1
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
2
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Velankar KY, Mou M, Hartmeier PR, Clegg B, Gawalt ES, Jiang M, Meng WS. Recrystallization of Adenosine for Localized Drug Delivery. Mol Pharm 2022; 19:3394-3404. [PMID: 36001090 DOI: 10.1021/acs.molpharmaceut.2c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine (ADO) is an endogenous metabolite with immense potential to be repurposed as an immunomodulatory therapeutic, as preclinical studies have demonstrated in models of epilepsy, acute respiratory distress syndrome, and traumatic brain injury, among others. The currently licensed products Adenocard and Adenoscan are formulated at 3 mg/mL of ADO for rapid bolus intravenous injection, but the systemic administration of the saline formulations for anti-inflammatory purposes is limited by the nucleoside's profound hemodynamic effects. Moreover, concentrations that can be attained in the airway or the brain through direct instillation or injection are limited by the volumes that can be accommodated in the anatomical space (<5 mL in humans) and the rapid elimination by enzymatic and transport mechanisms in the interstitium (half-life <5 s). As such, highly concentrated formulations of ADO are needed to attain pharmacologically relevant concentrations at sites of tissue injury. Herein, we report a previously uncharacterized crystalline form of ADO (rcADO) in which 6.7 mg/mL of the nucleoside is suspended in water. Importantly, the crystallinity is not diminished in a protein-rich environment, as evidenced by resuspending the crystals in albumin (15% w/v). To the best of our knowledge, this is the first report of crystalline ADO generated using a facile and organic solvent-free method aimed at localized drug delivery. The crystalline suspension may be suitable for developing ADO into injectable formulations for attaining high concentrations of the endogenous nucleoside in inflammatory locales.
Collapse
Affiliation(s)
- Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mingyao Mou
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Benjamin Clegg
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Mo Jiang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States.,Center for Pharmaceutical Engineering and Sciences, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
4
|
Extracellular metabolism of 3',5'-cyclic AMP as a source of interstitial adenosine in the rat airways. Biochem Pharmacol 2021; 192:114713. [PMID: 34331910 DOI: 10.1016/j.bcp.2021.114713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/29/2023]
Abstract
In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the β2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that β2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.
Collapse
|
5
|
Lazarowski ER, Boucher RC. Purinergic receptors in airway hydration. Biochem Pharmacol 2021; 187:114387. [PMID: 33358825 DOI: 10.1016/j.bcp.2020.114387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Farahmand F, Tajdini P, Falahi G, Shams S, Mahmoudi S. Evaluation of Serum Adenosine Deaminase in Cystic Fibrosis Patients in an Iranian Referral Hospital. IRANIAN JOURNAL OF PEDIATRICS 2016; 26:e2246. [PMID: 27617063 PMCID: PMC4987630 DOI: 10.5812/ijp.2246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/22/2015] [Accepted: 05/05/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Adenosine, a signaling nucleoside, is controlled in part by the enzyme adenosine deaminase (ADA). There are rare reports on the role of adenosine levels and ADA in cystic fibrosis (CF) patients. OBJECTIVES The aim of this study was to assess serum ADA in CF patients in order to find whether the severity of lung disease in CF is related to significant changes of ADA or not. PATIENTS AND METHODS Venous blood serum ADA was measured in CF patients (3-15 years) and 49 healthy children (3-15 years) referred to Children's Medical Center. Classification of respiratory and gastrointestinal disease severity in CF patients as well as Body Mass Index (BMI) was performed. The results were compared with values obtained from healthy children matched for age and gender. RESULTS This study included 49 children of both genders (20 females and 29 males) with CF (mean age: 6.36 ± 2.22 years). Mean serum ADA in CF patients group and control group was 9.38 ± 2.72 and 16.04 ± 1.27, respectively (P value = 0.001). Mean serum ADA in CF patients with normal BMI was higher than in patients with low BMI (P value = 0.002). CONCLUSIONS In this study the lower serum level of ADA was seen in CF patients compared to control group. The clinical symptoms, especially respiratory symptoms, in CF patients might be associated with reduction of serum ADA and rising serum adenosine; therefore, further studies on the use of ADA enzyme therapy in CF patients are highly recommended.
Collapse
Affiliation(s)
- Fatemeh Farahmand
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, IR Iran
- Children’s Medical Center, Pediatrics Center of Excellence, Tehran, IR Iran
| | - Parisa Tajdini
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Gholamhossein Falahi
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, IR Iran
- Children’s Medical Center, Pediatrics Center of Excellence, Tehran, IR Iran
| | - Sedigheh Shams
- Children’s Medical Center, Pediatrics Center of Excellence, Tehran, IR Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
7
|
Al-Ghabeish M, Scheetz T, Assem M, Donovan MD. Microarray Determination of the Expression of Drug Transporters in Humans and Animal Species Used for the Investigation of Nasal Absorption. Mol Pharm 2015; 12:2742-54. [PMID: 26106909 DOI: 10.1021/acs.molpharmaceut.5b00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mice and rats are commonly used to investigate in vivo nasal drug absorption, yet their small nasal cavities limit their use for in vitro investigations. Bovine tissue explants have been used to investigate drug transport through the nasal respiratory and olfactory mucosae, yet limited information is available regarding the similarities and differences among these animal models compared to humans. The aim of this study was to compare the presence of a number of important drug transporters in the nasal mucosa of these species. DNA microarray results for nasal samples from humans, rats, and mice were obtained from GenBank, while DNA microarray and RT-PCR were performed on bovine nasal explants. The drug transporters of interest include multidrug resistance, cation, anion, peptide, and nucleoside transporters. Each of the species (mouse, rat, cattle, and human) shows similar patterns of expression for most of the important drug transporters. Several transporters were highly expressed in all the species, including MRP1, OCTN2, PEPT2, and y+LAT2. While some differences in transporter mRNA and protein expression were observed, the transporter expression patterns were quite similar among the species. The differences suggest that it is important to be aware of any specific differences in transporter expression for a given compound being investigated, yet the similarities support the continued use of these animal models during preclinical investigation of intranasally administered therapeutics.
Collapse
Affiliation(s)
- Manar Al-Ghabeish
- †Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Todd Scheetz
- ‡Department of Biomedical Engineering, Department of Ophthalmology and Visual Sciences, and Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Mahfoud Assem
- †Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Maureen D Donovan
- †Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Sidorov R, Kucerova L, Kiss I, Zurovec M. Mutation in the Drosophila melanogaster adenosine receptor gene selectively decreases the mosaic hyperplastic epithelial outgrowth rates in wts or dco heterozygous flies. Purinergic Signal 2014; 11:95-105. [PMID: 25528157 DOI: 10.1007/s11302-014-9435-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022] Open
Abstract
Adenosine (Ado) is a ubiquitous metabolite that plays a prominent role as a paracrine homeostatic signal of metabolic imbalance within tissues. It quickly responds to various stress stimuli by adjusting energy metabolism and influencing cell growth and survival. Ado is also released by dead or dying cells and is present at significant concentrations in solid tumors. Ado signaling is mediated by Ado receptors (AdoR) and proteins modulating its concentration, including nucleoside transporters and Ado deaminases. We examined the impact of genetic manipulations of three Drosophila genes involved in Ado signaling on the incidence of somatic mosaic clones formed by the loss of heterozygosity (LOH) of tumor suppressor and marker genes. We show here that genetic manipulations with the AdoR, equilibrative nucleoside transporter 2 (Ent2), and Ado deaminase growth factor-A (Adgf-A) cause dramatic changes in the frequency of hyperplastic outgrowth clones formed by LOH of the warts (wts) tumor suppressor, while they have almost no effect on control yellow (y) clones. In addition, the effect of AdoR is dose-sensitive and its overexpression leads to the increase in wts hyperplastic epithelial outgrowth rates. Consistently, the frequency of mosaic hyperplastic outgrowth clones generated by the LOH of another tumor suppressor, discs overgrown (dco), belonging to the wts signaling pathway is also dependent on AdoR. Our results provide interesting insight into the maintenance of tissue homeostasis at a cellular level.
Collapse
Affiliation(s)
- Roman Sidorov
- Biology centre AS CR, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
9
|
Godoy V, Banales JM, Medina JF, Pastor-Anglada M. Functional crosstalk between the adenosine transporter CNT3 and purinergic receptors in the biliary epithelia. J Hepatol 2014; 61:1337-43. [PMID: 25034758 DOI: 10.1016/j.jhep.2014.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Both hepatocytes and cholangiocytes release ATP into the bile, where it acts as a potent autocrine/paracrine stimulus that activates biliary secretory mechanisms. ATP is known to be metabolized into multiple breakdown products, ultimately yielding adenosine. However, the elements implicated in the adenosine-dependent purinergic regulation of cholangiocytes are not known. METHODS Normal rat cholangiocytes (NRCs) were used to study the expression of adenosine receptors and transporters and their functional interactions at the apical and basolateral membrane domains of polarized cholangiocytes. RESULTS We found that: (1) cholangiocytes exclusively express two concentrative nucleoside transporters (CNT) known to be efficient adenosine carriers: CNT3, located at the apical membrane, and CNT2, located at apical and basolateral membrane domains; (2) in both domains, NRCs also express the high affinity adenosine receptor A2A, which modulated the activity of apical CNT3 in a domain-specific manner; (3) the regulation exerted by A2A on CNT3 was dependent upon the cAMP/PKA/ERK/CREB axis, intracellular trafficking mechanisms and AMPK phosphorylation; (4) secretin increased the activity of the apically-located CNT3, and promoted additional basolateral CNT3-related activity; and (5) extracellular ATP (a precursor of adenosine) was able to exert an inhibitory effect on the apical activity of both CNT3 and CNT2. CONCLUSIONS This study uncovered the functional expression of nucleoside transporters in cholangiocytes and provides evidence for direct crosstalks between adenosine transporters and receptors for adenosine and its natural extracellular precursor, ATP. Our data anticipate the possibility of adenosine playing a major role in the physiopathology of the biliary epithelia.
Collapse
Affiliation(s)
- Valeria Godoy
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Jesús M Banales
- Department of Liver Diseases, Biodonostia Research Institute (Donostia University Hospital), IKERBASQUE (Basque Foundation for Science), University of Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Juan F Medina
- Molecular Genetics, Division of Gene Therapy and Hepatology, School of Medicine and CIMA of the University of Navarra, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain.
| |
Collapse
|
10
|
Garcia GJM, Picher M, Zuo P, Okada SF, Lazarowski ER, Button B, Boucher RC, Elston TC. Computational model for the regulation of extracellular ATP and adenosine in airway epithelia. Subcell Biochem 2014; 55:51-74. [PMID: 21560044 DOI: 10.1007/978-94-007-1217-1_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Extracellular nucleotides are key components of the signaling network regulating airway clearance. They are released by the epithelium into the airway surface liquid (ASL) to stimulate cilia beating activity, mucus secretion and airway hydration. Understanding the factors affecting their availability for purinoceptor activation is an important step toward the development of new therapies for obstructive lung diseases. This chapter presents a mathematical model developed to gain predictive insights into the regulation of ASL nucleotide concentrations on human airway epithelia. The parameters were estimated from experimental data collected on polarized primary cultures of human nasal and bronchial epithelial cells. This model reproduces major experimental observations: (1) the independence of steady-state nucleotide concentrations on ASL height, (2) the impact of selective ectonucleotidase inhibitors on their steady-state ASL concentrations, (3) the changes in ASL composition caused by mechanical stress mimicking normal breathing, (4) and the differences in steady-state concentrations existing between nasal and bronchial epithelia. In addition, this model launched the study of nucleotide release into uncharted territories, which led to the discovery that airway epithelia release, not only ATP, but also ADP and AMP. This study shows that computational modeling, coupled to experimental validation, provides a powerful approach for the identification of key therapeutic targets for the improvement of airway clearance in obstructive respiratory diseases.
Collapse
Affiliation(s)
- Guilherme J M Garcia
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
12
|
Esther CR, Alexis NE, Picher M. Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 2014; 55:75-93. [PMID: 21560045 DOI: 10.1007/978-94-007-1217-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | |
Collapse
|
13
|
Sims RE, Dale N. Activity-dependent adenosine release may be linked to activation of Na(+)-K(+) ATPase: an in vitro rat study. PLoS One 2014; 9:e87481. [PMID: 24489921 PMCID: PMC3906196 DOI: 10.1371/journal.pone.0087481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
In the brain, extracellular adenosine increases as a result of neuronal activity. The mechanisms by which this occurs are only incompletely understood. Here we investigate the hypothesis that the Na+ influxes associated with neuronal signalling activate the Na+-K+ ATPase which, by consuming ATP, generates intracellular adenosine that is then released via transporters. By measuring adenosine release directly with microelectrode biosensors, we have demonstrated that AMPA-receptor evoked adenosine release in basal forebrain and cortex depends on extracellular Na+. We have simultaneously imaged intracellular Na+ and measured adenosine release. The accumulation of intracellular Na+ during AMPA receptor activation preceded adenosine release by some 90 s. By removing extracellular Ca2+, and thus preventing indiscriminate neuronal activation, we used ouabain to test the role of the Na+-K+ ATPase in the release of adenosine. Under conditions which caused a Na+ influx, brief applications of ouabain increased the accumulation of intracellular Na+ but conversely rapidly reduced extracellular adenosine levels. In addition, ouabain greatly reduced the amount of adenosine released during application of AMPA. Our data therefore suggest that activity of the Na+-K+ ATPase is directly linked to the efflux of adenosine and could provide a universal mechanism that couples adenosine release to neuronal activity. The Na+-K+ ATPase-dependent adenosine efflux is likely to provide adenosine-mediated activity-dependent negative feedback that will be important in many diverse functional contexts including the regulation of sleep.
Collapse
Affiliation(s)
- Robert Edward Sims
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
14
|
Okada SF, Ribeiro CMP, Sesma JI, Seminario-Vidal L, Abdullah LH, van Heusden C, Lazarowski ER, Boucher RC. Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways. Am J Respir Cell Mol Biol 2013; 49:814-20. [PMID: 23763446 DOI: 10.1165/rcmb.2012-0493oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)-associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling-promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca(2+) chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca(2+)-dependent vesicular mechanisms not associated with mucin granule secretion.
Collapse
Affiliation(s)
- Seiko F Okada
- 1 Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, and
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Button B, Okada SF, Frederick CB, Thelin WR, Boucher RC. Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signal 2013; 6:ra46. [PMID: 23757023 DOI: 10.1126/scisignal.2003755] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal autocrine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Brian Button
- Cystic Fibrosis Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | | | | | | | |
Collapse
|
16
|
Cystic Fibrosis: Alternative Approaches to the Treatment of a Genetic Disease. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Prakasam HS, Herrington H, Roppolo JR, Jackson EK, Apodaca G. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation. Am J Physiol Renal Physiol 2012; 303:F279-92. [PMID: 22552934 DOI: 10.1152/ajprenal.00566.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A(1), A(2A), A(2B), and A(3)), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A(1) receptors with 2-chloro-N(6)-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A(1) receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis.
Collapse
Affiliation(s)
- H Sandeep Prakasam
- Department of Medicine, Renal Electrolyte Division,University of Pittsburgh, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
18
|
Guillén-Gómez E, Pinilla-Macua I, Pérez-Torras S, Choi DS, Arce Y, Ballarín JA, Pastor-Anglada M, Díaz-Encarnación MM. New role of the human equilibrative nucleoside transporter 1 (hENT1) in epithelial-to-mesenchymal transition in renal tubular cells. J Cell Physiol 2012; 227:1521-8. [PMID: 21678404 DOI: 10.1002/jcp.22869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is an important pro-fibrotic event in which tubular epithelial cells are transformed into myofibroblasts. Nucleoside transporters (NT) are regulated by many factors and processes, some of which are involved in fibrosis, such as cytokines, inflammation, and proliferation. Equilibrative nucleoside transporter 1 (ENT1) has been proved to be the most widely expressed adenosine transporter. In that sense, ENT1 may be a key player in cell damage signaling. Here we analyze the role of human ENT1 (hENT1) in the EMT process in proximal tubular cells. Addition of the main inducer of EMT, the transforming growth factor-β1, to HK-2 cells increased hENT1 mRNA and protein level expression. ENT1-mediated adenosine uptake was also enhanced. When cells were incubated with dipyridamole to evaluate the potential contribution of ENT1 to EMT by blocking its transport activity, EMT was induced. Moreover, the knock down of hENT1 with siRNA induced EMT and collagen production in HK-2 cells. Kidneys isolated from ENT1 knockout mice showed higher levels of interstitial collagen and α-SMA positive cells than wild-type mice. Our results point to a new potential role of hENT1 as a modulator of EMT in proximal tubular cells. In this sense, hENT1 could be involved in renal protection processes, and the loss or reduced expression of hENT1 would lead to an increased vulnerability of cells to the onset and/or progression of renal fibrosis.
Collapse
Affiliation(s)
- Elena Guillén-Gómez
- Laboratori de Biologia Molecular, Universitat Autònoma de Barcelona, Fundació Puigvert, REDinREN, Institut Investigació Biosanitaria Sant Pau, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanaka A, Nishida K, Okuda H, Nishiura T, Higashi Y, Fujimoto S, Nagasawa K. Peroxynitrite treatment reduces adenosine uptake via the equilibrative nucleoside transporter in rat astrocytes. Neurosci Lett 2011; 498:52-6. [DOI: 10.1016/j.neulet.2011.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/11/2011] [Accepted: 04/23/2011] [Indexed: 01/09/2023]
|
20
|
Okuda H, Higashi Y, Nishida K, Fujimoto S, Nagasawa K. Contribution of P2X7 receptors to adenosine uptake by cultured mouse astrocytes. Glia 2011; 58:1757-65. [PMID: 20645413 DOI: 10.1002/glia.21046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nucleotides and nucleosides play important roles by maintaining brain homeostasis, and their extracellular concentrations are mainly regulated by ectonucleotidases and nucleoside transporters expressed by astrocytes. Extracellularly applied NAD(+) prevents astrocyte death caused by excessive activation of poly(ADP-ribose) polymerase-1, of which the molecular mechanism has not been fully elucidated. Recently, exogenous NAD(+) was reported to enter astrocytes via the P2X7 receptor (P2X7R)-associated channel/pore. In this study, we examined whether the intact form of NAD(+) is incorporated into astrocytes. A large portion of extracellularly added NAD(+) was degraded into metabolites such as AMP and adenosine in the extracellular space. The uptake of adenine ring-labeled [(14)C]NAD(+), but not nicotinamide moiety-labeled [(3)H]NAD(+), showed time- and temperature-dependency, and was significantly enhanced on addition of apyrase, and was reduced by 8-Br-cADPR and ARL67156, inhibitors of CD38 and ectoapyrase, respectively, and P2X7R knockdown, suggesting that the detected uptake of [(14)C]NAD(+) resulted from [(14)C]adenosine acting as a metabolite of [(14)C]NAD(+). Pharmacological and genetic inhibition of P2X7R with brilliant blue G, KN-62, oxATP, and siRNA transfection resulted in a decrease of [(3)H]adenosine uptake, and the uptake was also reduced by low concentration of carbenoxolone and pannexin1 selective peptide blocker (10)panx. Taken together, these results indicate that exogenous NAD(+) is degraded by ectonucleotidases and that adenosine, as its metabolite, is taken up into astrocytes via the P2X7R-associated channel/pore.
Collapse
Affiliation(s)
- Hiroto Okuda
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
21
|
Abstract
Over the past 20 years, the growing awareness that purinergic signaling events literally shape the immune and inflammatory responses to infection and allergic reactions warranted the development of animal models to assess their importance in vivo in acute lung injury and chronic airway diseases. The pioneer work conducted with the adenosine deaminase (ADA)-deficient mouse provided irrefutable evidence that excess adenosine (ADO) accumulating in the lungs of asthmatic patients, constitutes a powerful mediator of disease severity. These original studies launched the development of murine strains for the two major ectonucleotidases responsible for the generation of airway ADO from ATP release: CD39 and CD73. The dramatic acute lung injury and chronic lung complications, manifested by these knockout mice in response to allergens and endotoxin, demonstrated the critical importance of regulating the availability of ATP and ADO for their receptors. Therapeutic targets are currently evaluated using knockout mice and agonists/antagonists for each ADO receptor (A(1)R, A(2A)R, A(2B)R, and A(3)R) and the predominant ATP receptors (P2Y(2)R and P2X(7)R). This chapter provides an in-depth description of each in vivo study, and a critical view of the therapeutic potentials for the treatment of airway diseases.
Collapse
Affiliation(s)
- Maryse Picher
- and Treatment Center, Cystic Fibrosis Pulmonary Research and T, University of North Carolina, Chapel Hill,, 27599 North Carolina USA
| | - Richard C. Boucher
- University of North Carolina, - Cystic Fibrosis Pulmonary Research and, Thurston-Bowles building - 7011, CHAPEL HILL, 27599 North Carolina USA
| | | |
Collapse
|
22
|
Abstract
Airway epithelia are continuously damaged by airborne pollutants, pathogens and allergens, and they rely on intrinsic mechanisms to restore barrier integrity. Epithelial repair is a multi-step process including cell migration into the wounded area, proliferation, differentiation and matrix deposition. Each step requires the secretion of various molecules, including growth factors, integrins and matrix metalloproteinases. Evidence is emerging that purinergic signaling promotes repair in human airway epithelia. An injury induces ATP release, which binds P2Y(2) receptors (P2Y(2)Rs) to initiate protein kinase C (PKC)-dependent oxidative activation of TNFα-converting enzyme (TACE), which then releases the membrane-bound ligands of the epidermal growth factor receptor (EGFR). The P2Y(2)R- and EGFR-dependent signaling cascades converge to induce mediator release, whereas the latter also induces cytoskeletal rearrangement for cell migration and proliferation. Similar roles for purinergic signaling are reported in pulmonary endothelial cells, smooth muscle cells and fibroblasts. In chronic airway diseases, the aberrant regulation of extracellular purines is implicated in the development of airway remodeling by mucus cell metaplasia and hypersecretion, excess collagen deposition, fibrosis and neovascularization. This chapter describes the crosstalk between these signaling cascades and discusses the impact of deregulated purinergic signaling in chronic lung diseases.
Collapse
|
23
|
Ham M, Mizumori M, Watanabe C, Wang JH, Inoue T, Nakano T, Guth PH, Engel E, Kaunitz JD, Akiba Y. Endogenous luminal surface adenosine signaling regulates duodenal bicarbonate secretion in rats. J Pharmacol Exp Ther 2010; 335:607-13. [PMID: 20805305 PMCID: PMC2993549 DOI: 10.1124/jpet.110.171520] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/27/2010] [Indexed: 02/02/2023] Open
Abstract
Luminal ATP increases duodenal bicarbonate secretion (DBS) via brush border P2Y receptors. Because ATP is sequentially dephosphorylated to adenosine (ADO) and the brush border highly expresses adenosine deaminase (ADA), we hypothesized that luminal [ADO] regulators and sensors, including P1 receptors, ADA, and nucleoside transporters (NTs) regulate DBS. We measured DBS with pH and CO(2) electrodes, perfusing ADO ± adenosine receptor agonists or antagonists or the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTR(inh)-172 on DBS. Furthermore, we examined the effect of inhibitors of ADA or NT on DBS. Perfusion of AMP or ADO (0.1 mM) uniformly increased DBS, whereas inosine had no effect. The A(1/2) receptor agonist 5'-(N-ethylcarboxamido)-adenosine (0.1 mM) increased DBS, whereas ADO-augmented DBS was inhibited by the potent A(2B) receptor antagonist N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]-acetamide (MRS1754) (10 μM). Other selective adenosine receptor agonists or antagonists had no effect. The A(2B) receptor was immunolocalized to the brush border membrane of duodenal villi, whereas the A(2A) receptor was immunolocalized primarily to the vascular endothelium. Furthermore, ADO-induced DBS was enhanced by 2'-deoxycoformycin (1 μM) and formycin B (0.1 mM), but not by S-(4-nitrobenzyl)-6-thioinosine (0.1 mM), and it was abolished by CFTR(inh)-172 pretreatment (1 mg/kg i.p). Moreover, ATP (0.1 mM)-induced DBS was partially reduced by (1R,2S,4S,5S)-4-2-iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (MRS2500) or 8-[4-[4-(4-chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine (PSB603) and abolished by both, suggesting that ATP is sequentially degraded to ADO. Luminal ADO stimulates DBS via A(2B) receptors and CFTR. ATP release, ecto-phosphohydrolases, ADA, and concentrative NT may coordinately regulate luminal surface ADO concentration to modulate ADO-P1 receptor signaling in rat duodenum.
Collapse
Affiliation(s)
- Maggie Ham
- Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Huber-Ruano I, Pinilla-Macua I, Torres G, Casado FJ, Pastor-Anglada M. Link between high-affinity adenosine concentrative nucleoside transporter-2 (CNT2) and energy metabolism in intestinal and liver parenchymal cells. J Cell Physiol 2010; 225:620-30. [PMID: 20506327 DOI: 10.1002/jcp.22254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Concentrative nucleoside transporter 2 (CNT2) is a high-affinity adenosine transporter that may play physiological roles beyond nucleoside salvage. Previous reports relate CNT2 function to modulation of purinergic signaling and energy metabolism in intestinal and liver parenchymal cells (Duflot et al., 2004, Mol Cell Biol 24:2710-2719; Aymerich et al., 2006, J Cell Sci 119:1612-1621). In the present study, to further examine the link between CNT2 and energy metabolism, CNT2 protein partners were identified using the bacterial two-hybrid and GST pull-down approaches. The N-terminal segment of CNT2 was used as bait, since proteins lacking this domain display impaired plasma membrane insertion and intracellular retention. Glucose-regulated protein 58 (GRP58) was identified as a potential rCNT2 partner in pull-down experiments. Two-hybrid screening performed against a liver human cDNA library led to the identification of aldolase B as another hCNT2 partner. Aldolase B-RFP and endogenous GRP58 separately co-localized with CNT2 in HeLa cells transfected with YFPrCNT2. CNT2 interaction with GRP58 was validated using co-immunoprecipitation experiments. In HeLa cells, fluorescence resonance energy transfer (FRET) efficiency increased upon fructose addition, consistent with a transient interaction between aldolase B and the transporter. The physiological basis for in vivo interactions was derived from experiments in which GRP58 was inhibited or overexpressed and aldolase B activity stimulated towards glycolysis. GRP58 appeared to be a negative effector of CNT2 function, whereas aldolase B flux modulated CNT2 activity via a mechanism involving acquisition of higher affinity for its substrates. These findings support the theory that CNT2 plays roles other than salvage and establishes links with energy metabolism.
Collapse
Affiliation(s)
- Isabel Huber-Ruano
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona and CIBER EHD, Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Senger MR, Rosemberg DB, Seibt KJ, Dias RD, Bogo MR, Bonan CD. Influence of mercury chloride on adenosine deaminase activity and gene expression in zebrafish (Danio rerio) brain. Neurotoxicology 2010; 31:291-6. [PMID: 20226812 DOI: 10.1016/j.neuro.2010.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 11/29/2022]
Abstract
Mercury is a widespread environmental contaminant that is neurotoxic even at very low concentrations. In this study we investigated the effects of mercury chloride on soluble and membrane adenosine deaminase (ADA) activity and gene expression in zebrafish brain. Inhibition of ADA activity was observed in the soluble fraction at 5-250 microM HgCl(2) (84.6-92.6%, respectively), whereas inhibition occurred at 50-250 microM in membrane fractions (20.9-26%, respectively). We performed in vitro experiments with chelants (EDTA and DTT) to test if these compounds prevented or reversed the inhibition caused by HgCl(2) and found that the inhibition was partially or fully abolished. The effect on ADA activity in soluble and membrane fractions was evaluated after acute (24h) and subchronic (96h) in vivo exposure of zebrafish to 20 microg/l HgCl(2). ADA activity in the soluble fraction was decreased after both acute (24.5%) and subchronic (40.8%) exposures, whereas in brain membranes the enzyme was inhibited only after subchronic exposure (21.9%). Semiquantitative RT-PCR analysis showed that HgCl(2) did not alter ADA gene expression. This study demonstrated that ADA activity was inhibited by mercury and this effect might be related to the neurotoxicity of this heavy metal.
Collapse
Affiliation(s)
- Mario Roberto Senger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Genzen JR, Yang D, Ravid K, Bordey A. Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Res 2009; 6:15. [PMID: 19922651 PMCID: PMC2791093 DOI: 10.1186/1743-8454-6-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ependymal cells form a protective monolayer between the brain parenchyma and cerebrospinal fluid (CSF). They possess motile cilia important for directing the flow of CSF through the ventricular system. While ciliary beat frequency in airway epithelia has been extensively studied, fewer reports have looked at the mechanisms involved in regulating ciliary beat frequency in ependyma. Prior studies have demonstrated that ependymal cells express at least one purinergic receptor (P2X7). An understanding of the full range of purinergic receptors expressed by ependymal cells, however, is not yet complete. The objective of this study was to identify purinergic receptors which may be involved in regulating ciliary beat frequency in lateral ventricle ependymal cells. METHODS High-speed video analysis of ciliary movement in the presence and absence of purinergic agents was performed using differential interference contrast microscopy in slices of mouse brain (total number of animals = 67). Receptor identification by this pharmacological approach was corroborated by immunocytochemistry, calcium imaging experiments, and the use of two separate lines of knockout mice. RESULTS Ciliary beat frequency was enhanced by application of a commonly used P2X7 agonist. Subsequent experiments, however, demonstrated that this enhancement was observed in both P2X7+/+ and P2X7-/- mice and was reduced by pre-incubation with an ecto-5'-nucleotidase inhibitor. This suggested that enhancement was primarily due to a metabolic breakdown product acting on another purinergic receptor subtype. Further studies revealed that ciliary beat frequency enhancement was also induced by adenosine receptor agonists, and pharmacological studies revealed that ciliary beat frequency enhancement was primarily due to A2B receptor activation. A2B expression by ependymal cells was subsequently confirmed using A2B-/-/beta-galactosidase reporter gene knock-in mice. CONCLUSION This study demonstrates that A2B receptor activation enhances ciliary beat frequency in lateral ventricle ependymal cells. Ependymal cell ciliary beat frequency regulation may play an important role in cerebral fluid balance and cerebrospinal fluid dynamics.
Collapse
Affiliation(s)
- Jonathan R Genzen
- Departments of Neurosurgery & Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA
| | | | | | | |
Collapse
|
27
|
Wojtal KA, Eloranta JJ, Hruz P, Gutmann H, Drewe J, Staumann A, Beglinger C, Fried M, Kullak-Ublick GA, Vavricka SR. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab Dispos 2009; 37:1871-7. [PMID: 19487253 DOI: 10.1124/dmd.109.027367] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an inflammatory condition that affects the gastrointestinal tract. The solute carrier (SLC) superfamily of transporters comprise proteins involved in the uptake of drugs, hormones, and other biologically active compounds. The purpose of this study was to determine the mRNA expression levels of 15 solute carrier transporters in two regions of the intestine in IBD patients. Endoscopic biopsy specimens were taken from two locations (terminal ileum and colon) for histological examination and RNA extraction. We quantitatively measured the mRNA expression of 15 SLC transporters in 107 IBD patients (53 with Crohn's disease and 54 with ulcerative colitis) and 23 control subjects. mRNA expression was evaluated using the quantitative reverse transcription-polymerase chain reaction technique. We observed that in the ileum of IBD patients, mRNA levels for serotonin transporter, equilibrative nucleoside transporter (ENT) 1, ENT2, and organic anion-transporting polypeptide (OATP) 2B1 were significantly elevated, whereas levels for apical sodium-dependent bile acid transporter (ASBT) and organic zwitterion/cation transporter (OCTN) 2 were significantly lower. In colon, mRNA levels for ENT1, ENT2, concentrative nucleoside transporter (CNT) 2, OATP2B1, and OATP4A1 were significantly higher, whereas mRNA levels for OCTN2 were significantly decreased. In inflamed colon of IBD patients the mRNA expression levels of ENT1, ENT2, CNT2, OATP2B1, OATP4A1, and peptide transporter 1 were significantly higher. We conclude that intestinal SLC mRNA levels are dysregulated in IBD patients, which may be linked to the inflammation of the tissue and provides an indication about the role of inflammatory signaling in regulation of SLC expression.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Adenosine (Ado) regulates diverse cellular functions in the lung through its local production, release, metabolism, and subsequent stimulation of G-protein-coupled P1 purinergic receptors. The A(2B) adenosine receptor (A(2B)AR) is the predominant P1 purinergic receptor isoform expressed in surface airway epithelia, and Ado is an important regulator of airway surface liquid (ASL) volume through its activation of the cystic fibrosis transmembrane conductance regulator (CFTR). Through a delicate balance between sodium (Na(+)) absorption and chloride (Cl(-)) secretion, the ASL volume is optimized to promote ciliary activity and mucociliary clearance, effectively removing inhaled particulates. When CFTR is dysfunctional, the Ado/A(2B)AR regulatory system fails to optimize the ASL volume, leading to its depletion and interruption of mucociliary clearance. In cystic fibrosis (CF), loss of CFTR function and resultant mucus stasis leaves the lower airways susceptible to mucus obstruction, chronic bacterial infection, relentless inflammation, and eventually panbronchiectasis. Adenosine triphosphate (ATP) also regulates transepithelial Cl(-) conductance, but through a separate system that relies on stimulation of P2Y(2) purinergic receptors, mobilization of intracellular calcium, and activation of calcium-activated chloride channels (CaCCs). These pathways remain functional in CF, and may serve a protective role in the disease. In this chapter, we will review our current understanding of how Ado and related nucleotides regulate CFTR and Cl(-) conductance in the human airway, including the regulation of additional intracellular and extracellular signaling pathways that provide important links between ion transport and inflammation relevant to the disease.
Collapse
|
29
|
Volonté C, D'Ambrosi N. Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 2008; 276:318-29. [PMID: 19076212 DOI: 10.1111/j.1742-4658.2008.06793.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Receptors should be properly analysed in view of the microenvironment in which they are embedded. Therefore, the concept of 'receptosome' was formulated to the complex interactions taking place between receptors and other proteins at the plasma membrane level, and to explain very heterogeneous or divergent cellular responses to common epigenetic factors and modifications to the extracellular environment. The receptosome thus becomes a molecular network connecting transmitters, hormones or growth factors, to both their specific receptors and unique downstream effector proteins. As an example of receptosome, we introduce here the 'purinome' as molecular complex responsible for the biological effects of extracellular purine and pyrimidine ligands. In addition to a vast heterogeneity of purinergic ligands, the purinome thus consists of ectonucleotide-metabolizing enzymes hydrolysing nucleoside phosphates, purinergic receptors classified as P1 for adenosine/AMP and P2 for nucleosides tri-/diphosphates, nucleoside transporters with both equilibrative and concentrative properties and finally, nucleotide channels and transporters. Notably, these purinergic elements are not independent, but they play tightly concerted actions under physiological conditions. As a whole and not singularly, they trigger, maintain and terminate the purinergic signalling. This signifies that the purinome is not a new, mere definition of juxtaposed purinergic units, but rather the experimental evidence of complex and dynamic molecular cross-talk and cooperation networks. Alteration of this dynamic equilibrium may even participate in many pathological states. As a consequence, to be successful against pathological conditions, the genetic/pharmacological manipulation of purinergic mechanisms must go well beyond single proteins, and be more holistically oriented.
Collapse
|
30
|
Zuo P, Picher M, Okada SF, Lazarowski ER, Button B, Boucher RC, Elston TC. Mathematical model of nucleotide regulation on airway epithelia. Implications for airway homeostasis. J Biol Chem 2008; 283:26805-19. [PMID: 18662982 DOI: 10.1074/jbc.m801516200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the airways, adenine nucleotides support a complex signaling network mediating host defenses. Released by the epithelium into the airway surface liquid (ASL) layer, they regulate mucus clearance through P2 (ATP) receptors, and following surface metabolism through P1 (adenosine; Ado) receptors. The complexity of ASL nucleotide regulation provides an ideal subject for biochemical network modeling. A mathematical model was developed to integrate nucleotide release, the ectoenzymes supporting the dephosphorylation of ATP into Ado, Ado deamination into inosine (Ino), and nucleoside uptake. The model also includes ecto-adenylate kinase activity and feed-forward inhibition of Ado production by ATP and ADP. The parameters were optimized by fitting the model to experimental data for the steady-state and transient concentration profiles generated by adding ATP to polarized primary cultures of human bronchial epithelial (HBE) cells. The model captures major aspects of ATP and Ado regulation, including their >4-fold increase in concentration induced by mechanical stress mimicking normal breathing. The model also confirmed the independence of steady-state nucleotide concentrations on the ASL volume, an important regulator of airway clearance. An interactive approach between simulations and assays revealed that feed-forward inhibition is mediated by selective inhibition of ecto-5'-nucleotidase. Importantly, the model identifies ecto-adenylate kinase as a key regulator of ASL ATP and proposes novel strategies for the treatment of airway diseases characterized by impaired nucleotide-mediated clearance. These new insights into the biochemical processes supporting ASL nucleotide regulation illustrate the potential of this mathematical model for fundamental and clinical research.
Collapse
Affiliation(s)
- Peiying Zuo
- Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Button B, Boucher RC. Role of mechanical stress in regulating airway surface hydration and mucus clearance rates. Respir Physiol Neurobiol 2008; 163:189-201. [PMID: 18585484 DOI: 10.1016/j.resp.2008.04.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 11/16/2022]
Abstract
Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Brian Button
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
32
|
Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 2008; 163:208-13. [PMID: 18635403 DOI: 10.1016/j.resp.2008.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/14/2008] [Accepted: 05/18/2008] [Indexed: 11/24/2022]
Abstract
The mucociliary clearance system is comprised of three components, ion transport activities controlling the height of airway surface liquid (ASL), mucin secretion, and ciliary activity. These activities in humans are controlled principally by local agonists, extracellular nucleotides and nucleosides released from the epithelium. Importantly, mechanical stresses stimulate goblet cell mucin secretion, ciliary beating, and Cl- and fluid secretion through mechanically induced nucleotide release. Emerging evidence also implicates co-secretion of nucleotides and mucin from goblet cells as a source of extracellular agonist. At rest, ATP is released onto airway surfaces at approximately 370fmol/mincm2, but only approximately 3% of released ATP is recovered in ASL. Secreted UTP meets with a similar fate. A wide variety of hydrolytic and transphosphorylating ecto-enzymes convert the triphosphate nucleotides into ADP, AMP, and adenosine, UDP, UMP, and uridine. Of these, ATP, adenosine, UTP, and UDP act as agonists at apical P2Y2 (ATP, UTP), P2Y6 (UDP), and A2B (adenosine) receptors on ciliated and/or goblet cells to regulate mucociliary clearance.
Collapse
|
33
|
Rose JB, Coe IR. Physiology of Nucleoside Transporters: Back to the Future. . . . Physiology (Bethesda) 2008; 23:41-8. [DOI: 10.1152/physiol.00036.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleoside transporters (NTs) are integral membrane proteins responsible for mediating and facilitating the flux of nucleosides and nucleobases across cellular membranes. NTs are also responsible for the uptake of nucleoside analog drugs used in the treatment of cancer and viral infections, and they are the target of certain compounds used in the treatment of some types of cardiovascular disease. The important role of NTs as drug transporters and therapeutic targets has necessarily led to intense interest into their structure and function and the relationship between these proteins and drug efficacy. In contrast, we still know relatively little about the fundamental physiology of NTs. In this review, we discuss various aspects of the physiology of NTs in mammalian systems, particularly noting tissues and cells where there has been little recent research. Our central thesis is reference back to some of the older literature, combined with current findings, will provide direction for future research into NT physiology that will lead to a fuller understanding of the role of these intriguing proteins in the everyday lives of cells, tissues, organs, and whole animals.
Collapse
Affiliation(s)
- Jennifer B. Rose
- Department of Biology, York University, Toronto, Ontario, Canada,
| | - Imogen R. Coe
- Department of Biology, York University, Toronto, Ontario, Canada,
| |
Collapse
|