectively, and inhibition of these genes resulted in significant radiosensitization. CONCLUSIONS Targeting BAG1, MGMT, FOXO1, and DNAJA1 with specific inhibitors might effectively sensitize radioresistant tumors to radiotherapy.
Collapse
Affiliation(s)
- Bayanika Manunu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
9
|
Roth HE, De Lima Leite A, Palermo NY, Powers R. Leveraging the Structure of DNAJA1 to Discover Novel Potential Pancreatic Cancer Therapies. Biomolecules 2022; 12:1391. [PMID: 36291603 PMCID: PMC9599757 DOI: 10.3390/biom12101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest forms of cancer with a 5-year survival rate of only 11%. Difficult diagnosis and limited treatment options are the major causes of the poor outcome for pancreatic cancer. The human protein DNAJA1 has been proposed as a potential therapeutic target for pancreatic cancer, but its cellular and biological functions remain unclear. Previous studies have suggested that DNAJA1's cellular activity may be dependent upon its protein binding partners. To further investigate this assertion, the first 107 amino acid structures of DNAJA1 were solved by NMR, which includes the classical J-domain and its associated linker region that is proposed to be vital to DNAJA1 functionality. The DNAJA1 NMR structure was then used to identify both protein and ligand binding sites and potential binding partners that may suggest the intracellular roles of DNAJA1. Virtual drug screenings followed by NMR and isothermal titration calorimetry identified 5 drug-like compounds that bind to two different sites on DNAJA1. A pull-down assay identified 8 potentially novel protein binding partners of DNAJA1. These proteins in conjunction with our previously published metabolomics study support a vital role for DNAJA1 in cellular oncogenesis and pancreatic cancer.
Collapse
Affiliation(s)
- Heidi E. Roth
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Aline De Lima Leite
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nicolas Y. Palermo
- Computational Chemistry Core Facility, VCR Cores, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
10
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
11
|
Molecular Mechanisms behind Safranal's Toxicity to HepG2 Cells from Dual Omics. Antioxidants (Basel) 2022; 11:antiox11061125. [PMID: 35740022 PMCID: PMC9219844 DOI: 10.3390/antiox11061125] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The spice saffron (Crocus sativus) has anticancer activity in several human tissues, but the molecular mechanisms underlying its potential therapeutic effects are poorly understood. We investigated the impact of safranal, a small molecule secondary metabolite from saffron, on the HCC cell line HepG2 using untargeted metabolomics (HPLC–MS) and transcriptomics (RNAseq). Increases in glutathione disulfide and other biomarkers for oxidative damage contrasted with lower levels of the antioxidants biliverdin IX (139-fold decrease, p = 5.3 × 105), the ubiquinol precursor 3-4-dihydroxy-5-all-trans-decaprenylbenzoate (3-fold decrease, p = 1.9 × 10−5), and resolvin E1 (−3282-fold decrease, p = 45), which indicates sensitization to reactive oxygen species. We observed a significant increase in intracellular hypoxanthine (538-fold increase, p = 7.7 × 10−6) that may be primarily responsible for oxidative damage in HCC after safranal treatment. The accumulation of free fatty acids and other biomarkers, such as S-methyl-5′-thioadenosine, are consistent with safranal-induced mitochondrial de-uncoupling and explains the sharp increase in hypoxanthine we observed. Overall, the dual omics datasets describe routes to widespread protein destabilization and DNA damage from safranal-induced oxidative stress in HCC cells.
Collapse
|
12
|
Nelson B, Hong SH, Lupoli TJ. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. ACS Infect Dis 2022; 8:901-910. [PMID: 35412813 DOI: 10.1021/acsinfecdis.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial DnaK is an ATP-dependent molecular chaperone important for maintaining cellular proteostasis in concert with cofactor proteins. The cofactor DnaJ delivers non-native client proteins to DnaK and activates its ATPase activity, which is required for protein folding. In the bacterial pathogen Mycobacterium tuberculosis, DnaK is assisted by two DnaJs, DnaJ1 and DnaJ2. Functional protein-protein interactions (PPIs) between DnaK and at least one DnaJ are essential for survival of mycobacteria; hence, these PPIs represent untapped antibacterial targets. Here, we synthesize peptide-based mimetics of DnaJ1 and DnaJ2 N-terminal domains as rational inhibitors of DnaK-cofactor interactions. We find that covalently stabilized DnaJ mimetics are capable of disrupting DnaK-cofactor activity in vitro and prevent mycobacterial recovery from proteotoxic stress in vivo, leading to cell death. Since chaperones and cofactors are highly conserved, we anticipate these results will inform the design of other mimetics to modulate chaperone function across cell types.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
13
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
DNAJA1 Stabilizes EF1A1 to Promote Cell Proliferation and Metastasis of Liver Cancer Mediated by miR-205-5p. JOURNAL OF ONCOLOGY 2022; 2022:2292481. [PMID: 35586205 PMCID: PMC9110222 DOI: 10.1155/2022/2292481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Liver cancer is one of the most common and aggressive malignancies worldwide with poor prognosis. Studies on pathogenesis of liver cancer are urgently demanded to develop better treatment strategy. Here, we found that overexpression of DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1) increased cell proliferation, invasion, and angiogenesis in Huh 7 and HepG2 cells, while depletion of DNAJA1 in MHCC-97H and HCC-M3 showed opposite effects. In vivo functional assays indicated that DNAJA1 promoted tumor growth and pulmonary metastasis in mice. Mechanistically, as a direct target of miR-205-5p, DNAJA1 promoted proliferation and metastasis of liver cancer cells by stabilizing eukaryotic elongation factor 1A1 (EF1A1). Moreover, DNAJA was markedly upregulated in liver cancer tissues (P < 0.05) and was significantly associated with poor prognosis. And its expression was correlated with differentiation (P < 0.001), dissemination (P < 0.001), and serum AFP (P = 0.029). The mRNA levels of miR-205-5p and DNAJA1 were negatively correlated in liver cancer. In conclusion, our study reveals that DNAJA1 acts as an oncogene in liver cancer via miR-205-5p/EF1A1 axis and might be a potential biomarker to predict the prognosis for liver cancer patients.
Collapse
|
15
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [PMID: 34861354 DOI: 10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Globally, pancreatic cancer (PC) is a common and highly malignant gastrointestinal tumor that is characterized by an insidious onset and ready metastasis and recurrence. Over recent decades, the incidence of PC has been increasing on an annual basis; however, the pathogenesis of this condition remains enigmatic. PC is not sensitive to radio- or chemotherapy, and except for early surgical resection, there is no curative treatment regime; consequently, the prognosis for patients with PC is extremely poor. Transcription factor p53 is known to play key roles in many important biological processes in vertebrates, including normal cell growth, differentiation, cell cycle progression, senescence, apoptosis, metabolism, and DNA damage repair. However, there is a significant paucity of basic and clinical studies to describe how p53 gene mutations or protein dysfunction facilitate the occurrence, progression, invasion, and resistance to therapy, of malignancies, including PC. Herein, we describe the involvement of p53 signaling reactivation in PC treatment as well as its underlying molecular mechanisms, thereby providing useful insights for targeting p53-related signal pathways in PC therapy.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
16
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [DOI: doi10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
18
|
Kumari D, Fisher EA, Brodsky JL. Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis. Mol Biol Cell 2021; 33:ar15. [PMID: 34910568 PMCID: PMC9236142 DOI: 10.1091/mbc.e21-09-0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apolipoprotein B (ApoB) is the primary component of atherogenic lipoproteins, which transport serum fats and cholesterol. Therefore, elevated levels of circulating ApoB are a primary risk factor for cardiovascular disease. During ApoB biosynthesis in the liver and small intestine under nutrient-rich conditions, ApoB cotranslationally translocates into the endoplasmic reticulum (ER) and is lipidated and ultimately secreted. Under lipid-poor conditions, ApoB is targeted for ER Associated Degradation (ERAD). Although prior work identified select chaperones that regulate ApoB biogenesis, the contributions of cytoplasmic Hsp40s are undefined. To this end, we screened ApoB-expressing yeast and determined that a class A ER-associated Hsp40, Ydj1, associates with and facilitates the ERAD of ApoB. Consistent with these results, a homologous Hsp40, DNAJA1, functioned similarly in rat hepatoma cells. DNAJA1 deficient cells also secreted hyperlipidated lipoproteins, in accordance with attenuated ERAD. In contrast to the role of DNAJA1 during ERAD, DNAJB1-a class B Hsp40-helped stabilize ApoB. Depletion of DNAJA1 and DNAJB1 also led to opposing effects on ApoB ubiquitination. These data represent the first example in which different Hsp40s exhibit disparate effects during regulated protein biogenesis in the ER, and highlight distinct roles that chaperones can play on a single ERAD substrate.
Collapse
Affiliation(s)
- Deepa Kumari
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
19
|
Roth HE, Bhinderwala F, Franco R, Zhou Y, Powers R. DNAJA1 Dysregulates Metabolism Promoting an Antiapoptotic Phenotype in Pancreatic Ductal Adenocarcinoma. J Proteome Res 2021; 20:3925-3939. [PMID: 34264680 DOI: 10.1021/acs.jproteome.1c00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cochaperone protein DNAJA1 (HSP40) is downregulated four-fold in pancreatic cancer cells. The impact of DNAJA1 expression on pancreatic ductal adenocarcinoma (PDAC) progression remains unclear. The metabolic impacts of increased DNAJA1 expression were evaluated using a combination of untargeted metabolomics, stable isotope-resolved metabolomics (SIRM), confocal microscopy, flow cytometry, and cell-based assays. Differential Warburg glycolysis, an increase in redox currency, and alterations in amino acid levels were observed in both overexpression cell lines. DNAJA1 overexpression also led to mitochondrial fusion, an increase in the expression of Bcl-2, a modest protection from redox-induced cell death, a loss of structural integrity due to the loss of actin fibers, and an increase in cell invasiveness in BxPC-3. These differences were more pronounced in BxPC-3, which contains a loss-of-function mutation in the tumor-suppressing gene SMAD4. These findings suggest a proto-oncogenic role of DNAJA1 in PDAC progression and suggest DNAJA1 may function synergistically with other proteins with altered activities in pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Heidi E Roth
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, United States.,Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - You Zhou
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Morrison Microscopy Core Research Facility, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.,Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
20
|
Ileri FC, Acun T. High expression of DNAJA1 ( HDJ2) predicts unfavorable survival outcomes in breast cancer. Biomark Med 2021; 15:941-950. [PMID: 34236236 DOI: 10.2217/bmm-2020-0728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: DNAJA1 is associated with several cancers, but its biomarker potential in breast cancer is not adequately known. Materials & methods: Q-RT-PCR, immunohistochemistry, COBRA methods and in silico tools (KM-Plotter, UALCAN) were used to analyze the expression level, methylation status and prognostic value of DNAJA1 in breast cancer. Results: DNAJA1 expression was significantly higher in clinical tumor samples compared with normal samples. High DNAJA1 mRNA expression is associated with poor survival values in breast cancer. DNAJA1 promoter region is hypomethylated in cell lines and clinical samples. Conclusion: High DNAJA1 expression predicts poor clinical survival outcomes for breast cancer. Other than promoter methylation, epigenetic factors also warrant investigation in future studies as a regulatory mechanism of DNAJA1 expression in breast cancer.
Collapse
Affiliation(s)
- Furkan Celebi Ileri
- Department of Molecular Biology & Genetics, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| | - Tolga Acun
- Department of Molecular Biology & Genetics, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| |
Collapse
|
21
|
Olivieri C, Walker C, Karamafrooz A, Wang Y, Manu VS, Porcelli F, Blumenthal DK, Thomas DD, Bernlohr DA, Simon SM, Taylor SS, Veglia G. Defective internal allosteric network imparts dysfunctional ATP/substrate-binding cooperativity in oncogenic chimera of protein kinase A. Commun Biol 2021; 4:321. [PMID: 33692454 PMCID: PMC7946884 DOI: 10.1038/s42003-021-01819-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
An aberrant fusion of the DNAJB1 and PRKACA genes generates a chimeric protein kinase (PKA-CDNAJB1) in which the J-domain of the heat shock protein 40 is fused to the catalytic α subunit of cAMP-dependent protein kinase A (PKA-C). Deceivingly, this chimeric construct appears to be fully functional, as it phosphorylates canonical substrates, forms holoenzymes, responds to cAMP activation, and recognizes the endogenous inhibitor PKI. Nonetheless, PKA-CDNAJB1 has been recognized as the primary driver of fibrolamellar hepatocellular carcinoma and is implicated in other neoplasms for which the molecular mechanisms remain elusive. Here we determined the chimera's allosteric response to nucleotide and pseudo-substrate binding. We found that the fusion of the dynamic J-domain to PKA-C disrupts the internal allosteric network, causing dramatic attenuation of the nucleotide/PKI binding cooperativity. Our findings suggest that the reduced allosteric cooperativity exhibited by PKA-CDNAJB1 alters specific recognitions and interactions between substrates and regulatory partners contributing to dysregulation.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adak Karamafrooz
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yingjie Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Chemistry, University of Minnesota, Minneapolis, MN, USA
- Shenzhen Bay Laboratory, Shenzhen, China
| | - V S Manu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Fernando Porcelli
- DIBAF - University of Tuscia - Largo dell' Università, Viterbo, Italy
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry and Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Landscape of transcription and expression regulated by DNA methylation related to age of donor and cell passage in adipose-derived mesenchymal stem cells. Aging (Albany NY) 2020; 12:21186-21201. [PMID: 33130636 PMCID: PMC7695361 DOI: 10.18632/aging.103809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are pluripotent stromal cells that can differentiate into a variety of cell types, including skin cells. High-throughput sequencing was performed on cells of different ages and cell passage, obtaining their methylation, mRNA expression, and protein profile data. The stemness of each sample was then calculated using the TCGAbiolinks package in R. Co-expression modules were identified using WGCNA, and a crosstalk analysis was performed on the corresponding modules. The ClusterProfile package was used for the functional annotation of module genes. Finally, the regulatory network diagram was visualized using the Cytoscape software. First, a total of 16 modules were identified, where 3 modules were screened that were most relevant to the phenotype. 29 genes were screened in combination of the RNA seq, DNA methylation seq and protein iTRAQ. Finally, a comprehensive landscape comprised of RNA expression, DNA methylation and protein profiles of age relevant ADSCs was constructed. Overall, the different omics of ADSCs were comprehensively analyzed in order to reveal mechanisms pertaining to their growth and development. The effects of age, cell passage, and stemness on the therapeutic effect of ADSCs were explored. Additionally, a theoretical basis for selecting appropriate ADSC donors for regenerative medicine was provided.
Collapse
|
23
|
Chemogenomic screening identifies the Hsp70 co-chaperone DNAJA1 as a hub for anticancer drug resistance. Sci Rep 2020; 10:13831. [PMID: 32796891 PMCID: PMC7429498 DOI: 10.1038/s41598-020-70764-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 70 (Hsp70) is an important molecular chaperone that regulates oncoprotein stability and tumorigenesis. However, attempts to develop anti-chaperone drugs targeting molecules such as Hsp70 have been hampered by toxicity issues. Hsp70 is regulated by a suite of co-chaperone molecules that bring “clients” to the primary chaperone for efficient folding. Rather than targeting Hsp70 itself, here we have examined the feasibility of inhibiting the Hsp70 co-chaperone DNAJA1 as a novel anticancer strategy. We found DNAJA1 to be upregulated in a variety of cancers, suggesting a role in malignancy. To confirm this role, we screened the NIH Approved Oncology collection for chemical-genetic interactions with loss of DNAJA1 in cancer. 41 compounds showed strong synergy with DNAJA1 loss, whereas 18 dramatically lost potency. Several hits were validated using a DNAJA1 inhibitor (116-9e) in castration-resistant prostate cancer cell (CRPC) and spheroid models. Taken together, these results confirm that DNAJA1 is a hub for anticancer drug resistance and that DNAJA1 inhibition is a potent strategy to sensitize cancer cells to current and future therapeutics. The large change in drug efficacy linked to DNAJA1 suggests a personalized medicine approach where tumor DNAJA1 status may be used to optimize therapeutic strategy.
Collapse
|
24
|
Li G, Zhao H, Guo H, Wang Y, Cui X, Li H, Xu B, Guo X. Analyses of the function of DnaJ family proteins reveal an underlying regulatory mechanism of heat tolerance in honeybee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137036. [PMID: 32059293 DOI: 10.1016/j.scitotenv.2020.137036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
There is clear evidence of severe honeybee declines in recent years, and parallel declines of plant community and crop productivity that rely on them. Different stresses, including heat stress, are among the primary drivers of this decline. However, the mechanisms by which honeybees respond to heat stress are elusive. Though heat shock proteins (Hsps) play important roles in heat stress response, the function of DnaJs (a subfamily of Hsps) is unclear. Here, we aimed to determine the underlying regulatory mechanism of honeybees to heat stress mediated by DnaJs. We found that several DnaJ genes, including DnaJA1, DnaJB12 and DnaJC8, are key for honeybee heat tolerance. DnaJA1 and DnaJB12 are cytoplasmic proteins, and DnaJC8 is a nuclear protein. The expression of DnaJA1, DnaJB12 and DnaJC8 was induced at different levels under short-term and long-term heat stress. Phenotypic analysis indicated that DnaJA1, DnaJB12 and DnaJC8 knockdown attenuated honeybee heat resistance. In addition, DnaJA1 participated in the heat stress response by upregulating many heat-inducible genes at the transcriptome-wide level, especially LOC108002668 and LOC107995148. Importantly, the upregulation of LOC108002668 and LOC107995148 was significantly repressed under heat stress when DnaJA1 was knocked down. We also found that knockdown of DnaJA1, DnaJB12 and DnaJC8 decreased antioxidant defense ability and increased the degree of oxidative damage in the honeybee. Taken together, our results indicate that DnaJ genes play important roles under heat stress in the honeybee. Overexpression of DnaJ genes may protect honeybees from heat stress-induced injuries and increase their survival rate.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongbin Guo
- Statistics Department, University of Auckland, 38 Princes Street, Auckland, New Zealand
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
25
|
Barruet E, Garcia SM, Striedinger K, Wu J, Lee S, Byrnes L, Wong A, Xuefeng S, Tamaki S, Brack AS, Pomerantz JH. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. eLife 2020; 9:51576. [PMID: 32234209 PMCID: PMC7164960 DOI: 10.7554/elife.51576] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations.
Collapse
Affiliation(s)
- Emilie Barruet
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Steven M Garcia
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Katharine Striedinger
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Jake Wu
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Solomon Lee
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Lauren Byrnes
- University of California San Francisco, San Francisco, United States
| | - Alvin Wong
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Sun Xuefeng
- Department of Orthopedic Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Stanley Tamaki
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Andrew S Brack
- Department of Orthopedic Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| | - Jason H Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
26
|
Yang S, Ren X, Liang Y, Yan Y, Zhou Y, Hu J, Wang Z, Song F, Wang F, Liao W, Liao W, Ding Y, Liang L. KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene 2020; 39:249-261. [PMID: 31477839 DOI: 10.1038/s41388-019-0978-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023]
Abstract
As an inhibitor of heat shock proteins (HSPs), KNK437 has been reported to play an anti-tumor role in several cancers. But its therapeutic effect and mechanisms in colorectal cancer (CRC) remain unclear. Here, KNK437 sharply inhibited the level of DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1), followed by DNAJB1, but had little effect on the levels of HSP27, HSP105, HSP90, and HSP70 in CRC cells. DNAJA1 promoted CRC cell proliferation in vitro and tumor growth and metastasis in vivo. Mechanistically, DNAJA1 was activated by E2F transcription factor 1 (E2F1) and then promoted cell cycle by stabilizing cell division cycle protein 45 (CDC45), which could be reversed by KNK437. DNAJA1 was significantly upregulated in CRC tissues and positively correlated with serosa invasion, lymph node metastasis. High level of DNAJA1 predicted poor prognosis for CRC patients. Its expression was highly linked with E2F1 and CDC45 in CRC tissues. More importantly, KNK437 significantly suppressed the growth of DNAJA1 expressing tumor in vivo. The combined treatment of KNK437 with 5-FU/L-OHP chemotherapy reduced liver metastasis of CRC. These data reveal a novel mechanism of KNK437 in anti-tumor therapy of CRC and provides a newly therapeutic strategy with potential translation to the CRC patients.
Collapse
Affiliation(s)
- Shaoshan Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yunshi Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yongrong Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yangshu Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jinlong Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Zhizhi Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
27
|
Xu D, Tong X, Sun L, Li H, Jones RD, Liao J, Yang GY. Inhibition of mutant Kras and p53-driven pancreatic carcinogenesis by atorvastatin: Mainly via targeting of the farnesylated DNAJA1 in chaperoning mutant p53. Mol Carcinog 2019; 58:2052-2064. [PMID: 31397499 DOI: 10.1002/mc.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Recent studies have indicated that using statins to inhibit the mevalonate pathway induces mutant p53 degradation by impairing the interaction of mutant p53 with DnaJ subfamily A member 1 (DNAJA1). However, the role of the C-terminus of DNAJA1 with a CAAX box for farnesylation in the binding, folding, and translocation of client proteins such as mutant p53 is not known. In the present study, we used a genetically engineered mouse model of pancreatic carcinoma and showed that atorvastatin significantly increased animal survival and inhibited pancreatic carcinogenesis. There was a dramatic decrease in mutant p53 protein accumulation in the pancreatic acini, pancreas intraepithelial neoplasia lesions, and adenocarcinoma. Supplementation with farnesyl pyrophosphate, a substrate for protein farnesylation, rescued atorvastatin-induced mutant p53 degradation in pancreatic cancer cells. Tipifarnib, a farnesyltransferase inhibitor, mirrored atorvastatin's effects on mutant p53, degraded mutant p53 in a dose-dependent manner, and converted farnesylated DNAJA1 into unfarnesylated DNAJA1. Farnesyltransferase gene knockdown also significantly promoted mutant p53 degradation. Coimmunoprecipitation either by an anti-DNAJA1 or p53 antibody confirmed the direct interaction of mutant p53 and DNAJA1 and higher doses of atorvastatin treatments converted more farnesylated DNAJA1 into unfarnesylated DNAJA1 with much less mutant p53 pulled down by DNAJA1. Strikingly, C394S mutant DNAJA1, in which the cysteine of the CAAX box was mutated to serine, was no longer able to be farnesylated and lost the ability to maintain mutant p53 stabilization. Our results show that farnesylated DNAJA1 is a crucial chaperone in maintaining mutant p53 stabilization and targeting farnesylated DNAJA1 by atorvastatin will be critical for inhibiting p53 mutant cancer.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xin Tong
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leyu Sun
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Haonan Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan D Jones
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jie Liao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
28
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
29
|
The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLoS Genet 2018; 14:e1007462. [PMID: 30452489 PMCID: PMC6277125 DOI: 10.1371/journal.pgen.1007462] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/03/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Hsp70 is a well-conserved molecular chaperone involved in the folding, stabilization, and eventual degradation of many “client” proteins. Hsp70 is regulated by a suite of co-chaperone molecules that assist in Hsp70-client interaction and stimulate the intrinsic ATPase activity of Hsp70. While previous studies have shown the anticancer target ribonucleotide reductase (RNR) is a client of Hsp70, the regulatory co-chaperones involved remain to be determined. To identify co-chaperone(s) involved in RNR activity, 28 yeast co-chaperone knockout mutants were screened for sensitivity to the RNR-perturbing agent Hydroxyurea. Ydj1, an important cytoplasmic Hsp70 co-chaperone was identified to be required for growth on HU. Ydj1 bound the RNR subunit Rnr2 and cells lacking Ydj1 showed a destabilized RNR complex. Suggesting broad conservation from yeast to human, HDJ2 binds R2B and regulates RNR stability in human cells. Perturbation of the Ssa1-Ydj1 interaction through mutation or Hsp70-HDJ2 via the small molecule 116-9e compromised RNR function, suggesting chaperone dependence of this novel role. Mammalian cells lacking HDJ2 were significantly more sensitive to RNR inhibiting drugs such as hydroxyurea, gemcitabine and triapine. Taken together, this work suggests a novel anticancer strategy-inhibition of RNR by targeting Hsp70 co-chaperone function. Ribonucleotide reductase (RNR) is a key enzyme in the synthesis of DNA and inhibition of RNR leads to cellular sensitivity to radiation. As such, RNR is a well-validated therapeutic target for a variety of diseases including cancer. Anti-RNR drugs are effective but are associated with a range of side effects in patients. Our previous work had identified that the Hsp90 and Hsp70 molecular chaperone proteins regulate RNR. The specificity and activity of Hsp70 and Hsp90 are regulated by “co-chaperone” proteins. We examined RNR activity in cells lacking individual co-chaperones and identified the Ydj1/HDJ2 protein as a novel regulator of RNR in yeast and human cells. Importantly, we demonstrate that inhibiting HDJ2 sensitizes cells to currently used anticancer drugs.
Collapse
|
30
|
Li G, Zhao H, Zhang X, Zhang Y, Zhao H, Yang X, Guo X, Xu B. Environmental Stress Responses of DnaJA1, DnaJB12 and DnaJC8 in Apis cerana cerana. Front Genet 2018; 9:445. [PMID: 30349556 PMCID: PMC6186841 DOI: 10.3389/fgene.2018.00445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
DnaJ, also known as Hsp40, plays important roles in maintaining the normal physiological state of an organism under stress conditions by mediating essential processes, such as protein synthesis, degradation, folding and metabolism. However, the exact functions of most DnaJ members are not fully understood in insects. Here, we identified three genes, AccDnaJA1, AccDnaJB12, and AccDnaJC8, in Apis cerana cerana and explored their connection with the environmental stress response. Quantitative real-time PCR results showed that the mRNA levels of AccDnaJA1, AccDnaJB12, and AccDnaJC8 were all induced under cold, UV, H2O2 and different pesticides treatment. The expression patterns of AccDnaJB12 and AccDnaJC8 were upregulated by CdCl2 and HgCl2 stress, while the transcriptional levels of AccDnaJA1 were downregulated by CdCl2 and HgCl2 stress. Western blot findings further indicated that AccDnaJB12 protein levels were increased by some stress conditions. Knockdown of each of these three genes downregulated the transcriptional patterns of several stress response-related genes at different levels. Functional analysis further demonstrated that the resistance of A. cerana cerana to lambda-cyhalothrin stress was reduced with knockdown of AccDnaJA1, AccDnaJB12, or AccDnaJC8, indicating that these three genes may be involved in the tolerance to this pesticide. Taken together, these findings indicate that AccDnaJA1, AccDnaJB12, and AccDnaJC8 may play pivotal roles in the stress response by facilitating honeybee survival under some adverse circumstances. To our knowledge, this is the first report that reveals the roles of DnaJ family proteins under different adverse circumstances in A. cerana cerana.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xuemei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanming Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Huayu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xinxin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
31
|
Lacbay CM, Waller DD, Park J, Gómez Palou M, Vincent F, Huang XF, Ta V, Berghuis AM, Sebag M, Tsantrizos YS. Unraveling the Prenylation-Cancer Paradox in Multiple Myeloma with Novel Geranylgeranyl Pyrophosphate Synthase (GGPPS) Inhibitors. J Med Chem 2018; 61:6904-6917. [PMID: 30016091 DOI: 10.1021/acs.jmedchem.8b00886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-translational prenylation of the small GTP-binding proteins (GTPases) is vital to a plethora of biological processes, including cellular proliferation. We have identified a new class of thienopyrimidine-based bisphosphonate (ThP-BP) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) that block protein prenylation in multiple myeloma (MM) cells leading to cellular apoptosis. These inhibitors are also effective in blocking the proliferation of other types of cancer cells. We confirmed intracellular target engagement, demonstrated the mechanism of action leading to apoptosis, and determined a direct correlation between apoptosis and intracellular inhibition of hGGPPS. Administration of a ThP-BP inhibitor to a MM mouse model confirmed in vivo downregulation of Rap1A geranylgeranylation and reduction of monoclonal immunoglobulins (M-protein, a biomarker of disease burden) in the serum. These results provide the first proof-of-principle that hGGPPS is a valuable therapeutic target in oncology and more specifically for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Daniel D Waller
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Jaeok Park
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Mònica Gómez Palou
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Félix Vincent
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Xian Fang Huang
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Viviane Ta
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Albert M Berghuis
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Michael Sebag
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada.,Division of Hematology , McGill University Health Center , Montreal , QC H4A 3J1 , Canada
| | - Youla S Tsantrizos
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada.,Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| |
Collapse
|
32
|
Tomasini MD, Wang Y, Karamafrooz A, Li G, Beuming T, Gao J, Taylor SS, Veglia G, Simon SM. Conformational Landscape of the PRKACA-DNAJB1 Chimeric Kinase, the Driver for Fibrolamellar Hepatocellular Carcinoma. Sci Rep 2018; 8:720. [PMID: 29335433 PMCID: PMC5768683 DOI: 10.1038/s41598-017-18956-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023] Open
Abstract
In fibrolamellar hepatocellular carcinoma a single genetic deletion results in the fusion of the first exon of the heat shock protein 40, DNAJB1, which encodes the J domain, with exons 2-10 of the catalytic subunit of protein kinase A, PRKACA. This produces an enzymatically active chimeric protein J-PKAcα. We used molecular dynamics simulations and NMR to analyze the conformational landscape of native and chimeric kinase, and found an ensemble of conformations. These ranged from having the J-domain tucked under the large lobe of the kinase, similar to what was reported in the crystal structure, to others where the J-domain was dislodged from the core of the kinase and swinging free in solution. These simulated dislodged states were experimentally captured by NMR. Modeling of the different conformations revealed no obvious steric interactions of the J-domain with the rest of the RIIβ holoenzyme.
Collapse
Affiliation(s)
- Michael D Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Biochemistry, Molecular Biology, and Biophysics. University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adak Karamafrooz
- Department of Biochemistry, Molecular Biology, and Biophysics. University of Minnesota, Minneapolis, MN, 55455, USA
| | - Geoffrey Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thijs Beuming
- Schrödinger Inc., 120 West 45th Street, New York, NY, 10036, USA
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Theoretical Chemistry Institute, Jilin University, Changchun, Jilin Province, 130028, People's Republic of China
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, CA, 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, CA, 92093, USA
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Biochemistry, Molecular Biology, and Biophysics. University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
33
|
Meshalkina DA, Shevtsov MA, Dobrodumov AV, Komarova EY, Voronkina IV, Lazarev VF, Margulis BA, Guzhova IV. Knock-down of Hdj2/DNAJA1 co-chaperone results in an unexpected burst of tumorigenicity of C6 glioblastoma cells. Oncotarget 2017; 7:22050-63. [PMID: 26959111 PMCID: PMC5008343 DOI: 10.18632/oncotarget.7872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/20/2016] [Indexed: 01/04/2023] Open
Abstract
The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.
Collapse
Affiliation(s)
- Darya A Meshalkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia.,First I.P. Pavlov State Medical University of St. Petersburg, St. Petersburg 197022, Russia
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Elena Y Komarova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Voronkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
34
|
Pan M, Zhou Y, Wang Y, Li L, Song Y, Hou L, Zhao J. Screening and Identification of the Host Proteins Interacting with Toxoplasma gondii Rhoptry Protein ROP16. Front Microbiol 2017; 8:2408. [PMID: 29255456 PMCID: PMC5722834 DOI: 10.3389/fmicb.2017.02408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii, as a zoonotic protozoan parasite, develops sophisticated strategies to manipulate hosts for efficient intracellular survival. After successful invasion, T. gondii injects many effector proteins into host cells for various purposes. TgROP16 (T. gondii rhoptry protein 16), which is secreted from rhoptries into host cells, can activate the host STAT (signal transducer and activator of transcription) signaling pathway through phosphorylation of STAT3 and STAT6. However, whether there are other host proteins modulated by TgROP16 is currently unknown. In this study, yeast two-hybrid (Y2H) screen was used to look for additional host proteins interacting with TgROP16. Yeast cells expressing a mouse cDNA library cloned into the prey vector were used to mate with yeasts expressing ROP16 without signal peptide. Two mouse proteins, Dnaja1 (DnaJ heat shock protein family member A1) and Gabra4 (gamma-aminobutyric acid A receptor, subunit alpha 4) were identified to interact with ROP16 from this screen. Further analysis suggested that the Predomain of ROP16 played key roles in mediating interactions with these host proteins, whereas the contribution from the Kinase domain was minor. The interactions between Dnaja1 and different parts of ROP16 were also estimated in vivo by co-immunoprecipitation. The results showed that the Predomain of ROP16 was the major region to interact with Dnaja1, which is consistent with the Y2H results. Based on the gene ontology analysis, Dnaja1 is predicted to participate in stress response while Gabra4 is involved in the system development process. The discovery of new host proteins that interact with ROP16 of T. gondii will help us to further investigate the functions of this effector proteins during T. gondii infection.
Collapse
Affiliation(s)
- Ming Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Longjiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongle Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lun Hou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
35
|
Wu H, Xu L, Ji C, Yu D. Proteomic and metabolomic responses in D-shape larval mussels Mytilus galloprovincialis exposed to cadmium and arsenic. FISH & SHELLFISH IMMUNOLOGY 2016; 58:514-520. [PMID: 27702675 DOI: 10.1016/j.fsi.2016.09.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) and arsenic (As) are the main metal/metalloid contaminants in the coastal environments of the Bohai Sea, China. In this work, a combined proteomic and metabolomic approach was applied to investigate the biological effects of Cd and As (V) in the early life stage (D-shape larvae) of mussel Mytilus galloprovincialis. Results indicated that Cd was a potential immune toxicant to D-shape larval mussel because of the numerous proteomic responses related to immune system. Additionally, Cd induced oxidative stress, cellular injury and disturbance in nucleic acid metabolism in D-shape larval mussels. However, only two identified proteins were significantly altered in As (V)-treated group, suggesting that D-shape larval mussel was less sensitive to As (V) than to Cd at protein level. These two proteins in response to As (V) suggested that As (V) influenced anti-oxidative system and cell proliferation in D-shape larval mussels. Metabolic responses indicated that Cd and As (V) induced disturbances in osmotic regulation and energy metabolism in D-shape larval mussels via different metabolic pathways. In addition, Cd reduced lipid metabolism as well. This work demonstrated that a combination of proteomics and metabolomics could provide an insightful view in the biological effects of pollutants in mussel M. galloprovincialis at an early life stage.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Lanlan Xu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Deliang Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
36
|
Milosavljevic V, Haddad Y, Merlos Rodrigo MA, Moulick A, Polanska H, Hynek D, Heger Z, Kopel P, Adam V. The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy. PLoS One 2016; 11:e0163983. [PMID: 27727290 PMCID: PMC5058503 DOI: 10.1371/journal.pone.0163983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug.
Collapse
Affiliation(s)
- Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Hana Polanska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic, European Union
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic, European Union
| |
Collapse
|
37
|
Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database. J Proteomics 2016; 150:281-289. [PMID: 27705816 DOI: 10.1016/j.jprot.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/10/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Insecticide resistance is an increasingly global problem that hampers pest control. We sought the mechanism responsible for survival following pyrethroid treatment and the factors connected to paralysis/death of the pollen beetle Meligethes aeneus through a proteome-level analysis using nanoLC coupled with Orbitrap Fusion™ Tribrid™ mass spectrometry. A tolerant field population of beetles was treated with deltamethrin, and the ensuing proteome changes were observed in the survivors (resistant), dead (paralyzed) and control-treated beetles. The protein database consisted of the translated transcriptome, and the resulting changes were manually annotated via BLASTP. We identified a number of high-abundance changes in which there were several dominant proteins, e.g., the electron carrier cytochrome b5, ribosomal proteins 60S RPL28, 40S RPS23 and RPS26, eIF4E-transporter, anoxia up-regulated protein, 2 isoforms of vitellogenin and pathogenesis-related protein 5. Deltamethrin detoxification was influenced by different cytochromes P450, which were likely boosted by increased cytochrome b5, but glutathione-S-transferase ε and UDP-glucuronosyltransferases also contributed. Moreover, we observed changes in proteins related to RNA interference, RNA binding and epigenetic modifications. The high changes in ribosomal proteins and associated factors suggest specific control of translation. Overall, we showed modulation of expression processes by epigenetic markers, alternative splicing and translation. Future functional studies will benefit. BIOLOGICAL SIGNIFICANCE Insects develop pesticide resistance, which has become one of the key issues in plant protection. This growing resistance increases the demand for pesticide applications and the development of new substances. Knowledge in the field regarding the resistance mechanism and its responses to pesticide treatment provides us the opportunity to propose a solution for this issue. Although the pollen beetle Meligethes aeneus was effectively controlled with pyrethroids for many years, there have been reports of increasing resistance. We show protein changes including production of isoforms in response to deltamethrin at the protein level. These results illustrate the insect's survival state as a resistant beetle and in its paralyzed state (evaluated as dead) relative to resistant individuals.
Collapse
|
38
|
Yang R, Bai Q, Zhang J, Sheng Y, Ji L. The altered liver microRNA profile in hepatotoxicity induced by rhizome Dioscorea bulbifera in mice. Hum Exp Toxicol 2016; 36:823-832. [PMID: 27609015 DOI: 10.1177/0960327116666651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNA (miRNA) has been reported to play important roles in regulating drug-induced liver injury. Ethyl acetate extract isolated from rhizoma Dioscoreae bulbifera (EF) has been reported to induce hepatotoxicity in our previous studies. This study aims to observe the altered liver miRNA profile and its related signalling pathway involved in EF-induced hepatotoxicity. Serum alanine/aspartate aminotransferase assay showed that EF (450 mg/kg)-induced hepatotoxicity in mice. Results of miRNA chip analysis showed that the expression of eight miRNAs was up-regulated and of other nine miRNAs was down-regulated in livers from EF-treated mice. Further, the altered expression of miR-200a-3p, miR-5132-5p and miR-5130 was validated using real-time polymerase chain reaction (PCR) assay. There were total seven predicted target genes of miR-200a-3p, miR-5132-5p and miR-5130. Only one kyoto encyclopedia genes and genomes pathway was annotated using those target genes, which is protein processing in endoplasmic reticulum (ER). Furthermore, liver expression of DnaJ subfamily A member 1, a key gene involved in protein processing in ER based on the altered miRNAs, was increased in EF-treated mice. In conclusion, the results demonstrated that EF altered the expression of liver miRNA profile and its related signalling pathway, which may be involved in EF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Rui Yang
- 1 Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyun Bai
- 2 Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Zhang
- 2 Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Sheng
- 1 Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- 2 Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines, SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Identification of DNAJA1 as a novel interacting partner and a substrate of human transglutaminase 2. Biochem J 2016; 473:3889-3901. [PMID: 27551108 DOI: 10.1042/bcj20160440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed multifunctional member of the transglutaminase enzyme family. It has been implicated to have roles in many physiological and pathological processes such as differentiation, apoptosis, signal transduction, adhesion and migration, wound healing and inflammation. Previous studies revealed that TG2 has various intra- and extra-cellular interacting partners, which contribute to these processes. In the present study, we identified a molecular co-chaperone, DNAJA1, as a novel interacting partner of human TG2 using a GST pull-down assay and subsequent mass spectrometry analysis, and further confirmed this interaction via ELISA and surface plasmon resonance measurements. Interaction studies were also performed with domain variants of TG2 and results suggest that the catalytic core domain of TG2 is essential for the TG2-DNAJA1 interaction. Cross-linking activity was not essential for the interaction since DNAJA1 was also found to interact with the catalytically inactive form of TG2. Furthermore, we have showed that DNAJA1 interacts with the open form of TG2 and regulates its transamidation activity under both in vitro and in situ conditions. We also found that DNAJA1 is a glutamine donor substrate of TG2. Since DNAJA1 and TG2 are reported to regulate common pathological conditions such as neurodegenerative disorders and cancer, the findings in the present paper open up possibilities to explore molecular mechanisms behind TG2-regulated functions.
Collapse
|
40
|
Ajit Tamadaddi C, Sahi C. J domain independent functions of J proteins. Cell Stress Chaperones 2016; 21:563-70. [PMID: 27145962 PMCID: PMC4908003 DOI: 10.1007/s12192-016-0697-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.
Collapse
Affiliation(s)
- Chetana Ajit Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
41
|
Alderson TR, Kim JH, Markley JL. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Structure 2016; 24:1014-30. [PMID: 27345933 DOI: 10.1016/j.str.2016.05.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022]
Abstract
Protein misfolding and aggregation are pathological events that place a significant amount of stress on the maintenance of protein homeostasis (proteostasis). For prevention and repair of protein misfolding and aggregation, cells are equipped with robust mechanisms that mainly rely on molecular chaperones. Two classes of molecular chaperones, heat shock protein 70 kDa (Hsp70) and Hsp40, recognize and bind to misfolded proteins, preventing their toxic biomolecular aggregation and enabling refolding or targeted degradation. Here, we review the current state of structural biology of Hsp70 and Hsp40-Hsp70 complexes and examine the link between their structures, dynamics, and functions. We highlight the power of nuclear magnetic resonance spectroscopy to untangle complex relationships behind molecular chaperones and their mechanism(s) of action.
Collapse
Affiliation(s)
- Thomas Reid Alderson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jin Hae Kim
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Lute Markley
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Li C, Wang J, Hao J, Dong B, Li Y, Zhu X, Ding J, Ren S, Zhao H, Wu S, Tian Y, Wang GQ. Reduced cytosolic carboxypeptidase 6 (CCP6) level leads to accumulation of serum polyglutamylated DNAJC7 protein: A potential biomarker for renal cell carcinoma early detection. Oncotarget 2016; 7:22385-96. [PMID: 26993597 PMCID: PMC5008367 DOI: 10.18632/oncotarget.8107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is frequently diagnosed at advanced stages of disease, although early diagnosis has much favorable prognosis. This study assessed aberrant expression of cytosolic carboxypeptidase 6 (CCP6) leading to accumulation of serum polyglutamylated DNAJC7 as a biomarker for early RCC detection. A total of 835 RCCs, 143 chronic nephritis, 170 kidney stones and 415 health controls were collected for qRT-PCR, immunohistochemistry and Western blot analysis of CCP6 expression and mass spectrometry of DNAJC7 and polyglutamylated DNAJC7. The data showed that CCP6 expression was significantly decreased in 30 RCC tissues and that mass spectrometric and pull-down analysis identified DNAJC7 as a substrate of CCP6 and showed upregulated polyglutamylated-DNAJC7 (polyE-DNAJC7) in sera of RCC patients. The electrochemiluminescence immunoassay of large-scale serum samples from multi-institutes further confirmed the remarkable increase of polyE-DNAJC7 in 805 RCCs compared to that of 385 healthy controls (p < 0.001), 128 patients with chronic nephritis (p < 0.001), and 153 with kidney stone (p < 0.001). Serum level of DNAJC7-polyE protein was also associated with advanced RCC stage and grade in 805 patients. The data from the current study for the first time demonstrated increased serum polyglutamylated DNAJC7 as a potential biomarker for RCC early detection and association with advanced tumor stages and grade, which provides support of further polyglutamylation research in RCC.
Collapse
Affiliation(s)
- Chong Li
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China.,Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, China
| | - Jihan Wang
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Junfeng Hao
- Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100083, China
| | - Xiaoxiao Zhu
- Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Ding
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Shuangchun Ren
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Heping Zhao
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, China
| | - Yong Tian
- Laboratory Animal Center, CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Qing Wang
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
43
|
Tebaldi T, Zaccara S, Alessandrini F, Bisio A, Ciribilli Y, Inga A. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genomics 2015; 16:464. [PMID: 26081755 PMCID: PMC4470028 DOI: 10.1186/s12864-015-1643-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. Results We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. Conclusions We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary to, existing methods designed to identify p53 response elements. p53retriever is available as an R package at: http://tomateba.github.io/p53retriever. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1643-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toma Tebaldi
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Sara Zaccara
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Federica Alessandrini
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Alessandra Bisio
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, via delle Regole 101, 38123, Mattarello, TN, Italy.
| |
Collapse
|
44
|
Pesce ER, Blatch GL, Edkins AL. Hsp40 Co-chaperones as Drug Targets: Towards the Development of Specific Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Reemann P, Reimann E, Ilmjärv S, Porosaar O, Silm H, Jaks V, Vasar E, Kingo K, Kõks S. Melanocytes in the skin--comparative whole transcriptome analysis of main skin cell types. PLoS One 2014; 9:e115717. [PMID: 25545474 PMCID: PMC4278762 DOI: 10.1371/journal.pone.0115717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq) to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma.
Collapse
Affiliation(s)
- Paula Reemann
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Ene Reimann
- Core Facility of Clinical Genomics, Department of Pathophysiology, Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- The Institute of Veterinary Medicine and Animal Sciences of the Estonian University of Life Sciences, Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | - Sten Ilmjärv
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu and Quretec Ltd (private limited company), Tartu, Estonia
| | - Orm Porosaar
- Department of Pediatric Surgery, Tallinn Children's Hospital, Tallinn, Estonia
| | - Helgi Silm
- Clinic of Dermatology, Tartu University Hospital, Department of Dermatology, University of Tartu, Tartu, Estonia
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu and Centre of Translational Medicine, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Clinic of Dermatology, Tartu University Hospital, Department of Dermatology, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- The Institute of Veterinary Medicine and Animal Sciences of the Estonian University of Life Sciences, Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu and Centre of Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
46
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Park J, Matralis AN, Berghuis AM, Tsantrizos YS. Human isoprenoid synthase enzymes as therapeutic targets. Front Chem 2014; 2:50. [PMID: 25101260 PMCID: PMC4106277 DOI: 10.3389/fchem.2014.00050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022] Open
Abstract
In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University Montreal, QC, Canada
| | | | - Albert M Berghuis
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Department of Microbiology and Immunology, McGill University Montreal, QC, Canada
| | - Youla S Tsantrizos
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Department of Chemistry, McGill University Montreal, QC, Canada
| |
Collapse
|