1
|
Gough MD, Robers MB, Corona CR, Mehta RK, Nyati MK, Toogood PL. Development of a cell-based target engagement assay for pyruvate dehydrogenase kinase. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100227. [PMID: 40122462 DOI: 10.1016/j.slasd.2025.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Pyruvate dehydrogenase kinases (PDHKs) are non-canonical serine/threonine kinases that regulate the pyruvate dehydrogenase complex. Given their central role in metabolism, dysregulation of PDHKs has been linked with a broad variety of pathological conditions, such as cardiovascular disease, diabetes, lactic acidosis, and cancer. While there are many small molecule PDHK inhibitors, including several that have advanced into clinical development, no PDHK inhibitor has been approved for therapeutic use for any indication. Currently the field lacks well-characterized tool compounds that can probe PDHK biology and differentiate between PDHK isoforms. Moreover, disconnects between biochemical and cell-based assays have complicated efforts to understand the biological effect of inhibiting PDHK catalytic activity. To better understand how PDHK inhibitors function in cells, we have developed a cell-based assay using NanoBRET Target Engagement technology. Here, we describe the use of NanoBRET to evaluate binding at the PDHK ATP and lipoamide sites. Using these assays, we have profiled previously described PDHK inhibitors and demonstrated the ability of NanoBRET to distinguish between PDHK inhibitors with different mechanisms of action and to elucidate isoform selectivity.
Collapse
Affiliation(s)
- Mya D Gough
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Road, Fitchburg, WI 53711, USA
| | - Cesear R Corona
- Promega Corporation, 2800 Woods Hollow Road, Fitchburg, WI 53711, USA
| | - Ranjit K Mehta
- Department of Radiation Oncology, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Peter L Toogood
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Kooshan Z, Srinivasan S, Janjua TI, Popat A, Batra J. Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells. Eur J Pharmacol 2025; 991:177300. [PMID: 39870236 DOI: 10.1016/j.ejphar.2025.177300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells. Of the six PDK1 inhibitors, radicicol and dicumarol significantly inhibited cellular proliferation and exhibited lower metabolic activity in both LNCaP and PC-3 metastatic prostate cancer cells. Radicicol was highly effective at lower concentration. Moreover, radicicol significantly inhibited migration and invasion in PC-3 cells. We then developed a lactoferrin nanoparticle (LF-NP) encapsulated with Radicicol (Ra-LF-NP), using a rotary evaporation method. Spheroid assays confirmed the higher inhibitory potential of Ra-LF-NP with a reduction in spheroid area by 80%, and invasiveness compared to radicicol alone. Lactoferrin receptors are overexpressed on the surface of many cancer cells, including prostate cancer. Conjugating radicicol with lactoferrin nanoparticles, potentially enhanced the specific uptake of the drug by prostate cancer cells while minimizing the off-target effects on healthy cells. This targeted therapy approach could lead to improved treatment outcomes and reduced side effects. Our study demonstrated the potential of radicicol delivery by lactoferrin-conjugated nanoparticle as an efficient drug delivery strategy for prostate cancer treatment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
4
|
Cho H, Shin I, Cho K, Yoon H, Yoo EK, Kim MJ, Park S, Lee IK, Kim ND, Sim T. Identification of Novel Resorcinol Amide Derivatives as Potent and Specific Pyruvate Dehydrogenase Kinase (PDHK) Inhibitors. J Med Chem 2019; 62:8461-8479. [DOI: 10.1021/acs.jmedchem.9b00565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyungseon Cho
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun Kyung Yoo
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Mi-Jin Kim
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Sungmi Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation, 2387 Dalgubeol-daero, Suseong-gu, Daegu 42019, Republic of Korea
- NDBio Therapeutics Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Wu DM, Wang YJ, Fan SH, Zhang ZF, Shan Q, Lu J, Chen GQ, Zheng YL. High-throughput screening of novel pyruvate dehydrogenase kinases inhibitors and biological evaluation of their in vitro and in vivo antiproliferative activity. Eur J Med Chem 2019; 164:252-262. [PMID: 30597326 DOI: 10.1016/j.ejmech.2018.12.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Overexpression of pyruvate dehydrogenase kinases (PDKs) has been widely noticed in a variety of human solid tumors, which could be regarded as an attractive therapeutic target for cancer therapy. In this paper, we present an enzymatic screening assay and multiple biological evaluations for the identification of potential PDKs, especially PDK1 inhibitors. We identified 9 potential PDKs inhibitors from the screening of an in-house small molecule library, all of the identified inhibitors reduced pyruvate dehydrogenase (PDH) complex phosphorylation. Among which, 4, 5, and 9 displayed the most potent PDKs inhibitory activities, with EC50 values of 0.34, 1.4, and 1.6 μM in an enzymatic assay, respectively. A kinase inhibition assay suggested that 4, 5, and 9 were pan-isoform PDK inhibitors, but more sensitive to PDK1. Meanwhile, the three compounds inhibited HSP90, with IC50 values of 0.78, 3.58, and 2.70 μM, respectively. The cell viability assay indicated that 4 inhibited all of the tested cancer cells proliferation, with a GC50 value of 2.3 μM against NCIH1975 cell, but has little effect on human normal lung cell BEAS-2B cell. In the NCIH1975 xenograft models, 4 displayed strong antitumor activities at a dose of 10 and 20 mg/kg, but with no negative effect on the mice weight. In addition, 4 decreased the ECAR and lactate formation, increased OCR and ROS level in NCIH1975 cancer cell, which could be used as a promising modulator to reprogram the glucose metabolic pathways in NCIH1975 cancer cells.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, PR China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
6
|
Global view of cognate kinase activation by the human pyruvate dehydrogenase complex. Sci Rep 2017; 7:42760. [PMID: 28230160 PMCID: PMC5322387 DOI: 10.1038/srep42760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
The human pyruvate dehydrogenase complex (PDC) comprises four multidomain components, E1, E3, E2 and an E3-binding protein (E3BP), the latter two forming the core as E2·E3BP sub-complex. Pyruvate flux through PDC is regulated via phosphorylation (inactivation) at E1 by four PDC kinases (PDKs), and reactivation by two PDC phosphatases. Up-regulation of PDK isoform gene expression is reported in several forms of cancer, while PDKs may be further activated by PDC by binding to the E2·E3BP core. Hence, the PDK: E2·E3BP interaction provides new therapeutic targets. We carried out both functional kinetic and thermodynamic studies to demonstrate significant differences in the activation of PDK isoforms by binding to the E2·E3BP core: (i) PDK2 needs no activation by E2·E3BP for efficient functioning, while PDK4 was the least effective of the four isoforms, and could not be activated by E2·E3BP. Hence, development of inhibitors to the interaction of PDK2 and PDK4 with E2·E3BP is not promising; (ii) Design of inhibitors to interfere with interaction of E2·E3BP with PDK1 and PDK3 is promising. PDK3 needs E2·E3BP core for activation, an activation best achieved by synergistic combination of E2-derived catalytic domain and tridomain.
Collapse
|
7
|
Vašák M, Schnabl J. Sodium and Potassium Ions in Proteins and Enzyme Catalysis. Met Ions Life Sci 2016; 16:259-90. [DOI: 10.1007/978-3-319-21756-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Moore JD, Staniszewska A, Shaw T, D'Alessandro J, Davis B, Surgenor A, Baker L, Matassova N, Murray J, Macias A, Brough P, Wood M, Mahon PC. VER-246608, a novel pan-isoform ATP competitive inhibitor of pyruvate dehydrogenase kinase, disrupts Warburg metabolism and induces context-dependent cytostasis in cancer cells. Oncotarget 2015; 5:12862-76. [PMID: 25404640 PMCID: PMC4350332 DOI: 10.18632/oncotarget.2656] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/02/2014] [Indexed: 11/25/2022] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) is a pivotal enzyme in cellular energy metabolism that has previously been implicated in cancer through both RNAi based studies and clinical correlations with poor prognosis in several cancer types. Here, we report the discovery of a novel and selective ATP competitive pan-isoform inhibitor of PDK, VER-246608. Consistent with a PDK mediated MOA, VER-246608 increased pyruvate dehydrogenase complex (PDC) activity, oxygen consumption and attenuated glycolytic activity. However, these effects were only observed under D-glucose-depleted conditions and required almost complete ablation of PDC E1α subunit phosphorylation. VER-246608 was weakly anti-proliferative to cancer cells in standard culture media; however, depletion of either serum or combined D-glucose/L-glutamine resulted in enhanced cellular potency. Furthermore, this condition-selective cytostatic effect correlated with reduced intracellular pyruvate levels and an attenuated compensatory response involving deamination of L-alanine. In addition, VER-246608 was found to potentiate the activity of doxorubicin. In contrast, the lipoamide site inhibitor, Nov3r, demonstrated sub-maximal inhibition of PDK activity and no evidence of cellular activity. These studies suggest that PDK inhibition may be effective under the nutrient-depleted conditions found in the tumour microenvironment and that combination treatments should be explored to reveal the full potential of this therapeutic strategy.
Collapse
Affiliation(s)
- Jonathan D Moore
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK. Current address: Horizon discovery, Cambridge Research Park, Waterbeach, Cambridge, UK
| | | | | | | | - Ben Davis
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK
| | | | - Lisa Baker
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK
| | | | | | - Alba Macias
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK
| | - Paul Brough
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK
| | - Mike Wood
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK
| | | |
Collapse
|
9
|
Zhang SL, Hu X, Zhang W, Yao H, Tam KY. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov Today 2015; 20:1112-9. [PMID: 25842042 DOI: 10.1016/j.drudis.2015.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Many cancer cells demonstrate a high rate of glucose consumption via glycolysis to provide intermediates for macromolecule biosynthesis. To accomplish this metabolic change, the expression of pyruvate dehydrogenase kinases (PDKs) is rapidly increased in cancer cells. Inhibition of PDKs could promote the function of mitochondria by increasing the oxidative metabolism of pyruvate, resulting in the death of cancer cells. In this review, we provide an overview of the structural information available for PDKs and their connections to known therapeutic effects. We then describe the development of small molecule PDK inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Finally, directions for further development of PDK inhibitors as potential anticancer agents are discussed.
Collapse
Affiliation(s)
- Shao-Lin Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaohui Hu
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Wen Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Huankai Yao
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Kin Yip Tam
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
10
|
Elucidation of the interaction loci of the human pyruvate dehydrogenase complex E2·E3BP core with pyruvate dehydrogenase kinase 1 and kinase 2 by H/D exchange mass spectrometry and nuclear magnetic resonance. Biochemistry 2014; 54:69-82. [PMID: 25436986 PMCID: PMC4295793 DOI: 10.1021/bi5013113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The human pyruvate dehydrogenase
complex (PDC) comprises three
principal catalytic components for its mission: E1, E2, and E3. The
core of the complex is a strong subcomplex between E2 and an E3-binding
protein (E3BP). The PDC is subject to regulation at E1 by serine phosphorylation
by four kinases (PDK1–4), an inactivation reversed by the action
of two phosphatases (PDP1 and -2). We report H/D exchange mass spectrometric
(HDX-MS) and nuclear magnetic resonance (NMR) studies in the first
attempt to define the interaction loci between PDK1 and PDK2 with
the intact E2·E3BP core and their C-terminally truncated proteins.
While the three lipoyl domains (L1 and L2 on E2 and L3 on E3BP) lend
themselves to NMR studies and determination of interaction maps with
PDK1 and PDK2 at the individual residue level, HDX-MS allowed studies
of interaction loci on both partners in the complexes, PDKs, and other
regions of the E2·E3BP core, as well, at the peptide level. HDX-MS
suggested that the intact E2·E3BP core enhances the binding specificity
of L2 for PDK2 over PDK1, while NMR studies detected lipoyl domain
residues unique to interaction with PDK1 and PDK2. The E2·E3BP
core induced more changes on PDKs than any C-terminally truncated
protein, with clear evidence of greater plasticity of PDK1 than of
PDK2. The effect of L1L2S paralleled HDX-MS results obtained with
the intact E2·E3BP core; hence, L1L2S is an excellent candidate
with which to define interaction loci with these two PDKs. Surprisingly,
L3S′ induced moderate interaction with both PDKs according
to both methods.
Collapse
|
11
|
Granchi C, Minutolo F. Anticancer agents that counteract tumor glycolysis. ChemMedChem 2012; 7:1318-50. [PMID: 22684868 PMCID: PMC3516916 DOI: 10.1002/cmdc.201200176] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Indexed: 12/12/2022]
Abstract
Can we consider cancer to be a "metabolic disease"? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have increased needs for both energy and biosynthetic intermediates to support their growth and invasiveness. However, their high proliferation rate often generates regions that are insufficiently oxygenated. Therefore, their carbohydrate metabolism must rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the Warburg effect, constitutes a fundamental adaptation of tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that antiglycolytic agents may cause serious side effects toward normal cells. The key to selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anticancer drugs with minimal toxicity. There is growing evidence to support many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant antiglycolytic agents that have been investigated thus far for the treatment of cancer.
Collapse
Affiliation(s)
- Carlotta Granchi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| | - Filippo Minutolo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa (Italy)
| |
Collapse
|
12
|
Mandal PC, Das S, Mukhopadhyay S. Mechanistic studies on the oxidation of glyoxylic and pyruvic acids by a {Mn3O4}4+core in aqueous media. INT J CHEM KINET 2010. [DOI: 10.1002/kin.20488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Nucleophilic difluoromethylation and trifluoromethylation using tetrakis(dimethylamino)ethylene (TDAE) reagent. J Fluor Chem 2008. [DOI: 10.1016/j.jfluchem.2008.06.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wynn RM, Kato M, Chuang JL, Tso SC, Li J, Chuang DT. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity. J Biol Chem 2008; 283:25305-25315. [PMID: 18658136 PMCID: PMC2533096 DOI: 10.1074/jbc.m802249200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/23/2008] [Indexed: 02/04/2023] Open
Abstract
Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.
Collapse
Affiliation(s)
- R Max Wynn
- Department of Biochemistry, Dallas, Texas 75390-9038; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Masato Kato
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | | | - Shih-Chia Tso
- Department of Biochemistry, Dallas, Texas 75390-9038
| | - Jun Li
- Department of Biochemistry, Dallas, Texas 75390-9038
| | - David T Chuang
- Department of Biochemistry, Dallas, Texas 75390-9038; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038.
| |
Collapse
|
15
|
Green T, Grigorian A, Klyuyeva A, Tuganova A, Luo M, Popov KM. Structural and functional insights into the molecular mechanisms responsible for the regulation of pyruvate dehydrogenase kinase 2. J Biol Chem 2008; 283:15789-98. [PMID: 18387944 PMCID: PMC2414299 DOI: 10.1074/jbc.m800311200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/14/2008] [Indexed: 11/06/2022] Open
Abstract
PDHK2 is a mitochondrial protein kinase that phosphorylates pyruvate dehydrogenase complex, thereby down-regulating the oxidation of pyruvate. Here, we present the crystal structure of PDHK2 bound to the inner lipoyl-bearing domain of dihydrolipoamide transacetylase (L2) determined with or without bound adenylyl imidodiphosphate. Both structures reveal a PDHK2 dimer complexed with two L2 domains. Comparison with apo-PDHK2 shows that L2 binding causes rearrangements in PDHK2 structure that affect the L2- and E1-binding sites. Significant differences are found between PDHK2 and PDHK3 with respect to the structure of their lipoyllysine-binding cavities, providing the first structural support to a number of studies showing that these isozymes are markedly different with respect to their affinity for the L2 domain. Both structures display a novel type II potassium-binding site located on the PDHK2 interface with the L2 domain. Binding of potassium ion at this site rigidifies the interface and appears to be critical in determining the strength of L2 binding. Evidence is also presented that potassium ions are indispensable for the cross-talk between the nucleotide- and L2-binding sites of PDHK2. The latter is believed to be essential for the movement of PDHK2 along the surface of the transacetylase scaffold.
Collapse
Affiliation(s)
- Todd Green
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Alexei Grigorian
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Alla Klyuyeva
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Alina Tuganova
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Ming Luo
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| | - Kirill M. Popov
- Departments of Microbiology and
Biochemistry and Molecular Genetics, Schools of
Medicine and Dentistry, University of Alabama at Birmingham, Birmingham,
Alabama 35294
| |
Collapse
|