1
|
Żórawik A, Hajdusianek W, Kusnerż A, Markiewicz-Górka I, Jaremków A, Martynowicz H, Pawlas K, Mazur G, Poręba R, Gać P. Relation Between Exposure to Tobacco Smoke Assessed by Serum Cotinine Concentration and Questionnaire Method, and Serum Renalase Concentration-the Importance of the Coexistence of Arterial Hypertension and Other Cardiovascular Diseases. Cardiovasc Toxicol 2024; 24:737-746. [PMID: 38748312 PMCID: PMC11300532 DOI: 10.1007/s12012-024-09868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/26/2024] [Indexed: 08/07/2024]
Abstract
Exposure to tobacco smoke (ETS) is one of the main risk factors for cardiovascular disease (CVD). Renalase is a protein that may play a role in the pathogenesis of CVD. The aim of the study was to assess the relationship between ETS and serum renalase concentration. A group of 109 patients was recruited for this study (49.7 ± 14.7 years). In accordance with the questionnaire, patients were divided into the following subgroups: subgroup A- declaring themselves active smokers (n = 36), subgroup B- declaring themselves non-smokers and exposed to environmental tobacco smoke (n = 35), subgroup C- declaring themselves non-smokers and not exposed to environmental tobacco smoke (n = 38). The same patients were divided based on cotinine concentration into the following subgroups: subgroup D- active smokers (n = 42), subgroup E- non-smokers exposed to environmental tobacco smoke (n = 66), and subgroup F- non-smokers not exposed to environmental tobacco smoke (n = 1). Serum cotinine concentration and serum renalase concentration were measured using ELISA tests. Serum renalase concentration was statistically significantly higher in subgroup C than in subgroups A and B and in subgroup E and F than in D. There was a negative correlation between serum cotinine concentration and serum renalase concentration (r = -0.41, p < 0.05). Regression analysis showed that higher BMI, higher diastolic blood pressure, coronary artery disease and higher serum cotinine concentration are independent risk factors of lower serum renalase concentration. The questionnaire method of assessing exposure to tobacco smoke was characterized by high sensitivity, but only moderate specificity, especially in terms of assessing environmental exposure to tobacco smoke. In summary, the study showed an independent relationship between exposure to tobacco smoke and lower serum renalase concentration.
Collapse
Affiliation(s)
- Aleksandra Żórawik
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Wojciech Hajdusianek
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Agnieszka Kusnerż
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Iwona Markiewicz-Górka
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Aleksandra Jaremków
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Krystyna Pawlas
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Paweł Gać
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland.
| |
Collapse
|
2
|
Żórawik A, Hajdusianek W, Markiewicz-Górka I, Jaremków A, Pawlas K, Martynowicz H, Mazur G, Poręba R, Gać P. Coexistence of Cardiovascular Risk Factors and Blood Renalase Concentration. Int J Mol Sci 2023; 24:16666. [PMID: 38068986 PMCID: PMC10705922 DOI: 10.3390/ijms242316666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the biggest health challenges facing health systems around the world. There are certain risk factors (CVRFs) that contribute to CVD. Risk factors associated with lifestyle such as tobacco consumption are particularly essential. Renalase is a recently discovered flavoprotein that may be involved in the progression of cardiometabolic diseases. The aim of the study was to investigate the relation between CVRFs and blood renalase concentration (BRC). The study group consisted of 96 people (51% women) who were hospitalized in the internal medicine department. CVRFs were measured using the AHA Life 7 scale. The E3109Hu ELISA kit was used to assess BRC. We found higher BRC in groups with a lower number of CVRFs (p < 0.05). We found a negative correlation between BRC and the number of CVRFs (r = -0.41). With the regression analysis, obesity, smoking, and a lack of physical activity (LoPE) were independently associated with lower blood renalase concentration. ROC analysis indicated the highest accuracy of BRC < 38.98 ng/mL in patients with ≥5 CVRFs. In conclusion, patients with a higher number of CVRFs had lower BRCs. The CVRFs particularly associated with a lower BRC were obesity, smoking, and LoPE.
Collapse
Affiliation(s)
- Aleksandra Żórawik
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Wojciech Hajdusianek
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Iwona Markiewicz-Górka
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Aleksandra Jaremków
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Krystyna Pawlas
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Paweł Gać
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| |
Collapse
|
3
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
4
|
Iyer DR, Arige V, Ananthamohan K, Venkatasubramaniam S, Tokinoya K, Akoi K, Kurtz CL, Sethupathy P, Takekoshi K, Mahapatra NR. Cyclic-AMP response element binding protein (CREB) and microRNA miR-29b regulate renalase gene expression under catecholamine excess conditions. Life Sci 2023:121859. [PMID: 37315838 DOI: 10.1016/j.lfs.2023.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
AIMS Renalase, a key mediator of cross-talk between kidneys and sympathetic nervous system, exerts protective roles in various cardiovascular/renal disease states. However, molecular mechanisms underpinning renalase gene expression remain incompletely understood. Here, we sought to identify the key molecular regulators of renalase under basal/catecholamine-excess conditions. MATERIALS AND METHODS Identification of the core promoter domain of renalase was carried out by promoter-reporter assays in N2a/HEK-293/H9c2 cells. Computational analysis of the renalase core promoter domain, over-expression of cyclic-AMP-response-element-binding-protein (CREB)/dominant negative mutant of CREB, ChIP assays were performed to determine the role of CREB in transcription regulation. Role of the miR-29b-mediated-suppression of renalase was validated in-vivo by using locked-nucleic-acid-inhibitors of miR-29. qRT-PCR and Western-blot analyses measured the expression of renalase, CREB, miR-29b and normalization controls in cell lysates/ tissue samples under basal/epinephrine-treated conditions. KEY FINDINGS CREB, a downstream effector in epinephrine signaling, activated renalase expression via its binding to the renalase-promoter. Physiological doses of epinephrine and isoproteronol enhanced renalase-promoter activity and endogenous renalase protein level while propranolol diminished the promoter activity and endogenous renalase protein level indicating a potential role of beta-adrenergic receptor in renalase gene regulation. Multiple animal models (acute exercise, genetically hypertensive/stroke-prone mice/rat) displayed directionally-concordant expression of CREB and renalase. Administration of miR-29b inhibitor in mice upregulated endogenous renalase expression. Moreover, epinephrine treatment down-regulated miR-29b promoter-activity/transcript levels. SIGNIFICANCE This study provides evidence for renalase gene regulation by concomitant transcriptional activation via CREB and post-transcriptional attenuation via miR-29b under excess epinephrine conditions. These findings have implications for disease states with dysregulated catecholamines.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Venkatasubramaniam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Katsuyuki Tokinoya
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kai Akoi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - C Lisa Kurtz
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kazuhiro Takekoshi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
5
|
Das S, Gupta V, Bjorge J, Shi X, Gong W, Garry MG, Garry DJ. ETV2 and VEZF1 interaction and regulation of the hematoendothelial lineage during embryogenesis. Front Cell Dev Biol 2023; 11:1109648. [PMID: 36923254 PMCID: PMC10009235 DOI: 10.3389/fcell.2023.1109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Ets variant 2 (Etv2), a member of the Ets factor family, has an essential role in the formation of endothelial and hematopoietic cell lineages during embryonic development. The functional role of ETS transcription factors is, in part, dependent on the interacting proteins. There are relatively few studies exploring the coordinated interplay between ETV2 and its interacting proteins that regulate mesodermal lineage determination. In order to identify novel ETV2 interacting partners, a yeast two-hybrid analysis was performed and the C2H2 zinc finger transcription factor VEZF1 (vascular endothelial zinc finger 1) was identified as a binding factor, which was specifically expressed within the endothelium during vascular development. To confirm this interaction, co-immunoprecipitation and GST pull down assays demonstrated the direct interaction between ETV2 and VEZF1. During embryoid body differentiation, Etv2 achieved its peak expression at day 3.0 followed by rapid downregulation, on the other hand Vezf1 expression increased through day 6 of EB differentiation. We have previously shown that ETV2 potently activated Flt1 gene transcription. Using a Flt1 promoter-luciferase reporter assay, we demonstrated that VEZF1 co-activated the Flt1 promoter. Electrophoretic mobility shift assay and Chromatin immunoprecipitation established VEZF1 binding to the Flt1 promoter. Vezf1 knockout embryonic stem cells had downregulation of hematoendothelial marker genes when undergoing embryoid body mediated mesodermal differentiation whereas overexpression of VEZF1 induced the expression of hematoendothelial genes during differentiation. These current studies provide insight into the co-regulation of the hemato-endothelial lineage development via a co-operative interaction between ETV2 and VEZF1.
Collapse
Affiliation(s)
- Satyabrata Das
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vinayak Gupta
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Johannes Bjorge
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Xiaozhong Shi
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, JX, China
| | - Wuming Gong
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Mary G. Garry
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
7
|
Renalase: a novel regulator of cardiometabolic and renal diseases. Hypertens Res 2022; 45:1582-1598. [PMID: 35941358 PMCID: PMC9358379 DOI: 10.1038/s41440-022-00986-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022]
Abstract
Renalase is a ~38 kDa flavin-adenine dinucleotide (FAD) domain-containing protein that can function as a cytokine and an anomerase. It is emerging as a novel regulator of cardiometabolic diseases. Expressed mainly in the kidneys, renalase has been reported to have a hypotensive effect and may control blood pressure through regulation of sympathetic tone. Furthermore, genetic variations in the renalase gene, such as a functional missense polymorphism (Glu37Asp), have implications in the cardiovascular and renal systems and can potentially increase the risk of cardiometabolic disorders. Research on the physiological functions and biochemical actions of renalase over the years has indicated a role for renalase as one of the key proteins involved in various disease states, such as diabetes, impaired lipid metabolism, and cancer. Recent studies have identified three transcription factors (viz., Sp1, STAT3, and ZBP89) as key positive regulators in modulating the expression of the human renalase gene. Moreover, renalase is under the post-transcriptional regulation of two microRNAs (viz., miR-29b, and miR-146a), which downregulate renalase expression. While renalase supplementation may be useful for treating hypertension, inhibition of renalase signaling may be beneficial to patients with cancerous tumors. However, more incisive investigations are required to unravel the potential therapeutic applications of renalase. Based on the literature pertaining to the function and physiology of renalase, this review attempts to consolidate and comprehend the role of renalase in regulating cardiometabolic and renal disorders. ![]()
Collapse
|
8
|
Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:845878. [PMID: 35711341 PMCID: PMC9193824 DOI: 10.3389/fcvm.2022.845878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis represents a redundant accumulation of extracellular matrix proteins, resulting from a cascade of pathophysiological events involved in an ineffective healing response, that eventually leads to heart failure. The pathophysiology of cardiac fibrosis involves various cellular effectors (neutrophils, macrophages, cardiomyocytes, fibroblasts), up-regulation of profibrotic mediators (cytokines, chemokines, and growth factors), and processes where epithelial and endothelial cells undergo mesenchymal transition. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. The most effective anti-fibrotic strategy will have to incorporate the specific targeting of the diverse cells, pathways, and their cross-talk in the pathogenesis of cardiac fibroproliferation. Additionally, renalase, a novel protein secreted by the kidneys, is identified. Evidence demonstrates its cytoprotective properties, establishing it as a survival element in various organ injuries (heart, kidney, liver, intestines), and as a significant anti-fibrotic factor, owing to its, in vitro and in vivo demonstrated pleiotropy to alleviate inflammation, oxidative stress, apoptosis, necrosis, and fibrotic responses. Effective anti-fibrotic therapy may seek to exploit renalase’s compound effects such as: lessening of the inflammatory cell infiltrate (neutrophils and macrophages), and macrophage polarization (M1 to M2), a decrease in the proinflammatory cytokines/chemokines/reactive species/growth factor release (TNF-α, IL-6, MCP-1, MIP-2, ROS, TGF-β1), an increase in anti-apoptotic factors (Bcl2), and prevention of caspase activation, inflammasome silencing, sirtuins (1 and 3) activation, and mitochondrial protection, suppression of epithelial to mesenchymal transition, a decrease in the pro-fibrotic markers expression (’α-SMA, collagen I, and III, TIMP-1, and fibronectin), and interference with MAPKs signaling network, most likely as a coordinator of pro-fibrotic signals. This review provides the scientific rationale for renalase’s scrutiny regarding cardiac fibrosis, and there is great anticipation that these newly identified pathways are set to progress one step further. Although substantial progress has been made, indicating renalase’s therapeutic promise, more profound experimental work is required to resolve the accurate underlying mechanisms of renalase, concerning cardiac fibrosis, before any potential translation to clinical investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
9
|
Pointer TC, Gorelick FS, Desir GV. Renalase: A Multi-Functional Signaling Molecule with Roles in Gastrointestinal Disease. Cells 2021; 10:2006. [PMID: 34440775 PMCID: PMC8391834 DOI: 10.3390/cells10082006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
The survival factor renalase (RNLS) is a recently discovered secretory protein with potent prosurvival and anti-inflammatory effects. Several evolutionarily conserved RNLS domains are critical to its function. These include a 20 aa site that encodes for its prosurvival effects. Its prosurvival effects are shown in GI disease models including acute cerulein pancreatitis. In rodent models of pancreatic cancer and human cancer tissues, increased RNLS expression promotes cancer cell survival but shortens life expectancy. This 37 kD protein can regulate cell signaling as an extracellular molecule and probably also at intracellular sites. Extracellular RNLS signals through a specific plasma membrane calcium export transporter; this interaction appears most relevant to acute injury and cancer. Preliminary studies using RNLS agonists and antagonists, as well as various preclinical disease models, suggest that the immunologic and prosurvival effects of RNLS will be relevant to diverse pathologies that include acute organ injuries and select cancers. Future studies should define the roles of RNLS in intestinal diseases, characterizing the RNLS-activated pathways linked to cell survival and developing therapeutic agents that can increase or decrease RNLS in relevant clinical settings.
Collapse
Affiliation(s)
- Thomas C. Pointer
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
| | - Fred S. Gorelick
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| | - Gary V. Desir
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Stojanovic D, Mitic V, Stojanovic M, Petrovic D, Ignjatovic A, Milojkovic M, Dunjic O, Milenkovic J, Bojanic V, Deljanin Ilic M. The Discriminatory Ability of Renalase and Biomarkers of Cardiac Remodeling for the Prediction of Ischemia in Chronic Heart Failure Patients With the Regard to the Ejection Fraction. Front Cardiovasc Med 2021; 8:691513. [PMID: 34395559 PMCID: PMC8358392 DOI: 10.3389/fcvm.2021.691513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Renalase has been implicated in chronic heart failure (CHF); however, nothing is known about renalase discriminatory ability and prognostic evaluation. The aims of the study were to assess whether plasma renalase may be validated as a predictor of ischemia in CHF patients stratified to the left ventricular ejection fraction (LVEF) and to determine its discriminatory ability coupled with biomarkers representing a range of heart failure (HF) pathophysiology: brain natriuretic peptide (BNP), soluble suppressor of tumorigenicity (sST2), galectin-3, growth differentiation factor 15 (GDF-15), syndecan-1, and cystatin C. Methods: A total of 77 CHF patients were stratified according to the LVEF and were subjected to exercise stress testing. Receiver operating characteristic curves were constructed, and the areas under curves (AUC) were determined, whereas the calibration was evaluated using the Hosmer-Lemeshow statistic. A DeLong test was performed to compare the AUCs of biomarkers. Results: Independent predictors for ischemia in the total HF cohort were increased plasma concentrations: BNP (p = 0.008), renalase (p = 0.012), sST2 (p = 0.020), galectin-3 (p = 0.018), GDF-15 (p = 0.034), and syndecan-1 (p = 0.024), whereas after adjustments, only BNP (p = 0.010) demonstrated predictive power. In patients with LVEF <45% (HFrEF), independent predictors of ischemia were BNP (p = 0.001), renalase (p < 0.001), sST2 (p = 0.004), galectin-3 (p = 0.003), GDF-15 (p = 0.001), and syndecan-1 (p < 0.001). The AUC of BNP (0.837) was statistically higher compared to those of sST2 (DeLong test: p = 0.042), syndecan-1 (DeLong: p = 0.022), and cystatin C (DeLong: p = 0.022). The AUCs of renalase (0.753), galectin-3 (0.726), and GDF-15 (0.735) were similar and were non-inferior compared to BNP, regarding ischemia prediction. In HFrEF patients, the AUC of BNP (0.980) was statistically higher compared to those of renalase (DeLong: p < 0.001), sST2 (DeLong: p < 0.004), galectin-3 (DeLong: p < 0.001), GDF-15 (DeLong: p = 0.001), syndecan-1 (DeLong: p = 0.009), and cystatin C (DeLong: p = 0.001). The AUC of renalase (0.814) was statistically higher compared to those of galectin-3 (DeLong: p = 0.014) and GDF-15 (DeLong: p = 0.046) and similar to that of sST2. No significant results were obtained in the patients with LVEF >45%. Conclusion: Plasma renalase concentration provided significant discrimination for the prediction of ischemia in patients with CHF and appeared to have similar discriminatory potential to that of BNP. Although further confirmatory studies are warranted, renalase seems to be a relevant biomarker for ischemia prediction, implying its potential contribution to ischemia-risk stratification.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, Nis, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Nis, Serbia
| | - Dejan Petrovic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia.,Department of Internal Medicine, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, Nis, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Nis, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Olivera Dunjic
- Institute of Pathophysiology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Vladmila Bojanic
- Institute of Pathophysiology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Marina Deljanin Ilic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia.,Department of Internal Medicine, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
11
|
Tokinoya K, Ono S, Aoki K, Yanazawa K, Shishikura Y, Sugasawa T, Takekoshi K. Gene expression level of renalase in the skeletal muscles is increased with high-intensity exercise training in mice on a high-fat diet. Physiol Int 2021; 108:274-284. [PMID: 34191746 DOI: 10.1556/2060.2021.00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Exercise training is beneficial for reducing obesity. In particular, exercise training can lower the catecholamine concentration in circulation. Renalase, whose expression was first confirmed in the kidneys, is a physiologically active substance that decomposes circulating catecholamines; additionally, it has been reported to be present in the skeletal muscles. The aim of this study was to clarify the expression of renalase in the skeletal muscles and kidneys after high-intensity exercise training in obese mice. MATERIAL AND METHODS The mice were divided into four groups: normal diet and sedentary, normal diet and exercise training, high-fat diet and sedentary, and high-fat diet and exercise training, and the test was performed for 8 weeks. RESULTS Body weight and skeletal muscle wet weight were reduced by high-fat diet intake but were rescued by training. Skeletal muscle renalase gene expression was significantly increased by exercise training. However, in the kidneys the gene expression of renalase was significantly increased by high-fat diet intake and exercise training. No significant changes were observed in the gene expression of catecholamine-degrading enzymes, catechol-O-methyltransferase and monoamine oxidase A and B. CONCLUSION We demonstrated that exercise training increased the gene expression of renalase in the skeletal muscles and kidneys, thus lowering circulating catecholamine levels. This may lead to amelioration of obesity as catecholamines are lipolytic.
Collapse
Affiliation(s)
- Katsuyuki Tokinoya
- 1Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo,192-0397, Japan
- 2Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Seiko Ono
- 3Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kai Aoki
- 2Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- 4Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Koki Yanazawa
- 3Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuhiro Shishikura
- 3Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Takehito Sugasawa
- 4Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazuhiro Takekoshi
- 4Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
12
|
Li Y, Wu W, Liu W, Zhou M. Roles and mechanisms of renalase in cardiovascular disease: A promising therapeutic target. Biomed Pharmacother 2020; 131:110712. [PMID: 32916539 DOI: 10.1016/j.biopha.2020.110712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is prevalent worldwide and remains a leading cause of death. Although substantial progress has been made in the diagnosis and treatment of CVD, the prognosis remains unsatisfactory. Renalase is a newly discovered cytokine that is synthesized by the kidney and then secreted into blood. Numerous studies have suggested the efficacy of renalase in treating CVD by metabolizing catecholamines in the circulatory system. As a new biomarker of heart disease, renalase is normally recognized as a signalling molecule that activates cytoprotective intracellular signals to lower blood pressure, protect ischaemic heart muscle and promote atherosclerotic plaque stability in CVD, which subsequently improves cardiac function. Due to its important regulatory role in the circulatory system, renalase has gradually become a potential target in the treatment of CVD. This review summarizes the structure, mechanism and function of renalase in CVD, thereby providing preclinical evidence for alternative approaches and new prospects in the development of renalase-related drugs against CVD.
Collapse
Affiliation(s)
- Yue Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Weidong Wu
- London Metropolitan University, London, N7 8DB, United Kingdom
| | - Weihong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China.
| |
Collapse
|
13
|
Tokinoya K, Yoshida Y, Sugasawa T, Takekoshi K. Moderate-intensity exercise increases renalase levels in the blood and skeletal muscle of rats. FEBS Open Bio 2020; 10:1005-1012. [PMID: 32053739 PMCID: PMC7262916 DOI: 10.1002/2211-5463.12812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/24/2019] [Accepted: 02/12/2020] [Indexed: 11/30/2022] Open
Abstract
Renalase is predominantly expressed in the kidney, where it plays a role in catecholamine metabolism and blood pressure regulation. Moderate‐intensity exercise (MEX) has been shown to increase the concentration of renalase in the blood and to reduce renal function in humans. Moreover, such exercise was also reported to increase catecholamine levels. Here, we examined renalase concentration in the blood and renalase expression levels in different organs after MEX in rats. Twelve male Wistar rats were made to run on a treadmill (MEX group) for 60 min at 20 m·min−1, after resting for 15 min. The control group rats were euthanized after resting on the treadmill. Tissue and blood samples were analyzed using western blotting, real‐time RT‐PCR and ELISA. Overall, the concentrations of renalase in the blood were significantly higher in the MEX group than that in the control group. Renalase expression was decreased in the kidney after 60 min of exercise, whereas the expression of renalase mRNA and protein in the extensor digitorum longus and plantaris muscles, respectively, increased after exercise. However, the expression of renalase in the other tissues examined did not change after acute exercise. In conclusion, we report that MEX for 60 min increases both renalase concentration in the blood and its expression in skeletal muscle.
Collapse
Affiliation(s)
- Katsuyuki Tokinoya
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yasuko Yoshida
- Department of Medical Technology, Faculty of Health Sciences, Tsukuba International University, Japan.,Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Takehito Sugasawa
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Kazuhiro Takekoshi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
14
|
Renalase Attenuates Mouse Fatty Liver Ischemia/Reperfusion Injury through Mitigating Oxidative Stress and Mitochondrial Damage via Activating SIRT1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7534285. [PMID: 31949882 PMCID: PMC6948337 DOI: 10.1155/2019/7534285] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/15/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
Liver ischemia/reperfusion (IR) injury is a severe complication of liver surgery. Moreover, nonalcoholic fatty liver disease (NAFLD) patients are particularly vulnerable to IR injury, with higher rates of postoperative morbidity and mortality after liver surgeries. Our previous study found that renalase (RNLS) was highly sensitive and responsive to oxidative stress, which may be a promising biomarker for the evaluation of the severity of liver IR injury. However, the role of RNLS in liver IR injury remains unclear. In the present study, we intensively explored the role and mechanism of RNLS in fatty liver IR injury in vivo and in vitro. C57BL/6 mice were divided into 2 groups feeding with high-fat diet (HFD) and control diet (CD), respectively. After 20 weeks' feeding, they were suffered from portal triad blockage and reflow to induce liver IR injury. Additionally, oleic acid (OA) and tert-butyl hydroperoxide (t-BHP) were used in vitro to induce steatotic hepatocytes and to simulate ROS burst and mimic cellular oxidative stress following portal triad blockage and reflow, respectively. Our data showed that RNLS was downregulated in fatty livers, and RNLS administration effectively attenuated IR injury by reducing ROS production and improving mitochondrial function through activating SIRT1. Additionally, the downregulation of RNLS in the fatty liver was mediated by a decrease of signal transduction and activator of transcription 3 (STAT3) expression under HFD conditions. These findings make RNLS a promising therapeutic strategy for the attenuation of liver IR injury.
Collapse
|
15
|
Keller MP, Rabaglia ME, Schueler KL, Stapleton DS, Gatti DM, Vincent M, Mitok KA, Wang Z, Ishimura T, Simonett SP, Emfinger CH, Das R, Beck T, Kendziorski C, Broman KW, Yandell BS, Churchill GA, Attie AD. Gene loci associated with insulin secretion in islets from non-diabetic mice. J Clin Invest 2019; 129:4419-4432. [PMID: 31343992 DOI: 10.1172/jci129143] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genetic susceptibility to type 2 diabetes is primarily due to β-cell dysfunction. However, a genetic study to directly interrogate β-cell function ex vivo has never been previously performed. We isolated 233,447 islets from 483 Diversity Outbred (DO) mice maintained on a Western-style diet, and measured insulin secretion in response to a variety of secretagogues. Insulin secretion from DO islets ranged >1,000-fold even though none of the mice were diabetic. The insulin secretory response to each secretagogue had a unique genetic architecture; some of the loci were specific for one condition, whereas others overlapped. Human loci that are syntenic to many of the insulin secretion QTL from mouse are associated with diabetes-related SNPs in human genome-wide association studies. We report on three genes, Ptpn18, Hunk and Zfp148, where the phenotype predictions from the genetic screen were fulfilled in our studies of transgenic mouse models. These three genes encode a non-receptor type protein tyrosine phosphatase, a serine/threonine protein kinase, and a Krϋppel-type zinc-finger transcription factor, respectively. Our results demonstrate that genetic variation in insulin secretion that can lead to type 2 diabetes is discoverable in non-diabetic individuals.
Collapse
Affiliation(s)
- Mark P Keller
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| | - Mary E Rabaglia
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| | - Kathryn L Schueler
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| | - Donnie S Stapleton
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| | | | | | - Kelly A Mitok
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| | - Ziyue Wang
- University of Wisconsin-Madison, Department of Biostatistics and Medical Informatics, Madison, Wisconsin, USA
| | | | - Shane P Simonett
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| | | | - Rahul Das
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| | - Tim Beck
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christina Kendziorski
- University of Wisconsin-Madison, Department of Biostatistics and Medical Informatics, Madison, Wisconsin, USA
| | - Karl W Broman
- University of Wisconsin-Madison, Department of Biostatistics and Medical Informatics, Madison, Wisconsin, USA
| | - Brian S Yandell
- University of Wisconsin-Madison, Department of Horticulture, Madison, Wisconsin, USA
| | | | - Alan D Attie
- University of Wisconsin-Madison, Biochemistry Department, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Choi JY, Yun J, Hwang CJ, Lee HP, Kim HD, Chun H, Park PH, Choi DY, Han SB, Hong JT. (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) Phenol Ameliorates MPTP-Induced Dopaminergic Neurodegeneration by Inhibiting the STAT3 Pathway. Int J Mol Sci 2019; 20:ijms20112632. [PMID: 31146332 PMCID: PMC6600543 DOI: 10.3390/ijms20112632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is implicated in dopaminergic neurodegeneration. We have previously demonstrated that (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor, has anti-inflammatory properties in several inflammatory disease models. We investigated whether MMPP could protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic cell loss and behavioral impairment. Imprinting control region (ICR) mice (8 weeks old, n = 10 per group) were administered MMPP (5 mg/kg) in drinking water for 1 month, and injected with MPTP (15 mg/kg, four times with 2 h intervals) during the last 7 days of treatment. MMPP decreased MPTP-induced behavioral impairments in rotarod, pole, and gait tests. We also showed that MMPP ameliorated dopamine depletion in the striatum and inflammatory marker elevation in primary cultured neurons by high-performance liquid chromatography and immunohistochemical analysis. Increased activation of STAT3, p38, and monoamine oxidase B (MAO-B) were observed in the substantia nigra and striatum after MPTP injection, effects that were attenuated by MMPP treatment. Furthermore, MMPP inhibited STAT3 activity and expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), inducible nitric oxide synthase (iNOS), and glial fibrillary acidic protein (GFAP) in 1-methyl-4-phenylpyridinium (MPP+; 0.5 mM)-treated primary cultured cells. However, mitogen-activated protein kinase (MAPK) inhibitors augmented the activity of MMPP. Collectively, our results suggest that MMPP may be an anti-inflammatory agent that attenuates dopaminergic neurodegeneration and neuroinflammation through MAO-B and MAPK pathway-dependent inhibition of STAT3 activation.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Hae Deun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Hyungok Chun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| |
Collapse
|
17
|
Influence of acute exercise on renalase and its regulatory mechanism. Life Sci 2018; 210:235-242. [PMID: 30056018 DOI: 10.1016/j.lfs.2018.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 01/19/2023]
Abstract
AIMS Renalase expression in the kidneys and liver is regulated by nuclear factor (NF)-κB, Sp1, and hypoxia-inducible factor (HIF)-1α. The dynamics of renalase expression in acute exercise, and its mechanism and physiological effects are unclear. We evaluated the effect of different exercise intensities on renalase expression and examined its mechanism and physiological effects. MAIN METHODS 21 male Wistar rats ran for 30 min on a treadmill after resting for 15 min. The sedentary group rested on the treadmill while the exercise group ran for 30 min at 10 or 30 m/min. Skeletal muscles, the kidney, heart, liver, and blood samples were collected after exercise. The expression of renalase and phosphate IkB-α and Akt was measured by western blotting, while HIF-1α, Sp1, MuRF-1, and MAFbx were measured in the skeletal muscle by real-time RT-PCR. KEY FINDINGS Renalase expression in skeletal muscles increased after acute exercise, while its expression in the kidneys, heart, and liver decreased. NF-κB regulated renalase expression in the plantaris muscle and that of HIF-1α in the soleus muscle. Phosphate Akt in the plantaris muscle significantly increased in the 30 m/min group compared with that in the sedentary group. MuRF-1 in the plantaris did not change between these groups. SIGNIFICANCE Renalase expression in skeletal muscles increased after acute exercise but decreased in other tissues. This increase may be a response to exercise-induced oxidative stress. Furthermore, NF-κB in the plantaris muscle may mainly regulate renalase expression, and support a relationship with the cell protective effects of renalase.
Collapse
|
18
|
Moran GR, Hoag MR. The enzyme: Renalase. Arch Biochem Biophys 2017; 632:66-76. [PMID: 28558965 DOI: 10.1016/j.abb.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
Within the last two years catalytic substrates for renalase have been identified, some 10 years after its initial discovery. 2- and 6-dihydronicotinamide (2- and 6-DHNAD) isomers of β-NAD(P)H (4-dihydroNAD(P)) are rapidly oxidized by renalase to form β-NAD(P)+. The two electrons liberated are then passed to molecular oxygen by the renalase FAD cofactor forming hydrogen peroxide. This activity would appear to serve an intracellular detoxification/metabolite repair function that alleviates inhibition of primary metabolism dehydrogenases by 2- and 6-DHNAD molecules. This activity is supported by the complete structural assignment of the substrates, comprehensive kinetic analyses, defined species specific substrate specificity profiles and X-ray crystal structures that reveal ligand complexation consistent with this activity. This apparently intracellular function for the renalase enzyme is not allied with the majority of the renalase research that holds renalase to be a secreted mammalian protein that functions in blood to elicit a broad array of profound physiological changes. In this review a description of renalase as an enzyme is presented and an argument is offered that its enzymatic function can now reasonably be assumed to be uncoupled from whole organism physiological influences.
Collapse
Affiliation(s)
- Graham R Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States.
| | - Matthew R Hoag
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States
| |
Collapse
|
19
|
Stec A. Rs10887800 renalase gene polymorphism influences the level of circulating renalase in patients undergoing hemodialysis but not in healthy controls. BMC Nephrol 2017; 18:118. [PMID: 28372594 PMCID: PMC5379720 DOI: 10.1186/s12882-017-0543-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023] Open
Abstract
Background Human renalase (RNLS), a recently identified flavoprotein with oxidoreductase activity, is secreted into blood by kidneys and metabolizes circulating catecholamines. Recent studies have revealed that common polymorphisms in RNLS gene might affect the risk of several cardiovascular conditions in hemodialyzed patients. However, the exact mechanism underlying this link remains unclear. The study aims to investigate the association between RNLS gene polymorphisms and plasma renalase level in ESKD patients undergoing hemodialysis (HD group) and healthy controls (HC). Methods A total of 309 hemodialyzed patients and 90 controls were enrolled in the study. All the participants were genotyped for two RNLS SNPs (rs2576178 and rs10887800) using PCR-RFLP method. Plasma renalase concentrations were determined by enzyme-linked immunosorbent assay (USCN Life Science Inc., Wuhan, China). The IBM SPSS Statistics for Windows, version 20 (IBM Corp., Armonk, NY, USA) was used for statistical analyses. Results Genotype distribution and allele frequencies of studied SNPs did not differ between two analyzed groups, p > .050. RNLS concentration in HD group (33.54 μg/mL) was significantly higher than in HC (13.16 μg/mL), p < .001. HD patients with rs10887800AA genotype had lower renalase level (29.32 μg/mL) compared to those with AG (34.52 μg/mL), p < .010 and GG genotype (35.91 μg/mL), p < .010. No significant differences in plasma RNLS between rs10887800AG and GG carriers were observed, p > .050. Interestingly, in HC group rs10887800 polymorphism did not influence RNLS concentration. Rs2576178 SNP did not affect the level of plasma RNLS either in HD group or in HC. Conclusion Rs10887800 polymorphic variant of RNLS gene influences the level of circulating RNLS in patients undergoing hemodialysis, and thus elucidates the potentially functional relevance of this polymorphism in HD population.
Collapse
Affiliation(s)
- Anna Stec
- Department of Nephrology, Medical University of Lublin, 8 Jaczewskiego Street, 20954, Lublin, Poland.
| |
Collapse
|
20
|
Wang Y, Safirstein R, Velazquez H, Guo XJ, Hollander L, Chang J, Chen TM, Mu JJ, Desir GV. Extracellular renalase protects cells and organs by outside-in signalling. J Cell Mol Med 2017; 21:1260-1265. [PMID: 28238213 PMCID: PMC5487909 DOI: 10.1111/jcmm.13062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Renalase was discovered as a protein synthesized by the kidney and secreted in blood where it circulates at a concentration of approximately 3-5 μg/ml. Initial reports suggested that it functioned as an NAD(P)H oxidase and could oxidize catecholamines. Administration of renalase lowers blood pressure and heart rate and also protects cells and organs against ischaemic and toxic injury. Although renalase's protective effect was initially ascribed to its oxidase properties, a paradigm shift in our understanding of the cellular actions of renalase is underway. We now understand that, independent of its enzymatic properties, renalase functions as a cytokine that provides protection to cells, tissues and organs by interacting with its receptor to activate protein kinase B, JAK/STAT, and the mitogen-activated protein kinase pathways. In addition, recent studies suggest that dysregulated renalase signalling may promote survival of several tumour cells due to its capacity to augment expression of growth-related genes. In this review, we focus on the cytoprotective actions of renalase and its capacity to sustain cancer cell growth and also the translational opportunities these findings represent for the development of novel therapeutic strategies for organ injury and cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA.,Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Robert Safirstein
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Heino Velazquez
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Xiao-Jia Guo
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Lindsay Hollander
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA.,Department of Surgery, University of Connecticut, Farmington, CT, USA
| | - John Chang
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Tian-Min Chen
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Gary V Desir
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Gupta V, Kapopara PR, Khan AA, Arige V, Subramanian L, Sonawane PJ, Sasi BK, Mahapatra NR. Functional promoter polymorphisms direct the expression of cystathionine gamma-lyase gene in mouse models of essential hypertension. J Mol Cell Cardiol 2016; 102:61-73. [PMID: 27865915 DOI: 10.1016/j.yjmcc.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/21/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Despite the well-known role of cystathionine γ-lyase (Cth) in cardiovascular pathophysiology, transcriptional regulation of Cth remains incompletely understood. Sequencing of the Cth promoter region in mouse models of genetic/essential hypertension (viz. Blood Pressure High [BPH], Blood Pressure Low [BPL] and Blood Pressure Normal [BPN] mice) identified several genetic variations. Transient transfections of BPH/BPL-Cth promoter-reporter plasmids into various cell types revealed higher promoter activity of BPL-Cth than that of BPH-Cth. Corroboratively, endogenous Cth mRNA levels in kidney and liver tissues were also elevated in BPL mice. Computational analysis of the polymorphic Cth promoter region predicted differential binding affinity of c-Rel, HOXA3 and IRF1 with BPL/BPH-Cth promoter domains. Over-expression of c-Rel/HOXA3/IRF1 modulated BPL/BPH-Cth promoter activities in a consistent manner. Gel shift assays using BPH/BPL-Cth-promoter oligonucleotides with/without binding sites for c-Rel/HOXA3/IRF1 displayed formation of specific complexes with c-Rel/HOXA3/IRF1; addition of antibodies to reaction mixtures resulted in supershifts/inhibition of Cth promoter-transcription factor complexes. Furthermore, chromatin immunoprecipitation (ChIP) assays proved differential binding of c-Rel, HOXA3 and IRF1 with the polymorphic promoter region of BPL/BPH-Cth. Tumor necrosis factor-α (TNF-α) reduced the activities of BPL/BPH-Cth promoters to different extents that were further declined by ectopic expression of IRF1; on the other hand, siRNA-mediated down-regulation of IRF1 rescued the TNF-α-mediated suppression of the BPL/BPH-Cth promoter activities. In corroboration, ChIP analysis revealed enhanced binding of IRF1 with BPH/BPL-Cth promoter following TNF-α treatment. BPL/BPH-Cth promoter activity was diminished upon exposure of hepatocytes and cardiomyoblasts to ischemia-like pathological condition due to reduced binding of c-Rel with BPL/BPH-Cth-promoter. Taken together, this study reveals the molecular basis for the differential expression of Cth in mouse models of essential hypertension under basal and pathophysiological conditions.
Collapse
Affiliation(s)
- Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Piyushkumar R Kapopara
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi Subramanian
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Parshuram J Sonawane
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Binu K Sasi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
22
|
Hollander L, Guo X, Velazquez H, Chang J, Safirstein R, Kluger H, Cha C, Desir GV. Renalase Expression by Melanoma and Tumor-Associated Macrophages Promotes Tumor Growth through a STAT3-Mediated Mechanism. Cancer Res 2016; 76:3884-94. [PMID: 27197188 DOI: 10.1158/0008-5472.can-15-1524] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Abstract
To sustain their proliferation, cancer cells overcome negative-acting signals that restrain their growth and promote senescence and cell death. Renalase (RNLS) is a secreted flavoprotein that functions as a survival factor after ischemic and toxic injury, signaling through the plasma calcium channel PMCA4b to activate the PI3K/AKT and MAPK pathways. We show that RNLS expression is increased markedly in primary melanomas and CD163(+) tumor-associated macrophages (TAM). In clinical specimens, RNLS expression in the tumor correlated inversely with disease-specific survival, suggesting a pathogenic role for RNLS. Attenuation of RNLS by RNAi, blocking antibodies, or an RNLS-derived inhibitory peptide decreased melanoma cell survival, and anti-RNLS therapy blocked tumor growth in vivo in murine xenograft assays. Mechanistic investigations showed that increased apoptosis in tumor cells was temporally related to p38 MAPK-mediated Bax activation and that increased cell growth arrest was associated with elevated expression of the cell-cycle inhibitor p21. Overall, our results established a role for the secreted flavoprotein RNLS in promoting melanoma cell growth and CD163(+) TAM in the tumor microenvironment, with potential therapeutic implications for the management of melanoma. Cancer Res; 76(13); 3884-94. ©2016 AACR.
Collapse
Affiliation(s)
- Lindsay Hollander
- Department of Medicine, Yale University, New Haven, Connecticut. Yale School of Medicine, Yale University, New Haven, Connecticut. University of Connecticut, Farmington, Connecticut
| | - Xiaojia Guo
- Department of Medicine, Yale University, New Haven, Connecticut. Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Heino Velazquez
- Department of Medicine, Yale University, New Haven, Connecticut. Yale School of Medicine, Yale University, New Haven, Connecticut. VA Connecticut Health Care System, Yale University, New Haven, Connecticut
| | - John Chang
- Department of Medicine, Yale University, New Haven, Connecticut. VA Connecticut Health Care System, Yale University, New Haven, Connecticut
| | - Robert Safirstein
- Department of Medicine, Yale University, New Haven, Connecticut. Yale School of Medicine, Yale University, New Haven, Connecticut. VA Connecticut Health Care System, Yale University, New Haven, Connecticut
| | - Harriet Kluger
- Department of Medical Oncology, Yale University, New Haven, Connecticut. Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Charles Cha
- Yale School of Medicine, Yale University, New Haven, Connecticut. VA Connecticut Health Care System, Yale University, New Haven, Connecticut. Department of Surgery, Yale University, New Haven, Connecticut
| | - Gary V Desir
- Department of Medicine, Yale University, New Haven, Connecticut. Yale School of Medicine, Yale University, New Haven, Connecticut. VA Connecticut Health Care System, Yale University, New Haven, Connecticut.
| |
Collapse
|
23
|
Severina IS, Fedchenko VI, Veselovsky AV, Medvedev AE. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 61:667-79. [PMID: 26716738 DOI: 10.18097/pbmc20156106667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Renalase is a recently discovered secretory protein, which plays a certain (still poorly understood) role in regulation of blood pressure. The review summarizes own and literature data accumulated since the first publication on relanase (2005). Initial reports on FAD-dependent amine oxidase activity of this protein were not confirmed in independent experiments performed in different laboratories. In addition, proposed amine oxidase activity of circulating extracellular renalase requires the presence of FAD, which has not been detected either in blood or urinary renalase. Moreover, renalase excreted into urine lacks its N-terminal peptide, which is ultimately needed for accommodation of the FAD cofactor. Results of the Aliverti's group on NAD(P)H binding by renalase and weak diaphorase activity of this protein stimulated further studies of renalase as NAD(P)H oxidase catalyzing reaction of catecholamine co-oxidation. However, physiological importance of such extracellular catecholamine-metabolizing activity (demonstrated in one laboratory and not detected in another laboratory) remains unclear due to existence of much more active enzymatic systems (e.g. neutrophil NAD(P)H oxidase, xanthine oxidase/xanthine) in circulation, which can perform such co-oxidation reactions. Recently a-NAD(P)H oxidase/anomerase activity of renalase, which also pomotes oxidative conversion of b-NADH isomers inhibiting activity of NAD-dependent dehydrogenases, has been described. However, its possible contribution to the antihypertensive effect of renalase remains unclear. Thus, the antihypertensive effect of renalase still remains a phenomenon with unclear biochemical mechanim(s) and functions of intracellular and extracellular (circulating) renalases obviously differ.
Collapse
Affiliation(s)
- I S Severina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
24
|
Guo X, Hollander L, MacPherson D, Wang L, Velazquez H, Chang J, Safirstein R, Cha C, Gorelick F, Desir GV. Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer. Sci Rep 2016; 6:22996. [PMID: 26972355 PMCID: PMC4789641 DOI: 10.1038/srep22996] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/26/2016] [Indexed: 01/05/2023] Open
Abstract
An essential feature of cancer is dysregulation of cell senescence and death. Renalase, a recently discovered secreted flavoprotein, provides cytoprotection against ischemic and toxic cellular injury by signaling through the PI3K-AKT and MAPK pathways. Here we show that renalase expression is increased in pancreatic cancer tissue and that it functions as a growth factor. In a cohort of patients with pancreatic ductal adenocarcinoma, overall survival was inversely correlated with renalase expression in the tumor mass, suggesting a pathogenic role for renalase. Inhibition of renalase signaling using siRNA or inhibitory anti-renalase antibodies decreased the viability of cultured pancreatic ductal adenocarcinoma cells. In two xenograft mouse models, either the renalase monoclonal antibody m28-RNLS or shRNA knockdown of renalase inhibited pancreatic ductal adenocarcinoma growth. Inhibition of renalase caused tumor cell apoptosis and cell cycle arrest. These results reveal a previously unrecognized role for the renalase in cancer: its expression may serve as a prognostic maker and its inhibition may provide an attractive therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Xiaojia Guo
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lindsay Hollander
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Douglas MacPherson
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ling Wang
- Renal Division, Renji hospital, Shanghai Jiaotong Univ School of Medicine, Shanghai, China
| | - Heino Velazquez
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John Chang
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert Safirstein
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Charles Cha
- Department of Surgery, VACHS, Yale University, New Haven, CT 06520, USA
| | - Fred Gorelick
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gary V Desir
- Department of Medicine, VACHS, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Kalyani A, Sonawane PJ, Khan AA, Subramanian L, Ehret GB, Mullasari AS, Mahapatra NR. Post-Transcriptional Regulation of Renalase Gene by miR-29 and miR-146 MicroRNAs: Implications for Cardiometabolic Disorders. J Mol Biol 2015; 427:2629-46. [DOI: 10.1016/j.jmb.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/23/2022]
|
26
|
Hoag MR, Roman J, Beaupre BA, Silvaggi NR, Moran GR. Bacterial Renalase: Structure and Kinetics of an Enzyme with 2- and 6-Dihydro-β-NAD(P) Oxidase Activity from Pseudomonas phaseolicola. Biochemistry 2015; 54:3791-802. [PMID: 26016690 DOI: 10.1021/acs.biochem.5b00451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite a lack of convincing in vitro evidence and a number of sound refutations, it is widely accepted that renalase is an enzyme unique to animals that catalyzes the oxidative degradation of catecholamines in blood in order to lower vascular tone. Very recently, we identified isomers of β-NAD(P)H as substrates for renalase (Beaupre, B. A. et al. (2015) Biochemistry, 54, 795-806). These molecules carry the hydride equivalent on the 2 or 6 position of the nicotinamide base and presumably arise in nonspecific redox reactions of nicotinamide dinucleotides. Renalase serves to rapidly oxidize these isomers to form β-NAD(P)⁺ and then pass the electrons to dioxygen, forming H₂O₂. We have also shown that these substrate molecules are highly inhibitory to dehydrogenase enzymes and thus have proposed an intracellular metabolic role for this enzyme. Here, we identify a renalase from an organism without a circulatory system. This bacterial form of renalase has the same substrate specificity profile as that of human renalase but, in terms of binding constant (K(d)), shows a marked preference for substrates derived from β-NAD⁺. 2-dihydroNAD(P) substrates reduce the enzyme with rate constants (k(red)) that greatly exceed those for 6-dihydroNAD(P) substrates. Taken together, k(red)/K(d) values indicate a minimum 20-fold preference for 2DHNAD. We also offer the first structures of a renalase in complex with catalytically relevant ligands β-NAD⁺ and β-NADH (the latter being an analogue of the substrate(s)). These structures show potential electrostatic repulsion interactions with the product and a unique binding orientation for the substrate nicotinamide base that is consistent with the identified activity.
Collapse
Affiliation(s)
- Matthew R Hoag
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211-3209, United States
| | - Joseph Roman
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211-3209, United States
| | - Brett A Beaupre
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211-3209, United States
| | - Nicholas R Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211-3209, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211-3209, United States
| |
Collapse
|
27
|
Renalase does not catalyze the oxidation of catecholamines. Arch Biochem Biophys 2015; 579:62-6. [PMID: 26049000 DOI: 10.1016/j.abb.2015.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/21/2022]
Abstract
It is widely accepted that the function of human renalase is to oxidize catecholamines in blood. However, this belief is based on experiments that did not account for slow, facile catecholamine autoxidation reactions. Recent evidence has shown that renalase has substrates with which it reacts rapidly. The reaction catalyzed defines renalase as an oxidase, one that harvests two electrons from either 2-dihydroNAD(P) or 6-dihydroNAD(P) to form β-NAD(P)(+) and hydrogen peroxide. The apparent metabolic purpose of such a reaction is to avoid inhibition of primary dehydrogenase enzymes by these β-NAD(P)H isomers. This article demonstrates that renalase does not catalyze the oxidation of neurotransmitter catecholamines. Using high-performance liquid chromatography we show that there is no evidence of consumption of epinephrine by renalase. Using time-dependent spectrophotometry we show that the renalase FAD cofactor spectrum is unresponsive to added catecholamines, that adrenochromes are not observed to accumulate in the presence of renalase and that the kinetics of single turnover reactions with 6-dihydroNAD are unaltered by the addition of catecholamines. Lastly we show using an oxygen electrode assay that plasma renalase activity is below the level of detection and only when exogenous renalase and 6-dihydroNAD are added can dioxygen be observed to be consumed.
Collapse
|
28
|
The catalytic function of renalase: A decade of phantoms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:177-86. [PMID: 25900362 DOI: 10.1016/j.bbapap.2015.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/31/2022]
Abstract
Ten years after the initial identification of human renalase the first genuinely catalytic substrates have been identified. Throughout the prior decade a consensus belief that renalase is produced predominantly by the kidney and catalytically oxidizes catecholamines in order to lower blood pressure and slow the heart has prevailed. This belief was, however, based on fundamentally flawed scientific observations that did not include control reactions to account for the well-known autoxidation of catecholamines in oxygenated solutions. Nonetheless, the initial claims have served as the kernel for a rapidly expanding body of research largely predicated on the belief that catecholamines are substrates for this enzyme. The proliferation of scientific studies pertaining to renalase as a hormone has proceeded unabated despite well-reasoned expressions of dissent that have indicated the deficiencies of the initial observations and other inconsistencies. Our group has very recently identified isomeric forms of β-NAD(P)H as substrates for renalase. These substrates arise from non-specific reduction of β-NAD(P)(+) that forms β-4-dihydroNAD(P) (β-NAD(P)H), β-2-dihydroNAD(P) and β-6-dihydroNAD(P); the latter two being substrates for renalase. Renalase oxidizes these substrates with rate constants that are up to 10(4)-fold faster than any claimed for catecholamines. The electrons harvested are delivered to dioxygen via the enzyme's FAD cofactor forming both H2O2 and β-NAD(P)(+) as products. It would appear that the metabolic purpose of this chemistry is to alleviate the inhibitory effect of β-2-dihydroNAD(P) and β-6-dihydroNAD(P) on primary metabolism dehydrogenase enzymes. The identification of this genuinely catalytic activity for renalase calls for re-evaluation of much of the research of this enzyme, in which definitive links between renalase catecholamine consumption and physiological responses were reported. This article is part of a Special Issue entitled: Physiological enzymology and protein functions.
Collapse
|