1
|
Eto S, Kato D, Saeki K, Iguchi T, Shiyu Q, Kamoto S, Yoshitake R, Shinada M, Ikeda N, Tsuboi M, Chambers J, Uchida K, Nishimura R, Nakagawa T. Comprehensive Analysis of the Tumour Immune Microenvironment in Canine Urothelial Carcinoma Reveals Immunosuppressive Mechanisms Induced by the COX-Prostanoid Cascade. Vet Comp Oncol 2024. [PMID: 39179510 DOI: 10.1111/vco.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 08/26/2024]
Abstract
A comprehensive understanding of the tumour immune microenvironment (TIME) is essential for advancing precision medicine and identifying potential therapeutic targets. This study focused on canine urothelial carcinoma (cUC) recognised for its high sensitivity to cyclooxygenase (COX) inhibitors. Using immunohistochemical techniques, we quantified the infiltration of seven immune cell populations within cUC tumour tissue to identify clinicopathological features that characterise the TIME in cUC. Our results revealed several notable factors, including the significantly higher levels of CD3+ T cells and CD8+ T cells within tumour cell nests in cases treated with preoperative COX inhibitors compared to untreated cases. Based on the immunohistochemistry data, we further performed a comparative analysis using publicly available RNA-seq data from untreated cUC tissues (n = 29) and normal bladder tissues (n = 4) to explore the link between COX-prostanoid pathways and the immune response to tumours. We observed increased expression of COX-2, microsomal prostaglandin E2 synthase-1 (mPGES-1) and mPGES-2 in cUC tissues. However, only mPGES-2 showed a negative correlation with the cytotoxic T-cell (CTL)-related genes CD8A and granzyme B (GZMB). In addition, a broader analysis of solid tumours using The Cancer Genome Atlas (TCGA) database revealed similar patterns in several human tumours, suggesting a common mechanism in dogs and humans. Our results suggest that the COX-2/mPGES-2 pathway may act as a cross-species tumour-intrinsic factor that weakens anti-tumour immunity, and that COX inhibitors may convert TIME from a 'cold tumour' to a 'hot tumour' state by counteracting COX/mPGES-2-mediated immunosuppression.
Collapse
Affiliation(s)
- Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Takaaki Iguchi
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Qin Shiyu
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Geng Y, Li W, Wong NK, Xue F, Li Q, Zhang Y, Xu J, Deng Z, Zhou Y. Discovery of Artemisinins as Microsomal Prostaglandins Synthase-2 Inhibitors for the Treatment of Colorectal Cancer via Chemoproteomics. J Med Chem 2024; 67:2083-2094. [PMID: 38287228 DOI: 10.1021/acs.jmedchem.3c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.
Collapse
Affiliation(s)
- Yiyun Geng
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Fuchong Xue
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
3
|
Zhong D, Quan L, Hao C, Chen J, Qiao R, Lin T, Ying C, Sun D, Jia Z, Sun Y. Targeting mPGES-2 to protect against acute kidney injury via inhibition of ferroptosis dependent on p53. Cell Death Dis 2023; 14:710. [PMID: 37907523 PMCID: PMC10618563 DOI: 10.1038/s41419-023-06236-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality but no specific therapy. Microsomal prostaglandin E synthase-2 (mPGES-2) is a PGE2 synthase but can metabolize PGH2 to malondialdehyde by forming a complex with heme. However, the role and mechanism of action of mPGES-2 in AKI remain unclear. To examine the role of mPGES-2, both global and tubule-specific mPGES-2-deficient mice were treated with cisplatin to induce AKI. mPGES-2 knockdown or overexpressing HK-2 cells were exposed to cisplatin to cause acute renal tubular cell injury. The mPGES-2 inhibitor SZ0232 was used to test the translational potential of targeting mPGES-2 in treating AKI. Additionally, mice were subjected to unilateral renal ischemia/reperfusion to further validate the effect of mPGES-2 on AKI. Interestingly, both genetic and pharmacological blockage of mPGES-2 led to decreased renal dysfunction and morphological damage induced by cisplatin and unilateral renal ischemia/reperfusion. Mechanistic exploration indicated that mPGES-2 deficiency inhibited ferroptosis via the heme-dependent regulation of the p53/SLC7A11/GPX4 axis. The present study indicates that mPGES-2 blockage may be a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Lingling Quan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Chang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, P. R. China
| | - Ranran Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Tengfei Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, P. R. China
- Institute of Nephrology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Dong Sun
- Institute of Nephrology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, P. R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China.
| |
Collapse
|
4
|
Zhong D, Cai J, Hu C, Chen J, Zhang R, Fan C, Li S, Zhang H, Xu Z, Jia Z, Guo D, Sun Y. Inhibition of mPGES-2 ameliorates NASH by activating NR1D1 via heme. Hepatology 2023; 78:547-561. [PMID: 35839302 DOI: 10.1002/hep.32671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD), a complex metabolic syndrome, has limited therapeutic options. Microsomal prostaglandin E synthase-2 (mPGES-2) was originally discovered as a prostaglandin E 2 (PGE 2 ) synthase; however, it does not produce PGE 2 in the liver. Moreover, the role of mPGES-2 in NAFLD remains undefined. Herein, we aimed to determine the function and mechanism of mPGES-2 in liver steatosis and steatohepatitis. APPROACH AND RESULTS To evaluate the role of mPGES-2 in NAFLD, whole-body or hepatocyte-specific mPGES-2-deficient mice fed a high-fat or methionine-choline-deficient diet were used. Compared with control mice, mPGES-2-deficient mice showed reduced hepatic lipid accumulation, along with ameliorated liver injury, inflammation, and fibrosis. Furthermore, the protective effect of mPGES-2 deficiency against NAFLD was dependent on decreased cytochrome P450 4A14 and increased acyl-CoA thioesterase 4 levels regulated by the heme receptor nuclear receptor subfamily 1 group D member 1 (NR1D1), but not PGE 2 . Heme regulated the increased NR1D1 activity mediated by mPGES-2 deficiency. Further, we confirmed the protective role of the mPGES-2 inhibitor SZ0232 in NAFLD therapy. CONCLUSION Our study indicates the pathogenic role of mPGES-2 and outlines the mechanism in mediating NAFLD, thereby highlighting the therapeutic potential of mPGES-2 inhibition in liver steatosis and steatohepatitis.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Nanjing Key Laboratory of Pediatrics , Nanjing Children's Hospital , Nanjing Medical University , Nanjing , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Cheng Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Department of Pharmacology , Xuzhou Central Hospital , Xuzhou , Jiangsu , China
| | - Chenyu Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Shanshan Li
- Jiangsu Medical Engineering Research Center of Gene Detection , Xuzhou , Jiangsu , China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Nanjing Key Laboratory of Pediatrics , Nanjing Children's Hospital , Nanjing Medical University , Nanjing , Jiangsu , P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| |
Collapse
|
5
|
Liu J, Peng B, Steinmetz-Späh J, Idborg H, Korotkova M, Jakobsson PJ. Microsomal prostaglandin E synthase-1 inhibition promotes shunting in arachidonic acid metabolism during inflammatory responses in vitro. Prostaglandins Other Lipid Mediat 2023; 167:106738. [PMID: 37094780 DOI: 10.1016/j.prostaglandins.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Microsomal Prostaglandin E Synthase 1 (mPGES-1) is the key enzyme for the generation of the pro-inflammatory lipid mediator prostaglandin E2 (PGE2), which contributes to several pathological features of many diseases. Inhibition of mPGES-1 has been shown to be a safe and effective therapeutic strategy in various pre-clinical studies. In addition to reduced PGE2 formation, it is also suggested that the potential shunting into other protective and pro-resolving prostanoids may play an important role in resolution of inflammation. In the present study, we analysed the eicosanoid profiles in four in vitro inflammation models and compared the effects of mPGES-1 inhibition with those of cyclooxygenase-2 (Cox-2) inhibition. Our results showed a marked shift to the PGD2 pathway under mPGES-1 inhibition in A549 cells, RAW264.7 cells and mouse bone marrow-derived macrophages (BMDMs), whereas enhanced prostacyclin production was observed in rheumatoid arthritis synovial fibroblasts (RASFs) treated with an mPGES-1 inhibitor. As expected, Cox-2 inhibition completely suppressed all prostanoids. This study suggests that the therapeutic effects of mPGES-1 inhibition may be mediated by modulation of other prostanoids in addition to PGE2 reduction.
Collapse
Affiliation(s)
- Jianyang Liu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Bing Peng
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
6
|
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24033049. [PMID: 36769370 PMCID: PMC9918023 DOI: 10.3390/ijms24033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.
Collapse
|
7
|
Carlile GW, Yang Q, Matthes E, Liao J, Birault V, Sneddon HF, Poole DL, Hall CJ, Hanrahan JW, Thomas DY. The NSAID glafenine rescues class 2 CFTR mutants via cyclooxygenase 2 inhibition of the arachidonic acid pathway. Sci Rep 2022; 12:4595. [PMID: 35302062 PMCID: PMC8930988 DOI: 10.1038/s41598-022-08661-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations.
Collapse
Affiliation(s)
- Graeme W Carlile
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada.
| | - Qi Yang
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Elizabeth Matthes
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jie Liao
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Véronique Birault
- Translation Department, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Helen F Sneddon
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK
| | - Darren L Poole
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Callum J Hall
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - John W Hanrahan
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - David Y Thomas
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
8
|
Zhong D, Wan Z, Cai J, Quan L, Zhang R, Teng T, Gao H, Fan C, Wang M, Guo D, Zhang H, Jia Z, Sun Y. mPGES-2 blockade antagonizes β-cell senescence to ameliorate diabetes by acting on NR4A1. Nat Metab 2022; 4:269-283. [PMID: 35228744 DOI: 10.1038/s42255-022-00536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
β-cell dysfunction is a hallmark of type 1 and type 2 diabetes. Type 2 diabetes is strongly associated with ageing-related β-cell abnormalities that arise through unknown mechanisms. Here we show better β-cell identity, less β-cell senescence, enhanced glucose-stimulated insulin secretion and improved glucose homeostasis in global microsomal prostaglandin E synthase-2 (mPGES-2)-deficient mice challenged with a high-fat diet or bred with a genetic model of type 2 diabetes (db/db mice). Furthermore, the function of mPGES-2 in β-cells is validated using mice with β-cell-specific mPGES-2 deficiency or overexpression. Mechanistically, the protective role of mPGES-2 deletion is induced by antagonizing β-cell senescence via interference of the PGE2-EP3-NR4A1 signalling axis. We also discover an inhibitor of mPGES-2, SZ0232, which protects against β-cell dysfunction and diabetes, similar to mPGES-2 deletion. We conclude that mPGES-2 contributes to ageing-associated β-cell senescence and dysfunction via the PGE2-EP3-NR4A1 signalling axis. Pharmacologic blockade of mPGES-2 might be effective for treating ageing-associated β-cell dysfunction and diabetes.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhikang Wan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Lingling Quan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Tian Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Chenyu Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
| |
Collapse
|
9
|
Desantis J, Mercorelli B, Celegato M, Croci F, Bazzacco A, Baroni M, Siragusa L, Cruciani G, Loregian A, Goracci L. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur J Med Chem 2021; 226:113814. [PMID: 34534839 PMCID: PMC8416298 DOI: 10.1016/j.ejmech.2021.113814] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Indomethacin (INM), a well-known non-steroidal anti-inflammatory drug, has recently gained attention for its antiviral activity demonstrated in drug repurposing studies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although the mechanism of action of INM is not yet fully understood, recent studies have indicated that it acts at an early stage of the coronaviruses (CoVs) replication cycle. In addition, a proteomic study reported that the anti-SARS-CoV-2 activity of INM could be also ascribed to its ability to inhibit human prostaglandin E synthase type 2 (PGES-2), a host protein which interacts with the SARS-CoV-2 NSP7 protein. Although INM does not potently inhibit SARS-CoV-2 replication in infected Vero E6 cells, here we have explored for the first time the application of the Proteolysis Targeting Chimeras (PROTACs) technology in order to develop more potent INM-derived PROTACs with anti-CoV activity. In this study, we report the design, synthesis, and biological evaluation of a series of INM-based PROTACs endowed with antiviral activity against a panel of human CoVs, including different SARS-CoV-2 strains. Two PROTACs showed a strong improvement in antiviral potency compared to INM. Molecular modelling studies support human PGES-2 as a potential target of INM-based antiviral PROTACs, thus paving the way toward the development of host-directed anti-CoVs strategies. To the best of our knowledge, these PROTACs represent the first-in-class INM-based PROTACs with antiviral activity and also the first example of the application of PROTACs to develop pan-coronavirus agents.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Federico Croci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | | | - Massimo Baroni
- Molecular Discovery Ltd., Centennial Park, Borehamwood, Hertfordshire, United Kingdom
| | | | - Gabriele Cruciani
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
10
|
Lin Z, Wang X, Bustin KA, Shishikura K, McKnight NR, He L, Suciu RM, Hu K, Han X, Ahmadi M, Olson EJ, Parsons WH, Matthews ML. Activity-Based Hydrazine Probes for Protein Profiling of Electrophilic Functionality in Therapeutic Targets. ACS CENTRAL SCIENCE 2021; 7:1524-1534. [PMID: 34584954 PMCID: PMC8461768 DOI: 10.1021/acscentsci.1c00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 05/08/2023]
Abstract
Most known probes for activity-based protein profiling (ABPP) use electrophilic groups that tag a single type of nucleophilic amino acid to identify cases in which its hyper-reactivity underpins function. Much important biochemistry derives from electrophilic enzyme cofactors, transient intermediates, and labile regulatory modifications, but ABPP probes for such species are underdeveloped. Here, we describe a versatile class of probes for this less charted hemisphere of the proteome. The use of an electron-rich hydrazine as the common chemical modifier enables covalent targeting of multiple, pharmacologically important classes of enzymes bearing diverse organic and inorganic cofactors. Probe attachment occurs by both polar and radicaloid mechanisms, can be blocked by molecules that occupy the active sites, and depends on the proper poise of the active site for turnover. These traits will enable the probes to be used to identify specific inhibitors of individual members of these multiple enzyme classes, making them uniquely versatile among known ABPP probes.
Collapse
Affiliation(s)
- Zongtao Lin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xie Wang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katelyn A. Bustin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kyosuke Shishikura
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nate R. McKnight
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lin He
- Zenagem,
LLC, Fountain Valley, California 92708, United States
| | - Radu M. Suciu
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kai Hu
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Xian Han
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Mina Ahmadi
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erika J. Olson
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - William H. Parsons
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Megan L. Matthews
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 2020; 29:2363-2374. [PMID: 33007128 DOI: 10.1002/pro.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.
Collapse
Affiliation(s)
- Chunyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
13
|
Bülbül B, Küçükgüzel İ. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem 2020; 19:1205-1222. [PMID: 30827263 DOI: 10.2174/1871520619666190227174137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. OBJECTIVE It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. METHODS A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. RESULTS In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. CONCLUSION The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Wang H, Zhang R, Zhu Y, Teng T, Cheng Y, Chowdhury A, Lu J, Jia Z, Song J, Yin X, Sun Y. Microsomal prostaglandin E synthase 2 deficiency is resistant to acetaminophen-induced liver injury. Arch Toxicol 2019; 93:2863-2878. [DOI: 10.1007/s00204-019-02543-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
|
15
|
Frydenvang K, Verkade-Vreeker MCA, Dohmen F, Commandeur JNM, Rafiq M, Mirza O, Jørgensen FS, Geerke DP. Structural analysis of Cytochrome P450 BM3 mutant M11 in complex with dithiothreitol. PLoS One 2019; 14:e0217292. [PMID: 31125381 PMCID: PMC6534296 DOI: 10.1371/journal.pone.0217292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022] Open
Abstract
The bacterial Cytochrome P450 (CYP) BM3 (CYP102A1) is one of the most active CYP isoforms. BM3 mutants can serve as a model for human drug-metabolizing CYPs and/or as biocatalyst for selective formation of drug metabolites. Hence, molecular and computational biologists have in the last two decades shown strong interest in the discovery and design of novel BM3 variants with optimized activity and selectivity for substrate conversion. This led e.g. to the discovery of mutant M11 that is able to metabolize a variety of drugs and drug-like compounds with relatively high activity. In order to further improve our understanding of CYP binding and reactions, we performed a co-crystallization study of mutant M11 and report here the three-dimensional structure M11 in complex with dithiothreitol (DTT) at a resolution of 2.16 Å. The structure shows that DTT can coordinate to the Fe atom in the heme group. UV/Vis spectroscopy and molecular dynamics simulation studies underline this finding and as first structure of the CYP BM3 mutant M11 in complex with a ligand, it offers a basis for structure-based design of novel mutants.
Collapse
Affiliation(s)
- Karla Frydenvang
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marlies C. A. Verkade-Vreeker
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Floor Dohmen
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jan N. M. Commandeur
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Maria Rafiq
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (FSJ); (DPG)
| | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
- * E-mail: (FSJ); (DPG)
| |
Collapse
|
16
|
Li T, Liu Y, Zhao J, Miao S, Xu Y, Liu K, Liu M, Wang G, Xiao X. Aggravation of acute kidney injury by mPGES-2 down regulation is associated with autophagy inhibition and enhanced apoptosis. Sci Rep 2017; 7:10247. [PMID: 28860615 PMCID: PMC5579259 DOI: 10.1038/s41598-017-10271-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023] Open
Abstract
The deletion of microsomal prostaglandin E synthase-2 (mPGES-2) does not affect in vivo PGE2 production, and the function of this enzyme remains unknown until now. This study investigated the expression and roles of mPGES-2 in LPS induced acute kidney injury (AKI) both in vitro and in vivo. We found that mPGES-2 was up-regulated in kidney of mice with LPS induced AKI. Inhibition of mouse mpges2 gene expression exacerbated LPS-induced renal dysfunction, renal tubular cell damage and apoptosis, while inhibited kidney autophagy. Further cellular experiments showed that over-expression of mPGES-2 resulted in increased autophagy and decreased apoptosis rate of renal tubular epithelial cells. In addition, treatment with autophagy inhibitor 3-methyladenine could reverse the above-mentioned results. On the contrary, interference of mPGES-2 expression by siRNA decreased autophagy level but significantly increased apoptosis of tubular epithelial cells and treatment with autophagy inducer rapamycin can reverse these results. Overall, our study shows that mPGES-2 can protect renal tubular epithelial cells by regulating autophagy levels and aggravation of acute kidney injury by mPGES-2 down regulation is associated with autophagy inhibition and enhanced apoptosis.
Collapse
Affiliation(s)
- Ting Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Physiology, Changzhi Medical College, Changzhi, 046000, China
| | - Ying Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shuying Miao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yunfei Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Guiliang Wang
- Department of Digestive Internal Medicine, Gannan Medical University Pingxiang Hospital, Pingxiang, 337055, China
| | - Xianzhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
| |
Collapse
|
17
|
Audran G, Brémond P, Marque SR, Siri D, Santelli M. Energetics of the biosynthesis of prostanes from arachidonate. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Zhang X, Wang J, Zhang M, Qin G, Li D, Zhu KY, Ma E, Zhang J. Molecular cloning, characterization and positively selected sites of the glutathione S-transferase family from Locusta migratoria. PLoS One 2014; 9:e114776. [PMID: 25486043 PMCID: PMC4259467 DOI: 10.1371/journal.pone.0114776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022] Open
Abstract
Glutathione S-transferases (GSTs) are multifunctional enzymes that are involved in the metabolism of endogenous and exogenous compounds and are related to insecticide resistance. The purpose of this study was to provide new information on the molecular characteristics and the positive selection of locust GSTs. Based on the transcriptome database, we sequenced 28 cytosolic GSTs and 4 microsomal GSTs from the migratory locust (Locusta migratoria). We assigned the 28 cytosolic GSTs into 6 classes—sigma, epsilon, delta, theta, omega and zeta, and the 4 microsomal GSTs into 2 subclasses—insect and MGST3. The tissue- and stage-expression patterns of the GSTs differed at the mRNA level. Further, the substrate specificities and kinetic constants of the cytosolic GSTs differed markedly at the protein level. The results of likelihood ratio tests provided strong evidence for positive selection in the delta class. The result of Bayes Empirical Bayes analysis identified 4 amino acid sites in the delta class as positive selection sites. These sites were located on the protein surface. Our findings will facilitate the elucidation of the molecular characteristics and evolutionary aspects of insect GST superfamily.
Collapse
Affiliation(s)
- Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jianxin Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Guohua Qin
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Daqi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- * E-mail: (EM); (JZ)
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- * E-mail: (EM); (JZ)
| |
Collapse
|
19
|
Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol 2014; 5:192. [PMID: 25191271 PMCID: PMC4138524 DOI: 10.3389/fphar.2014.00192] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/26/2014] [Indexed: 12/31/2022] Open
Abstract
Glutathione transferases (GSTs) represent a widespread multigenic enzyme family able to modify a broad range of molecules. These notably include secondary metabolites and exogenous substrates often referred to as xenobiotics, usually for their detoxification, subsequent transport or export. To achieve this, these enzymes can bind non-substrate ligands (ligandin function) and/or catalyze the conjugation of glutathione onto the targeted molecules, the latter activity being exhibited by GSTs having a serine or a tyrosine as catalytic residues. Besides, other GST members possess a catalytic cysteine residue, a substitution that radically changes enzyme properties. Instead of promoting GSH-conjugation reactions, cysteine-containing GSTs (Cys-GSTs) are able to perform deglutathionylation reactions similarly to glutaredoxins but the targets are usually different since glutaredoxin substrates are mostly oxidized proteins and Cys-GST substrates are metabolites. The Cys-GSTs are found in most organisms and form several classes. While Beta and Omega GSTs and chloride intracellular channel proteins (CLICs) are not found in plants, these organisms possess microsomal ProstaGlandin E-Synthase type 2, glutathionyl hydroquinone reductases, Lambda, Iota and Hemerythrin GSTs and dehydroascorbate reductases (DHARs); the four last classes being restricted to the green lineage. In plants, whereas the role of DHARs is clearly associated to the reduction of dehydroascorbate to ascorbate, the physiological roles of other Cys-GSTs remain largely unknown. In this context, a genomic and phylogenetic analysis of Cys-GSTs in photosynthetic organisms provides an updated classification that is discussed in the light of the recent literature about the functional and structural properties of Cys-GSTs. Considering the antioxidant potencies of phenolic compounds and more generally of secondary metabolites, the connection of GSTs with secondary metabolism may be interesting from a pharmacological perspective.
Collapse
Affiliation(s)
- Pierre-Alexandre Lallement
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University Umeå, Sweden
| | - Arnaud Hecker
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| | - Nicolas Rouhier
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| |
Collapse
|
20
|
Vila-Viçosa D, Teixeira VH, Santos HAF, Machuqueiro M. Conformational Study of GSH and GSSG Using Constant-pH Molecular Dynamics Simulations. J Phys Chem B 2013; 117:7507-17. [DOI: 10.1021/jp401066v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Diogo Vila-Viçosa
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vitor H. Teixeira
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Hugo A. F. Santos
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
21
|
Takusagawa F. Microsomal prostaglandin E synthase type 2 (mPGES2) is a glutathione-dependent heme protein, and dithiothreitol dissociates the bound heme to produce active prostaglandin E2 synthase in vitro. J Biol Chem 2013; 288:10166-10175. [PMID: 23426368 DOI: 10.1074/jbc.m112.418475] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An x-ray study indicated that microsomal prostaglandin E synthase type 2 (mPGES2) is a heme-bound protein and catalyzes prostaglandin (PG) H2 degradation, but not PGE2 formation (Yamada, T., and Takusagawa, F. (2007) Biochemistry 46, 8414-8424). In response to the x-ray study, Watanabe et al. claimed that mPGES2 is a heme-free protein and that both the heme-free and heme-bound proteins have PGE2 synthesis activity in the presence of dithiothreitol (Watanabe, K., Ito, S., and Yamamoto, S. (2008) Biochem. Biophys. Res. Commun. 367, 782-786). To resolve the contradictory results, the heme-binding scheme of mPGES2 was further characterized in vivo and in vitro by absorption and fluorescence spectroscopies. A substantial amount of heme-bound mPGES2 was detected in cell extracts. The heme content in mPGES2 was increased along with an increase in Fe(3+) in the culture medium. Heme-free mPGES2 was converted to the heme-bound form by mixing it with pig liver extract, indicating that mPGES2 is capable of forming a complex with heme in mammalian cells. Heme binds to mPGES2 only in the presence of glutathione. The newly determined heme dissociation constant (2.9 nM) supports strongly that mPGES2 is a heme-bound protein in vivo. The bound heme was not dissociated by oxidation by H2O2 or reduction by glutathione or 2-mercaptoethanol. However, reduction by dithiothreitol (an artificial reducing compound) induced the bound heme to dissociate from mPGES2 and released heme-free mPGES2, which exhibited PGE2 synthesis activity in vitro. Imidazole bound to mPGES2 by stacking on the bound heme and inhibited heme oxidation by H2O2 and reduction by dithiothreitol.
Collapse
Affiliation(s)
- Fusao Takusagawa
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045-7534.
| |
Collapse
|
22
|
Spahiu L, Stenberg P, Larsson C, Wannberg J, Alterman M, Kull B, Nekhotiaeva N, Morgenstern R. A Facilitated Approach to Evaluate the Inhibitor Mode and Potency of Compounds Targeting Microsomal Prostaglandin E Synthase-1. Assay Drug Dev Technol 2011; 9:487-95. [DOI: 10.1089/adt.2010.0350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Ralf Morgenstern
- Actar AB, Solna, Sweden
- NovaSAID AB, Solna, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Abstract
The glutathione transferases (GSTs) are one of the most important families of detoxifying enzymes in nature. The classic activity of the GSTs is conjugation of compounds with electrophilic centers to the tripeptide glutathione (GSH), but many other activities are now associated with GSTs, including steroid and leukotriene biosynthesis, peroxide degradation, double-bond cis-trans isomerization, dehydroascorbate reduction, Michael addition, and noncatalytic "ligandin" activity (ligand binding and transport). Since the first GST structure was determined in 1991, there has been an explosion in structural data across GSTs of all three families: the cytosolic GSTs, the mitochondrial GSTs, and the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG family). In this review, the major insights into GST structure and function will be discussed.
Collapse
Affiliation(s)
- Aaron Oakley
- School of Chemistry, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
24
|
Li T, Bonkovsky HL, Guo JT. Structural analysis of heme proteins: implications for design and prediction. BMC STRUCTURAL BIOLOGY 2011; 11:13. [PMID: 21371326 PMCID: PMC3059290 DOI: 10.1186/1472-6807-11-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/03/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Heme is an essential molecule and plays vital roles in many biological processes. The structural determination of a large number of heme proteins has made it possible to study the detailed chemical and structural properties of heme binding environment. Knowledge of these characteristics can provide valuable guidelines in the design of novel heme proteins and help us predict unknown heme binding proteins. RESULTS In this paper, we constructed a non-redundant dataset of 125 heme-binding protein chains and found that these heme proteins encompass at least 31 different structural folds with all-α class as the dominating scaffold. Heme binding pockets are enriched in aromatic and non-polar amino acids with fewer charged residues. The differences between apo and holo forms of heme proteins in terms of the structure and the binding pockets have been investigated. In most cases the proteins undergo small conformational changes upon heme binding. We also examined the CP (cysteine-proline) heme regulatory motifs and demonstrated that the conserved dipeptide has structural implications in protein-heme interactions. CONCLUSIONS Our analysis revealed that heme binding pockets show special features and that most of the heme proteins undergo small conformational changes after heme binding, suggesting the apo structures can be used for structure-based heme protein prediction and as scaffolds for future heme protein design.
Collapse
Affiliation(s)
- Ting Li
- Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA
| | | | | |
Collapse
|
25
|
Theoretical studies on model reaction pathways of prostaglandin H2 isomerization to prostaglandin D2/E2. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0814-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Abstract
BACKGROUND Prostaglandin H2 (PGH2) is a common precursor for the synthesis of five different Prostanoids via specific Prostanoid Synthases. The binding of this substrate with these Synthases is not properly understood. Moreover, currently no crystal structure of complexes bound with PGH2 has been reported. Hence, understanding the interactions of PGH2 and characterizing its binding sites in these synthases is crucial for developing novel therapeutics based on these proteins as targets. RESULTS Shape and physico-chemical properties of the PGH2 binding sites of the four prostanoid synthases were analyzed and compared in order to understand the molecular basis of the specificity. This study provides models with predicted pockets for the binding of PGH2 with PGD, PGE, PGF and PGI Synthases. The results closely match with available experimental data. The comparison showed seven physico-chemical features that are common to the four PGH2 binding sites. However this common pattern is not statistically unique and is not specific enough to distinguish between proteins that can or cannot bind PGH2. A large scale search in ASTRAL data bank, a non redundant Protein Data Bank, for a similar pattern showed the uniqueness of each of the PGH2 binding site in these Synthases. CONCLUSION The binding pockets in PGDS, PGES, PGFS and PGIS are unique and do not share significant commonality which can be characterized as a PGH2 binding site. Local comparison of these protein structures highlights a case of convergent evolution in analogous functional sites.
Collapse
|
27
|
On the mechanism of microsomal prostaglandin E synthase type-2--a theoretical study of endoperoxide reaction with MeS(-). Bioorg Med Chem Lett 2009; 20:338-40. [PMID: 19914067 DOI: 10.1016/j.bmcl.2009.10.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/25/2023]
Abstract
The reaction pathways of deprotonation versus nucleophilic substitution involving mPGES-2 enzyme catalysis were investigated by ab initio molecular orbital theory calculations for the reaction of methylthiolate with the endoperoxide core of PGH(2) and by the combined quantum mechanical molecular mechanical methods. The calculations showed that deprotonation mechanism is energetically more favorable than the nucleophilic substitution pathway.
Collapse
|
28
|
Homo-timeric structural model of human microsomal prostaglandin E synthase-1 and characterization of its substrate/inhibitor binding interactions. J Comput Aided Mol Des 2008; 23:13-24. [DOI: 10.1007/s10822-008-9233-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
29
|
Watanabe K, Ito S, Yamamoto S. Studies on membrane-associated prostaglandin E synthase-2 with reference to production of 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT). Biochem Biophys Res Commun 2008; 367:782-6. [DOI: 10.1016/j.bbrc.2008.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 01/07/2008] [Indexed: 11/30/2022]
|